| //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr constant evaluator. |
| // |
| // Constant expression evaluation produces four main results: |
| // |
| // * A success/failure flag indicating whether constant folding was successful. |
| // This is the 'bool' return value used by most of the code in this file. A |
| // 'false' return value indicates that constant folding has failed, and any |
| // appropriate diagnostic has already been produced. |
| // |
| // * An evaluated result, valid only if constant folding has not failed. |
| // |
| // * A flag indicating if evaluation encountered (unevaluated) side-effects. |
| // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), |
| // where it is possible to determine the evaluated result regardless. |
| // |
| // * A set of notes indicating why the evaluation was not a constant expression |
| // (under the C++11 / C++1y rules only, at the moment), or, if folding failed |
| // too, why the expression could not be folded. |
| // |
| // If we are checking for a potential constant expression, failure to constant |
| // fold a potential constant sub-expression will be indicated by a 'false' |
| // return value (the expression could not be folded) and no diagnostic (the |
| // expression is not necessarily non-constant). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cstring> |
| #include <functional> |
| |
| #define DEBUG_TYPE "exprconstant" |
| |
| using namespace clang; |
| using llvm::APSInt; |
| using llvm::APFloat; |
| |
| static bool IsGlobalLValue(APValue::LValueBase B); |
| |
| namespace { |
| struct LValue; |
| struct CallStackFrame; |
| struct EvalInfo; |
| |
| static QualType getType(APValue::LValueBase B) { |
| if (!B) return QualType(); |
| if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
| // FIXME: It's unclear where we're supposed to take the type from, and |
| // this actually matters for arrays of unknown bound. Eg: |
| // |
| // extern int arr[]; void f() { extern int arr[3]; }; |
| // constexpr int *p = &arr[1]; // valid? |
| // |
| // For now, we take the array bound from the most recent declaration. |
| for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl; |
| Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) { |
| QualType T = Redecl->getType(); |
| if (!T->isIncompleteArrayType()) |
| return T; |
| } |
| return D->getType(); |
| } |
| |
| const Expr *Base = B.get<const Expr*>(); |
| |
| // For a materialized temporary, the type of the temporary we materialized |
| // may not be the type of the expression. |
| if (const MaterializeTemporaryExpr *MTE = |
| dyn_cast<MaterializeTemporaryExpr>(Base)) { |
| SmallVector<const Expr *, 2> CommaLHSs; |
| SmallVector<SubobjectAdjustment, 2> Adjustments; |
| const Expr *Temp = MTE->GetTemporaryExpr(); |
| const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs, |
| Adjustments); |
| // Keep any cv-qualifiers from the reference if we generated a temporary |
| // for it directly. Otherwise use the type after adjustment. |
| if (!Adjustments.empty()) |
| return Inner->getType(); |
| } |
| |
| return Base->getType(); |
| } |
| |
| /// Get an LValue path entry, which is known to not be an array index, as a |
| /// field or base class. |
| static |
| APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) { |
| APValue::BaseOrMemberType Value; |
| Value.setFromOpaqueValue(E.BaseOrMember); |
| return Value; |
| } |
| |
| /// Get an LValue path entry, which is known to not be an array index, as a |
| /// field declaration. |
| static const FieldDecl *getAsField(APValue::LValuePathEntry E) { |
| return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer()); |
| } |
| /// Get an LValue path entry, which is known to not be an array index, as a |
| /// base class declaration. |
| static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { |
| return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer()); |
| } |
| /// Determine whether this LValue path entry for a base class names a virtual |
| /// base class. |
| static bool isVirtualBaseClass(APValue::LValuePathEntry E) { |
| return getAsBaseOrMember(E).getInt(); |
| } |
| |
| /// Given a CallExpr, try to get the alloc_size attribute. May return null. |
| static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { |
| const FunctionDecl *Callee = CE->getDirectCallee(); |
| return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr; |
| } |
| |
| /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. |
| /// This will look through a single cast. |
| /// |
| /// Returns null if we couldn't unwrap a function with alloc_size. |
| static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { |
| if (!E->getType()->isPointerType()) |
| return nullptr; |
| |
| E = E->IgnoreParens(); |
| // If we're doing a variable assignment from e.g. malloc(N), there will |
| // probably be a cast of some kind. In exotic cases, we might also see a |
| // top-level ExprWithCleanups. Ignore them either way. |
| if (const auto *EC = dyn_cast<ExprWithCleanups>(E)) |
| E = EC->getSubExpr()->IgnoreParens(); |
| |
| if (const auto *Cast = dyn_cast<CastExpr>(E)) |
| E = Cast->getSubExpr()->IgnoreParens(); |
| |
| if (const auto *CE = dyn_cast<CallExpr>(E)) |
| return getAllocSizeAttr(CE) ? CE : nullptr; |
| return nullptr; |
| } |
| |
| /// Determines whether or not the given Base contains a call to a function |
| /// with the alloc_size attribute. |
| static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { |
| const auto *E = Base.dyn_cast<const Expr *>(); |
| return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); |
| } |
| |
| /// The bound to claim that an array of unknown bound has. |
| /// The value in MostDerivedArraySize is undefined in this case. So, set it |
| /// to an arbitrary value that's likely to loudly break things if it's used. |
| static const uint64_t AssumedSizeForUnsizedArray = |
| std::numeric_limits<uint64_t>::max() / 2; |
| |
| /// Determines if an LValue with the given LValueBase will have an unsized |
| /// array in its designator. |
| /// Find the path length and type of the most-derived subobject in the given |
| /// path, and find the size of the containing array, if any. |
| static unsigned |
| findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, |
| ArrayRef<APValue::LValuePathEntry> Path, |
| uint64_t &ArraySize, QualType &Type, bool &IsArray, |
| bool &FirstEntryIsUnsizedArray) { |
| // This only accepts LValueBases from APValues, and APValues don't support |
| // arrays that lack size info. |
| assert(!isBaseAnAllocSizeCall(Base) && |
| "Unsized arrays shouldn't appear here"); |
| unsigned MostDerivedLength = 0; |
| Type = getType(Base); |
| |
| for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
| if (Type->isArrayType()) { |
| const ArrayType *AT = Ctx.getAsArrayType(Type); |
| Type = AT->getElementType(); |
| MostDerivedLength = I + 1; |
| IsArray = true; |
| |
| if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { |
| ArraySize = CAT->getSize().getZExtValue(); |
| } else { |
| assert(I == 0 && "unexpected unsized array designator"); |
| FirstEntryIsUnsizedArray = true; |
| ArraySize = AssumedSizeForUnsizedArray; |
| } |
| } else if (Type->isAnyComplexType()) { |
| const ComplexType *CT = Type->castAs<ComplexType>(); |
| Type = CT->getElementType(); |
| ArraySize = 2; |
| MostDerivedLength = I + 1; |
| IsArray = true; |
| } else if (const FieldDecl *FD = getAsField(Path[I])) { |
| Type = FD->getType(); |
| ArraySize = 0; |
| MostDerivedLength = I + 1; |
| IsArray = false; |
| } else { |
| // Path[I] describes a base class. |
| ArraySize = 0; |
| IsArray = false; |
| } |
| } |
| return MostDerivedLength; |
| } |
| |
| // The order of this enum is important for diagnostics. |
| enum CheckSubobjectKind { |
| CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex, |
| CSK_This, CSK_Real, CSK_Imag |
| }; |
| |
| /// A path from a glvalue to a subobject of that glvalue. |
| struct SubobjectDesignator { |
| /// True if the subobject was named in a manner not supported by C++11. Such |
| /// lvalues can still be folded, but they are not core constant expressions |
| /// and we cannot perform lvalue-to-rvalue conversions on them. |
| unsigned Invalid : 1; |
| |
| /// Is this a pointer one past the end of an object? |
| unsigned IsOnePastTheEnd : 1; |
| |
| /// Indicator of whether the first entry is an unsized array. |
| unsigned FirstEntryIsAnUnsizedArray : 1; |
| |
| /// Indicator of whether the most-derived object is an array element. |
| unsigned MostDerivedIsArrayElement : 1; |
| |
| /// The length of the path to the most-derived object of which this is a |
| /// subobject. |
| unsigned MostDerivedPathLength : 28; |
| |
| /// The size of the array of which the most-derived object is an element. |
| /// This will always be 0 if the most-derived object is not an array |
| /// element. 0 is not an indicator of whether or not the most-derived object |
| /// is an array, however, because 0-length arrays are allowed. |
| /// |
| /// If the current array is an unsized array, the value of this is |
| /// undefined. |
| uint64_t MostDerivedArraySize; |
| |
| /// The type of the most derived object referred to by this address. |
| QualType MostDerivedType; |
| |
| typedef APValue::LValuePathEntry PathEntry; |
| |
| /// The entries on the path from the glvalue to the designated subobject. |
| SmallVector<PathEntry, 8> Entries; |
| |
| SubobjectDesignator() : Invalid(true) {} |
| |
| explicit SubobjectDesignator(QualType T) |
| : Invalid(false), IsOnePastTheEnd(false), |
| FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
| MostDerivedPathLength(0), MostDerivedArraySize(0), |
| MostDerivedType(T) {} |
| |
| SubobjectDesignator(ASTContext &Ctx, const APValue &V) |
| : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), |
| FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
| MostDerivedPathLength(0), MostDerivedArraySize(0) { |
| assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); |
| if (!Invalid) { |
| IsOnePastTheEnd = V.isLValueOnePastTheEnd(); |
| ArrayRef<PathEntry> VEntries = V.getLValuePath(); |
| Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); |
| if (V.getLValueBase()) { |
| bool IsArray = false; |
| bool FirstIsUnsizedArray = false; |
| MostDerivedPathLength = findMostDerivedSubobject( |
| Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, |
| MostDerivedType, IsArray, FirstIsUnsizedArray); |
| MostDerivedIsArrayElement = IsArray; |
| FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; |
| } |
| } |
| } |
| |
| void setInvalid() { |
| Invalid = true; |
| Entries.clear(); |
| } |
| |
| /// Determine whether the most derived subobject is an array without a |
| /// known bound. |
| bool isMostDerivedAnUnsizedArray() const { |
| assert(!Invalid && "Calling this makes no sense on invalid designators"); |
| return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; |
| } |
| |
| /// Determine what the most derived array's size is. Results in an assertion |
| /// failure if the most derived array lacks a size. |
| uint64_t getMostDerivedArraySize() const { |
| assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); |
| return MostDerivedArraySize; |
| } |
| |
| /// Determine whether this is a one-past-the-end pointer. |
| bool isOnePastTheEnd() const { |
| assert(!Invalid); |
| if (IsOnePastTheEnd) |
| return true; |
| if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && |
| Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize) |
| return true; |
| return false; |
| } |
| |
| /// Check that this refers to a valid subobject. |
| bool isValidSubobject() const { |
| if (Invalid) |
| return false; |
| return !isOnePastTheEnd(); |
| } |
| /// Check that this refers to a valid subobject, and if not, produce a |
| /// relevant diagnostic and set the designator as invalid. |
| bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); |
| |
| /// Update this designator to refer to the first element within this array. |
| void addArrayUnchecked(const ConstantArrayType *CAT) { |
| PathEntry Entry; |
| Entry.ArrayIndex = 0; |
| Entries.push_back(Entry); |
| |
| // This is a most-derived object. |
| MostDerivedType = CAT->getElementType(); |
| MostDerivedIsArrayElement = true; |
| MostDerivedArraySize = CAT->getSize().getZExtValue(); |
| MostDerivedPathLength = Entries.size(); |
| } |
| /// Update this designator to refer to the first element within the array of |
| /// elements of type T. This is an array of unknown size. |
| void addUnsizedArrayUnchecked(QualType ElemTy) { |
| PathEntry Entry; |
| Entry.ArrayIndex = 0; |
| Entries.push_back(Entry); |
| |
| MostDerivedType = ElemTy; |
| MostDerivedIsArrayElement = true; |
| // The value in MostDerivedArraySize is undefined in this case. So, set it |
| // to an arbitrary value that's likely to loudly break things if it's |
| // used. |
| MostDerivedArraySize = AssumedSizeForUnsizedArray; |
| MostDerivedPathLength = Entries.size(); |
| } |
| /// Update this designator to refer to the given base or member of this |
| /// object. |
| void addDeclUnchecked(const Decl *D, bool Virtual = false) { |
| PathEntry Entry; |
| APValue::BaseOrMemberType Value(D, Virtual); |
| Entry.BaseOrMember = Value.getOpaqueValue(); |
| Entries.push_back(Entry); |
| |
| // If this isn't a base class, it's a new most-derived object. |
| if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { |
| MostDerivedType = FD->getType(); |
| MostDerivedIsArrayElement = false; |
| MostDerivedArraySize = 0; |
| MostDerivedPathLength = Entries.size(); |
| } |
| } |
| /// Update this designator to refer to the given complex component. |
| void addComplexUnchecked(QualType EltTy, bool Imag) { |
| PathEntry Entry; |
| Entry.ArrayIndex = Imag; |
| Entries.push_back(Entry); |
| |
| // This is technically a most-derived object, though in practice this |
| // is unlikely to matter. |
| MostDerivedType = EltTy; |
| MostDerivedIsArrayElement = true; |
| MostDerivedArraySize = 2; |
| MostDerivedPathLength = Entries.size(); |
| } |
| void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); |
| void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, |
| const APSInt &N); |
| /// Add N to the address of this subobject. |
| void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { |
| if (Invalid || !N) return; |
| uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); |
| if (isMostDerivedAnUnsizedArray()) { |
| diagnoseUnsizedArrayPointerArithmetic(Info, E); |
| // Can't verify -- trust that the user is doing the right thing (or if |
| // not, trust that the caller will catch the bad behavior). |
| // FIXME: Should we reject if this overflows, at least? |
| Entries.back().ArrayIndex += TruncatedN; |
| return; |
| } |
| |
| // [expr.add]p4: For the purposes of these operators, a pointer to a |
| // nonarray object behaves the same as a pointer to the first element of |
| // an array of length one with the type of the object as its element type. |
| bool IsArray = MostDerivedPathLength == Entries.size() && |
| MostDerivedIsArrayElement; |
| uint64_t ArrayIndex = |
| IsArray ? Entries.back().ArrayIndex : (uint64_t)IsOnePastTheEnd; |
| uint64_t ArraySize = |
| IsArray ? getMostDerivedArraySize() : (uint64_t)1; |
| |
| if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { |
| // Calculate the actual index in a wide enough type, so we can include |
| // it in the note. |
| N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); |
| (llvm::APInt&)N += ArrayIndex; |
| assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); |
| diagnosePointerArithmetic(Info, E, N); |
| setInvalid(); |
| return; |
| } |
| |
| ArrayIndex += TruncatedN; |
| assert(ArrayIndex <= ArraySize && |
| "bounds check succeeded for out-of-bounds index"); |
| |
| if (IsArray) |
| Entries.back().ArrayIndex = ArrayIndex; |
| else |
| IsOnePastTheEnd = (ArrayIndex != 0); |
| } |
| }; |
| |
| /// A stack frame in the constexpr call stack. |
| struct CallStackFrame { |
| EvalInfo &Info; |
| |
| /// Parent - The caller of this stack frame. |
| CallStackFrame *Caller; |
| |
| /// Callee - The function which was called. |
| const FunctionDecl *Callee; |
| |
| /// This - The binding for the this pointer in this call, if any. |
| const LValue *This; |
| |
| /// Arguments - Parameter bindings for this function call, indexed by |
| /// parameters' function scope indices. |
| APValue *Arguments; |
| |
| // Note that we intentionally use std::map here so that references to |
| // values are stable. |
| typedef std::pair<const void *, unsigned> MapKeyTy; |
| typedef std::map<MapKeyTy, APValue> MapTy; |
| /// Temporaries - Temporary lvalues materialized within this stack frame. |
| MapTy Temporaries; |
| |
| /// CallLoc - The location of the call expression for this call. |
| SourceLocation CallLoc; |
| |
| /// Index - The call index of this call. |
| unsigned Index; |
| |
| /// The stack of integers for tracking version numbers for temporaries. |
| SmallVector<unsigned, 2> TempVersionStack = {1}; |
| unsigned CurTempVersion = TempVersionStack.back(); |
| |
| unsigned getTempVersion() const { return TempVersionStack.back(); } |
| |
| void pushTempVersion() { |
| TempVersionStack.push_back(++CurTempVersion); |
| } |
| |
| void popTempVersion() { |
| TempVersionStack.pop_back(); |
| } |
| |
| // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact |
| // on the overall stack usage of deeply-recursing constexpr evaluataions. |
| // (We should cache this map rather than recomputing it repeatedly.) |
| // But let's try this and see how it goes; we can look into caching the map |
| // as a later change. |
| |
| /// LambdaCaptureFields - Mapping from captured variables/this to |
| /// corresponding data members in the closure class. |
| llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; |
| FieldDecl *LambdaThisCaptureField; |
| |
| CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, |
| const FunctionDecl *Callee, const LValue *This, |
| APValue *Arguments); |
| ~CallStackFrame(); |
| |
| // Return the temporary for Key whose version number is Version. |
| APValue *getTemporary(const void *Key, unsigned Version) { |
| MapKeyTy KV(Key, Version); |
| auto LB = Temporaries.lower_bound(KV); |
| if (LB != Temporaries.end() && LB->first == KV) |
| return &LB->second; |
| // Pair (Key,Version) wasn't found in the map. Check that no elements |
| // in the map have 'Key' as their key. |
| assert((LB == Temporaries.end() || LB->first.first != Key) && |
| (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && |
| "Element with key 'Key' found in map"); |
| return nullptr; |
| } |
| |
| // Return the current temporary for Key in the map. |
| APValue *getCurrentTemporary(const void *Key) { |
| auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); |
| if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) |
| return &std::prev(UB)->second; |
| return nullptr; |
| } |
| |
| // Return the version number of the current temporary for Key. |
| unsigned getCurrentTemporaryVersion(const void *Key) const { |
| auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); |
| if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) |
| return std::prev(UB)->first.second; |
| return 0; |
| } |
| |
| APValue &createTemporary(const void *Key, bool IsLifetimeExtended); |
| }; |
| |
| /// Temporarily override 'this'. |
| class ThisOverrideRAII { |
| public: |
| ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) |
| : Frame(Frame), OldThis(Frame.This) { |
| if (Enable) |
| Frame.This = NewThis; |
| } |
| ~ThisOverrideRAII() { |
| Frame.This = OldThis; |
| } |
| private: |
| CallStackFrame &Frame; |
| const LValue *OldThis; |
| }; |
| |
| /// A partial diagnostic which we might know in advance that we are not going |
| /// to emit. |
| class OptionalDiagnostic { |
| PartialDiagnostic *Diag; |
| |
| public: |
| explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr) |
| : Diag(Diag) {} |
| |
| template<typename T> |
| OptionalDiagnostic &operator<<(const T &v) { |
| if (Diag) |
| *Diag << v; |
| return *this; |
| } |
| |
| OptionalDiagnostic &operator<<(const APSInt &I) { |
| if (Diag) { |
| SmallVector<char, 32> Buffer; |
| I.toString(Buffer); |
| *Diag << StringRef(Buffer.data(), Buffer.size()); |
| } |
| return *this; |
| } |
| |
| OptionalDiagnostic &operator<<(const APFloat &F) { |
| if (Diag) { |
| // FIXME: Force the precision of the source value down so we don't |
| // print digits which are usually useless (we don't really care here if |
| // we truncate a digit by accident in edge cases). Ideally, |
| // APFloat::toString would automatically print the shortest |
| // representation which rounds to the correct value, but it's a bit |
| // tricky to implement. |
| unsigned precision = |
| llvm::APFloat::semanticsPrecision(F.getSemantics()); |
| precision = (precision * 59 + 195) / 196; |
| SmallVector<char, 32> Buffer; |
| F.toString(Buffer, precision); |
| *Diag << StringRef(Buffer.data(), Buffer.size()); |
| } |
| return *this; |
| } |
| }; |
| |
| /// A cleanup, and a flag indicating whether it is lifetime-extended. |
| class Cleanup { |
| llvm::PointerIntPair<APValue*, 1, bool> Value; |
| |
| public: |
| Cleanup(APValue *Val, bool IsLifetimeExtended) |
| : Value(Val, IsLifetimeExtended) {} |
| |
| bool isLifetimeExtended() const { return Value.getInt(); } |
| void endLifetime() { |
| *Value.getPointer() = APValue(); |
| } |
| }; |
| |
| /// EvalInfo - This is a private struct used by the evaluator to capture |
| /// information about a subexpression as it is folded. It retains information |
| /// about the AST context, but also maintains information about the folded |
| /// expression. |
| /// |
| /// If an expression could be evaluated, it is still possible it is not a C |
| /// "integer constant expression" or constant expression. If not, this struct |
| /// captures information about how and why not. |
| /// |
| /// One bit of information passed *into* the request for constant folding |
| /// indicates whether the subexpression is "evaluated" or not according to C |
| /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can |
| /// evaluate the expression regardless of what the RHS is, but C only allows |
| /// certain things in certain situations. |
| struct EvalInfo { |
| ASTContext &Ctx; |
| |
| /// EvalStatus - Contains information about the evaluation. |
| Expr::EvalStatus &EvalStatus; |
| |
| /// CurrentCall - The top of the constexpr call stack. |
| CallStackFrame *CurrentCall; |
| |
| /// CallStackDepth - The number of calls in the call stack right now. |
| unsigned CallStackDepth; |
| |
| /// NextCallIndex - The next call index to assign. |
| unsigned NextCallIndex; |
| |
| /// StepsLeft - The remaining number of evaluation steps we're permitted |
| /// to perform. This is essentially a limit for the number of statements |
| /// we will evaluate. |
| unsigned StepsLeft; |
| |
| /// BottomFrame - The frame in which evaluation started. This must be |
| /// initialized after CurrentCall and CallStackDepth. |
| CallStackFrame BottomFrame; |
| |
| /// A stack of values whose lifetimes end at the end of some surrounding |
| /// evaluation frame. |
| llvm::SmallVector<Cleanup, 16> CleanupStack; |
| |
| /// EvaluatingDecl - This is the declaration whose initializer is being |
| /// evaluated, if any. |
| APValue::LValueBase EvaluatingDecl; |
| |
| /// EvaluatingDeclValue - This is the value being constructed for the |
| /// declaration whose initializer is being evaluated, if any. |
| APValue *EvaluatingDeclValue; |
| |
| /// EvaluatingObject - Pair of the AST node that an lvalue represents and |
| /// the call index that that lvalue was allocated in. |
| typedef std::pair<APValue::LValueBase, std::pair<unsigned, unsigned>> |
| EvaluatingObject; |
| |
| /// EvaluatingConstructors - Set of objects that are currently being |
| /// constructed. |
| llvm::DenseSet<EvaluatingObject> EvaluatingConstructors; |
| |
| struct EvaluatingConstructorRAII { |
| EvalInfo &EI; |
| EvaluatingObject Object; |
| bool DidInsert; |
| EvaluatingConstructorRAII(EvalInfo &EI, EvaluatingObject Object) |
| : EI(EI), Object(Object) { |
| DidInsert = EI.EvaluatingConstructors.insert(Object).second; |
| } |
| ~EvaluatingConstructorRAII() { |
