| //===--- LoopConvertUtils.cpp - clang-tidy --------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LoopConvertUtils.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/Lambda.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/TokenKinds.h" |
| #include "clang/Lex/Lexer.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/Casting.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <string> |
| #include <utility> |
| |
| using namespace clang::ast_matchers; |
| |
| namespace clang { |
| namespace tidy { |
| namespace modernize { |
| |
| /// \brief Tracks a stack of parent statements during traversal. |
| /// |
| /// All this really does is inject push_back() before running |
| /// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop |
| /// the stack is the parent of the current statement (NULL for the topmost |
| /// statement). |
| bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) { |
| StmtAncestors.insert(std::make_pair(Statement, StmtStack.back())); |
| StmtStack.push_back(Statement); |
| RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement); |
| StmtStack.pop_back(); |
| return true; |
| } |
| |
| /// \brief Keep track of the DeclStmt associated with each VarDecl. |
| /// |
| /// Combined with StmtAncestors, this provides roughly the same information as |
| /// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree |
| /// using StmtAncestors. |
| bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Decls) { |
| for (const auto *decl : Decls->decls()) { |
| if (const auto *V = dyn_cast<VarDecl>(decl)) |
| DeclParents.insert(std::make_pair(V, Decls)); |
| } |
| return true; |
| } |
| |
| /// \brief record the DeclRefExpr as part of the parent expression. |
| bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) { |
| Components.push_back(E); |
| return true; |
| } |
| |
| /// \brief record the MemberExpr as part of the parent expression. |
| bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) { |
| Components.push_back(Member); |
| return true; |
| } |
| |
| /// \brief Forward any DeclRefExprs to a check on the referenced variable |
| /// declaration. |
| bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) { |
| if (auto *V = dyn_cast_or_null<VarDecl>(DeclRef->getDecl())) |
| return VisitVarDecl(V); |
| return true; |
| } |
| |
| /// \brief Determine if any this variable is declared inside the ContainingStmt. |
| bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *V) { |
| const Stmt *Curr = DeclParents->lookup(V); |
| // First, see if the variable was declared within an inner scope of the loop. |
| while (Curr != nullptr) { |
| if (Curr == ContainingStmt) { |
| DependsOnInsideVariable = true; |
| return false; |
| } |
| Curr = StmtParents->lookup(Curr); |
| } |
| |
| // Next, check if the variable was removed from existence by an earlier |
| // iteration. |
| for (const auto &I : *ReplacedVars) { |
| if (I.second == V) { |
| DependsOnInsideVariable = true; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// \brief If we already created a variable for TheLoop, check to make sure |
| /// that the name was not already taken. |
| bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) { |
| StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop); |
| if (I != GeneratedDecls->end() && I->second == Name) { |
| Found = true; |
| return false; |
| } |
| return true; |
| } |
| |
| /// \brief If any named declaration within the AST subtree has the same name, |
| /// then consider Name already taken. |
| bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *D) { |
| const IdentifierInfo *Ident = D->getIdentifier(); |
| if (Ident && Ident->getName() == Name) { |
| Found = true; |
| return false; |
| } |
| return true; |
| } |
| |
| /// \brief Forward any declaration references to the actual check on the |
| /// referenced declaration. |
| bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) { |