| if (DidInsert) EI.EvaluatingConstructors.erase(Object); |
| } |
| }; |
| |
| bool isEvaluatingConstructor(APValue::LValueBase Decl, unsigned CallIndex, |
| unsigned Version) { |
| return EvaluatingConstructors.count( |
| EvaluatingObject(Decl, {CallIndex, Version})); |
| } |
| |
| /// The current array initialization index, if we're performing array |
| /// initialization. |
| uint64_t ArrayInitIndex = -1; |
| |
| /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further |
| /// notes attached to it will also be stored, otherwise they will not be. |
| bool HasActiveDiagnostic; |
| |
| /// Have we emitted a diagnostic explaining why we couldn't constant |
| /// fold (not just why it's not strictly a constant expression)? |
| bool HasFoldFailureDiagnostic; |
| |
| /// Whether or not we're currently speculatively evaluating. |
| bool IsSpeculativelyEvaluating; |
| |
| enum EvaluationMode { |
| /// Evaluate as a constant expression. Stop if we find that the expression |
| /// is not a constant expression. |
| EM_ConstantExpression, |
| |
| /// Evaluate as a potential constant expression. Keep going if we hit a |
| /// construct that we can't evaluate yet (because we don't yet know the |
| /// value of something) but stop if we hit something that could never be |
| /// a constant expression. |
| EM_PotentialConstantExpression, |
| |
| /// Fold the expression to a constant. Stop if we hit a side-effect that |
| /// we can't model. |
| EM_ConstantFold, |
| |
| /// Evaluate the expression looking for integer overflow and similar |
| /// issues. Don't worry about side-effects, and try to visit all |
| /// subexpressions. |
| EM_EvaluateForOverflow, |
| |
| /// Evaluate in any way we know how. Don't worry about side-effects that |
| /// can't be modeled. |
| EM_IgnoreSideEffects, |
| |
| /// Evaluate as a constant expression. Stop if we find that the expression |
| /// is not a constant expression. Some expressions can be retried in the |
| /// optimizer if we don't constant fold them here, but in an unevaluated |
| /// context we try to fold them immediately since the optimizer never |
| /// gets a chance to look at it. |
| EM_ConstantExpressionUnevaluated, |
| |
| /// Evaluate as a potential constant expression. Keep going if we hit a |
| /// construct that we can't evaluate yet (because we don't yet know the |
| /// value of something) but stop if we hit something that could never be |
| /// a constant expression. Some expressions can be retried in the |
| /// optimizer if we don't constant fold them here, but in an unevaluated |
| /// context we try to fold them immediately since the optimizer never |
| /// gets a chance to look at it. |
| EM_PotentialConstantExpressionUnevaluated, |
| |
| /// Evaluate as a constant expression. In certain scenarios, if: |
| /// - we find a MemberExpr with a base that can't be evaluated, or |
| /// - we find a variable initialized with a call to a function that has |
| /// the alloc_size attribute on it |
| /// then we may consider evaluation to have succeeded. |
| /// |
| /// In either case, the LValue returned shall have an invalid base; in the |
| /// former, the base will be the invalid MemberExpr, in the latter, the |
| /// base will be either the alloc_size CallExpr or a CastExpr wrapping |
| /// said CallExpr. |
| EM_OffsetFold, |
| } EvalMode; |
| |
| /// Are we checking whether the expression is a potential constant |
| /// expression? |
| bool checkingPotentialConstantExpression() const { |
| return EvalMode == EM_PotentialConstantExpression || |
| EvalMode == EM_PotentialConstantExpressionUnevaluated; |
| } |
| |
| /// Are we checking an expression for overflow? |
| // FIXME: We should check for any kind of undefined or suspicious behavior |
| // in such constructs, not just overflow. |
| bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; } |
| |
| EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) |
| : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), |
| CallStackDepth(0), NextCallIndex(1), |
| StepsLeft(getLangOpts().ConstexprStepLimit), |
| BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr), |
| EvaluatingDecl((const ValueDecl *)nullptr), |
| EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), |
| HasFoldFailureDiagnostic(false), IsSpeculativelyEvaluating(false), |
| EvalMode(Mode) {} |
| |
| void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) { |
| EvaluatingDecl = Base; |
| EvaluatingDeclValue = &Value; |
| EvaluatingConstructors.insert({Base, {0, 0}}); |
| } |
| |
| const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); } |
| |
| bool CheckCallLimit(SourceLocation Loc) { |
| // Don't perform any constexpr calls (other than the call we're checking) |
| // when checking a potential constant expression. |
| if (checkingPotentialConstantExpression() && CallStackDepth > 1) |
| return false; |
| if (NextCallIndex == 0) { |
| // NextCallIndex has wrapped around. |
| FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); |
| return false; |
| } |
| if (CallStackDepth <= getLangOpts().ConstexprCallDepth) |
| return true; |
| FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) |
| << getLangOpts().ConstexprCallDepth; |
| return false; |
| } |
| |
| CallStackFrame *getCallFrame(unsigned CallIndex) { |
| assert(CallIndex && "no call index in getCallFrame"); |
| // We will eventually hit BottomFrame, which has Index 1, so Frame can't |
| // be null in this loop. |
| CallStackFrame *Frame = CurrentCall; |
| while (Frame->Index > CallIndex) |
| Frame = Frame->Caller; |
| return (Frame->Index == CallIndex) ? Frame : nullptr; |
| } |
| |
| bool nextStep(const Stmt *S) { |
| if (!StepsLeft) { |
| FFDiag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded); |
| return false; |
| } |
| --StepsLeft; |
| return true; |
| } |
| |
| private: |
| /// Add a diagnostic to the diagnostics list. |
| PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) { |
| PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator()); |
| EvalStatus.Diag->push_back(std::make_pair(Loc, PD)); |
| return EvalStatus.Diag->back().second; |
| } |
| |
| /// Add notes containing a call stack to the current point of evaluation. |
| void addCallStack(unsigned Limit); |
| |
| private: |
| OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId, |
| unsigned ExtraNotes, bool IsCCEDiag) { |
| |
| if (EvalStatus.Diag) { |
| // If we have a prior diagnostic, it will be noting that the expression |
| // isn't a constant expression. This diagnostic is more important, |
| // unless we require this evaluation to produce a constant expression. |
| // |
| // FIXME: We might want to show both diagnostics to the user in |
| // EM_ConstantFold mode. |
| if (!EvalStatus.Diag->empty()) { |
| switch (EvalMode) { |
| case EM_ConstantFold: |
| case EM_IgnoreSideEffects: |
| case EM_EvaluateForOverflow: |
| if (!HasFoldFailureDiagnostic) |
| break; |
| // We've already failed to fold something. Keep that diagnostic. |
| LLVM_FALLTHROUGH; |
| case EM_ConstantExpression: |
| case EM_PotentialConstantExpression: |
| case EM_ConstantExpressionUnevaluated: |
| case EM_PotentialConstantExpressionUnevaluated: |
| case EM_OffsetFold: |
| HasActiveDiagnostic = false; |
| return OptionalDiagnostic(); |
| } |
| } |
| |
| unsigned CallStackNotes = CallStackDepth - 1; |
| unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit(); |
| if (Limit) |
| CallStackNotes = std::min(CallStackNotes, Limit + 1); |
| if (checkingPotentialConstantExpression()) |
| CallStackNotes = 0; |
| |
| HasActiveDiagnostic = true; |
| HasFoldFailureDiagnostic = !IsCCEDiag; |
| EvalStatus.Diag->clear(); |
| EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes); |
| addDiag(Loc, DiagId); |
| if (!checkingPotentialConstantExpression()) |
| addCallStack(Limit); |
| return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second); |
| } |
| HasActiveDiagnostic = false; |
| return OptionalDiagnostic(); |
| } |
| public: |
| // Diagnose that the evaluation could not be folded (FF => FoldFailure) |
| OptionalDiagnostic |
| FFDiag(SourceLocation Loc, |
| diag::kind DiagId = diag::note_invalid_subexpr_in_const_expr, |
| unsigned ExtraNotes = 0) { |
| return Diag(Loc, DiagId, ExtraNotes, false); |
| } |
| |
| OptionalDiagnostic FFDiag(const Expr *E, diag::kind DiagId |
| = diag::note_invalid_subexpr_in_const_expr, |
| unsigned ExtraNotes = 0) { |
| if (EvalStatus.Diag) |
| return Diag(E->getExprLoc(), DiagId, ExtraNotes, /*IsCCEDiag*/false); |
| HasActiveDiagnostic = false; |
| return OptionalDiagnostic(); |
| } |
| |
| /// Diagnose that the evaluation does not produce a C++11 core constant |
| /// expression. |
| /// |
| /// FIXME: Stop evaluating if we're in EM_ConstantExpression or |
| /// EM_PotentialConstantExpression mode and we produce one of these. |
| OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId |
| = diag::note_invalid_subexpr_in_const_expr, |
| unsigned ExtraNotes = 0) { |
| // Don't override a previous diagnostic. Don't bother collecting |
| // diagnostics if we're evaluating for overflow. |
| if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) { |
| HasActiveDiagnostic = false; |
| return OptionalDiagnostic(); |
| } |
| return Diag(Loc, DiagId, ExtraNotes, true); |
| } |
| OptionalDiagnostic CCEDiag(const Expr *E, diag::kind DiagId |
| = diag::note_invalid_subexpr_in_const_expr, |
| unsigned ExtraNotes = 0) { |
| return CCEDiag(E->getExprLoc(), DiagId, ExtraNotes); |
| } |
| /// Add a note to a prior diagnostic. |
| OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) { |
| if (!HasActiveDiagnostic) |
| return OptionalDiagnostic(); |
| return OptionalDiagnostic(&addDiag(Loc, DiagId)); |
| } |
| |
| /// Add a stack of notes to a prior diagnostic. |
| void addNotes(ArrayRef<PartialDiagnosticAt> Diags) { |
| if (HasActiveDiagnostic) { |
| EvalStatus.Diag->insert(EvalStatus.Diag->end(), |
| Diags.begin(), Diags.end()); |
| } |
| } |
| |
| /// Should we continue evaluation after encountering a side-effect that we |
| /// couldn't model? |
| bool keepEvaluatingAfterSideEffect() { |
| switch (EvalMode) { |
| case EM_PotentialConstantExpression: |
| case EM_PotentialConstantExpressionUnevaluated: |
| case EM_EvaluateForOverflow: |
| case EM_IgnoreSideEffects: |
| return true; |
| |
| case EM_ConstantExpression: |
| case EM_ConstantExpressionUnevaluated: |
| case EM_ConstantFold: |
| case EM_OffsetFold: |
| return false; |
| } |
| llvm_unreachable("Missed EvalMode case"); |
| } |
| |
| /// Note that we have had a side-effect, and determine whether we should |
| /// keep evaluating. |
| bool noteSideEffect() { |
| EvalStatus.HasSideEffects = true; |
| return keepEvaluatingAfterSideEffect(); |
| } |
| |
| /// Should we continue evaluation after encountering undefined behavior? |
| bool keepEvaluatingAfterUndefinedBehavior() { |
| switch (EvalMode) { |
| case EM_EvaluateForOverflow: |
| case EM_IgnoreSideEffects: |
| case EM_ConstantFold: |
| case EM_OffsetFold: |
| return true; |
| |
| case EM_PotentialConstantExpression: |
| case EM_PotentialConstantExpressionUnevaluated: |
| case EM_ConstantExpression: |
| case EM_ConstantExpressionUnevaluated: |
| return false; |
| } |
| llvm_unreachable("Missed EvalMode case"); |
| } |
| |
| /// Note that we hit something that was technically undefined behavior, but |
| /// that we can evaluate past it (such as signed overflow or floating-point |
| /// division by zero.) |
| bool noteUndefinedBehavior() { |
| EvalStatus.HasUndefinedBehavior = true; |
| return keepEvaluatingAfterUndefinedBehavior(); |
| } |
| |
| /// Should we continue evaluation as much as possible after encountering a |
| /// construct which can't be reduced to a value? |
| bool keepEvaluatingAfterFailure() { |
| if (!StepsLeft) |
| return false; |
| |
| switch (EvalMode) { |
| case EM_PotentialConstantExpression: |
| case EM_PotentialConstantExpressionUnevaluated: |
| case EM_EvaluateForOverflow: |
| return true; |
| |
| case EM_ConstantExpression: |
| case EM_ConstantExpressionUnevaluated: |
| case EM_ConstantFold: |
| case EM_IgnoreSideEffects: |
| case EM_OffsetFold: |
| return false; |
| } |
| llvm_unreachable("Missed EvalMode case"); |
| } |
| |
| /// Notes that we failed to evaluate an expression that other expressions |
| /// directly depend on, and determine if we should keep evaluating. This |
| /// should only be called if we actually intend to keep evaluating. |
| /// |
| /// Call noteSideEffect() instead if we may be able to ignore the value that |
| /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: |
| /// |
| /// (Foo(), 1) // use noteSideEffect |
| /// (Foo() || true) // use noteSideEffect |
| /// Foo() + 1 // use noteFailure |
| LLVM_NODISCARD bool noteFailure() { |
| // Failure when evaluating some expression often means there is some |
| // subexpression whose evaluation was skipped. Therefore, (because we |
| // don't track whether we skipped an expression when unwinding after an |
| // evaluation failure) every evaluation failure that bubbles up from a |
| // subexpression implies that a side-effect has potentially happened. We |
| // skip setting the HasSideEffects flag to true until we decide to |
| // continue evaluating after that point, which happens here. |
| bool KeepGoing = keepEvaluatingAfterFailure(); |
| EvalStatus.HasSideEffects |= KeepGoing; |
| return KeepGoing; |
| } |
| |
| class ArrayInitLoopIndex { |
| EvalInfo &Info; |
| uint64_t OuterIndex; |
| |
| public: |
| ArrayInitLoopIndex(EvalInfo &Info) |
| : Info(Info), OuterIndex(Info.ArrayInitIndex) { |
| Info.ArrayInitIndex = 0; |
| } |
| ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } |
| |
| operator uint64_t&() { return Info.ArrayInitIndex; } |
| }; |
| }; |
| |
| /// Object used to treat all foldable expressions as constant expressions. |
| struct FoldConstant { |
| EvalInfo &Info; |
| bool Enabled; |
| bool HadNoPriorDiags; |
| EvalInfo::EvaluationMode OldMode; |
| |
| explicit FoldConstant(EvalInfo &Info, bool Enabled) |
| : Info(Info), |
| Enabled(Enabled), |
| HadNoPriorDiags(Info.EvalStatus.Diag && |
| Info.EvalStatus.Diag->empty() && |
| !Info.EvalStatus.HasSideEffects), |
| OldMode(Info.EvalMode) { |
| if (Enabled && |
| (Info.EvalMode == EvalInfo::EM_ConstantExpression || |
| Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated)) |
| Info.EvalMode = EvalInfo::EM_ConstantFold; |
| } |
| void keepDiagnostics() { Enabled = false; } |
| ~FoldConstant() { |
| if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && |
| !Info.EvalStatus.HasSideEffects) |
| Info.EvalStatus.Diag->clear(); |
| Info.EvalMode = OldMode; |
| } |
| }; |
| |
| /// RAII object used to treat the current evaluation as the correct pointer |
| /// offset fold for the current EvalMode |
| struct FoldOffsetRAII { |
| EvalInfo &Info; |
| EvalInfo::EvaluationMode OldMode; |
| explicit FoldOffsetRAII(EvalInfo &Info) |
| : Info(Info), OldMode(Info.EvalMode) { |
| if (!Info.checkingPotentialConstantExpression()) |
| Info.EvalMode = EvalInfo::EM_OffsetFold; |
| } |
| |
| ~FoldOffsetRAII() { Info.EvalMode = OldMode; } |
| }; |
| |
| /// RAII object used to optionally suppress diagnostics and side-effects from |
| /// a speculative evaluation. |
| class SpeculativeEvaluationRAII { |
| EvalInfo *Info = nullptr; |
| Expr::EvalStatus OldStatus; |
| bool OldIsSpeculativelyEvaluating; |
| |
| void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { |
| Info = Other.Info; |
| OldStatus = Other.OldStatus; |
| OldIsSpeculativelyEvaluating = Other.OldIsSpeculativelyEvaluating; |
| Other.Info = nullptr; |
| } |
| |
| void maybeRestoreState() { |
| if (!Info) |
| return; |
| |
| Info->EvalStatus = OldStatus; |
| Info->IsSpeculativelyEvaluating = OldIsSpeculativelyEvaluating; |
| } |
| |
| public: |
| SpeculativeEvaluationRAII() = default; |
| |
| SpeculativeEvaluationRAII( |
| EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) |
| : Info(&Info), OldStatus(Info.EvalStatus), |
| OldIsSpeculativelyEvaluating(Info.IsSpeculativelyEvaluating) { |
| Info.EvalStatus.Diag = NewDiag; |
| Info.IsSpeculativelyEvaluating = true; |
| } |
| |
| SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; |
| SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { |
| moveFromAndCancel(std::move(Other)); |
| } |
| |
| SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { |
| maybeRestoreState(); |
| moveFromAndCancel(std::move(Other)); |
| return *this; |
| } |
| |
| ~SpeculativeEvaluationRAII() { maybeRestoreState(); } |
| }; |
| |
| /// RAII object wrapping a full-expression or block scope, and handling |
| /// the ending of the lifetime of temporaries created within it. |
| template<bool IsFullExpression> |
| class ScopeRAII { |
| EvalInfo &Info; |
| unsigned OldStackSize; |
| public: |
| ScopeRAII(EvalInfo &Info) |
| : Info(Info), OldStackSize(Info.CleanupStack.size()) { |
| // Push a new temporary version. This is needed to distinguish between |
| // temporaries created in different iterations of a loop. |
| Info.CurrentCall->pushTempVersion(); |
| } |
| ~ScopeRAII() { |
| // Body moved to a static method to encourage the compiler to inline away |
| // instances of this class. |
| cleanup(Info, OldStackSize); |
| Info.CurrentCall->popTempVersion(); |
| } |
| private: |
| static void cleanup(EvalInfo &Info, unsigned OldStackSize) { |
| unsigned NewEnd = OldStackSize; |
| for (unsigned I = OldStackSize, N = Info.CleanupStack.size(); |
| I != N; ++I) { |
| if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) { |
| // Full-expression cleanup of a lifetime-extended temporary: nothing |
| // to do, just move this cleanup to the right place in the stack. |
| std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]); |
| ++NewEnd; |
| } else { |
| // End the lifetime of the object. |
| Info.CleanupStack[I].endLifetime(); |
| } |
| } |
| Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd, |
| Info.CleanupStack.end()); |
| } |
| }; |
| typedef ScopeRAII<false> BlockScopeRAII; |
| typedef ScopeRAII<true> FullExpressionRAII; |
| } |
| |
| bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, |
| CheckSubobjectKind CSK) { |
| if (Invalid) |
| return false; |
| if (isOnePastTheEnd()) { |
| Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) |
| << CSK; |
| setInvalid(); |
| return false; |
| } |
| // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there |
| // must actually be at least one array element; even a VLA cannot have a |
| // bound of zero. And if our index is nonzero, we already had a CCEDiag. |
| return true; |
| } |
| |
| void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, |
| const Expr *E) { |
| Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); |
| // Do not set the designator as invalid: we can represent this situation, |
| // and correct handling of __builtin_object_size requires us to do so. |
| } |
| |
| void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, |
| const Expr *E, |
| const APSInt &N) { |
| // If we're complaining, we must be able to statically determine the size of |
| // the most derived array. |
| if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) |
| Info.CCEDiag(E, diag::note_constexpr_array_index) |
| << N << /*array*/ 0 |
| << static_cast<unsigned>(getMostDerivedArraySize()); |
| else |
| Info.CCEDiag(E, diag::note_constexpr_array_index) |
| << N << /*non-array*/ 1; |
| setInvalid(); |
| } |
| |
| CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, |
| const FunctionDecl *Callee, const LValue *This, |
| APValue *Arguments) |
| : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), |
| Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) { |
| Info.CurrentCall = this; |
| ++Info.CallStackDepth; |
| } |
| |
| CallStackFrame::~CallStackFrame() { |
| assert(Info.CurrentCall == this && "calls retired out of order"); |
| --Info.CallStackDepth; |
| Info.CurrentCall = Caller; |
| } |
| |
| APValue &CallStackFrame::createTemporary(const void *Key, |
| bool IsLifetimeExtended) { |
| unsigned Version = Info.CurrentCall->getTempVersion(); |
| APValue &Result = Temporaries[MapKeyTy(Key, Version)]; |
| assert(Result.isUninit() && "temporary created multiple times"); |
| Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended)); |
| return Result; |
| } |
| |
| static void describeCall(CallStackFrame *Frame, raw_ostream &Out); |
| |
| void EvalInfo::addCallStack(unsigned Limit) { |
| // Determine which calls to skip, if any. |
| unsigned ActiveCalls = CallStackDepth - 1; |
| unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart; |
| if (Limit && Limit < ActiveCalls) { |
| SkipStart = Limit / 2 + Limit % 2; |
| SkipEnd = ActiveCalls - Limit / 2; |
| } |
| |
| // Walk the call stack and add the diagnostics. |
| unsigned CallIdx = 0; |
| for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame; |
| Frame = Frame->Caller, ++CallIdx) { |
| // Skip this call? |
| if (CallIdx >= SkipStart && CallIdx < SkipEnd) { |
| if (CallIdx == SkipStart) { |
| // Note that we're skipping calls. |
| addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed) |
| << unsigned(ActiveCalls - Limit); |
| } |
| continue; |
| } |
| |
| // Use a different note for an inheriting constructor, because from the |
| // user's perspective it's not really a function at all. |
| if (auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Frame->Callee)) { |
| if (CD->isInheritingConstructor()) { |
| addDiag(Frame->CallLoc, diag::note_constexpr_inherited_ctor_call_here) |
| << CD->getParent(); |
| continue; |
| } |
| } |
| |
| SmallVector<char, 128> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| describeCall(Frame, Out); |
| addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str(); |
| } |
| } |
| |
| namespace { |
| struct ComplexValue { |
| private: |
| bool IsInt; |
| |
| public: |
| APSInt IntReal, IntImag; |
| APFloat FloatReal, FloatImag; |
| |
| ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} |
| |
| void makeComplexFloat() { IsInt = false; } |
| bool isComplexFloat() const { return !IsInt; } |
| APFloat &getComplexFloatReal() { return FloatReal; } |
| APFloat &getComplexFloatImag() { return FloatImag; } |
| |
| void makeComplexInt() { IsInt = true; } |
| bool isComplexInt() const { return IsInt; } |
| APSInt &getComplexIntReal() { return IntReal; } |
| APSInt &getComplexIntImag() { return IntImag; } |
| |
| void moveInto(APValue &v) const { |
| if (isComplexFloat()) |
| v = APValue(FloatReal, FloatImag); |
| else |
| v = APValue(IntReal, IntImag); |
| } |
| void setFrom(const APValue &v) { |
| assert(v.isComplexFloat() || v.isComplexInt()); |
| if (v.isComplexFloat()) { |
| makeComplexFloat(); |
| FloatReal = v.getComplexFloatReal(); |
| FloatImag = v.getComplexFloatImag(); |
| } else { |
| makeComplexInt(); |
| IntReal = v.getComplexIntReal(); |
| IntImag = v.getComplexIntImag(); |
| } |
| } |
| }; |
| |
| struct LValue { |
| APValue::LValueBase Base; |
| CharUnits Offset; |
| SubobjectDesignator Designator; |
| bool IsNullPtr : 1; |
| bool InvalidBase : 1; |
| |
| const APValue::LValueBase getLValueBase() const { return Base; } |
| CharUnits &getLValueOffset() { return Offset; } |
| const CharUnits &getLValueOffset() const { return Offset; } |
| SubobjectDesignator &getLValueDesignator() { return Designator; } |
| const SubobjectDesignator &getLValueDesignator() const { return Designator;} |
| bool isNullPointer() const { return IsNullPtr;} |
| |
| unsigned getLValueCallIndex() const { return Base.getCallIndex(); } |
| unsigned getLValueVersion() const { return Base.getVersion(); } |
| |
| void moveInto(APValue &V) const { |
| if (Designator.Invalid) |
| V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); |
| else { |
| assert(!InvalidBase && "APValues can't handle invalid LValue bases"); |
| V = APValue(Base, Offset, Designator.Entries, |
| Designator.IsOnePastTheEnd, IsNullPtr); |
| } |
| } |
| void setFrom(ASTContext &Ctx, const APValue &V) { |
| assert(V.isLValue() && "Setting LValue from a non-LValue?"); |
| Base = V.getLValueBase(); |
| Offset = V.getLValueOffset(); |
| InvalidBase = false; |
| Designator = SubobjectDesignator(Ctx, V); |
| IsNullPtr = V.isNullPointer(); |
| } |
| |
| void set(APValue::LValueBase B, bool BInvalid = false) { |
| #ifndef NDEBUG |
| // We only allow a few types of invalid bases. Enforce that here. |
| if (BInvalid) { |
| const auto *E = B.get<const Expr *>(); |
| assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && |
| "Unexpected type of invalid base"); |
| } |
| #endif |
| |
| Base = B; |
| Offset = CharUnits::fromQuantity(0); |
| InvalidBase = BInvalid; |
| Designator = SubobjectDesignator(getType(B)); |
| IsNullPtr = false; |
| } |
| |
| void setNull(QualType PointerTy, uint64_t TargetVal) { |
| Base = (Expr *)nullptr; |
| Offset = CharUnits::fromQuantity(TargetVal); |
| InvalidBase = false; |
| Designator = SubobjectDesignator(PointerTy->getPointeeType()); |
| IsNullPtr = true; |
| } |
| |
| void setInvalid(APValue::LValueBase B, unsigned I = 0) { |
| set(B, true); |
| } |
| |
| // Check that this LValue is not based on a null pointer. If it is, produce |
| // a diagnostic and mark the designator as invalid. |
| bool checkNullPointer(EvalInfo &Info, const Expr *E, |
| CheckSubobjectKind CSK) { |
| if (Designator.Invalid) |
| return false; |
| if (IsNullPtr) { |
| Info.CCEDiag(E, diag::note_constexpr_null_subobject) |
| << CSK; |
| Designator.setInvalid(); |
| return false; |
| } |
| return true; |
| } |
| |
| // Check this LValue refers to an object. If not, set the designator to be |
| // invalid and emit a diagnostic. |
| bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { |
| return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && |
| Designator.checkSubobject(Info, E, CSK); |
| } |
| |
| void addDecl(EvalInfo &Info, const Expr *E, |
| const Decl *D, bool Virtual = false) { |
| if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) |
| Designator.addDeclUnchecked(D, Virtual); |
| } |
| void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { |
| if (!Designator.Entries.empty()) { |
| Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); |
| Designator.setInvalid(); |
| return; |
| } |
| if (checkSubobject(Info, E, CSK_ArrayToPointer)) { |
| assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); |
| Designator.FirstEntryIsAnUnsizedArray = true; |
| Designator.addUnsizedArrayUnchecked(ElemTy); |
| } |
| } |
| void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { |
| if (checkSubobject(Info, E, CSK_ArrayToPointer)) |
| Designator.addArrayUnchecked(CAT); |
| } |
| void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { |
| if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) |
| Designator.addComplexUnchecked(EltTy, Imag); |
| } |
| void clearIsNullPointer() { |
| IsNullPtr = false; |
| } |
| void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, |
| const APSInt &Index, CharUnits ElementSize) { |
| // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, |
| // but we're not required to diagnose it and it's valid in C++.) |
| if (!Index) |
| return; |
| |
| // Compute the new offset in the appropriate width, wrapping at 64 bits. |
| // FIXME: When compiling for a 32-bit target, we should use 32-bit |
| // offsets. |
| uint64_t Offset64 = Offset.getQuantity(); |
| uint64_t ElemSize64 = ElementSize.getQuantity(); |
| uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); |
| Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); |
| |
| if (checkNullPointer(Info, E, CSK_ArrayIndex)) |
| Designator.adjustIndex(Info, E, Index); |
| clearIsNullPointer(); |
| } |
| void adjustOffset(CharUnits N) { |
| Offset += N; |
| if (N.getQuantity()) |
| clearIsNullPointer(); |
| } |
| }; |
| |
| struct MemberPtr { |
| MemberPtr() {} |
| explicit MemberPtr(const ValueDecl *Decl) : |
| DeclAndIsDerivedMember(Decl, false), Path() {} |
| |
| /// The member or (direct or indirect) field referred to by this member |
| /// pointer, or 0 if this is a null member pointer. |
| const ValueDecl *getDecl() const { |
| return DeclAndIsDerivedMember.getPointer(); |
| } |
| /// Is this actually a member of some type derived from the relevant class? |
| bool isDerivedMember() const { |
| return DeclAndIsDerivedMember.getInt(); |
| } |
| /// Get the class which the declaration actually lives in. |
| const CXXRecordDecl *getContainingRecord() const { |
| return cast<CXXRecordDecl>( |
| DeclAndIsDerivedMember.getPointer()->getDeclContext()); |
| } |
| |
| void moveInto(APValue &V) const { |
| V = APValue(getDecl(), isDerivedMember(), Path); |
| } |
| void setFrom(const APValue &V) { |
| assert(V.isMemberPointer()); |
| DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); |
| DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); |
| Path.clear(); |
| ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); |
| Path.insert(Path.end(), P.begin(), P.end()); |
| } |
| |
| /// DeclAndIsDerivedMember - The member declaration, and a flag indicating |
| /// whether the member is a member of some class derived from the class type |
| /// of the member pointer. |
| llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; |
| /// Path - The path of base/derived classes from the member declaration's |
| /// class (exclusive) to the class type of the member pointer (inclusive). |
| SmallVector<const CXXRecordDecl*, 4> Path; |
| |
| /// Perform a cast towards the class of the Decl (either up or down the |
| /// hierarchy). |
| bool castBack(const CXXRecordDecl *Class) { |
| assert(!Path.empty()); |
| const CXXRecordDecl *Expected; |
| if (Path.size() >= 2) |
| Expected = Path[Path.size() - 2]; |
| else |
| Expected = getContainingRecord(); |
| if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { |
| // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), |
| // if B does not contain the original member and is not a base or |
| // derived class of the class containing the original member, the result |
| // of the cast is undefined. |
| // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to |
| // (D::*). We consider that to be a language defect. |
| return false; |
| } |
| Path.pop_back(); |
| return true; |
| } |
| /// Perform a base-to-derived member pointer cast. |
| bool castToDerived(const CXXRecordDecl *Derived) { |
| if (!getDecl()) |
| return true; |
| if (!isDerivedMember()) { |
| Path.push_back(Derived); |
| return true; |
| } |
| if (!castBack(Derived)) |
| return false; |
| if (Path.empty()) |
| DeclAndIsDerivedMember.setInt(false); |
| return true; |
| } |
| /// Perform a derived-to-base member pointer cast. |
| bool castToBase(const CXXRecordDecl *Base) { |
| if (!getDecl()) |
| return true; |
| if (Path.empty()) |
| DeclAndIsDerivedMember.setInt(true); |
| if (isDerivedMember()) { |
| Path.push_back(Base); |
| return true; |
| } |
| return castBack(Base); |
| } |
| }; |
| |
| /// Compare two member pointers, which are assumed to be of the same type. |
| static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { |
| if (!LHS.getDecl() || !RHS.getDecl()) |
| return !LHS.getDecl() && !RHS.getDecl(); |
| if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) |
| return false; |
| return LHS.Path == RHS.Path; |
| } |
| } |
| |
| static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); |
| static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, |
| const LValue &This, const Expr *E, |
| bool AllowNonLiteralTypes = false); |
| static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, |
| bool InvalidBaseOK = false); |
| static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, |
| bool InvalidBaseOK = false); |
| static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, |
| EvalInfo &Info); |
| static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); |
| static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); |
| static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
| EvalInfo &Info); |
| static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); |
| static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); |
| static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, |
| EvalInfo &Info); |
| static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); |
| |
| //===----------------------------------------------------------------------===// |
| // Misc utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// A helper function to create a temporary and set an LValue. |
| template <class KeyTy> |
| static APValue &createTemporary(const KeyTy *Key, bool IsLifetimeExtended, |
| LValue &LV, CallStackFrame &Frame) { |
| LV.set({Key, Frame.Info.CurrentCall->Index, |
| Frame.Info.CurrentCall->getTempVersion()}); |
| return Frame.createTemporary(Key, IsLifetimeExtended); |
| } |
| |
| /// Negate an APSInt in place, converting it to a signed form if necessary, and |
| /// preserving its value (by extending by up to one bit as needed). |
| static void negateAsSigned(APSInt &Int) { |
| if (Int.isUnsigned() || Int.isMinSignedValue()) { |
| Int = Int.extend(Int.getBitWidth() + 1); |
| Int.setIsSigned(true); |
| } |
| Int = -Int; |
| } |
| |
| /// Produce a string describing the given constexpr call. |
| static void describeCall(CallStackFrame *Frame, raw_ostream &Out) { |
| unsigned ArgIndex = 0; |
| bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) && |
| !isa<CXXConstructorDecl>(Frame->Callee) && |
| cast<CXXMethodDecl>(Frame->Callee)->isInstance(); |
| |
| if (!IsMemberCall) |
| Out << *Frame->Callee << '('; |
| |
| if (Frame->This && IsMemberCall) { |
| APValue Val; |
| Frame->This->moveInto(Val); |
| Val.printPretty(Out, Frame->Info.Ctx, |
| Frame->This->Designator.MostDerivedType); |
| // FIXME: Add parens around Val if needed. |
| Out << "->" << *Frame->Callee << '('; |
| IsMemberCall = false; |
| } |
| |
| for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(), |
| E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) { |
| if (ArgIndex > (unsigned)IsMemberCall) |
| Out << ", "; |
| |
| const ParmVarDecl *Param = *I; |
| const APValue &Arg = Frame->Arguments[ArgIndex]; |
| Arg.printPretty(Out, Frame->Info.Ctx, Param->getType()); |
| |
| if (ArgIndex == 0 && IsMemberCall) |
| Out << "->" << *Frame->Callee << '('; |
| } |
| |
| Out << ')'; |
| } |
| |
| /// Evaluate an expression to see if it had side-effects, and discard its |
| /// result. |
| /// \return \c true if the caller should keep evaluating. |
| static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { |
| APValue Scratch; |
| if (!Evaluate(Scratch, Info, E)) |
| // We don't need the value, but we might have skipped a side effect here. |
| return Info.noteSideEffect(); |
| return true; |
| } |
| |
| /// Should this call expression be treated as a string literal? |
| static bool IsStringLiteralCall(const CallExpr *E) { |
| unsigned Builtin = E->getBuiltinCallee(); |
| return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || |
| Builtin == Builtin::BI__builtin___NSStringMakeConstantString); |
| } |
| |
| static bool IsGlobalLValue(APValue::LValueBase B) { |
| // C++11 [expr.const]p3 An address constant expression is a prvalue core |
| // constant expression of pointer type that evaluates to... |
| |
| // ... a null pointer value, or a prvalue core constant expression of type |
| // std::nullptr_t. |
| if (!B) return true; |
| |
| if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
| // ... the address of an object with static storage duration, |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| return VD->hasGlobalStorage(); |
| // ... the address of a function, |
| return isa<FunctionDecl>(D); |
| } |
| |
| const Expr *E = B.get<const Expr*>(); |
| switch (E->getStmtClass()) { |
| default: |
| return false; |
| case Expr::CompoundLiteralExprClass: { |
| const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); |
| return CLE->isFileScope() && CLE->isLValue(); |
| } |
| case Expr::MaterializeTemporaryExprClass: |
| // A materialized temporary might have been lifetime-extended to static |
| // storage duration. |
| return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; |
| // A string literal has static storage duration. |
| case Expr::StringLiteralClass: |
| case Expr::PredefinedExprClass: |
| case Expr::ObjCStringLiteralClass: |
| case Expr::ObjCEncodeExprClass: |
| case Expr::CXXTypeidExprClass: |
| case Expr::CXXUuidofExprClass: |
| return true; |
| case Expr::CallExprClass: |
| return IsStringLiteralCall(cast<CallExpr>(E)); |
| // For GCC compatibility, &&label has static storage duration. |
| case Expr::AddrLabelExprClass: |
| return true; |
| // A Block literal expression may be used as the initialization value for |
| // Block variables at global or local static scope. |
| case Expr::BlockExprClass: |
| return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); |
| case Expr::ImplicitValueInitExprClass: |
| // FIXME: |
| // We can never form an lvalue with an implicit value initialization as its |
| // base through expression evaluation, so these only appear in one case: the |
| // implicit variable declaration we invent when checking whether a constexpr |
| // constructor can produce a constant expression. We must assume that such |
| // an expression might be a global lvalue. |
| return true; |
| } |
| } |
| |
| static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { |
| assert(Base && "no location for a null lvalue"); |
| const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); |
| if (VD) |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| else |
| Info.Note(Base.get<const Expr*>()->getExprLoc(), |
| diag::note_constexpr_temporary_here); |
| } |
| |
| /// Check that this reference or pointer core constant expression is a valid |
| /// value for an address or reference constant expression. Return true if we |
| /// can fold this expression, whether or not it's a constant expression. |
| static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, |
| QualType Type, const LValue &LVal, |
| Expr::ConstExprUsage Usage) { |
| bool IsReferenceType = Type->isReferenceType(); |
| |
| APValue::LValueBase Base = LVal.getLValueBase(); |
| const SubobjectDesignator &Designator = LVal.getLValueDesignator(); |
| |
| // Check that the object is a global. Note that the fake 'this' object we |
| // manufacture when checking potential constant expressions is conservatively |
| // assumed to be global here. |
| if (!IsGlobalLValue(Base)) { |
| if (Info.getLangOpts().CPlusPlus11) { |
| const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); |
| Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) |
| << IsReferenceType << !Designator.Entries.empty() |
| << !!VD << VD; |
| NoteLValueLocation(Info, Base); |
| } else { |
| Info.FFDiag(Loc); |
| } |
| // Don't allow references to temporaries to escape. |
| return false; |
| } |
| assert((Info.checkingPotentialConstantExpression() || |
| LVal.getLValueCallIndex() == 0) && |
| "have call index for global lvalue"); |
| |
| if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { |
| if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) { |
| // Check if this is a thread-local variable. |
| if (Var->getTLSKind()) |
| return false; |
| |
| // A dllimport variable never acts like a constant. |
| if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>()) |
| return false; |
| } |
| if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) { |
| // __declspec(dllimport) must be handled very carefully: |
| // We must never initialize an expression with the thunk in C++. |
| // Doing otherwise would allow the same id-expression to yield |
| // different addresses for the same function in different translation |
| // units. However, this means that we must dynamically initialize the |
| // expression with the contents of the import address table at runtime. |
| // |
| // The C language has no notion of ODR; furthermore, it has no notion of |
| // dynamic initialization. This means that we are permitted to |
| // perform initialization with the address of the thunk. |
| if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen && |
| FD->hasAttr<DLLImportAttr>()) |
| return false; |
| } |
| } |
| |
| // Allow address constant expressions to be past-the-end pointers. This is |
| // an extension: the standard requires them to point to an object. |
| if (!IsReferenceType) |
| return true; |
| |
| // A reference constant expression must refer to an object. |
| if (!Base) { |
| // FIXME: diagnostic |
| Info.CCEDiag(Loc); |
| return true; |
| } |
| |
| // Does this refer one past the end of some object? |
| if (!Designator.Invalid && Designator.isOnePastTheEnd()) { |
| const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); |
| Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) |
| << !Designator.Entries.empty() << !!VD << VD; |
| NoteLValueLocation(Info, Base); |
| } |
| |
| return true; |
| } |
| |
| /// Member pointers are constant expressions unless they point to a |
| /// non-virtual dllimport member function. |
| static bool CheckMemberPointerConstantExpression(EvalInfo &Info, |
| SourceLocation Loc, |
| QualType Type, |
| const APValue &Value, |
| Expr::ConstExprUsage Usage) { |
| const ValueDecl *Member = Value.getMemberPointerDecl(); |
| const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); |
| if (!FD) |
| return true; |
| return Usage == Expr::EvaluateForMangling || FD->isVirtual() || |
| !FD->hasAttr<DLLImportAttr>(); |
| } |
| |
| /// Check that this core constant expression is of literal type, and if not, |
| /// produce an appropriate diagnostic. |
| static bool CheckLiteralType(EvalInfo &Info, const Expr *E, |
| const LValue *This = nullptr) { |
| if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx)) |
| return true; |
| |
| // C++1y: A constant initializer for an object o [...] may also invoke |
| // constexpr constructors for o and its subobjects even if those objects |
| // are of non-literal class types. |
| // |
| // C++11 missed this detail for aggregates, so classes like this: |
| // struct foo_t { union { int i; volatile int j; } u; }; |
| // are not (obviously) initializable like so: |
| // __attribute__((__require_constant_initialization__)) |
| // static const foo_t x = {{0}}; |
| // because "i" is a subobject with non-literal initialization (due to the |
| // volatile member of the union). See: |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 |
| // Therefore, we use the C++1y behavior. |
| if (This && Info.EvaluatingDecl == This->getLValueBase()) |
| return true; |
| |
| // Prvalue constant expressions must be of literal types. |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, diag::note_constexpr_nonliteral) |
| << E->getType(); |
| else |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| /// Check that this core constant expression value is a valid value for a |
| /// constant expression. If not, report an appropriate diagnostic. Does not |
| /// check that the expression is of literal type. |
| static bool |
| CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type, |
| const APValue &Value, |
| Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) { |
| if (Value.isUninit()) { |
| Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) |
| << true << Type; |
| return false; |
| } |
| |
| // We allow _Atomic(T) to be initialized from anything that T can be |
| // initialized from. |
| if (const AtomicType *AT = Type->getAs<AtomicType>()) |
| Type = AT->getValueType(); |
| |
| // Core issue 1454: For a literal constant expression of array or class type, |
| // each subobject of its value shall have been initialized by a constant |
| // expression. |
| if (Value.isArray()) { |
| QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); |
| for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { |
| if (!CheckConstantExpression(Info, DiagLoc, EltTy, |
| Value.getArrayInitializedElt(I), Usage)) |
| return false; |
| } |
| if (!Value.hasArrayFiller()) |
| return true; |
| return CheckConstantExpression(Info, DiagLoc, EltTy, Value.getArrayFiller(), |
| Usage); |
| } |
| if (Value.isUnion() && Value.getUnionField()) { |
| return CheckConstantExpression(Info, DiagLoc, |
| Value.getUnionField()->getType(), |
| Value.getUnionValue(), Usage); |
| } |
| if (Value.isStruct()) { |
| RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); |
| if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { |
| unsigned BaseIndex = 0; |
| for (const CXXBaseSpecifier &BS : CD->bases()) { |
| if (!CheckConstantExpression(Info, DiagLoc, BS.getType(), |
| Value.getStructBase(BaseIndex), Usage)) |
| return false; |
| ++BaseIndex; |
| } |
| } |
| for (const auto *I : RD->fields()) { |
| if (I->isUnnamedBitfield()) |
| continue; |
| |
| if (!CheckConstantExpression(Info, DiagLoc, I->getType(), |
| Value.getStructField(I->getFieldIndex()), |
| Usage)) |
| return false; |
| } |
| } |
| |
| if (Value.isLValue()) { |
| LValue LVal; |
| LVal.setFrom(Info.Ctx, Value); |
| return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage); |
| } |
| |
| if (Value.isMemberPointer()) |
| return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage); |
| |
| // Everything else is fine. |
| return true; |
| } |
| |
| static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { |
| return LVal.Base.dyn_cast<const ValueDecl*>(); |
| } |
| |
| static bool IsLiteralLValue(const LValue &Value) { |
| if (Value.getLValueCallIndex()) |
| return false; |
| const Expr *E = Value.Base.dyn_cast<const Expr*>(); |
| return E && !isa<MaterializeTemporaryExpr>(E); |
| } |
| |
| static bool IsWeakLValue(const LValue &Value) { |
| const ValueDecl *Decl = GetLValueBaseDecl(Value); |
| return Decl && Decl->isWeak(); |
| } |
| |
| static bool isZeroSized(const LValue &Value) { |
| const ValueDecl *Decl = GetLValueBaseDecl(Value); |
| if (Decl && isa<VarDecl>(Decl)) { |
| QualType Ty = Decl->getType(); |
| if (Ty->isArrayType()) |
| return Ty->isIncompleteType() || |
| Decl->getASTContext().getTypeSize(Ty) == 0; |
| } |
| return false; |
| } |
| |
| static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { |
| // A null base expression indicates a null pointer. These are always |
| // evaluatable, and they are false unless the offset is zero. |
| if (!Value.getLValueBase()) { |
| Result = !Value.getLValueOffset().isZero(); |
| return true; |
| } |
| |
| // We have a non-null base. These are generally known to be true, but if it's |
| // a weak declaration it can be null at runtime. |
| Result = true; |
| const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); |
| return !Decl || !Decl->isWeak(); |
| } |
| |
| static bool HandleConversionToBool(const APValue &Val, bool &Result) { |
| switch (Val.getKind()) { |
| case APValue::Uninitialized: |
| return false; |
| case APValue::Int: |
| Result = Val.getInt().getBoolValue(); |
| return true; |
| case APValue::Float: |
| Result = !Val.getFloat().isZero(); |
| return true; |
| case APValue::ComplexInt: |
| Result = Val.getComplexIntReal().getBoolValue() || |
| Val.getComplexIntImag().getBoolValue(); |
| return true; |
| case APValue::ComplexFloat: |
| Result = !Val.getComplexFloatReal().isZero() || |
| !Val.getComplexFloatImag().isZero(); |
| return true; |
| case APValue::LValue: |
| return EvalPointerValueAsBool(Val, Result); |
| case APValue::MemberPointer: |
| Result = Val.getMemberPointerDecl(); |
| return true; |
| case APValue::Vector: |
| case APValue::Array: |
| case APValue::Struct: |
| case APValue::Union: |
| case APValue::AddrLabelDiff: |
| return false; |
| } |
| |
| llvm_unreachable("unknown APValue kind"); |
| } |
| |
| static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, |
| EvalInfo &Info) { |
| assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition"); |
| APValue Val; |
| if (!Evaluate(Val, Info, E)) |
| return false; |
| return HandleConversionToBool(Val, Result); |
| } |
| |
| template<typename T> |
| static bool HandleOverflow(EvalInfo &Info, const Expr *E, |
| const T &SrcValue, QualType DestType) { |
| Info.CCEDiag(E, diag::note_constexpr_overflow) |
| << SrcValue << DestType; |
| return Info.noteUndefinedBehavior(); |
| } |
| |
| static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, |
| QualType SrcType, const APFloat &Value, |
| QualType DestType, APSInt &Result) { |
| unsigned DestWidth = Info.Ctx.getIntWidth(DestType); |
| // Determine whether we are converting to unsigned or signed. |
| bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); |
| |
| Result = APSInt(DestWidth, !DestSigned); |
| bool ignored; |
| if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) |
| & APFloat::opInvalidOp) |