| if (auto *D = dyn_cast<NamedDecl>(DeclRef->getDecl())) |
| return VisitNamedDecl(D); |
| return true; |
| } |
| |
| /// \brief If the new variable name conflicts with any type used in the loop, |
| /// then we mark that variable name as taken. |
| bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) { |
| QualType QType = TL.getType(); |
| |
| // Check if our name conflicts with a type, to handle for typedefs. |
| if (QType.getAsString() == Name) { |
| Found = true; |
| return false; |
| } |
| // Check for base type conflicts. For example, when a struct is being |
| // referenced in the body of the loop, the above getAsString() will return the |
| // whole type (ex. "struct s"), but will be caught here. |
| if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) { |
| if (Ident->getName() == Name) { |
| Found = true; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// \brief Look through conversion/copy constructors to find the explicit |
| /// initialization expression, returning it is found. |
| /// |
| /// The main idea is that given |
| /// vector<int> v; |
| /// we consider either of these initializations |
| /// vector<int>::iterator it = v.begin(); |
| /// vector<int>::iterator it(v.begin()); |
| /// and retrieve `v.begin()` as the expression used to initialize `it` but do |
| /// not include |
| /// vector<int>::iterator it; |
| /// vector<int>::iterator it(v.begin(), 0); // if this constructor existed |
| /// as being initialized from `v.begin()` |
| const Expr *digThroughConstructors(const Expr *E) { |
| if (!E) |
| return nullptr; |
| E = E->IgnoreImplicit(); |
| if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) { |
| // The initial constructor must take exactly one parameter, but base class |
| // and deferred constructors can take more. |
| if (ConstructExpr->getNumArgs() != 1 || |
| ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete) |
| return nullptr; |
| E = ConstructExpr->getArg(0); |
| if (const auto *Temp = dyn_cast<MaterializeTemporaryExpr>(E)) |
| E = Temp->GetTemporaryExpr(); |
| return digThroughConstructors(E); |
| } |
| return E; |
| } |
| |
| /// \brief Returns true when two Exprs are equivalent. |
| bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second) { |
| if (!First || !Second) |
| return false; |
| |
| llvm::FoldingSetNodeID FirstID, SecondID; |
| First->Profile(FirstID, *Context, true); |
| Second->Profile(SecondID, *Context, true); |
| return FirstID == SecondID; |
| } |
| |
| /// \brief Returns the DeclRefExpr represented by E, or NULL if there isn't one. |
| const DeclRefExpr *getDeclRef(const Expr *E) { |
| return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); |
| } |
| |
| /// \brief Returns true when two ValueDecls are the same variable. |
| bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) { |
| return First && Second && |
| First->getCanonicalDecl() == Second->getCanonicalDecl(); |
| } |
| |
| /// \brief Determines if an expression is a declaration reference to a |
| /// particular variable. |
| static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) { |
| if (!Target || !E) |
| return false; |
| const DeclRefExpr *Decl = getDeclRef(E); |
| return Decl && areSameVariable(Target, Decl->getDecl()); |
| } |
| |
| /// \brief If the expression is a dereference or call to operator*(), return the |
| /// operand. Otherwise, return NULL. |
| static const Expr *getDereferenceOperand(const Expr *E) { |
| if (const auto *Uop = dyn_cast<UnaryOperator>(E)) |
| return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : nullptr; |
| |
| if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) { |
| return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 |
| ? OpCall->getArg(0) |
| : nullptr; |
| } |
| |
| return nullptr; |
| } |
| |
| /// \brief Returns true when the Container contains an Expr equivalent to E. |
| template <typename ContainerT> |
| static bool containsExpr(ASTContext *Context, const ContainerT *Container, |