| return HandleOverflow(Info, E, Value, DestType); |
| return true; |
| } |
| |
| static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, |
| QualType SrcType, QualType DestType, |
| APFloat &Result) { |
| APFloat Value = Result; |
| bool ignored; |
| if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), |
| APFloat::rmNearestTiesToEven, &ignored) |
| & APFloat::opOverflow) |
| return HandleOverflow(Info, E, Value, DestType); |
| return true; |
| } |
| |
| static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, |
| QualType DestType, QualType SrcType, |
| const APSInt &Value) { |
| unsigned DestWidth = Info.Ctx.getIntWidth(DestType); |
| APSInt Result = Value; |
| // Figure out if this is a truncate, extend or noop cast. |
| // If the input is signed, do a sign extend, noop, or truncate. |
| Result = Result.extOrTrunc(DestWidth); |
| Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); |
| return Result; |
| } |
| |
| static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, |
| QualType SrcType, const APSInt &Value, |
| QualType DestType, APFloat &Result) { |
| Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); |
| if (Result.convertFromAPInt(Value, Value.isSigned(), |
| APFloat::rmNearestTiesToEven) |
| & APFloat::opOverflow) |
| return HandleOverflow(Info, E, Value, DestType); |
| return true; |
| } |
| |
| static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, |
| APValue &Value, const FieldDecl *FD) { |
| assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); |
| |
| if (!Value.isInt()) { |
| // Trying to store a pointer-cast-to-integer into a bitfield. |
| // FIXME: In this case, we should provide the diagnostic for casting |
| // a pointer to an integer. |
| assert(Value.isLValue() && "integral value neither int nor lvalue?"); |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| APSInt &Int = Value.getInt(); |
| unsigned OldBitWidth = Int.getBitWidth(); |
| unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); |
| if (NewBitWidth < OldBitWidth) |
| Int = Int.trunc(NewBitWidth).extend(OldBitWidth); |
| return true; |
| } |
| |
| static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E, |
| llvm::APInt &Res) { |
| APValue SVal; |
| if (!Evaluate(SVal, Info, E)) |
| return false; |
| if (SVal.isInt()) { |
| Res = SVal.getInt(); |
| return true; |
| } |
| if (SVal.isFloat()) { |
| Res = SVal.getFloat().bitcastToAPInt(); |
| return true; |
| } |
| if (SVal.isVector()) { |
| QualType VecTy = E->getType(); |
| unsigned VecSize = Info.Ctx.getTypeSize(VecTy); |
| QualType EltTy = VecTy->castAs<VectorType>()->getElementType(); |
| unsigned EltSize = Info.Ctx.getTypeSize(EltTy); |
| bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); |
| Res = llvm::APInt::getNullValue(VecSize); |
| for (unsigned i = 0; i < SVal.getVectorLength(); i++) { |
| APValue &Elt = SVal.getVectorElt(i); |
| llvm::APInt EltAsInt; |
| if (Elt.isInt()) { |
| EltAsInt = Elt.getInt(); |
| } else if (Elt.isFloat()) { |
| EltAsInt = Elt.getFloat().bitcastToAPInt(); |
| } else { |
| // Don't try to handle vectors of anything other than int or float |
| // (not sure if it's possible to hit this case). |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| unsigned BaseEltSize = EltAsInt.getBitWidth(); |
| if (BigEndian) |
| Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize); |
| else |
| Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize); |
| } |
| return true; |
| } |
| // Give up if the input isn't an int, float, or vector. For example, we |
| // reject "(v4i16)(intptr_t)&a". |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| /// Perform the given integer operation, which is known to need at most BitWidth |
| /// bits, and check for overflow in the original type (if that type was not an |
| /// unsigned type). |
| template<typename Operation> |
| static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, |
| const APSInt &LHS, const APSInt &RHS, |
| unsigned BitWidth, Operation Op, |
| APSInt &Result) { |
| if (LHS.isUnsigned()) { |
| Result = Op(LHS, RHS); |
| return true; |
| } |
| |
| APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); |
| Result = Value.trunc(LHS.getBitWidth()); |
| if (Result.extend(BitWidth) != Value) { |
| if (Info.checkingForOverflow()) |
| Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
| diag::warn_integer_constant_overflow) |
| << Result.toString(10) << E->getType(); |
| else |
| return HandleOverflow(Info, E, Value, E->getType()); |
| } |
| return true; |
| } |
| |
| /// Perform the given binary integer operation. |
| static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS, |
| BinaryOperatorKind Opcode, APSInt RHS, |
| APSInt &Result) { |
| switch (Opcode) { |
| default: |
| Info.FFDiag(E); |
| return false; |
| case BO_Mul: |
| return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, |
| std::multiplies<APSInt>(), Result); |
| case BO_Add: |
| return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, |
| std::plus<APSInt>(), Result); |
| case BO_Sub: |
| return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, |
| std::minus<APSInt>(), Result); |
| case BO_And: Result = LHS & RHS; return true; |
| case BO_Xor: Result = LHS ^ RHS; return true; |
| case BO_Or: Result = LHS | RHS; return true; |
| case BO_Div: |
| case BO_Rem: |
| if (RHS == 0) { |
| Info.FFDiag(E, diag::note_expr_divide_by_zero); |
| return false; |
| } |
| Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); |
| // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports |
| // this operation and gives the two's complement result. |
| if (RHS.isNegative() && RHS.isAllOnesValue() && |
| LHS.isSigned() && LHS.isMinSignedValue()) |
| return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), |
| E->getType()); |
| return true; |
| case BO_Shl: { |
| if (Info.getLangOpts().OpenCL) |
| // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
| static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
| RHS.isUnsigned()); |
| else if (RHS.isSigned() && RHS.isNegative()) { |
| // During constant-folding, a negative shift is an opposite shift. Such |
| // a shift is not a constant expression. |
| Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; |
| RHS = -RHS; |
| goto shift_right; |
| } |
| shift_left: |
| // C++11 [expr.shift]p1: Shift width must be less than the bit width of |
| // the shifted type. |
| unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
| if (SA != RHS) { |
| Info.CCEDiag(E, diag::note_constexpr_large_shift) |
| << RHS << E->getType() << LHS.getBitWidth(); |
| } else if (LHS.isSigned()) { |
| // C++11 [expr.shift]p2: A signed left shift must have a non-negative |
| // operand, and must not overflow the corresponding unsigned type. |
| if (LHS.isNegative()) |
| Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; |
| else if (LHS.countLeadingZeros() < SA) |
| Info.CCEDiag(E, diag::note_constexpr_lshift_discards); |
| } |
| Result = LHS << SA; |
| return true; |
| } |
| case BO_Shr: { |
| if (Info.getLangOpts().OpenCL) |
| // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
| static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
| RHS.isUnsigned()); |
| else if (RHS.isSigned() && RHS.isNegative()) { |
| // During constant-folding, a negative shift is an opposite shift. Such a |
| // shift is not a constant expression. |
| Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; |
| RHS = -RHS; |
| goto shift_left; |
| } |
| shift_right: |
| // C++11 [expr.shift]p1: Shift width must be less than the bit width of the |
| // shifted type. |
| unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
| if (SA != RHS) |
| Info.CCEDiag(E, diag::note_constexpr_large_shift) |
| << RHS << E->getType() << LHS.getBitWidth(); |
| Result = LHS >> SA; |
| return true; |
| } |
| |
| case BO_LT: Result = LHS < RHS; return true; |
| case BO_GT: Result = LHS > RHS; return true; |
| case BO_LE: Result = LHS <= RHS; return true; |
| case BO_GE: Result = LHS >= RHS; return true; |
| case BO_EQ: Result = LHS == RHS; return true; |
| case BO_NE: Result = LHS != RHS; return true; |
| case BO_Cmp: |
| llvm_unreachable("BO_Cmp should be handled elsewhere"); |
| } |
| } |
| |
| /// Perform the given binary floating-point operation, in-place, on LHS. |
| static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E, |
| APFloat &LHS, BinaryOperatorKind Opcode, |
| const APFloat &RHS) { |
| switch (Opcode) { |
| default: |
| Info.FFDiag(E); |
| return false; |
| case BO_Mul: |
| LHS.multiply(RHS, APFloat::rmNearestTiesToEven); |
| break; |
| case BO_Add: |
| LHS.add(RHS, APFloat::rmNearestTiesToEven); |
| break; |
| case BO_Sub: |
| LHS.subtract(RHS, APFloat::rmNearestTiesToEven); |
| break; |
| case BO_Div: |
| LHS.divide(RHS, APFloat::rmNearestTiesToEven); |
| break; |
| } |
| |
| if (LHS.isInfinity() || LHS.isNaN()) { |
| Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); |
| return Info.noteUndefinedBehavior(); |
| } |
| return true; |
| } |
| |
| /// Cast an lvalue referring to a base subobject to a derived class, by |
| /// truncating the lvalue's path to the given length. |
| static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, |
| const RecordDecl *TruncatedType, |
| unsigned TruncatedElements) { |
| SubobjectDesignator &D = Result.Designator; |
| |
| // Check we actually point to a derived class object. |
| if (TruncatedElements == D.Entries.size()) |
| return true; |
| assert(TruncatedElements >= D.MostDerivedPathLength && |
| "not casting to a derived class"); |
| if (!Result.checkSubobject(Info, E, CSK_Derived)) |
| return false; |
| |
| // Truncate the path to the subobject, and remove any derived-to-base offsets. |
| const RecordDecl *RD = TruncatedType; |
| for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); |
| if (isVirtualBaseClass(D.Entries[I])) |
| Result.Offset -= Layout.getVBaseClassOffset(Base); |
| else |
| Result.Offset -= Layout.getBaseClassOffset(Base); |
| RD = Base; |
| } |
| D.Entries.resize(TruncatedElements); |
| return true; |
| } |
| |
| static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
| const CXXRecordDecl *Derived, |
| const CXXRecordDecl *Base, |
| const ASTRecordLayout *RL = nullptr) { |
| if (!RL) { |
| if (Derived->isInvalidDecl()) return false; |
| RL = &Info.Ctx.getASTRecordLayout(Derived); |
| } |
| |
| Obj.getLValueOffset() += RL->getBaseClassOffset(Base); |
| Obj.addDecl(Info, E, Base, /*Virtual*/ false); |
| return true; |
| } |
| |
| static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
| const CXXRecordDecl *DerivedDecl, |
| const CXXBaseSpecifier *Base) { |
| const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); |
| |
| if (!Base->isVirtual()) |
| return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); |
| |
| SubobjectDesignator &D = Obj.Designator; |
| if (D.Invalid) |
| return false; |
| |
| // Extract most-derived object and corresponding type. |
| DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); |
| if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) |
| return false; |
| |
| // Find the virtual base class. |
| if (DerivedDecl->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); |
| Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); |
| Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); |
| return true; |
| } |
| |
| static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, |
| QualType Type, LValue &Result) { |
| for (CastExpr::path_const_iterator PathI = E->path_begin(), |
| PathE = E->path_end(); |
| PathI != PathE; ++PathI) { |
| if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), |
| *PathI)) |
| return false; |
| Type = (*PathI)->getType(); |
| } |
| return true; |
| } |
| |
| /// Update LVal to refer to the given field, which must be a member of the type |
| /// currently described by LVal. |
| static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, |
| const FieldDecl *FD, |
| const ASTRecordLayout *RL = nullptr) { |
| if (!RL) { |
| if (FD->getParent()->isInvalidDecl()) return false; |
| RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); |
| } |
| |
| unsigned I = FD->getFieldIndex(); |
| LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); |
| LVal.addDecl(Info, E, FD); |
| return true; |
| } |
| |
| /// Update LVal to refer to the given indirect field. |
| static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, |
| LValue &LVal, |
| const IndirectFieldDecl *IFD) { |
| for (const auto *C : IFD->chain()) |
| if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) |
| return false; |
| return true; |
| } |
| |
| /// Get the size of the given type in char units. |
| static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, |
| QualType Type, CharUnits &Size) { |
| // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc |
| // extension. |
| if (Type->isVoidType() || Type->isFunctionType()) { |
| Size = CharUnits::One(); |
| return true; |
| } |
| |
| if (Type->isDependentType()) { |
| Info.FFDiag(Loc); |
| return false; |
| } |
| |
| if (!Type->isConstantSizeType()) { |
| // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
| // FIXME: Better diagnostic. |
| Info.FFDiag(Loc); |
| return false; |
| } |
| |
| Size = Info.Ctx.getTypeSizeInChars(Type); |
| return true; |
| } |
| |
| /// Update a pointer value to model pointer arithmetic. |
| /// \param Info - Information about the ongoing evaluation. |
| /// \param E - The expression being evaluated, for diagnostic purposes. |
| /// \param LVal - The pointer value to be updated. |
| /// \param EltTy - The pointee type represented by LVal. |
| /// \param Adjustment - The adjustment, in objects of type EltTy, to add. |
| static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
| LValue &LVal, QualType EltTy, |
| APSInt Adjustment) { |
| CharUnits SizeOfPointee; |
| if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) |
| return false; |
| |
| LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); |
| return true; |
| } |
| |
| static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
| LValue &LVal, QualType EltTy, |
| int64_t Adjustment) { |
| return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, |
| APSInt::get(Adjustment)); |
| } |
| |
| /// Update an lvalue to refer to a component of a complex number. |
| /// \param Info - Information about the ongoing evaluation. |
| /// \param LVal - The lvalue to be updated. |
| /// \param EltTy - The complex number's component type. |
| /// \param Imag - False for the real component, true for the imaginary. |
| static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, |
| LValue &LVal, QualType EltTy, |
| bool Imag) { |
| if (Imag) { |
| CharUnits SizeOfComponent; |
| if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) |
| return false; |
| LVal.Offset += SizeOfComponent; |
| } |
| LVal.addComplex(Info, E, EltTy, Imag); |
| return true; |
| } |
| |
| static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, |
| QualType Type, const LValue &LVal, |
| APValue &RVal); |
| |
| /// Try to evaluate the initializer for a variable declaration. |
| /// |
| /// \param Info Information about the ongoing evaluation. |
| /// \param E An expression to be used when printing diagnostics. |
| /// \param VD The variable whose initializer should be obtained. |
| /// \param Frame The frame in which the variable was created. Must be null |
| /// if this variable is not local to the evaluation. |
| /// \param Result Filled in with a pointer to the value of the variable. |
| static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, |
| const VarDecl *VD, CallStackFrame *Frame, |
| APValue *&Result, const LValue *LVal) { |
| |
| // If this is a parameter to an active constexpr function call, perform |
| // argument substitution. |
| if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) { |
| // Assume arguments of a potential constant expression are unknown |
| // constant expressions. |
| if (Info.checkingPotentialConstantExpression()) |
| return false; |
| if (!Frame || !Frame->Arguments) { |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| Result = &Frame->Arguments[PVD->getFunctionScopeIndex()]; |
| return true; |
| } |
| |
| // If this is a local variable, dig out its value. |
| if (Frame) { |
| Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion()) |
| : Frame->getCurrentTemporary(VD); |
| if (!Result) { |
| // Assume variables referenced within a lambda's call operator that were |
| // not declared within the call operator are captures and during checking |
| // of a potential constant expression, assume they are unknown constant |
| // expressions. |
| assert(isLambdaCallOperator(Frame->Callee) && |
| (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && |
| "missing value for local variable"); |
| if (Info.checkingPotentialConstantExpression()) |
| return false; |
| // FIXME: implement capture evaluation during constant expr evaluation. |
| Info.FFDiag(E->getLocStart(), |
| diag::note_unimplemented_constexpr_lambda_feature_ast) |
| << "captures not currently allowed"; |
| return false; |
| } |
| return true; |
| } |
| |
| // Dig out the initializer, and use the declaration which it's attached to. |
| const Expr *Init = VD->getAnyInitializer(VD); |
| if (!Init || Init->isValueDependent()) { |
| // If we're checking a potential constant expression, the variable could be |
| // initialized later. |
| if (!Info.checkingPotentialConstantExpression()) |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| // If we're currently evaluating the initializer of this declaration, use that |
| // in-flight value. |
| if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) { |
| Result = Info.EvaluatingDeclValue; |
| return true; |
| } |
| |
| // Never evaluate the initializer of a weak variable. We can't be sure that |
| // this is the definition which will be used. |
| if (VD->isWeak()) { |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| // Check that we can fold the initializer. In C++, we will have already done |
| // this in the cases where it matters for conformance. |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| if (!VD->evaluateValue(Notes)) { |
| Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, |
| Notes.size() + 1) << VD; |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| Info.addNotes(Notes); |
| return false; |
| } else if (!VD->checkInitIsICE()) { |
| Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, |
| Notes.size() + 1) << VD; |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| Info.addNotes(Notes); |
| } |
| |
| Result = VD->getEvaluatedValue(); |
| return true; |
| } |
| |
| static bool IsConstNonVolatile(QualType T) { |
| Qualifiers Quals = T.getQualifiers(); |
| return Quals.hasConst() && !Quals.hasVolatile(); |
| } |
| |
| /// Get the base index of the given base class within an APValue representing |
| /// the given derived class. |
| static unsigned getBaseIndex(const CXXRecordDecl *Derived, |
| const CXXRecordDecl *Base) { |
| Base = Base->getCanonicalDecl(); |
| unsigned Index = 0; |
| for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), |
| E = Derived->bases_end(); I != E; ++I, ++Index) { |
| if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) |
| return Index; |
| } |
| |
| llvm_unreachable("base class missing from derived class's bases list"); |
| } |
| |
| /// Extract the value of a character from a string literal. |
| static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, |
| uint64_t Index) { |
| // FIXME: Support MakeStringConstant |
| if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { |
| std::string Str; |
| Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); |
| assert(Index <= Str.size() && "Index too large"); |
| return APSInt::getUnsigned(Str.c_str()[Index]); |
| } |
| |
| if (auto PE = dyn_cast<PredefinedExpr>(Lit)) |
| Lit = PE->getFunctionName(); |
| const StringLiteral *S = cast<StringLiteral>(Lit); |
| const ConstantArrayType *CAT = |
| Info.Ctx.getAsConstantArrayType(S->getType()); |
| assert(CAT && "string literal isn't an array"); |
| QualType CharType = CAT->getElementType(); |
| assert(CharType->isIntegerType() && "unexpected character type"); |
| |
| APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), |
| CharType->isUnsignedIntegerType()); |
| if (Index < S->getLength()) |
| Value = S->getCodeUnit(Index); |
| return Value; |
| } |
| |
| // Expand a string literal into an array of characters. |
| static void expandStringLiteral(EvalInfo &Info, const Expr *Lit, |
| APValue &Result) { |
| const StringLiteral *S = cast<StringLiteral>(Lit); |
| const ConstantArrayType *CAT = |
| Info.Ctx.getAsConstantArrayType(S->getType()); |
| assert(CAT && "string literal isn't an array"); |
| QualType CharType = CAT->getElementType(); |
| assert(CharType->isIntegerType() && "unexpected character type"); |
| |
| unsigned Elts = CAT->getSize().getZExtValue(); |
| Result = APValue(APValue::UninitArray(), |
| std::min(S->getLength(), Elts), Elts); |
| APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), |
| CharType->isUnsignedIntegerType()); |
| if (Result.hasArrayFiller()) |
| Result.getArrayFiller() = APValue(Value); |
| for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { |
| Value = S->getCodeUnit(I); |
| Result.getArrayInitializedElt(I) = APValue(Value); |
| } |
| } |
| |
| // Expand an array so that it has more than Index filled elements. |
| static void expandArray(APValue &Array, unsigned Index) { |
| unsigned Size = Array.getArraySize(); |
| assert(Index < Size); |
| |
| // Always at least double the number of elements for which we store a value. |
| unsigned OldElts = Array.getArrayInitializedElts(); |
| unsigned NewElts = std::max(Index+1, OldElts * 2); |
| NewElts = std::min(Size, std::max(NewElts, 8u)); |
| |
| // Copy the data across. |
| APValue NewValue(APValue::UninitArray(), NewElts, Size); |
| for (unsigned I = 0; I != OldElts; ++I) |
| NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); |
| for (unsigned I = OldElts; I != NewElts; ++I) |
| NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); |
| if (NewValue.hasArrayFiller()) |
| NewValue.getArrayFiller() = Array.getArrayFiller(); |
| Array.swap(NewValue); |
| } |
| |
| /// Determine whether a type would actually be read by an lvalue-to-rvalue |
| /// conversion. If it's of class type, we may assume that the copy operation |
| /// is trivial. Note that this is never true for a union type with fields |
| /// (because the copy always "reads" the active member) and always true for |
| /// a non-class type. |
| static bool isReadByLvalueToRvalueConversion(QualType T) { |
| CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| if (!RD || (RD->isUnion() && !RD->field_empty())) |
| return true; |
| if (RD->isEmpty()) |
| return false; |
| |
| for (auto *Field : RD->fields()) |
| if (isReadByLvalueToRvalueConversion(Field->getType())) |
| return true; |
| |
| for (auto &BaseSpec : RD->bases()) |
| if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) |
| return true; |
| |
| return false; |
| } |
| |
| /// Diagnose an attempt to read from any unreadable field within the specified |
| /// type, which might be a class type. |
| static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E, |
| QualType T) { |
| CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| if (!RD) |
| return false; |
| |
| if (!RD->hasMutableFields()) |
| return false; |
| |
| for (auto *Field : RD->fields()) { |
| // If we're actually going to read this field in some way, then it can't |
| // be mutable. If we're in a union, then assigning to a mutable field |
| // (even an empty one) can change the active member, so that's not OK. |
| // FIXME: Add core issue number for the union case. |
| if (Field->isMutable() && |
| (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { |
| Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) << Field; |
| Info.Note(Field->getLocation(), diag::note_declared_at); |
| return true; |
| } |
| |
| if (diagnoseUnreadableFields(Info, E, Field->getType())) |
| return true; |
| } |
| |
| for (auto &BaseSpec : RD->bases()) |
| if (diagnoseUnreadableFields(Info, E, BaseSpec.getType())) |
| return true; |
| |
| // All mutable fields were empty, and thus not actually read. |
| return false; |
| } |
| |