| const Expr *E) { |
| llvm::FoldingSetNodeID ID; |
| E->Profile(ID, *Context, true); |
| for (const auto &I : *Container) { |
| if (ID == I.second) |
| return true; |
| } |
| return false; |
| } |
| |
| /// \brief Returns true when the index expression is a declaration reference to |
| /// IndexVar. |
| /// |
| /// If the index variable is `index`, this function returns true on |
| /// arrayExpression[index]; |
| /// containerExpression[index]; |
| /// but not |
| /// containerExpression[notIndex]; |
| static bool isIndexInSubscriptExpr(const Expr *IndexExpr, |
| const VarDecl *IndexVar) { |
| const DeclRefExpr *Idx = getDeclRef(IndexExpr); |
| return Idx && Idx->getType()->isIntegerType() && |
| areSameVariable(IndexVar, Idx->getDecl()); |
| } |
| |
| /// \brief Returns true when the index expression is a declaration reference to |
| /// IndexVar, Obj is the same expression as SourceExpr after all parens and |
| /// implicit casts are stripped off. |
| /// |
| /// If PermitDeref is true, IndexExpression may |
| /// be a dereference (overloaded or builtin operator*). |
| /// |
| /// This function is intended for array-like containers, as it makes sure that |
| /// both the container and the index match. |
| /// If the loop has index variable `index` and iterates over `container`, then |
| /// isIndexInSubscriptExpr returns true for |
| /// \code |
| /// container[index] |
| /// container.at(index) |
| /// container->at(index) |
| /// \endcode |
| /// but not for |
| /// \code |
| /// container[notIndex] |
| /// notContainer[index] |
| /// \endcode |
| /// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns |
| /// true on these expressions: |
| /// \code |
| /// (*container)[index] |
| /// (*container).at(index) |
| /// \endcode |
| static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr, |
| const VarDecl *IndexVar, const Expr *Obj, |
| const Expr *SourceExpr, bool PermitDeref) { |
| if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar)) |
| return false; |
| |
| if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(), |
| Obj->IgnoreParenImpCasts())) |
| return true; |
| |
| if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts())) |
| if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(), |
| InnerObj->IgnoreParenImpCasts())) |
| return true; |
| |
| return false; |
| } |
| |
| /// \brief Returns true when Opcall is a call a one-parameter dereference of |
| /// IndexVar. |
| /// |
| /// For example, if the index variable is `index`, returns true for |
| /// *index |
| /// but not |
| /// index |
| /// *notIndex |
| static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall, |
| const VarDecl *IndexVar) { |
| return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 && |
| exprReferencesVariable(IndexVar, OpCall->getArg(0)); |
| } |
| |
| /// \brief Returns true when Uop is a dereference of IndexVar. |
| /// |
| /// For example, if the index variable is `index`, returns true for |
| /// *index |
| /// but not |
| /// index |
| /// *notIndex |
| static bool isDereferenceOfUop(const UnaryOperator *Uop, |
| const VarDecl *IndexVar) { |
| return Uop->getOpcode() == UO_Deref && |
| exprReferencesVariable(IndexVar, Uop->getSubExpr()); |
| } |
| |
| /// \brief Determines whether the given Decl defines a variable initialized to |
| /// the loop object. |
| /// |
| /// This is intended to find cases such as |
| /// \code |
| /// for (int i = 0; i < arraySize(arr); ++i) { |
| /// T t = arr[i]; |
| /// // use t, do not use i |
| /// } |
| /// \endcode |
| /// and |
| /// \code |
| /// for (iterator i = container.begin(), e = container.end(); i != e; ++i) { |
| /// T t = *i; |
| /// // use t, do not use i |
| /// } |
| /// \endcode |
| static bool isAliasDecl(ASTContext *Context, const Decl *TheDecl, |
| const VarDecl *IndexVar) { |
| const auto *VDecl = dyn_cast<VarDecl>(TheDecl); |
| if (!VDecl) |
| return false; |
| if (!VDecl->hasInit()) |
| return false; |
| |
| bool OnlyCasts = true; |
| const Expr *Init = VDecl->getInit()->IgnoreParenImpCasts(); |
| if (Init && isa<CXXConstructExpr>(Init)) { |
| Init = digThroughConstructors(Init); |
| OnlyCasts = false; |
| } |
| if (!Init) |
| return false; |
| |
| // Check that the declared type is the same as (or a reference to) the |
| // container type. |
| if (!OnlyCasts) { |
| QualType InitType = Init->getType(); |
| QualType DeclarationType = VDecl->getType(); |
| if (!DeclarationType.isNull() && DeclarationType->isReferenceType()) |
| DeclarationType = DeclarationType.getNonReferenceType(); |
| |
| if (InitType.isNull() || DeclarationType.isNull() || |
| !Context->hasSameUnqualifiedType(DeclarationType, InitType)) |
| return false; |
| } |
| |
| switch (Init->getStmtClass()) { |
| case Stmt::ArraySubscriptExprClass: { |
| const auto *E = cast<ArraySubscriptExpr>(Init); |
| // We don't really care which array is used here. We check to make sure |
| // it was the correct one later, since the AST will traverse it next. |
| return isIndexInSubscriptExpr(E->getIdx(), IndexVar); |
| } |
| |
| case Stmt::UnaryOperatorClass: |
| return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar); |
| |
| case Stmt::CXXOperatorCallExprClass: { |
| const auto *OpCall = cast<CXXOperatorCallExpr>(Init); |
| if (OpCall->getOperator() == OO_Star) |
| return isDereferenceOfOpCall(OpCall, IndexVar); |
| if (OpCall->getOperator() == OO_Subscript) { |
| assert(OpCall->getNumArgs() == 2); |
| return isIndexInSubscriptExpr(OpCall->getArg(1), IndexVar); |
| } |
| break; |
| } |
| |
| case Stmt::CXXMemberCallExprClass: { |
| const auto *MemCall = cast<CXXMemberCallExpr>(Init); |
| // This check is needed because getMethodDecl can return nullptr if the |
| // callee is a member function pointer. |
| const auto *MDecl = MemCall->getMethodDecl(); |
| if (MDecl && !isa<CXXConversionDecl>(MDecl) && |
| MDecl->getNameAsString() == "at" && MemCall->getNumArgs() == 1) { |
| return isIndexInSubscriptExpr(MemCall->getArg(0), IndexVar); |
| } |
| return false; |
| } |
| |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| /// \brief Determines whether the bound of a for loop condition expression is |
| /// the same as the statically computable size of ArrayType. |
| /// |
| /// Given |
| /// \code |
| /// const int N = 5; |
| /// int arr[N]; |
| /// \endcode |
| /// This is intended to permit |
| /// \code |
| /// for (int i = 0; i < N; ++i) { /* use arr[i] */ } |
| /// for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ } |
| /// \endcode |
| static bool arrayMatchesBoundExpr(ASTContext *Context, |
| const QualType &ArrayType, |
| const Expr *ConditionExpr) { |
| if (!ConditionExpr || ConditionExpr->isValueDependent()) |
| return false; |
| const ConstantArrayType *ConstType = |
| Context->getAsConstantArrayType(ArrayType); |
| if (!ConstType) |
| return false; |
| llvm::APSInt ConditionSize; |
| if (!ConditionExpr->isIntegerConstantExpr(ConditionSize, *Context)) |
| return false; |
| llvm::APSInt ArraySize(ConstType->getSize()); |
| return llvm::APSInt::isSameValue(ConditionSize, ArraySize); |
| } |
| |
| ForLoopIndexUseVisitor::ForLoopIndexUseVisitor(ASTContext *Context, |
| const VarDecl *IndexVar, |
| const VarDecl *EndVar, |
| const Expr *ContainerExpr, |
| const Expr *ArrayBoundExpr, |
| bool ContainerNeedsDereference) |
| : Context(Context), IndexVar(IndexVar), EndVar(EndVar), |
| ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr), |
| ContainerNeedsDereference(ContainerNeedsDereference), |
| OnlyUsedAsIndex(true), AliasDecl(nullptr), |
| ConfidenceLevel(Confidence::CL_Safe), NextStmtParent(nullptr), |
| CurrStmtParent(nullptr), ReplaceWithAliasUse(false), |
| AliasFromForInit(false) { |
| if (ContainerExpr) |
| addComponent(ContainerExpr); |
| } |
| |
| bool ForLoopIndexUseVisitor::findAndVerifyUsages(const Stmt *Body) { |