| /// Kinds of access we can perform on an object, for diagnostics. |
| enum AccessKinds { |
| AK_Read, |
| AK_Assign, |
| AK_Increment, |
| AK_Decrement |
| }; |
| |
| namespace { |
| /// A handle to a complete object (an object that is not a subobject of |
| /// another object). |
| struct CompleteObject { |
| /// The value of the complete object. |
| APValue *Value; |
| /// The type of the complete object. |
| QualType Type; |
| bool LifetimeStartedInEvaluation; |
| |
| CompleteObject() : Value(nullptr) {} |
| CompleteObject(APValue *Value, QualType Type, |
| bool LifetimeStartedInEvaluation) |
| : Value(Value), Type(Type), |
| LifetimeStartedInEvaluation(LifetimeStartedInEvaluation) { |
| assert(Value && "missing value for complete object"); |
| } |
| |
| explicit operator bool() const { return Value; } |
| }; |
| } // end anonymous namespace |
| |
| /// Find the designated sub-object of an rvalue. |
| template<typename SubobjectHandler> |
| typename SubobjectHandler::result_type |
| findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, |
| const SubobjectDesignator &Sub, SubobjectHandler &handler) { |
| if (Sub.Invalid) |
| // A diagnostic will have already been produced. |
| return handler.failed(); |
| if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, Sub.isOnePastTheEnd() |
| ? diag::note_constexpr_access_past_end |
| : diag::note_constexpr_access_unsized_array) |
| << handler.AccessKind; |
| else |
| Info.FFDiag(E); |
| return handler.failed(); |
| } |
| |
| APValue *O = Obj.Value; |
| QualType ObjType = Obj.Type; |
| const FieldDecl *LastField = nullptr; |
| const bool MayReadMutableMembers = |
| Obj.LifetimeStartedInEvaluation && Info.getLangOpts().CPlusPlus14; |
| |
| // Walk the designator's path to find the subobject. |
| for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { |
| if (O->isUninit()) { |
| if (!Info.checkingPotentialConstantExpression()) |
| Info.FFDiag(E, diag::note_constexpr_access_uninit) << handler.AccessKind; |
| return handler.failed(); |
| } |
| |
| if (I == N) { |
| // If we are reading an object of class type, there may still be more |
| // things we need to check: if there are any mutable subobjects, we |
| // cannot perform this read. (This only happens when performing a trivial |
| // copy or assignment.) |
| if (ObjType->isRecordType() && handler.AccessKind == AK_Read && |
| !MayReadMutableMembers && diagnoseUnreadableFields(Info, E, ObjType)) |
| return handler.failed(); |
| |
| if (!handler.found(*O, ObjType)) |
| return false; |
| |
| // If we modified a bit-field, truncate it to the right width. |
| if (handler.AccessKind != AK_Read && |
| LastField && LastField->isBitField() && |
| !truncateBitfieldValue(Info, E, *O, LastField)) |
| return false; |
| |
| return true; |
| } |
| |
| LastField = nullptr; |
| if (ObjType->isArrayType()) { |
| // Next subobject is an array element. |
| const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); |
| assert(CAT && "vla in literal type?"); |
| uint64_t Index = Sub.Entries[I].ArrayIndex; |
| if (CAT->getSize().ule(Index)) { |
| // Note, it should not be possible to form a pointer with a valid |
| // designator which points more than one past the end of the array. |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, diag::note_constexpr_access_past_end) |
| << handler.AccessKind; |
| else |
| Info.FFDiag(E); |
| return handler.failed(); |
| } |
| |
| ObjType = CAT->getElementType(); |
| |
| // An array object is represented as either an Array APValue or as an |
| // LValue which refers to a string literal. |
| if (O->isLValue()) { |
| assert(I == N - 1 && "extracting subobject of character?"); |
| assert(!O->hasLValuePath() || O->getLValuePath().empty()); |
| if (handler.AccessKind != AK_Read) |
| expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(), |
| *O); |
| else |
| return handler.foundString(*O, ObjType, Index); |
| } |
| |
| if (O->getArrayInitializedElts() > Index) |
| O = &O->getArrayInitializedElt(Index); |
| else if (handler.AccessKind != AK_Read) { |
| expandArray(*O, Index); |
| O = &O->getArrayInitializedElt(Index); |
| } else |
| O = &O->getArrayFiller(); |
| } else if (ObjType->isAnyComplexType()) { |
| // Next subobject is a complex number. |
| uint64_t Index = Sub.Entries[I].ArrayIndex; |
| if (Index > 1) { |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, diag::note_constexpr_access_past_end) |
| << handler.AccessKind; |
| else |
| Info.FFDiag(E); |
| return handler.failed(); |
| } |
| |
| bool WasConstQualified = ObjType.isConstQualified(); |
| ObjType = ObjType->castAs<ComplexType>()->getElementType(); |
| if (WasConstQualified) |
| ObjType.addConst(); |
| |
| assert(I == N - 1 && "extracting subobject of scalar?"); |
| if (O->isComplexInt()) { |
| return handler.found(Index ? O->getComplexIntImag() |
| : O->getComplexIntReal(), ObjType); |
| } else { |
| assert(O->isComplexFloat()); |
| return handler.found(Index ? O->getComplexFloatImag() |
| : O->getComplexFloatReal(), ObjType); |
| } |
| } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { |
| // In C++14 onwards, it is permitted to read a mutable member whose |
| // lifetime began within the evaluation. |
| // FIXME: Should we also allow this in C++11? |
| if (Field->isMutable() && handler.AccessKind == AK_Read && |
| !MayReadMutableMembers) { |
| Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) |
| << Field; |
| Info.Note(Field->getLocation(), diag::note_declared_at); |
| return handler.failed(); |
| } |
| |
| // Next subobject is a class, struct or union field. |
| RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); |
| if (RD->isUnion()) { |
| const FieldDecl *UnionField = O->getUnionField(); |
| if (!UnionField || |
| UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { |
| Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) |
| << handler.AccessKind << Field << !UnionField << UnionField; |
| return handler.failed(); |
| } |
| O = &O->getUnionValue(); |
| } else |
| O = &O->getStructField(Field->getFieldIndex()); |
| |
| bool WasConstQualified = ObjType.isConstQualified(); |
| ObjType = Field->getType(); |
| if (WasConstQualified && !Field->isMutable()) |
| ObjType.addConst(); |
| |
| if (ObjType.isVolatileQualified()) { |
| if (Info.getLangOpts().CPlusPlus) { |
| // FIXME: Include a description of the path to the volatile subobject. |
| Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) |
| << handler.AccessKind << 2 << Field; |
| Info.Note(Field->getLocation(), diag::note_declared_at); |
| } else { |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| } |
| return handler.failed(); |
| } |
| |
| LastField = Field; |
| } else { |
| // Next subobject is a base class. |
| const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); |
| const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); |
| O = &O->getStructBase(getBaseIndex(Derived, Base)); |
| |
| bool WasConstQualified = ObjType.isConstQualified(); |
| ObjType = Info.Ctx.getRecordType(Base); |
| if (WasConstQualified) |
| ObjType.addConst(); |
| } |
| } |
| } |
| |
| namespace { |
| struct ExtractSubobjectHandler { |
| EvalInfo &Info; |
| APValue &Result; |
| |
| static const AccessKinds AccessKind = AK_Read; |
| |
| typedef bool result_type; |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| Result = Subobj; |
| return true; |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| Result = APValue(Value); |
| return true; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| Result = APValue(Value); |
| return true; |
| } |
| bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) { |
| Result = APValue(extractStringLiteralCharacter( |
| Info, Subobj.getLValueBase().get<const Expr *>(), Character)); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| const AccessKinds ExtractSubobjectHandler::AccessKind; |
| |
| /// Extract the designated sub-object of an rvalue. |
| static bool extractSubobject(EvalInfo &Info, const Expr *E, |
| const CompleteObject &Obj, |
| const SubobjectDesignator &Sub, |
| APValue &Result) { |
| ExtractSubobjectHandler Handler = { Info, Result }; |
| return findSubobject(Info, E, Obj, Sub, Handler); |
| } |
| |
| namespace { |
| struct ModifySubobjectHandler { |
| EvalInfo &Info; |
| APValue &NewVal; |
| const Expr *E; |
| |
| typedef bool result_type; |
| static const AccessKinds AccessKind = AK_Assign; |
| |
| bool checkConst(QualType QT) { |
| // Assigning to a const object has undefined behavior. |
| if (QT.isConstQualified()) { |
| Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; |
| return false; |
| } |
| return true; |
| } |
| |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| // We've been given ownership of NewVal, so just swap it in. |
| Subobj.swap(NewVal); |
| return true; |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| if (!NewVal.isInt()) { |
| // Maybe trying to write a cast pointer value into a complex? |
| Info.FFDiag(E); |
| return false; |
| } |
| Value = NewVal.getInt(); |
| return true; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| Value = NewVal.getFloat(); |
| return true; |
| } |
| bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) { |
| llvm_unreachable("shouldn't encounter string elements with ExpandArrays"); |
| } |
| }; |
| } // end anonymous namespace |
| |
| const AccessKinds ModifySubobjectHandler::AccessKind; |
| |
| /// Update the designated sub-object of an rvalue to the given value. |
| static bool modifySubobject(EvalInfo &Info, const Expr *E, |
| const CompleteObject &Obj, |
| const SubobjectDesignator &Sub, |
| APValue &NewVal) { |
| ModifySubobjectHandler Handler = { Info, NewVal, E }; |
| return findSubobject(Info, E, Obj, Sub, Handler); |
| } |
| |
| /// Find the position where two subobject designators diverge, or equivalently |
| /// the length of the common initial subsequence. |
| static unsigned FindDesignatorMismatch(QualType ObjType, |
| const SubobjectDesignator &A, |
| const SubobjectDesignator &B, |
| bool &WasArrayIndex) { |
| unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); |
| for (/**/; I != N; ++I) { |
| if (!ObjType.isNull() && |
| (ObjType->isArrayType() || ObjType->isAnyComplexType())) { |
| // Next subobject is an array element. |
| if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) { |
| WasArrayIndex = true; |
| return I; |
| } |
| if (ObjType->isAnyComplexType()) |
| ObjType = ObjType->castAs<ComplexType>()->getElementType(); |
| else |
| ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); |
| } else { |
| if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) { |
| WasArrayIndex = false; |
| return I; |
| } |
| if (const FieldDecl *FD = getAsField(A.Entries[I])) |
| // Next subobject is a field. |
| ObjType = FD->getType(); |
| else |
| // Next subobject is a base class. |
| ObjType = QualType(); |
| } |
| } |
| WasArrayIndex = false; |
| return I; |
| } |
| |
| /// Determine whether the given subobject designators refer to elements of the |
| /// same array object. |
| static bool AreElementsOfSameArray(QualType ObjType, |
| const SubobjectDesignator &A, |
| const SubobjectDesignator &B) { |
| if (A.Entries.size() != B.Entries.size()) |
| return false; |
| |
| bool IsArray = A.MostDerivedIsArrayElement; |
| if (IsArray && A.MostDerivedPathLength != A.Entries.size()) |
| // A is a subobject of the array element. |
| return false; |
| |
| // If A (and B) designates an array element, the last entry will be the array |
| // index. That doesn't have to match. Otherwise, we're in the 'implicit array |
| // of length 1' case, and the entire path must match. |
| bool WasArrayIndex; |
| unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); |
| return CommonLength >= A.Entries.size() - IsArray; |
| } |
| |
| /// Find the complete object to which an LValue refers. |
| static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, |
| AccessKinds AK, const LValue &LVal, |
| QualType LValType) { |
| if (!LVal.Base) { |
| Info.FFDiag(E, diag::note_constexpr_access_null) << AK; |
| return CompleteObject(); |
| } |
| |
| CallStackFrame *Frame = nullptr; |
| if (LVal.getLValueCallIndex()) { |
| Frame = Info.getCallFrame(LVal.getLValueCallIndex()); |
| if (!Frame) { |
| Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) |
| << AK << LVal.Base.is<const ValueDecl*>(); |
| NoteLValueLocation(Info, LVal.Base); |
| return CompleteObject(); |
| } |
| } |
| |
| // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type |
| // is not a constant expression (even if the object is non-volatile). We also |
| // apply this rule to C++98, in order to conform to the expected 'volatile' |
| // semantics. |
| if (LValType.isVolatileQualified()) { |
| if (Info.getLangOpts().CPlusPlus) |
| Info.FFDiag(E, diag::note_constexpr_access_volatile_type) |
| << AK << LValType; |
| else |
| Info.FFDiag(E); |
| return CompleteObject(); |
| } |
| |
| // Compute value storage location and type of base object. |
| APValue *BaseVal = nullptr; |
| QualType BaseType = getType(LVal.Base); |
| bool LifetimeStartedInEvaluation = Frame; |
| |
| if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) { |
| // In C++98, const, non-volatile integers initialized with ICEs are ICEs. |
| // In C++11, constexpr, non-volatile variables initialized with constant |
| // expressions are constant expressions too. Inside constexpr functions, |
| // parameters are constant expressions even if they're non-const. |
| // In C++1y, objects local to a constant expression (those with a Frame) are |
| // both readable and writable inside constant expressions. |
| // In C, such things can also be folded, although they are not ICEs. |
| const VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (VD) { |
| if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) |
| VD = VDef; |
| } |
| if (!VD || VD->isInvalidDecl()) { |
| Info.FFDiag(E); |
| return CompleteObject(); |
| } |
| |
| // Accesses of volatile-qualified objects are not allowed. |
| if (BaseType.isVolatileQualified()) { |
| if (Info.getLangOpts().CPlusPlus) { |
| Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) |
| << AK << 1 << VD; |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| } else { |
| Info.FFDiag(E); |
| } |
| return CompleteObject(); |
| } |
| |
| // Unless we're looking at a local variable or argument in a constexpr call, |
| // the variable we're reading must be const. |
| if (!Frame) { |
| if (Info.getLangOpts().CPlusPlus14 && |
| VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) { |
| // OK, we can read and modify an object if we're in the process of |
| // evaluating its initializer, because its lifetime began in this |
| // evaluation. |
| } else if (AK != AK_Read) { |
| // All the remaining cases only permit reading. |
| Info.FFDiag(E, diag::note_constexpr_modify_global); |
| return CompleteObject(); |
| } else if (VD->isConstexpr()) { |
| // OK, we can read this variable. |
| } else if (BaseType->isIntegralOrEnumerationType()) { |
| // In OpenCL if a variable is in constant address space it is a const value. |
| if (!(BaseType.isConstQualified() || |
| (Info.getLangOpts().OpenCL && |
| BaseType.getAddressSpace() == LangAS::opencl_constant))) { |
| if (Info.getLangOpts().CPlusPlus) { |
| Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| } else { |
| Info.FFDiag(E); |
| } |
| return CompleteObject(); |
| } |
| } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) { |
| // We support folding of const floating-point types, in order to make |
| // static const data members of such types (supported as an extension) |
| // more useful. |
| if (Info.getLangOpts().CPlusPlus11) { |
| Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| } else { |
| Info.CCEDiag(E); |
| } |
| } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) { |
| Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD; |
| // Keep evaluating to see what we can do. |
| } else { |
| // FIXME: Allow folding of values of any literal type in all languages. |
| if (Info.checkingPotentialConstantExpression() && |
| VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) { |
| // The definition of this variable could be constexpr. We can't |
| // access it right now, but may be able to in future. |
| } else if (Info.getLangOpts().CPlusPlus11) { |
| Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| } else { |
| Info.FFDiag(E); |
| } |
| return CompleteObject(); |
| } |
| } |
| |
| if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal)) |
| return CompleteObject(); |
| } else { |
| const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); |
| |
| if (!Frame) { |
| if (const MaterializeTemporaryExpr *MTE = |
| dyn_cast<MaterializeTemporaryExpr>(Base)) { |
| assert(MTE->getStorageDuration() == SD_Static && |
| "should have a frame for a non-global materialized temporary"); |
| |
| // Per C++1y [expr.const]p2: |
| // an lvalue-to-rvalue conversion [is not allowed unless it applies to] |
| // - a [...] glvalue of integral or enumeration type that refers to |
| // a non-volatile const object [...] |
| // [...] |
| // - a [...] glvalue of literal type that refers to a non-volatile |
| // object whose lifetime began within the evaluation of e. |
| // |
| // C++11 misses the 'began within the evaluation of e' check and |
| // instead allows all temporaries, including things like: |
| // int &&r = 1; |
| // int x = ++r; |
| // constexpr int k = r; |
| // Therefore we use the C++14 rules in C++11 too. |
| const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>(); |
| const ValueDecl *ED = MTE->getExtendingDecl(); |
| if (!(BaseType.isConstQualified() && |
| BaseType->isIntegralOrEnumerationType()) && |
| !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) { |
| Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; |
| Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); |
| return CompleteObject(); |
| } |
| |
| BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false); |
| assert(BaseVal && "got reference to unevaluated temporary"); |
| LifetimeStartedInEvaluation = true; |
| } else { |
| Info.FFDiag(E); |
| return CompleteObject(); |
| } |
| } else { |
| BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); |
| assert(BaseVal && "missing value for temporary"); |
| } |
| |
| // Volatile temporary objects cannot be accessed in constant expressions. |
| if (BaseType.isVolatileQualified()) { |
| if (Info.getLangOpts().CPlusPlus) { |
| Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) |
| << AK << 0; |
| Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here); |
| } else { |
| Info.FFDiag(E); |
| } |
| return CompleteObject(); |
| } |
| } |
| |
| // During the construction of an object, it is not yet 'const'. |
| // FIXME: This doesn't do quite the right thing for const subobjects of the |
| // object under construction. |
| if (Info.isEvaluatingConstructor(LVal.getLValueBase(), |
| LVal.getLValueCallIndex(), |
| LVal.getLValueVersion())) { |
| BaseType = Info.Ctx.getCanonicalType(BaseType); |
| BaseType.removeLocalConst(); |
| LifetimeStartedInEvaluation = true; |
| } |
| |
| // In C++14, we can't safely access any mutable state when we might be |
| // evaluating after an unmodeled side effect. |
| // |
| // FIXME: Not all local state is mutable. Allow local constant subobjects |
| // to be read here (but take care with 'mutable' fields). |
| if ((Frame && Info.getLangOpts().CPlusPlus14 && |
| Info.EvalStatus.HasSideEffects) || |
| (AK != AK_Read && Info.IsSpeculativelyEvaluating)) |
| return CompleteObject(); |
| |
| return CompleteObject(BaseVal, BaseType, LifetimeStartedInEvaluation); |
| } |
| |
| /// Perform an lvalue-to-rvalue conversion on the given glvalue. This |
| /// can also be used for 'lvalue-to-lvalue' conversions for looking up the |
| /// glvalue referred to by an entity of reference type. |
| /// |
| /// \param Info - Information about the ongoing evaluation. |
| /// \param Conv - The expression for which we are performing the conversion. |
| /// Used for diagnostics. |
| /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the |
| /// case of a non-class type). |
| /// \param LVal - The glvalue on which we are attempting to perform this action. |
| /// \param RVal - The produced value will be placed here. |
| static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, |
| QualType Type, |
| const LValue &LVal, APValue &RVal) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| // Check for special cases where there is no existing APValue to look at. |
| const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); |
| if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { |
| if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { |
| // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the |
| // initializer until now for such expressions. Such an expression can't be |
| // an ICE in C, so this only matters for fold. |
| if (Type.isVolatileQualified()) { |
| Info.FFDiag(Conv); |
| return false; |
| } |
| APValue Lit; |
| if (!Evaluate(Lit, Info, CLE->getInitializer())) |
| return false; |
| CompleteObject LitObj(&Lit, Base->getType(), false); |
| return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal); |
| } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { |
| // We represent a string literal array as an lvalue pointing at the |
| // corresponding expression, rather than building an array of chars. |
| // FIXME: Support ObjCEncodeExpr, MakeStringConstant |
| APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0); |
| CompleteObject StrObj(&Str, Base->getType(), false); |
| return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal); |
| } |
| } |
| |
| CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type); |
| return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal); |
| } |
| |
| /// Perform an assignment of Val to LVal. Takes ownership of Val. |
| static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, |
| QualType LValType, APValue &Val) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| if (!Info.getLangOpts().CPlusPlus14) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); |
| return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); |
| } |
| |
| namespace { |
| struct CompoundAssignSubobjectHandler { |
| EvalInfo &Info; |
| const Expr *E; |
| QualType PromotedLHSType; |
| BinaryOperatorKind Opcode; |
| const APValue &RHS; |
| |
| static const AccessKinds AccessKind = AK_Assign; |
| |
| typedef bool result_type; |
| |
| bool checkConst(QualType QT) { |
| // Assigning to a const object has undefined behavior. |
| if (QT.isConstQualified()) { |
| Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; |
| return false; |
| } |
| return true; |
| } |
| |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| switch (Subobj.getKind()) { |
| case APValue::Int: |
| return found(Subobj.getInt(), SubobjType); |
| case APValue::Float: |
| return found(Subobj.getFloat(), SubobjType); |
| case APValue::ComplexInt: |
| case APValue::ComplexFloat: |
| // FIXME: Implement complex compound assignment. |
| Info.FFDiag(E); |
| return false; |
| case APValue::LValue: |
| return foundPointer(Subobj, SubobjType); |
| default: |
| // FIXME: can this happen? |
| Info.FFDiag(E); |
| return false; |
| } |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| if (!SubobjType->isIntegerType() || !RHS.isInt()) { |
| // We don't support compound assignment on integer-cast-to-pointer |
| // values. |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType, |
| SubobjType, Value); |
| if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) |
| return false; |
| Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); |
| return true; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| return checkConst(SubobjType) && |
| HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, |
| Value) && |
| handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && |
| HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); |
| } |
| bool foundPointer(APValue &Subobj, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| QualType PointeeType; |
| if (const PointerType *PT = SubobjType->getAs<PointerType>()) |
| PointeeType = PT->getPointeeType(); |
| |
| if (PointeeType.isNull() || !RHS.isInt() || |
| (Opcode != BO_Add && Opcode != BO_Sub)) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| APSInt Offset = RHS.getInt(); |