| TraverseStmt(const_cast<Stmt *>(Body)); |
| return OnlyUsedAsIndex && ContainerExpr; |
| } |
| |
| void ForLoopIndexUseVisitor::addComponents(const ComponentVector &Components) { |
| // FIXME: add sort(on ID)+unique to avoid extra work. |
| for (const auto &I : Components) |
| addComponent(I); |
| } |
| |
| void ForLoopIndexUseVisitor::addComponent(const Expr *E) { |
| llvm::FoldingSetNodeID ID; |
| const Expr *Node = E->IgnoreParenImpCasts(); |
| Node->Profile(ID, *Context, true); |
| DependentExprs.push_back(std::make_pair(Node, ID)); |
| } |
| |
| void ForLoopIndexUseVisitor::addUsage(const Usage &U) { |
| SourceLocation Begin = U.Range.getBegin(); |
| if (Begin.isMacroID()) |
| Begin = Context->getSourceManager().getSpellingLoc(Begin); |
| |
| if (UsageLocations.insert(Begin).second) |
| Usages.push_back(U); |
| } |
| |
| /// \brief If the unary operator is a dereference of IndexVar, include it |
| /// as a valid usage and prune the traversal. |
| /// |
| /// For example, if container.begin() and container.end() both return pointers |
| /// to int, this makes sure that the initialization for `k` is not counted as an |
| /// unconvertible use of the iterator `i`. |
| /// \code |
| /// for (int *i = container.begin(), *e = container.end(); i != e; ++i) { |
| /// int k = *i + 2; |
| /// } |
| /// \endcode |
| bool ForLoopIndexUseVisitor::TraverseUnaryDeref(UnaryOperator *Uop) { |
| // If we dereference an iterator that's actually a pointer, count the |
| // occurrence. |
| if (isDereferenceOfUop(Uop, IndexVar)) { |
| addUsage(Usage(Uop)); |
| return true; |
| } |
| |
| return VisitorBase::TraverseUnaryOperator(Uop); |
| } |
| |
| /// \brief If the member expression is operator-> (overloaded or not) on |
| /// IndexVar, include it as a valid usage and prune the traversal. |
| /// |
| /// For example, given |
| /// \code |
| /// struct Foo { int bar(); int x; }; |
| /// vector<Foo> v; |
| /// \endcode |
| /// the following uses will be considered convertible: |
| /// \code |
| /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) { |
| /// int b = i->bar(); |
| /// int k = i->x + 1; |
| /// } |
| /// \endcode |
| /// though |
| /// \code |
| /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) { |
| /// int k = i.insert(1); |
| /// } |
| /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) { |
| /// int b = e->bar(); |
| /// } |
| /// \endcode |
| /// will not. |
| bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) { |
| const Expr *Base = Member->getBase(); |
| const DeclRefExpr *Obj = getDeclRef(Base); |
| const Expr *ResultExpr = Member; |
| QualType ExprType; |
| if (const auto *Call = |
| dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) { |
| // If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then |
| // the MemberExpr does not have the expression we want. We therefore catch |
| // that instance here. |
| // For example, if vector<Foo>::iterator defines operator->(), then the |
| // example `i->bar()` at the top of this function is a CXXMemberCallExpr |
| // referring to `i->` as the member function called. We want just `i`, so |
| // we take the argument to operator->() as the base object. |
| if (Call->getOperator() == OO_Arrow) { |
| assert(Call->getNumArgs() == 1 && |
| "Operator-> takes more than one argument"); |
| Obj = getDeclRef(Call->getArg(0)); |
| ResultExpr = Obj; |
| ExprType = Call->getCallReturnType(*Context); |
| } |
| } |
| |
| if (Obj && exprReferencesVariable(IndexVar, Obj)) { |
| // Member calls on the iterator with '.' are not allowed. |
| if (!Member->isArrow()) { |
| OnlyUsedAsIndex = false; |
| return true; |
| } |
| |
| if (ExprType.isNull()) |
| ExprType = Obj->getType(); |
| |
| if (!ExprType->isPointerType()) |
| return false; |
| |
| // FIXME: This works around not having the location of the arrow operator. |
| // Consider adding OperatorLoc to MemberExpr? |
| SourceLocation ArrowLoc = Lexer::getLocForEndOfToken( |
| Base->getExprLoc(), 0, Context->getSourceManager(), |
| Context->getLangOpts()); |
| // If something complicated is happening (i.e. the next token isn't an |
| // arrow), give up on making this work. |
| if (ArrowLoc.isValid()) { |
| addUsage(Usage(ResultExpr, Usage::UK_MemberThroughArrow, |
| SourceRange(Base->getExprLoc(), ArrowLoc))); |
| return true; |
| } |
| } |
| return VisitorBase::TraverseMemberExpr(Member); |
| } |
| |
| /// \brief If a member function call is the at() accessor on the container with |
| /// IndexVar as the single argument, include it as a valid usage and prune |
| /// the traversal. |
| /// |
| /// Member calls on other objects will not be permitted. |
| /// Calls on the iterator object are not permitted, unless done through |
| /// operator->(). The one exception is allowing vector::at() for pseudoarrays. |
| bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr( |
| CXXMemberCallExpr *MemberCall) { |
| auto *Member = |
| dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts()); |
| if (!Member) |
| return VisitorBase::TraverseCXXMemberCallExpr(MemberCall); |
| |
| // We specifically allow an accessor named "at" to let STL in, though |
| // this is restricted to pseudo-arrays by requiring a single, integer |
| // argument. |
| const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier(); |
| if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) { |
| if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar, |
| Member->getBase(), ContainerExpr, |
| ContainerNeedsDereference)) { |
| addUsage(Usage(MemberCall)); |
| return true; |
| } |
| } |
| |
| if (containsExpr(Context, &DependentExprs, Member->getBase())) |
| ConfidenceLevel.lowerTo(Confidence::CL_Risky); |
| |
| return VisitorBase::TraverseCXXMemberCallExpr(MemberCall); |
| } |
| |
| /// \brief If an overloaded operator call is a dereference of IndexVar or |
| /// a subscript of the container with IndexVar as the single argument, |
| /// include it as a valid usage and prune the traversal. |
| /// |
| /// For example, given |
| /// \code |
| /// struct Foo { int bar(); int x; }; |
| /// vector<Foo> v; |
| /// void f(Foo); |
| /// \endcode |
| /// the following uses will be considered convertible: |
| /// \code |
| /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) { |
| /// f(*i); |
| /// } |
| /// for (int i = 0; i < v.size(); ++i) { |
| /// int i = v[i] + 1; |
| /// } |
| /// \endcode |
| bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr( |
| CXXOperatorCallExpr *OpCall) { |
| switch (OpCall->getOperator()) { |
| case OO_Star: |
| if (isDereferenceOfOpCall(OpCall, IndexVar)) { |
| addUsage(Usage(OpCall)); |
| return true; |
| } |
| break; |
| |
| case OO_Subscript: |
| if (OpCall->getNumArgs() != 2) |
| break; |
| if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar, |
| OpCall->getArg(0), ContainerExpr, |
| ContainerNeedsDereference)) { |
| addUsage(Usage(OpCall)); |
| return true; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| return VisitorBase::TraverseCXXOperatorCallExpr(OpCall); |
| } |
| |
| /// \brief If we encounter an array with IndexVar as the index of an |
| /// ArraySubsriptExpression, note it as a consistent usage and prune the |
| /// AST traversal. |
| /// |
| /// For example, given |
| /// \code |
| /// const int N = 5; |
| /// int arr[N]; |
| /// \endcode |
| /// This is intended to permit |
| /// \code |
| /// for (int i = 0; i < N; ++i) { /* use arr[i] */ } |
| /// \endcode |
| /// but not |
| /// \code |
| /// for (int i = 0; i < N; ++i) { /* use notArr[i] */ } |
| /// \endcode |
| /// and further checking needs to be done later to ensure that exactly one array |
| /// is referenced. |
| bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *E) { |
| Expr *Arr = E->getBase(); |
| if (!isIndexInSubscriptExpr(E->getIdx(), IndexVar)) |
| return VisitorBase::TraverseArraySubscriptExpr(E); |