| if (Opcode == BO_Sub) |
| negateAsSigned(Offset); |
| |
| LValue LVal; |
| LVal.setFrom(Info.Ctx, Subobj); |
| if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) |
| return false; |
| LVal.moveInto(Subobj); |
| return true; |
| } |
| bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) { |
| llvm_unreachable("shouldn't encounter string elements here"); |
| } |
| }; |
| } // end anonymous namespace |
| |
| const AccessKinds CompoundAssignSubobjectHandler::AccessKind; |
| |
| /// Perform a compound assignment of LVal <op>= RVal. |
| static bool handleCompoundAssignment( |
| EvalInfo &Info, const Expr *E, |
| const LValue &LVal, QualType LValType, QualType PromotedLValType, |
| BinaryOperatorKind Opcode, const APValue &RVal) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| if (!Info.getLangOpts().CPlusPlus14) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); |
| CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, |
| RVal }; |
| return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); |
| } |
| |
| namespace { |
| struct IncDecSubobjectHandler { |
| EvalInfo &Info; |
| const UnaryOperator *E; |
| AccessKinds AccessKind; |
| APValue *Old; |
| |
| typedef bool result_type; |
| |
| bool checkConst(QualType QT) { |
| // Assigning to a const object has undefined behavior. |
| if (QT.isConstQualified()) { |
| Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; |
| return false; |
| } |
| return true; |
| } |
| |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| // Stash the old value. Also clear Old, so we don't clobber it later |
| // if we're post-incrementing a complex. |
| if (Old) { |
| *Old = Subobj; |
| Old = nullptr; |
| } |
| |
| switch (Subobj.getKind()) { |
| case APValue::Int: |
| return found(Subobj.getInt(), SubobjType); |
| case APValue::Float: |
| return found(Subobj.getFloat(), SubobjType); |
| case APValue::ComplexInt: |
| return found(Subobj.getComplexIntReal(), |
| SubobjType->castAs<ComplexType>()->getElementType() |
| .withCVRQualifiers(SubobjType.getCVRQualifiers())); |
| case APValue::ComplexFloat: |
| return found(Subobj.getComplexFloatReal(), |
| SubobjType->castAs<ComplexType>()->getElementType() |
| .withCVRQualifiers(SubobjType.getCVRQualifiers())); |
| case APValue::LValue: |
| return foundPointer(Subobj, SubobjType); |
| default: |
| // FIXME: can this happen? |
| Info.FFDiag(E); |
| return false; |
| } |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| if (!SubobjType->isIntegerType()) { |
| // We don't support increment / decrement on integer-cast-to-pointer |
| // values. |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| if (Old) *Old = APValue(Value); |
| |
| // bool arithmetic promotes to int, and the conversion back to bool |
| // doesn't reduce mod 2^n, so special-case it. |
| if (SubobjType->isBooleanType()) { |
| if (AccessKind == AK_Increment) |
| Value = 1; |
| else |
| Value = !Value; |
| return true; |
| } |
| |
| bool WasNegative = Value.isNegative(); |
| if (AccessKind == AK_Increment) { |
| ++Value; |
| |
| if (!WasNegative && Value.isNegative() && E->canOverflow()) { |
| APSInt ActualValue(Value, /*IsUnsigned*/true); |
| return HandleOverflow(Info, E, ActualValue, SubobjType); |
| } |
| } else { |
| --Value; |
| |
| if (WasNegative && !Value.isNegative() && E->canOverflow()) { |
| unsigned BitWidth = Value.getBitWidth(); |
| APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); |
| ActualValue.setBit(BitWidth); |
| return HandleOverflow(Info, E, ActualValue, SubobjType); |
| } |
| } |
| return true; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| if (Old) *Old = APValue(Value); |
| |
| APFloat One(Value.getSemantics(), 1); |
| if (AccessKind == AK_Increment) |
| Value.add(One, APFloat::rmNearestTiesToEven); |
| else |
| Value.subtract(One, APFloat::rmNearestTiesToEven); |
| return true; |
| } |
| bool foundPointer(APValue &Subobj, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| QualType PointeeType; |
| if (const PointerType *PT = SubobjType->getAs<PointerType>()) |
| PointeeType = PT->getPointeeType(); |
| else { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| LValue LVal; |
| LVal.setFrom(Info.Ctx, Subobj); |
| if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, |
| AccessKind == AK_Increment ? 1 : -1)) |
| return false; |
| LVal.moveInto(Subobj); |
| return true; |
| } |
| bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) { |
| llvm_unreachable("shouldn't encounter string elements here"); |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Perform an increment or decrement on LVal. |
| static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, |
| QualType LValType, bool IsIncrement, APValue *Old) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| if (!Info.getLangOpts().CPlusPlus14) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; |
| CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); |
| IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; |
| return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); |
| } |
| |
| /// Build an lvalue for the object argument of a member function call. |
| static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, |
| LValue &This) { |
| if (Object->getType()->isPointerType()) |
| return EvaluatePointer(Object, This, Info); |
| |
| if (Object->isGLValue()) |
| return EvaluateLValue(Object, This, Info); |
| |
| if (Object->getType()->isLiteralType(Info.Ctx)) |
| return EvaluateTemporary(Object, This, Info); |
| |
| Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); |
| return false; |
| } |
| |
| /// HandleMemberPointerAccess - Evaluate a member access operation and build an |
| /// lvalue referring to the result. |
| /// |
| /// \param Info - Information about the ongoing evaluation. |
| /// \param LV - An lvalue referring to the base of the member pointer. |
| /// \param RHS - The member pointer expression. |
| /// \param IncludeMember - Specifies whether the member itself is included in |
| /// the resulting LValue subobject designator. This is not possible when |
| /// creating a bound member function. |
| /// \return The field or method declaration to which the member pointer refers, |
| /// or 0 if evaluation fails. |
| static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, |
| QualType LVType, |
| LValue &LV, |
| const Expr *RHS, |
| bool IncludeMember = true) { |
| MemberPtr MemPtr; |
| if (!EvaluateMemberPointer(RHS, MemPtr, Info)) |
| return nullptr; |
| |
| // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to |
| // member value, the behavior is undefined. |
| if (!MemPtr.getDecl()) { |
| // FIXME: Specific diagnostic. |
| Info.FFDiag(RHS); |
| return nullptr; |
| } |
| |
| if (MemPtr.isDerivedMember()) { |
| // This is a member of some derived class. Truncate LV appropriately. |
| // The end of the derived-to-base path for the base object must match the |
| // derived-to-base path for the member pointer. |
| if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > |
| LV.Designator.Entries.size()) { |
| Info.FFDiag(RHS); |
| return nullptr; |
| } |
| unsigned PathLengthToMember = |
| LV.Designator.Entries.size() - MemPtr.Path.size(); |
| for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { |
| const CXXRecordDecl *LVDecl = getAsBaseClass( |
| LV.Designator.Entries[PathLengthToMember + I]); |
| const CXXRecordDecl *MPDecl = MemPtr.Path[I]; |
| if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { |
| Info.FFDiag(RHS); |
| return nullptr; |
| } |
| } |
| |
| // Truncate the lvalue to the appropriate derived class. |
| if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), |
| PathLengthToMember)) |
| return nullptr; |
| } else if (!MemPtr.Path.empty()) { |
| // Extend the LValue path with the member pointer's path. |
| LV.Designator.Entries.reserve(LV.Designator.Entries.size() + |
| MemPtr.Path.size() + IncludeMember); |
| |
| // Walk down to the appropriate base class. |
| if (const PointerType *PT = LVType->getAs<PointerType>()) |
| LVType = PT->getPointeeType(); |
| const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); |
| assert(RD && "member pointer access on non-class-type expression"); |
| // The first class in the path is that of the lvalue. |
| for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { |
| const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; |
| if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) |
| return nullptr; |
| RD = Base; |
| } |
| // Finally cast to the class containing the member. |
| if (!HandleLValueDirectBase(Info, RHS, LV, RD, |
| MemPtr.getContainingRecord())) |
| return nullptr; |
| } |
| |
| // Add the member. Note that we cannot build bound member functions here. |
| if (IncludeMember) { |
| if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { |
| if (!HandleLValueMember(Info, RHS, LV, FD)) |
| return nullptr; |
| } else if (const IndirectFieldDecl *IFD = |
| dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { |
| if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) |
| return nullptr; |
| } else { |
| llvm_unreachable("can't construct reference to bound member function"); |
| } |
| } |
| |
| return MemPtr.getDecl(); |
| } |
| |
| static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, |
| const BinaryOperator *BO, |
| LValue &LV, |
| bool IncludeMember = true) { |
| assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); |
| |
| if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { |
| if (Info.noteFailure()) { |
| MemberPtr MemPtr; |
| EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); |
| } |
| return nullptr; |
| } |
| |
| return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, |
| BO->getRHS(), IncludeMember); |
| } |
| |
| /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on |
| /// the provided lvalue, which currently refers to the base object. |
| static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, |
| LValue &Result) { |
| SubobjectDesignator &D = Result.Designator; |
| if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) |
| return false; |
| |
| QualType TargetQT = E->getType(); |
| if (const PointerType *PT = TargetQT->getAs<PointerType>()) |
| TargetQT = PT->getPointeeType(); |
| |
| // Check this cast lands within the final derived-to-base subobject path. |
| if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { |
| Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) |
| << D.MostDerivedType << TargetQT; |
| return false; |
| } |
| |
| // Check the type of the final cast. We don't need to check the path, |
| // since a cast can only be formed if the path is unique. |
| unsigned NewEntriesSize = D.Entries.size() - E->path_size(); |
| const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); |
| const CXXRecordDecl *FinalType; |
| if (NewEntriesSize == D.MostDerivedPathLength) |
| FinalType = D.MostDerivedType->getAsCXXRecordDecl(); |
| else |
| FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); |
| if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { |
| Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) |
| << D.MostDerivedType << TargetQT; |
| return false; |
| } |
| |
| // Truncate the lvalue to the appropriate derived class. |
| return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); |
| } |
| |
| namespace { |
| enum EvalStmtResult { |
| /// Evaluation failed. |
| ESR_Failed, |
| /// Hit a 'return' statement. |
| ESR_Returned, |
| /// Evaluation succeeded. |
| ESR_Succeeded, |
| /// Hit a 'continue' statement. |
| ESR_Continue, |
| /// Hit a 'break' statement. |
| ESR_Break, |
| /// Still scanning for 'case' or 'default' statement. |
| ESR_CaseNotFound |
| }; |
| } |
| |
| static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { |
| // We don't need to evaluate the initializer for a static local. |
| if (!VD->hasLocalStorage()) |
| return true; |
| |
| LValue Result; |
| APValue &Val = createTemporary(VD, true, Result, *Info.CurrentCall); |
| |
| const Expr *InitE = VD->getInit(); |
| if (!InitE) { |
| Info.FFDiag(VD->getLocStart(), diag::note_constexpr_uninitialized) |
| << false << VD->getType(); |
| Val = APValue(); |
| return false; |
| } |
| |
| if (InitE->isValueDependent()) |
| return false; |
| |
| if (!EvaluateInPlace(Val, Info, Result, InitE)) { |
| // Wipe out any partially-computed value, to allow tracking that this |
| // evaluation failed. |
| Val = APValue(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { |
| bool OK = true; |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| OK &= EvaluateVarDecl(Info, VD); |
| |
| if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) |
| for (auto *BD : DD->bindings()) |
| if (auto *VD = BD->getHoldingVar()) |
| OK &= EvaluateDecl(Info, VD); |
| |
| return OK; |
| } |
| |
| |
| /// Evaluate a condition (either a variable declaration or an expression). |
| static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, |
| const Expr *Cond, bool &Result) { |
| FullExpressionRAII Scope(Info); |
| if (CondDecl && !EvaluateDecl(Info, CondDecl)) |
| return false; |
| return EvaluateAsBooleanCondition(Cond, Result, Info); |
| } |
| |
| namespace { |
| /// A location where the result (returned value) of evaluating a |
| /// statement should be stored. |
| struct StmtResult { |
| /// The APValue that should be filled in with the returned value. |
| APValue &Value; |
| /// The location containing the result, if any (used to support RVO). |
| const LValue *Slot; |
| }; |
| |
| struct TempVersionRAII { |
| CallStackFrame &Frame; |
| |
| TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { |
| Frame.pushTempVersion(); |
| } |
| |
| ~TempVersionRAII() { |
| Frame.popTempVersion(); |
| } |
| }; |
| |
| } |
| |
| static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, |
| const Stmt *S, |
| const SwitchCase *SC = nullptr); |
| |
| /// Evaluate the body of a loop, and translate the result as appropriate. |
| static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, |
| const Stmt *Body, |
| const SwitchCase *Case = nullptr) { |
| BlockScopeRAII Scope(Info); |
| switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) { |
| case ESR_Break: |
| return ESR_Succeeded; |
| case ESR_Succeeded: |
| case ESR_Continue: |
| return ESR_Continue; |
| case ESR_Failed: |
| case ESR_Returned: |
| case ESR_CaseNotFound: |
| return ESR; |
| } |
| llvm_unreachable("Invalid EvalStmtResult!"); |
| } |
| |
| /// Evaluate a switch statement. |
| static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, |
| const SwitchStmt *SS) { |
| BlockScopeRAII Scope(Info); |
| |
| // Evaluate the switch condition. |
| APSInt Value; |
| { |
| FullExpressionRAII Scope(Info); |
| if (const Stmt *Init = SS->getInit()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); |
| if (ESR != ESR_Succeeded) |
| return ESR; |
| } |
| if (SS->getConditionVariable() && |
| !EvaluateDecl(Info, SS->getConditionVariable())) |
| return ESR_Failed; |
| if (!EvaluateInteger(SS->getCond(), Value, Info)) |
| return ESR_Failed; |
| } |
| |
| // Find the switch case corresponding to the value of the condition. |
| // FIXME: Cache this lookup. |
| const SwitchCase *Found = nullptr; |
| for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; |
| SC = SC->getNextSwitchCase()) { |
| if (isa<DefaultStmt>(SC)) { |
| Found = SC; |
| continue; |
| } |
| |
| const CaseStmt *CS = cast<CaseStmt>(SC); |
| APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); |
| APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) |
| : LHS; |
| if (LHS <= Value && Value <= RHS) { |
| Found = SC; |
| break; |
| } |
| } |
| |
| if (!Found) |
| return ESR_Succeeded; |
| |
| // Search the switch body for the switch case and evaluate it from there. |
| switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) { |
| case ESR_Break: |
| return ESR_Succeeded; |
| case ESR_Succeeded: |
| case ESR_Continue: |
| case ESR_Failed: |
| case ESR_Returned: |
| return ESR; |
| case ESR_CaseNotFound: |
| // This can only happen if the switch case is nested within a statement |
| // expression. We have no intention of supporting that. |
| Info.FFDiag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported); |
| return ESR_Failed; |
| } |
| llvm_unreachable("Invalid EvalStmtResult!"); |
| } |
| |
| // Evaluate a statement. |
| static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, |
| const Stmt *S, const SwitchCase *Case) { |
| if (!Info.nextStep(S)) |
| return ESR_Failed; |
| |
| // If we're hunting down a 'case' or 'default' label, recurse through |
| // substatements until we hit the label. |
| if (Case) { |
| // FIXME: We don't start the lifetime of objects whose initialization we |
| // jump over. However, such objects must be of class type with a trivial |
| // default constructor that initialize all subobjects, so must be empty, |
| // so this almost never matters. |
| switch (S->getStmtClass()) { |
| case Stmt::CompoundStmtClass: |
| // FIXME: Precompute which substatement of a compound statement we |
| // would jump to, and go straight there rather than performing a |
| // linear scan each time. |
| case Stmt::LabelStmtClass: |
| case Stmt::AttributedStmtClass: |
| case Stmt::DoStmtClass: |
| break; |
| |
| case Stmt::CaseStmtClass: |
| case Stmt::DefaultStmtClass: |
| if (Case == S) |
| Case = nullptr; |
| break; |
| |
| case Stmt::IfStmtClass: { |
| // FIXME: Precompute which side of an 'if' we would jump to, and go |
| // straight there rather than scanning both sides. |
| const IfStmt *IS = cast<IfStmt>(S); |
| |
| // Wrap the evaluation in a block scope, in case it's a DeclStmt |
| // preceded by our switch label. |
| BlockScopeRAII Scope(Info); |
| |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); |
| if (ESR != ESR_CaseNotFound || !IS->getElse()) |
| return ESR; |
| return EvaluateStmt(Result, Info, IS->getElse(), Case); |
| } |
| |
| case Stmt::WhileStmtClass: { |
| EvalStmtResult ESR = |
| EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); |
| if (ESR != ESR_Continue) |
| return ESR; |
| break; |
| } |
| |
| case Stmt::ForStmtClass: { |
| const ForStmt *FS = cast<ForStmt>(S); |
| EvalStmtResult ESR = |
| EvaluateLoopBody(Result, Info, FS->getBody(), Case); |
| if (ESR != ESR_Continue) |
| return ESR; |
| if (FS->getInc()) { |
| FullExpressionRAII IncScope(Info); |
| if (!EvaluateIgnoredValue(Info, FS->getInc())) |
| return ESR_Failed; |
| } |
| break; |
| } |
| |
| case Stmt::DeclStmtClass: |
| // FIXME: If the variable has initialization that can't be jumped over, |
| // bail out of any immediately-surrounding compound-statement too. |
| default: |
| return ESR_CaseNotFound; |
| } |
| } |
| |
| switch (S->getStmtClass()) { |
| default: |
| if (const Expr *E = dyn_cast<Expr>(S)) { |
| // Don't bother evaluating beyond an expression-statement which couldn't |
| // be evaluated. |
| FullExpressionRAII Scope(Info); |
| if (!EvaluateIgnoredValue(Info, E)) |
| return ESR_Failed; |
| return ESR_Succeeded; |
| } |
| |
| Info.FFDiag(S->getLocStart()); |
| return ESR_Failed; |
| |
| case Stmt::NullStmtClass: |
| return ESR_Succeeded; |
| |
| case Stmt::DeclStmtClass: { |
| const DeclStmt *DS = cast<DeclStmt>(S); |
| for (const auto *DclIt : DS->decls()) { |
| // Each declaration initialization is its own full-expression. |
| // FIXME: This isn't quite right; if we're performing aggregate |
| // initialization, each braced subexpression is its own full-expression. |
| FullExpressionRAII Scope(Info); |
| if (!EvaluateDecl(Info, DclIt) && !Info.noteFailure()) |
| return ESR_Failed; |
| } |
| return ESR_Succeeded; |
| } |
| |
| case Stmt::ReturnStmtClass: { |
| const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); |
| FullExpressionRAII Scope(Info); |
| if (RetExpr && |
| !(Result.Slot |
| ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) |
| : Evaluate(Result.Value, Info, RetExpr))) |
| return ESR_Failed; |
| return ESR_Returned; |
| } |
| |
| case Stmt::CompoundStmtClass: { |
| BlockScopeRAII Scope(Info); |
| |
| const CompoundStmt *CS = cast<CompoundStmt>(S); |
| for (const auto *BI : CS->body()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); |
| if (ESR == ESR_Succeeded) |
| Case = nullptr; |
| else if (ESR != ESR_CaseNotFound) |
| return ESR; |
| } |
| return Case ? ESR_CaseNotFound : ESR_Succeeded; |
| } |
| |
| case Stmt::IfStmtClass: { |
| const IfStmt *IS = cast<IfStmt>(S); |
| |
| // Evaluate the condition, as either a var decl or as an expression. |
| BlockScopeRAII Scope(Info); |
| if (const Stmt *Init = IS->getInit()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); |
| if (ESR != ESR_Succeeded) |
| return ESR; |
| } |
| bool Cond; |
| if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond)) |
| return ESR_Failed; |
| |
| if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); |
| if (ESR != ESR_Succeeded) |
| return ESR; |
| } |
| return ESR_Succeeded; |
| } |
| |
| case Stmt::WhileStmtClass: { |
| const WhileStmt *WS = cast<WhileStmt>(S); |
| while (true) { |
| BlockScopeRAII Scope(Info); |
| bool Continue; |
| if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), |
| Continue)) |
| return ESR_Failed; |
| if (!Continue) |
| break; |
| |
| EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); |
| if (ESR != ESR_Continue) |
| return ESR; |
| } |
| return ESR_Succeeded; |
| } |
| |
| case Stmt::DoStmtClass: { |
| const DoStmt *DS = cast<DoStmt>(S); |
| bool Continue; |
| do { |
| EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); |
| if (ESR != ESR_Continue) |
| return ESR; |
| Case = nullptr; |
| |
| FullExpressionRAII CondScope(Info); |
| if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info)) |
| return ESR_Failed; |
| } while (Continue); |
| return ESR_Succeeded; |
| } |
| |
| case Stmt::ForStmtClass: { |
| const ForStmt *FS = cast<ForStmt>(S); |
| BlockScopeRAII Scope(Info); |
| if (FS->getInit()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); |
| if (ESR != ESR_Succeeded) |
| return ESR; |
| } |
| while (true) { |
| BlockScopeRAII Scope(Info); |
| bool Continue = true; |
| if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), |
| FS->getCond(), Continue)) |
| return ESR_Failed; |
| if (!Continue) |
| break; |
| |
| EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); |
| if (ESR != ESR_Continue) |
| return ESR; |
| |
| if (FS->getInc()) { |
| FullExpressionRAII IncScope(Info); |
| if (!EvaluateIgnoredValue(Info, FS->getInc())) |
| return ESR_Failed; |
| } |
| } |
| return ESR_Succeeded; |
| } |
| |
| case Stmt::CXXForRangeStmtClass: { |
| const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); |
| BlockScopeRAII Scope(Info); |
| |
| // Initialize the __range variable. |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); |
| if (ESR != ESR_Succeeded) |
| return ESR; |
| |
| // Create the __begin and __end iterators. |
| ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); |
| if (ESR != ESR_Succeeded) |
| return ESR; |
| ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); |
| if (ESR != ESR_Succeeded) |
| return ESR; |
| |
| while (true) { |
| // Condition: __begin != __end. |
| { |
| bool Continue = true; |
| FullExpressionRAII CondExpr(Info); |
| if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) |
| return ESR_Failed; |
| if (!Continue) |
| break; |
| } |
| |
| // User's variable declaration, initialized by *__begin. |
| BlockScopeRAII InnerScope(Info); |
| ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); |
| if (ESR != ESR_Succeeded) |
| return ESR; |
| |
| // Loop body. |
| ESR = EvaluateLoopBody(Result, Info, FS->getBody()); |
| if (ESR != ESR_Continue) |
| return ESR; |
| |
| // Increment: ++__begin |
| if (!EvaluateIgnoredValue(Info, FS->getInc())) |
| return ESR_Failed; |
| } |
| |
| return ESR_Succeeded; |
| } |
| |
| case Stmt::SwitchStmtClass: |
| return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); |
| |
| case Stmt::ContinueStmtClass: |
| return ESR_Continue; |
| |
| case Stmt::BreakStmtClass: |
| return ESR_Break; |
| |
| case Stmt::LabelStmtClass: |
| return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); |
| |
| case Stmt::AttributedStmtClass: |
| // As a general principle, C++11 attributes can be ignored without |
| // any semantic impact. |
| return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(), |