| |
| if ((ContainerExpr && |
| !areSameExpr(Context, Arr->IgnoreParenImpCasts(), |
| ContainerExpr->IgnoreParenImpCasts())) || |
| !arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(), |
| ArrayBoundExpr)) { |
| // If we have already discovered the array being indexed and this isn't it |
| // or this array doesn't match, mark this loop as unconvertible. |
| OnlyUsedAsIndex = false; |
| return VisitorBase::TraverseArraySubscriptExpr(E); |
| } |
| |
| if (!ContainerExpr) |
| ContainerExpr = Arr; |
| |
| addUsage(Usage(E)); |
| return true; |
| } |
| |
| /// \brief If we encounter a reference to IndexVar in an unpruned branch of the |
| /// traversal, mark this loop as unconvertible. |
| /// |
| /// This implements the whitelist for convertible loops: any usages of IndexVar |
| /// not explicitly considered convertible by this traversal will be caught by |
| /// this function. |
| /// |
| /// Additionally, if the container expression is more complex than just a |
| /// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower |
| /// our confidence in the transformation. |
| /// |
| /// For example, these are not permitted: |
| /// \code |
| /// for (int i = 0; i < N; ++i) { printf("arr[%d] = %d", i, arr[i]); } |
| /// for (vector<int>::iterator i = container.begin(), e = container.end(); |
| /// i != e; ++i) |
| /// i.insert(0); |
| /// for (vector<int>::iterator i = container.begin(), e = container.end(); |
| /// i != e; ++i) |
| /// if (i + 1 != e) |
| /// printf("%d", *i); |
| /// \endcode |
| /// |
| /// And these will raise the risk level: |
| /// \code |
| /// int arr[10][20]; |
| /// int l = 5; |
| /// for (int j = 0; j < 20; ++j) |
| /// int k = arr[l][j] + l; // using l outside arr[l] is considered risky |
| /// for (int i = 0; i < obj.getVector().size(); ++i) |
| /// obj.foo(10); // using `obj` is considered risky |
| /// \endcode |
| bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *E) { |
| const ValueDecl *TheDecl = E->getDecl(); |
| if (areSameVariable(IndexVar, TheDecl) || |
| exprReferencesVariable(IndexVar, E) || areSameVariable(EndVar, TheDecl) || |
| exprReferencesVariable(EndVar, E)) |
| OnlyUsedAsIndex = false; |
| if (containsExpr(Context, &DependentExprs, E)) |
| ConfidenceLevel.lowerTo(Confidence::CL_Risky); |
| return true; |
| } |
| |
| /// \brief If the loop index is captured by a lambda, replace this capture |
| /// by the range-for loop variable. |
| /// |
| /// For example: |
| /// \code |
| /// for (int i = 0; i < N; ++i) { |
| /// auto f = [v, i](int k) { |
| /// printf("%d\n", v[i] + k); |
| /// }; |
| /// f(v[i]); |
| /// } |
| /// \endcode |
| /// |
| /// Will be replaced by: |
| /// \code |
| /// for (auto & elem : v) { |
| /// auto f = [v, elem](int k) { |
| /// printf("%d\n", elem + k); |
| /// }; |
| /// f(elem); |
| /// } |
| /// \endcode |
| bool ForLoopIndexUseVisitor::TraverseLambdaCapture(LambdaExpr *LE, |
| const LambdaCapture *C, |
| Expr *Init) { |
| if (C->capturesVariable()) { |
| const VarDecl *VDecl = C->getCapturedVar(); |
| if (areSameVariable(IndexVar, cast<ValueDecl>(VDecl))) { |
| // FIXME: if the index is captured, it will count as an usage and the |
| // alias (if any) won't work, because it is only used in case of having |
| // exactly one usage. |
| addUsage(Usage(nullptr, |
| C->getCaptureKind() == LCK_ByCopy ? Usage::UK_CaptureByCopy |
| : Usage::UK_CaptureByRef, |
| C->getLocation())); |
| } |
| } |
| return VisitorBase::TraverseLambdaCapture(LE, C, Init); |
| } |
| |
| /// \brief If we find that another variable is created just to refer to the loop |
| /// element, note it for reuse as the loop variable. |
| /// |
| /// See the comments for isAliasDecl. |
| bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *S) { |
| if (!AliasDecl && S->isSingleDecl() && |
| isAliasDecl(Context, S->getSingleDecl(), IndexVar)) { |
| AliasDecl = S; |
| if (CurrStmtParent) { |
| if (isa<IfStmt>(CurrStmtParent) || isa<WhileStmt>(CurrStmtParent) || |
| isa<SwitchStmt>(CurrStmtParent)) |
| ReplaceWithAliasUse = true; |
| else if (isa<ForStmt>(CurrStmtParent)) { |
| if (cast<ForStmt>(CurrStmtParent)->getConditionVariableDeclStmt() == S) |
| ReplaceWithAliasUse = true; |
| else |
| // It's assumed S came the for loop's init clause. |
| AliasFromForInit = true; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ForLoopIndexUseVisitor::TraverseStmt(Stmt *S) { |
| // If this is an initialization expression for a lambda capture, prune the |
| // traversal so that we don't end up diagnosing the contained DeclRefExpr as |
| // inconsistent usage. No need to record the usage here -- this is done in |
| // TraverseLambdaCapture(). |
| if (const auto *LE = dyn_cast_or_null<LambdaExpr>(NextStmtParent)) { |
| // Any child of a LambdaExpr that isn't the body is an initialization |
| // expression. |
| if (S != LE->getBody()) { |
| return true; |
| } |
| } |
| |
| // All this pointer swapping is a mechanism for tracking immediate parentage |
| // of Stmts. |
| const Stmt *OldNextParent = NextStmtParent; |
| CurrStmtParent = NextStmtParent; |
| NextStmtParent = S; |
| bool Result = VisitorBase::TraverseStmt(S); |
| NextStmtParent = OldNextParent; |
| return Result; |
| } |
| |
| std::string VariableNamer::createIndexName() { |
| // FIXME: Add in naming conventions to handle: |
| // - How to handle conflicts. |
| // - An interactive process for naming. |
| std::string IteratorName; |
| StringRef ContainerName; |
| if (TheContainer) |
| ContainerName = TheContainer->getName(); |
| |
| size_t Len = ContainerName.size(); |
| if (Len > 1 && ContainerName.endswith(Style == NS_UpperCase ? "S" : "s")) { |
| IteratorName = ContainerName.substr(0, Len - 1); |
| // E.g.: (auto thing : things) |
| if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName()) |
| return IteratorName; |
| } |
| |
| if (Len > 2 && ContainerName.endswith(Style == NS_UpperCase ? "S_" : "s_")) { |
| IteratorName = ContainerName.substr(0, Len - 2); |
| // E.g.: (auto thing : things_) |
| if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName()) |
| return IteratorName; |
| } |
| |
| return OldIndex->getName(); |
| } |
| |
| /// \brief Determines whether or not the the name \a Symbol conflicts with |
| /// language keywords or defined macros. Also checks if the name exists in |
| /// LoopContext, any of its parent contexts, or any of its child statements. |
| /// |
| /// We also check to see if the same identifier was generated by this loop |
| /// converter in a loop nested within SourceStmt. |
| bool VariableNamer::declarationExists(StringRef Symbol) { |
| assert(Context != nullptr && "Expected an ASTContext"); |
| IdentifierInfo &Ident = Context->Idents.get(Symbol); |
| |
| // Check if the symbol is not an identifier (ie. is a keyword or alias). |
| if (!isAnyIdentifier(Ident.getTokenID())) |
| return true; |
| |
| // Check for conflicting macro definitions. |
| if (Ident.hasMacroDefinition()) |
| return true; |
| |
| // Determine if the symbol was generated in a parent context. |
| for (const Stmt *S = SourceStmt; S != nullptr; S = ReverseAST->lookup(S)) { |
| StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S); |
| if (I != GeneratedDecls->end() && I->second == Symbol) |
| return true; |
| } |
| |
| // FIXME: Rather than detecting conflicts at their usages, we should check the |
| // parent context. |
| // For some reason, lookup() always returns the pair (NULL, NULL) because its |
| // StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside |
| // of DeclContext::lookup()). Why is this? |
| |
| // Finally, determine if the symbol was used in the loop or a child context. |
| DeclFinderASTVisitor DeclFinder(Symbol, GeneratedDecls); |
| return DeclFinder.findUsages(SourceStmt); |
| } |
| |
| } // namespace modernize |
| } // namespace tidy |
| } // namespace clang |