| Case); |
| |
| case Stmt::CaseStmtClass: |
| case Stmt::DefaultStmtClass: |
| return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); |
| } |
| } |
| |
| /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial |
| /// default constructor. If so, we'll fold it whether or not it's marked as |
| /// constexpr. If it is marked as constexpr, we will never implicitly define it, |
| /// so we need special handling. |
| static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, |
| const CXXConstructorDecl *CD, |
| bool IsValueInitialization) { |
| if (!CD->isTrivial() || !CD->isDefaultConstructor()) |
| return false; |
| |
| // Value-initialization does not call a trivial default constructor, so such a |
| // call is a core constant expression whether or not the constructor is |
| // constexpr. |
| if (!CD->isConstexpr() && !IsValueInitialization) { |
| if (Info.getLangOpts().CPlusPlus11) { |
| // FIXME: If DiagDecl is an implicitly-declared special member function, |
| // we should be much more explicit about why it's not constexpr. |
| Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) |
| << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; |
| Info.Note(CD->getLocation(), diag::note_declared_at); |
| } else { |
| Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); |
| } |
| } |
| return true; |
| } |
| |
| /// CheckConstexprFunction - Check that a function can be called in a constant |
| /// expression. |
| static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, |
| const FunctionDecl *Declaration, |
| const FunctionDecl *Definition, |
| const Stmt *Body) { |
| // Potential constant expressions can contain calls to declared, but not yet |
| // defined, constexpr functions. |
| if (Info.checkingPotentialConstantExpression() && !Definition && |
| Declaration->isConstexpr()) |
| return false; |
| |
| // Bail out with no diagnostic if the function declaration itself is invalid. |
| // We will have produced a relevant diagnostic while parsing it. |
| if (Declaration->isInvalidDecl()) |
| return false; |
| |
| // Can we evaluate this function call? |
| if (Definition && Definition->isConstexpr() && |
| !Definition->isInvalidDecl() && Body) |
| return true; |
| |
| if (Info.getLangOpts().CPlusPlus11) { |
| const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; |
| |
| // If this function is not constexpr because it is an inherited |
| // non-constexpr constructor, diagnose that directly. |
| auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); |
| if (CD && CD->isInheritingConstructor()) { |
| auto *Inherited = CD->getInheritedConstructor().getConstructor(); |
| if (!Inherited->isConstexpr()) |
| DiagDecl = CD = Inherited; |
| } |
| |
| // FIXME: If DiagDecl is an implicitly-declared special member function |
| // or an inheriting constructor, we should be much more explicit about why |
| // it's not constexpr. |
| if (CD && CD->isInheritingConstructor()) |
| Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) |
| << CD->getInheritedConstructor().getConstructor()->getParent(); |
| else |
| Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) |
| << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; |
| Info.Note(DiagDecl->getLocation(), diag::note_declared_at); |
| } else { |
| Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); |
| } |
| return false; |
| } |
| |
| /// Determine if a class has any fields that might need to be copied by a |
| /// trivial copy or move operation. |
| static bool hasFields(const CXXRecordDecl *RD) { |
| if (!RD || RD->isEmpty()) |
| return false; |
| for (auto *FD : RD->fields()) { |
| if (FD->isUnnamedBitfield()) |
| continue; |
| return true; |
| } |
| for (auto &Base : RD->bases()) |
| if (hasFields(Base.getType()->getAsCXXRecordDecl())) |
| return true; |
| return false; |
| } |
| |
| namespace { |
| typedef SmallVector<APValue, 8> ArgVector; |
| } |
| |
| /// EvaluateArgs - Evaluate the arguments to a function call. |
| static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues, |
| EvalInfo &Info) { |
| bool Success = true; |
| for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); |
| I != E; ++I) { |
| if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) { |
| // If we're checking for a potential constant expression, evaluate all |
| // initializers even if some of them fail. |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| return Success; |
| } |
| |
| /// Evaluate a function call. |
| static bool HandleFunctionCall(SourceLocation CallLoc, |
| const FunctionDecl *Callee, const LValue *This, |
| ArrayRef<const Expr*> Args, const Stmt *Body, |
| EvalInfo &Info, APValue &Result, |
| const LValue *ResultSlot) { |
| ArgVector ArgValues(Args.size()); |
| if (!EvaluateArgs(Args, ArgValues, Info)) |
| return false; |
| |
| if (!Info.CheckCallLimit(CallLoc)) |
| return false; |
| |
| CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data()); |
| |
| // For a trivial copy or move assignment, perform an APValue copy. This is |
| // essential for unions, where the operations performed by the assignment |
| // operator cannot be represented as statements. |
| // |
| // Skip this for non-union classes with no fields; in that case, the defaulted |
| // copy/move does not actually read the object. |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); |
| if (MD && MD->isDefaulted() && |
| (MD->getParent()->isUnion() || |
| (MD->isTrivial() && hasFields(MD->getParent())))) { |
| assert(This && |
| (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); |
| LValue RHS; |
| RHS.setFrom(Info.Ctx, ArgValues[0]); |
| APValue RHSValue; |
| if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), |
| RHS, RHSValue)) |
| return false; |
| if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx), |
| RHSValue)) |
| return false; |
| This->moveInto(Result); |
| return true; |
| } else if (MD && isLambdaCallOperator(MD)) { |
| // We're in a lambda; determine the lambda capture field maps unless we're |
| // just constexpr checking a lambda's call operator. constexpr checking is |
| // done before the captures have been added to the closure object (unless |
| // we're inferring constexpr-ness), so we don't have access to them in this |
| // case. But since we don't need the captures to constexpr check, we can |
| // just ignore them. |
| if (!Info.checkingPotentialConstantExpression()) |
| MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, |
| Frame.LambdaThisCaptureField); |
| } |
| |
| StmtResult Ret = {Result, ResultSlot}; |
| EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); |
| if (ESR == ESR_Succeeded) { |
| if (Callee->getReturnType()->isVoidType()) |
| return true; |
| Info.FFDiag(Callee->getLocEnd(), diag::note_constexpr_no_return); |
| } |
| return ESR == ESR_Returned; |
| } |
| |
| /// Evaluate a constructor call. |
| static bool HandleConstructorCall(const Expr *E, const LValue &This, |
| APValue *ArgValues, |
| const CXXConstructorDecl *Definition, |
| EvalInfo &Info, APValue &Result) { |
| SourceLocation CallLoc = E->getExprLoc(); |
| if (!Info.CheckCallLimit(CallLoc)) |
| return false; |
| |
| const CXXRecordDecl *RD = Definition->getParent(); |
| if (RD->getNumVBases()) { |
| Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; |
| return false; |
| } |
| |
| EvalInfo::EvaluatingConstructorRAII EvalObj( |
| Info, {This.getLValueBase(), |
| {This.getLValueCallIndex(), This.getLValueVersion()}}); |
| CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues); |
| |
| // FIXME: Creating an APValue just to hold a nonexistent return value is |
| // wasteful. |
| APValue RetVal; |
| StmtResult Ret = {RetVal, nullptr}; |
| |
| // If it's a delegating constructor, delegate. |
| if (Definition->isDelegatingConstructor()) { |
| CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); |
| { |
| FullExpressionRAII InitScope(Info); |
| if (!EvaluateInPlace(Result, Info, This, (*I)->getInit())) |
| return false; |
| } |
| return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; |
| } |
| |
| // For a trivial copy or move constructor, perform an APValue copy. This is |
| // essential for unions (or classes with anonymous union members), where the |
| // operations performed by the constructor cannot be represented by |
| // ctor-initializers. |
| // |
| // Skip this for empty non-union classes; we should not perform an |
| // lvalue-to-rvalue conversion on them because their copy constructor does not |
| // actually read them. |
| if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && |
| (Definition->getParent()->isUnion() || |
| (Definition->isTrivial() && hasFields(Definition->getParent())))) { |
| LValue RHS; |
| RHS.setFrom(Info.Ctx, ArgValues[0]); |
| return handleLValueToRValueConversion( |
| Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(), |
| RHS, Result); |
| } |
| |
| // Reserve space for the struct members. |
| if (!RD->isUnion() && Result.isUninit()) |
| Result = APValue(APValue::UninitStruct(), RD->getNumBases(), |
| std::distance(RD->field_begin(), RD->field_end())); |
| |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| |
| // A scope for temporaries lifetime-extended by reference members. |
| BlockScopeRAII LifetimeExtendedScope(Info); |
| |
| bool Success = true; |
| unsigned BasesSeen = 0; |
| #ifndef NDEBUG |
| CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); |
| #endif |
| for (const auto *I : Definition->inits()) { |
| LValue Subobject = This; |
| LValue SubobjectParent = This; |
| APValue *Value = &Result; |
| |
| // Determine the subobject to initialize. |
| FieldDecl *FD = nullptr; |
| if (I->isBaseInitializer()) { |
| QualType BaseType(I->getBaseClass(), 0); |
| #ifndef NDEBUG |
| // Non-virtual base classes are initialized in the order in the class |
| // definition. We have already checked for virtual base classes. |
| assert(!BaseIt->isVirtual() && "virtual base for literal type"); |
| assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && |
| "base class initializers not in expected order"); |
| ++BaseIt; |
| #endif |
| if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, |
| BaseType->getAsCXXRecordDecl(), &Layout)) |
| return false; |
| Value = &Result.getStructBase(BasesSeen++); |
| } else if ((FD = I->getMember())) { |
| if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) |
| return false; |
| if (RD->isUnion()) { |
| Result = APValue(FD); |
| Value = &Result.getUnionValue(); |
| } else { |
| Value = &Result.getStructField(FD->getFieldIndex()); |
| } |
| } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { |
| // Walk the indirect field decl's chain to find the object to initialize, |
| // and make sure we've initialized every step along it. |
| auto IndirectFieldChain = IFD->chain(); |
| for (auto *C : IndirectFieldChain) { |
| FD = cast<FieldDecl>(C); |
| CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); |
| // Switch the union field if it differs. This happens if we had |
| // preceding zero-initialization, and we're now initializing a union |
| // subobject other than the first. |
| // FIXME: In this case, the values of the other subobjects are |
| // specified, since zero-initialization sets all padding bits to zero. |
| if (Value->isUninit() || |
| (Value->isUnion() && Value->getUnionField() != FD)) { |
| if (CD->isUnion()) |
| *Value = APValue(FD); |
| else |
| *Value = APValue(APValue::UninitStruct(), CD->getNumBases(), |
| std::distance(CD->field_begin(), CD->field_end())); |
| } |
| // Store Subobject as its parent before updating it for the last element |
| // in the chain. |
| if (C == IndirectFieldChain.back()) |
| SubobjectParent = Subobject; |
| if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) |
| return false; |
| if (CD->isUnion()) |
| Value = &Value->getUnionValue(); |
| else |
| Value = &Value->getStructField(FD->getFieldIndex()); |
| } |
| } else { |
| llvm_unreachable("unknown base initializer kind"); |
| } |
| |
| // Need to override This for implicit field initializers as in this case |
| // This refers to innermost anonymous struct/union containing initializer, |
| // not to currently constructed class. |
| const Expr *Init = I->getInit(); |
| ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, |
| isa<CXXDefaultInitExpr>(Init)); |
| FullExpressionRAII InitScope(Info); |
| if (!EvaluateInPlace(*Value, Info, Subobject, Init) || |
| (FD && FD->isBitField() && |
| !truncateBitfieldValue(Info, Init, *Value, FD))) { |
| // If we're checking for a potential constant expression, evaluate all |
| // initializers even if some of them fail. |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| |
| return Success && |
| EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; |
| } |
| |
| static bool HandleConstructorCall(const Expr *E, const LValue &This, |
| ArrayRef<const Expr*> Args, |
| const CXXConstructorDecl *Definition, |
| EvalInfo &Info, APValue &Result) { |
| ArgVector ArgValues(Args.size()); |
| if (!EvaluateArgs(Args, ArgValues, Info)) |
| return false; |
| |
| return HandleConstructorCall(E, This, ArgValues.data(), Definition, |
| Info, Result); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Generic Evaluation |
| //===----------------------------------------------------------------------===// |
| namespace { |
| |
| template <class Derived> |
| class ExprEvaluatorBase |
| : public ConstStmtVisitor<Derived, bool> { |
| private: |
| Derived &getDerived() { return static_cast<Derived&>(*this); } |
| bool DerivedSuccess(const APValue &V, const Expr *E) { |
| return getDerived().Success(V, E); |
| } |
| bool DerivedZeroInitialization(const Expr *E) { |
| return getDerived().ZeroInitialization(E); |
| } |
| |
| // Check whether a conditional operator with a non-constant condition is a |
| // potential constant expression. If neither arm is a potential constant |
| // expression, then the conditional operator is not either. |
| template<typename ConditionalOperator> |
| void CheckPotentialConstantConditional(const ConditionalOperator *E) { |
| assert(Info.checkingPotentialConstantExpression()); |
| |
| // Speculatively evaluate both arms. |
| SmallVector<PartialDiagnosticAt, 8> Diag; |
| { |
| SpeculativeEvaluationRAII Speculate(Info, &Diag); |
| StmtVisitorTy::Visit(E->getFalseExpr()); |
| if (Diag.empty()) |
| return; |
| } |
| |
| { |
| SpeculativeEvaluationRAII Speculate(Info, &Diag); |
| Diag.clear(); |
| StmtVisitorTy::Visit(E->getTrueExpr()); |
| if (Diag.empty()) |
| return; |
| } |
| |
| Error(E, diag::note_constexpr_conditional_never_const); |
| } |
| |
| |
| template<typename ConditionalOperator> |
| bool HandleConditionalOperator(const ConditionalOperator *E) { |
| bool BoolResult; |
| if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { |
| if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { |
| CheckPotentialConstantConditional(E); |
| return false; |
| } |
| if (Info.noteFailure()) { |
| StmtVisitorTy::Visit(E->getTrueExpr()); |
| StmtVisitorTy::Visit(E->getFalseExpr()); |
| } |
| return false; |
| } |
| |
| Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); |
| return StmtVisitorTy::Visit(EvalExpr); |
| } |
| |
| protected: |
| EvalInfo &Info; |
| typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; |
| typedef ExprEvaluatorBase ExprEvaluatorBaseTy; |
| |
| OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { |
| return Info.CCEDiag(E, D); |
| } |
| |
| bool ZeroInitialization(const Expr *E) { return Error(E); } |
| |
| public: |
| ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} |
| |
| EvalInfo &getEvalInfo() { return Info; } |
| |
| /// Report an evaluation error. This should only be called when an error is |
| /// first discovered. When propagating an error, just return false. |
| bool Error(const Expr *E, diag::kind D) { |
| Info.FFDiag(E, D); |
| return false; |
| } |
| bool Error(const Expr *E) { |
| return Error(E, diag::note_invalid_subexpr_in_const_expr); |
| } |
| |
| bool VisitStmt(const Stmt *) { |
| llvm_unreachable("Expression evaluator should not be called on stmts"); |
| } |
| bool VisitExpr(const Expr *E) { |
| return Error(E); |
| } |
| |
| bool VisitParenExpr(const ParenExpr *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| bool VisitUnaryExtension(const UnaryOperator *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| bool VisitUnaryPlus(const UnaryOperator *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| bool VisitChooseExpr(const ChooseExpr *E) |
| { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } |
| bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) |
| { return StmtVisitorTy::Visit(E->getResultExpr()); } |
| bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) |
| { return StmtVisitorTy::Visit(E->getReplacement()); } |
| bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { |
| TempVersionRAII RAII(*Info.CurrentCall); |
| return StmtVisitorTy::Visit(E->getExpr()); |
| } |
| bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { |
| TempVersionRAII RAII(*Info.CurrentCall); |
| // The initializer may not have been parsed yet, or might be erroneous. |
| if (!E->getExpr()) |
| return Error(E); |
| return StmtVisitorTy::Visit(E->getExpr()); |
| } |
| // We cannot create any objects for which cleanups are required, so there is |
| // nothing to do here; all cleanups must come from unevaluated subexpressions. |
| bool VisitExprWithCleanups(const ExprWithCleanups *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| |
| bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { |
| CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; |
| return static_cast<Derived*>(this)->VisitCastExpr(E); |
| } |
| bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { |
| CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; |
| return static_cast<Derived*>(this)->VisitCastExpr(E); |
| } |
| |
| bool VisitBinaryOperator(const BinaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: |
| return Error(E); |
| |
| case BO_Comma: |
| VisitIgnoredValue(E->getLHS()); |
| return StmtVisitorTy::Visit(E->getRHS()); |
| |
| case BO_PtrMemD: |
| case BO_PtrMemI: { |
| LValue Obj; |
| if (!HandleMemberPointerAccess(Info, E, Obj)) |
| return false; |
| APValue Result; |
| if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) |
| return false; |
| return DerivedSuccess(Result, E); |
| } |
| } |
| } |
| |
| bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { |
| // Evaluate and cache the common expression. We treat it as a temporary, |
| // even though it's not quite the same thing. |
| if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false), |
| Info, E->getCommon())) |
| return false; |
| |
| return HandleConditionalOperator(E); |
| } |
| |
| bool VisitConditionalOperator(const ConditionalOperator *E) { |
| bool IsBcpCall = false; |
| // If the condition (ignoring parens) is a __builtin_constant_p call, |
| // the result is a constant expression if it can be folded without |
| // side-effects. This is an important GNU extension. See GCC PR38377 |
| // for discussion. |
| if (const CallExpr *CallCE = |
| dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) |
| if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) |
| IsBcpCall = true; |
| |
| // Always assume __builtin_constant_p(...) ? ... : ... is a potential |
| // constant expression; we can't check whether it's potentially foldable. |
| if (Info.checkingPotentialConstantExpression() && IsBcpCall) |
| return false; |
| |
| FoldConstant Fold(Info, IsBcpCall); |
| if (!HandleConditionalOperator(E)) { |
| Fold.keepDiagnostics(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { |
| if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E)) |
| return DerivedSuccess(*Value, E); |
| |
| const Expr *Source = E->getSourceExpr(); |
| if (!Source) |
| return Error(E); |
| if (Source == E) { // sanity checking. |
| assert(0 && "OpaqueValueExpr recursively refers to itself"); |
| return Error(E); |
| } |
| return StmtVisitorTy::Visit(Source); |
| } |
| |
| bool VisitCallExpr(const CallExpr *E) { |
| APValue Result; |
| if (!handleCallExpr(E, Result, nullptr)) |
| return false; |
| return DerivedSuccess(Result, E); |
| } |
| |
| bool handleCallExpr(const CallExpr *E, APValue &Result, |
| const LValue *ResultSlot) { |
| const Expr *Callee = E->getCallee()->IgnoreParens(); |
| QualType CalleeType = Callee->getType(); |
| |
| const FunctionDecl *FD = nullptr; |
| LValue *This = nullptr, ThisVal; |
| auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); |
| bool HasQualifier = false; |
| |
| // Extract function decl and 'this' pointer from the callee. |
| if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { |
| const ValueDecl *Member = nullptr; |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { |
| // Explicit bound member calls, such as x.f() or p->g(); |
| if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) |
| return false; |
| Member = ME->getMemberDecl(); |
| This = &ThisVal; |
| HasQualifier = ME->hasQualifier(); |
| } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { |
| // Indirect bound member calls ('.*' or '->*'). |
| Member = HandleMemberPointerAccess(Info, BE, ThisVal, false); |
| if (!Member) return false; |
| This = &ThisVal; |
| } else |
| return Error(Callee); |
| |
| FD = dyn_cast<FunctionDecl>(Member); |
| if (!FD) |
| return Error(Callee); |
| } else if (CalleeType->isFunctionPointerType()) { |
| LValue Call; |
| if (!EvaluatePointer(Callee, Call, Info)) |
| return false; |
| |
| if (!Call.getLValueOffset().isZero()) |
| return Error(Callee); |
| FD = dyn_cast_or_null<FunctionDecl>( |
| Call.getLValueBase().dyn_cast<const ValueDecl*>()); |
| if (!FD) |
| return Error(Callee); |
| // Don't call function pointers which have been cast to some other type. |
| // Per DR (no number yet), the caller and callee can differ in noexcept. |
| if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( |
| CalleeType->getPointeeType(), FD->getType())) { |
| return Error(E); |
| } |
| |
| // Overloaded operator calls to member functions are represented as normal |
| // calls with '*this' as the first argument. |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
| if (MD && !MD->isStatic()) { |
| // FIXME: When selecting an implicit conversion for an overloaded |
| // operator delete, we sometimes try to evaluate calls to conversion |
| // operators without a 'this' parameter! |
| if (Args.empty()) |
| return Error(E); |
| |
| if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) |
| return false; |
| This = &ThisVal; |
| Args = Args.slice(1); |
| } else if (MD && MD->isLambdaStaticInvoker()) { |
| // Map the static invoker for the lambda back to the call operator. |
| // Conveniently, we don't have to slice out the 'this' argument (as is |
| // being done for the non-static case), since a static member function |
| // doesn't have an implicit argument passed in. |
| const CXXRecordDecl *ClosureClass = MD->getParent(); |
| assert( |
| ClosureClass->captures_begin() == ClosureClass->captures_end() && |
| "Number of captures must be zero for conversion to function-ptr"); |
| |
| const CXXMethodDecl *LambdaCallOp = |
| ClosureClass->getLambdaCallOperator(); |
| |
| // Set 'FD', the function that will be called below, to the call |
| // operator. If the closure object represents a generic lambda, find |
| // the corresponding specialization of the call operator. |
| |
| if (ClosureClass->isGenericLambda()) { |
| assert(MD->isFunctionTemplateSpecialization() && |
| "A generic lambda's static-invoker function must be a " |
| "template specialization"); |
| const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); |
| FunctionTemplateDecl *CallOpTemplate = |
| LambdaCallOp->getDescribedFunctionTemplate(); |
| void *InsertPos = nullptr; |
| FunctionDecl *CorrespondingCallOpSpecialization = |
| CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); |
| assert(CorrespondingCallOpSpecialization && |
| "We must always have a function call operator specialization " |
| "that corresponds to our static invoker specialization"); |
| FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); |
| } else |
| FD = LambdaCallOp; |
| } |
| |
| |
| } else |
| return Error(E); |
| |
| if (This && !This->checkSubobject(Info, E, CSK_This)) |
| return false; |
| |
| // DR1358 allows virtual constexpr functions in some cases. Don't allow |
| // calls to such functions in constant expressions. |
| if (This && !HasQualifier && |
| isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual()) |
| return Error(E, diag::note_constexpr_virtual_call); |
| |
| const FunctionDecl *Definition = nullptr; |
| Stmt *Body = FD->getBody(Definition); |
| |
| if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || |
| !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info, |
| Result, ResultSlot)) |
| return false; |
| |
| return true; |
| } |
| |
| bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| return StmtVisitorTy::Visit(E->getInitializer()); |
| } |
| bool VisitInitListExpr(const InitListExpr *E) { |
| if (E->getNumInits() == 0) |
| return DerivedZeroInitialization(E); |
| if (E->getNumInits() == 1) |
| return StmtVisitorTy::Visit(E->getInit(0)); |
| return Error(E); |
| } |
| bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
| return DerivedZeroInitialization(E); |
| } |
| bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { |
| return DerivedZeroInitialization(E); |
| } |
| bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { |
| return DerivedZeroInitialization(E); |
| } |
| |
| /// A member expression where the object is a prvalue is itself a prvalue. |
| bool VisitMemberExpr(const MemberExpr *E) { |
| assert(!E->isArrow() && "missing call to bound member function?"); |
| |
| APValue Val; |
| if (!Evaluate(Val, Info, E->getBase())) |
| return false; |
| |
| QualType BaseTy = E->getBase()->getType(); |
| |
| const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); |
| if (!FD) return Error(E); |
| assert(!FD->getType()->isReferenceType() && "prvalue reference?"); |
| assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == |
| FD->getParent()->getCanonicalDecl() && "record / field mismatch"); |
| |
| CompleteObject Obj(&Val, BaseTy, true); |
| SubobjectDesignator Designator(BaseTy); |
| Designator.addDeclUnchecked(FD); |
| |
| APValue Result; |
| return extractSubobject(Info, E, Obj, Designator, Result) && |
| DerivedSuccess(Result, E); |
| } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| break; |
| |
| case CK_AtomicToNonAtomic: { |
| APValue AtomicVal; |
| // This does not need to be done in place even for class/array types: |
| // atomic-to-non-atomic conversion implies copying the object |
| // representation. |
| if (!Evaluate(AtomicVal, Info, E->getSubExpr())) |
| return false; |
| return DerivedSuccess(AtomicVal, E); |
| } |
| |
| case CK_NoOp: |
| case CK_UserDefinedConversion: |
| return StmtVisitorTy::Visit(E->getSubExpr()); |
| |
| case CK_LValueToRValue: { |
| LValue LVal; |
| if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) |
| return false; |
| APValue RVal; |
| // Note, we use the subexpression's type in order to retain cv-qualifiers. |
| if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), |
| LVal, RVal)) |
| return false; |
| return DerivedSuccess(RVal, E); |
| } |
| } |
| |
| return Error(E); |
| } |
| |
| bool VisitUnaryPostInc(const UnaryOperator *UO) { |
| return VisitUnaryPostIncDec(UO); |
| } |
| bool VisitUnaryPostDec(const UnaryOperator *UO) { |
| return VisitUnaryPostIncDec(UO); |
| } |
| bool VisitUnaryPostIncDec(const UnaryOperator *UO) { |
| if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
| return Error(UO); |
| |
| LValue LVal; |
| if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) |
| return false; |
| APValue RVal; |
| if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), |
| UO->isIncrementOp(), &RVal)) |
| return false; |
| return DerivedSuccess(RVal, UO); |
| } |
| |
| bool VisitStmtExpr(const StmtExpr *E) { |
| // We will have checked the full-expressions inside the statement expression |
| // when they were completed, and don't need to check them again now. |
| if (Info.checkingForOverflow()) |
| return Error(E); |
| |
| BlockScopeRAII Scope(Info); |
| const CompoundStmt *CS = E->getSubStmt(); |
| if (CS->body_empty()) |
| return true; |
| |
| for (CompoundStmt::const_body_iterator BI = CS->body_begin(), |
| BE = CS->body_end(); |
| /**/; ++BI) { |
| if (BI + 1 == BE) { |
| const Expr *FinalExpr = dyn_cast<Expr>(*BI); |
| if (!FinalExpr) { |
| Info.FFDiag((*BI)->getLocStart(), |
| diag::note_constexpr_stmt_expr_unsupported); |
| return false; |
| } |
| return this->Visit(FinalExpr); |
| } |
| |
| APValue ReturnValue; |
| StmtResult Result = { ReturnValue, nullptr }; |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); |
| if (ESR != ESR_Succeeded) { |
| // FIXME: If the statement-expression terminated due to 'return', |
| // 'break', or 'continue', it would be nice to propagate that to |
| // the outer statement evaluation rather than bailing out. |
| if (ESR != ESR_Failed) |
| Info.FFDiag((*BI)->getLocStart(), |
| diag::note_constexpr_stmt_expr_unsupported); |
| return false; |
| } |
| } |
| |
| llvm_unreachable("Return from function from the loop above."); |
| } |
| |
| /// Visit a value which is evaluated, but whose value is ignored. |
| void VisitIgnoredValue(const Expr *E) { |
| EvaluateIgnoredValue(Info, E); |
| } |
| |
| /// Potentially visit a MemberExpr's base expression. |
| void VisitIgnoredBaseExpression(const Expr *E) { |
| // While MSVC doesn't evaluate the base expression, it does diagnose the |
| // presence of side-effecting behavior. |
| if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) |
| return; |
| VisitIgnoredValue(E); |
| } |
| }; |
| |
| } // namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Common base class for lvalue and temporary evaluation. |
| //===----------------------------------------------------------------------===// |
| namespace { |
| template<class Derived> |
| class LValueExprEvaluatorBase |
| : public ExprEvaluatorBase<Derived> { |
| protected: |
| LValue &Result; |
| bool InvalidBaseOK; |
| typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; |
| typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; |
| |
| bool Success(APValue::LValueBase B) { |
| Result.set(B); |
| return true; |
| } |
| |
| bool evaluatePointer(const Expr *E, LValue &Result) { |
| return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); |
| } |
| |
| public: |
| LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) |
| : ExprEvaluatorBaseTy(Info), Result(Result), |
| InvalidBaseOK(InvalidBaseOK) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result.setFrom(this->Info.Ctx, V); |
| return true; |
| } |
| |
| bool VisitMemberExpr(const MemberExpr *E) { |
| // Handle non-static data members. |
| QualType BaseTy; |
| bool EvalOK; |
| if (E->isArrow()) { |
| EvalOK = evaluatePointer(E->getBase(), Result); |
| BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); |
| } else if (E->getBase()->isRValue()) { |
| assert(E->getBase()->getType()->isRecordType()); |
| EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); |
| BaseTy = E->getBase()->getType(); |
| } else { |
| EvalOK = this->Visit(E->getBase()); |
| BaseTy = E->getBase()->getType(); |
| } |
| if (!EvalOK) { |
| if (!InvalidBaseOK) |
| return false; |
| Result.setInvalid(E); |
| return true; |
| } |
| |
| const ValueDecl *MD = E->getMemberDecl(); |
| if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { |
| assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() == |
| FD->getParent()->getCanonicalDecl() && "record / field mismatch"); |
| (void)BaseTy; |
| if (!HandleLValueMember(this->Info, E, Result, FD)) |
| return false; |
| } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { |
| if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) |
| return false; |
| } else |
| return this->Error(E); |
| |
| if (MD->getType()->isReferenceType()) { |
| APValue RefValue; |
| if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, |
| RefValue)) |
| return false; |
| return Success(RefValue, E); |
| } |
| return true; |
| } |
| |
| bool VisitBinaryOperator(const BinaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| return HandleMemberPointerAccess(this->Info, E, Result); |
| } |
| } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| if (!this->Visit(E->getSubExpr())) |
| return false; |
| |
| // Now figure out the necessary offset to add to the base LV to get from |
| // the derived class to the base class. |
| return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), |
| Result); |
| } |
| } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LValue Evaluation |
| // |
| // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), |
| // function designators (in C), decl references to void objects (in C), and |
| // temporaries (if building with -Wno-address-of-temporary). |
| // |
| // LValue evaluation produces values comprising a base expression of one of the |
| // following types: |
| // - Declarations |
| // * VarDecl |
| // * FunctionDecl |
| // - Literals |
| // * CompoundLiteralExpr in C (and in global scope in C++) |
| // * StringLiteral |
| // * CXXTypeidExpr |
| // * PredefinedExpr |
| // * ObjCStringLiteralExpr |
| // * ObjCEncodeExpr |
| // * AddrLabelExpr |
| // * BlockExpr |
| // * CallExpr for a MakeStringConstant builtin |
| // - Locals and temporaries |
| // * MaterializeTemporaryExpr |
| // * Any Expr, with a CallIndex indicating the function in which the temporary |
| // was evaluated, for cases where the MaterializeTemporaryExpr is missing |
| // from the AST (FIXME). |
| // * A MaterializeTemporaryExpr that has static storage duration, with no |
| // CallIndex, for a lifetime-extended temporary. |
| // plus an offset in bytes. |
| //===----------------------------------------------------------------------===// |
| namespace { |
| class LValueExprEvaluator |
| : public LValueExprEvaluatorBase<LValueExprEvaluator> { |
| public: |
| LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : |
| LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} |
| |
| bool VisitVarDecl(const Expr *E, const VarDecl *VD); |
| bool VisitUnaryPreIncDec(const UnaryOperator *UO); |
| |
| bool VisitDeclRefExpr(const DeclRefExpr *E); |
| bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } |
| bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
| bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); |
| bool VisitMemberExpr(const MemberExpr *E); |
| bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } |
| bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } |
| bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); |
| bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); |
| bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); |
| bool VisitUnaryDeref(const UnaryOperator *E); |
| bool VisitUnaryReal(const UnaryOperator *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| bool VisitUnaryPreInc(const UnaryOperator *UO) { |
| return VisitUnaryPreIncDec(UO); |
| } |
| bool VisitUnaryPreDec(const UnaryOperator *UO) { |
| return VisitUnaryPreIncDec(UO); |
| } |
| bool VisitBinAssign(const BinaryOperator *BO); |
| bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return LValueExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_LValueBitCast: |
| this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; |
| if (!Visit(E->getSubExpr())) |
| return false; |
| Result.Designator.setInvalid(); |
| return true; |
| |
| case CK_BaseToDerived: |
| if (!Visit(E->getSubExpr())) |
| return false; |
| return HandleBaseToDerivedCast(Info, E, Result); |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Evaluate an expression as an lvalue. This can be legitimately called on |
| /// expressions which are not glvalues, in three cases: |
| /// * function designators in C, and |
| /// * "extern void" objects |
| /// * @selector() expressions in Objective-C |
| static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, |
| bool InvalidBaseOK) { |
| assert(E->isGLValue() || E->getType()->isFunctionType() || |
| E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)); |
| return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); |
| } |
| |
| bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) |
| return Success(FD); |
| if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) |
| return VisitVarDecl(E, VD); |
| if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl())) |
| return Visit(BD->getBinding()); |
| return Error(E); |
| } |
| |
| |
| bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { |
| |
| // If we are within a lambda's call operator, check whether the 'VD' referred |
| // to within 'E' actually represents a lambda-capture that maps to a |
| // data-member/field within the closure object, and if so, evaluate to the |
| // field or what the field refers to. |
| if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && |
| isa<DeclRefExpr>(E) && |
| cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { |
| // We don't always have a complete capture-map when checking or inferring if |
| // the function call operator meets the requirements of a constexpr function |
| // - but we don't need to evaluate the captures to determine constexprness |
| // (dcl.constexpr C++17). |
| if (Info.checkingPotentialConstantExpression()) |
| return false; |
| |
| if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { |
| // Start with 'Result' referring to the complete closure object... |
| Result = *Info.CurrentCall->This; |
| // ... then update it to refer to the field of the closure object |
| // that represents the capture. |
| if (!HandleLValueMember(Info, E, Result, FD)) |
| return false; |
| // And if the field is of reference type, update 'Result' to refer to what |
| // the field refers to. |
| if (FD->getType()->isReferenceType()) { |
| APValue RVal; |
| if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, |
| RVal)) |
| return false; |
| Result.setFrom(Info.Ctx, RVal); |
| } |
| return true; |
| } |
| } |
| CallStackFrame *Frame = nullptr; |
| if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) { |
| // Only if a local variable was declared in the function currently being |
| // evaluated, do we expect to be able to find its value in the current |
| // frame. (Otherwise it was likely declared in an enclosing context and |
| // could either have a valid evaluatable value (for e.g. a constexpr |
| // variable) or be ill-formed (and trigger an appropriate evaluation |
| // diagnostic)). |
| if (Info.CurrentCall->Callee && |
| Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { |
| Frame = Info.CurrentCall; |
| } |
| } |
| |
| if (!VD->getType()->isReferenceType()) { |
| if (Frame) { |
| Result.set({VD, Frame->Index, |
| Info.CurrentCall->getCurrentTemporaryVersion(VD)}); |
| return true; |
| } |
| return Success(VD); |
| } |
| |
| APValue *V; |
| if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr)) |
| return false; |
| if (V->isUninit()) { |
| if (!Info.checkingPotentialConstantExpression()) |
| Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); |
| return false; |
| } |
| return Success(*V, E); |
| } |
| |
| bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( |
| const MaterializeTemporaryExpr *E) { |
| // Walk through the expression to find the materialized temporary itself. |
| SmallVector<const Expr *, 2> CommaLHSs; |
| SmallVector<SubobjectAdjustment, 2> Adjustments; |
| const Expr *Inner = E->GetTemporaryExpr()-> |
| skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); |
| |
| // If we passed any comma operators, evaluate their LHSs. |
| for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) |
| if (!EvaluateIgnoredValue(Info, CommaLHSs[I])) |
| return false; |
| |
| // A materialized temporary with static storage duration can appear within the |
| // result of a constant expression evaluation, so we need to preserve its |
| // value for use outside this evaluation. |
| APValue *Value; |
| if (E->getStorageDuration() == SD_Static) { |
| Value = Info.Ctx.getMaterializedTemporaryValue(E, true); |
| *Value = APValue(); |
| Result.set(E); |
| } else { |
| Value = &createTemporary(E, E->getStorageDuration() == SD_Automatic, Result, |
| *Info.CurrentCall); |
| } |
| |
| QualType Type = Inner->getType(); |
| |
| // Materialize the temporary itself. |
| if (!EvaluateInPlace(*Value, Info, Result, Inner) || |
| (E->getStorageDuration() == SD_Static && |
| !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) { |
| *Value = APValue(); |
| return false; |
| } |
| |
| // Adjust our lvalue to refer to the desired subobject. |
| for (unsigned I = Adjustments.size(); I != 0; /**/) { |
| --I; |
| switch (Adjustments[I].Kind) { |
| case SubobjectAdjustment::DerivedToBaseAdjustment: |
| if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, |
| Type, Result)) |
| return false; |
| Type = Adjustments[I].DerivedToBase.BasePath->getType(); |
| break; |
| |
| case SubobjectAdjustment::FieldAdjustment: |
| if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) |
| return false; |
| Type = Adjustments[I].Field->getType(); |
| break; |
| |
| case SubobjectAdjustment::MemberPointerAdjustment: |
| if (!HandleMemberPointerAccess(this->Info, Type, Result, |
| Adjustments[I].Ptr.RHS)) |
| return false; |
| Type = Adjustments[I].Ptr.MPT->getPointeeType(); |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool |
| LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && |
| "lvalue compound literal in c++?"); |
| // Defer visiting the literal until the lvalue-to-rvalue conversion. We can |
| // only see this when folding in C, so there's no standard to follow here. |
| return Success(E); |
| } |
| |
| bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { |
| if (!E->isPotentiallyEvaluated()) |
| return Success(E); |
| |
| Info.FFDiag(E, diag::note_constexpr_typeid_polymorphic) |
| << E->getExprOperand()->getType() |
| << E->getExprOperand()->getSourceRange(); |
| return false; |
| } |
| |
| bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { |
| return Success(E); |
| } |
| |
| bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { |
| // Handle static data members. |
| if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { |
| VisitIgnoredBaseExpression(E->getBase()); |
| return VisitVarDecl(E, VD); |
| } |
| |
| // Handle static member functions. |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { |
| if (MD->isStatic()) { |
| VisitIgnoredBaseExpression(E->getBase()); |
| return Success(MD); |
| } |
| } |
| |
| // Handle non-static data members. |
| return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); |
| } |
| |
| bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
| // FIXME: Deal with vectors as array subscript bases. |
| if (E->getBase()->getType()->isVectorType()) |
| return Error(E); |
| |
| bool Success = true; |
| if (!evaluatePointer(E->getBase(), Result)) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| |
| APSInt Index; |
| if (!EvaluateInteger(E->getIdx(), Index, Info)) |
| return false; |
| |
| return Success && |
| HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); |
| } |
| |
| bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { |
| return evaluatePointer(E->getSubExpr(), Result); |
| } |
| |
| bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| // __real is a no-op on scalar lvalues. |
| if (E->getSubExpr()->getType()->isAnyComplexType()) |
| HandleLValueComplexElement(Info, E, Result, E->getType(), false); |
| return true; |
| } |
| |
| bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| assert(E->getSubExpr()->getType()->isAnyComplexType() && |
| "lvalue __imag__ on scalar?"); |
| if (!Visit(E->getSubExpr())) |
| return false; |
| HandleLValueComplexElement(Info, E, Result, E->getType(), true); |
| return true; |
| } |
| |
| bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { |
| if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
| return Error(UO); |
| |
| if (!this->Visit(UO->getSubExpr())) |
| return false; |
| |
| return handleIncDec( |
| this->Info, UO, Result, UO->getSubExpr()->getType(), |
| UO->isIncrementOp(), nullptr); |
| } |
| |
| bool LValueExprEvaluator::VisitCompoundAssignOperator( |
| const CompoundAssignOperator *CAO) { |
| if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
| return Error(CAO); |
| |
| APValue RHS; |
| |
| // The overall lvalue result is the result of evaluating the LHS. |
| if (!this->Visit(CAO->getLHS())) { |
| if (Info.noteFailure()) |
| Evaluate(RHS, this->Info, CAO->getRHS()); |
| return false; |
| } |
| |
| if (!Evaluate(RHS, this->Info, CAO->getRHS())) |
| return false; |
| |
| return handleCompoundAssignment( |
| this->Info, CAO, |
| Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), |
| CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); |
| } |
| |
| bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { |
| if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
| return Error(E); |
| |
| APValue NewVal; |
| |
| if (!this->Visit(E->getLHS())) { |
| if (Info.noteFailure()) |
| Evaluate(NewVal, this->Info, E->getRHS()); |
| return false; |
| } |
| |
| if (!Evaluate(NewVal, this->Info, E->getRHS())) |
| return false; |
| |
| return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), |
| NewVal); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pointer Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| /// Attempts to compute the number of bytes available at the pointer |
| /// returned by a function with the alloc_size attribute. Returns true if we |
| /// were successful. Places an unsigned number into `Result`. |
| /// |
| /// This expects the given CallExpr to be a call to a function with an |
| /// alloc_size attribute. |
| static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, |
| const CallExpr *Call, |
| llvm::APInt &Result) { |
| const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); |
| |
| assert(AllocSize && AllocSize->getElemSizeParam().isValid()); |
| unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); |
| unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); |
| if (Call->getNumArgs() <= SizeArgNo) |
| return false; |
| |
| auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { |
| if (!E->EvaluateAsInt(Into, Ctx, Expr::SE_AllowSideEffects)) |
| return false; |
| if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) |
| return false; |
| Into = Into.zextOrSelf(BitsInSizeT); |
| return true; |
| }; |
| |
| APSInt SizeOfElem; |
| if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) |
| return false; |
| |
| if (!AllocSize->getNumElemsParam().isValid()) { |
| Result = std::move(SizeOfElem); |
| return true; |
| } |
| |
| APSInt NumberOfElems; |
| unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); |
| if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) |
| return false; |
| |
| bool Overflow; |
| llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); |
| if (Overflow) |
| return false; |
| |
| Result = std::move(BytesAvailable); |
| return true; |
| } |
| |
| /// Convenience function. LVal's base must be a call to an alloc_size |
| /// function. |
| static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, |
| const LValue &LVal, |
| llvm::APInt &Result) { |
| assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
| "Can't get the size of a non alloc_size function"); |
| const auto *Base = LVal.getLValueBase().get<const Expr *>(); |
| const CallExpr *CE = tryUnwrapAllocSizeCall(Base); |
| return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); |
| } |
| |
| /// Attempts to evaluate the given LValueBase as the result of a call to |
| /// a function with the alloc_size attribute. If it was possible to do so, this |
| /// function will return true, make Result's Base point to said function call, |
| /// and mark Result's Base as invalid. |
| static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, |
| LValue &Result) { |
| if (Base.isNull()) |
| return false; |
| |
| // Because we do no form of static analysis, we only support const variables. |
| // |
| // Additionally, we can't support parameters, nor can we support static |
| // variables (in the latter case, use-before-assign isn't UB; in the former, |
| // we have no clue what they'll be assigned to). |
| const auto *VD = |
| dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); |
| if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) |
| return false; |
| |
| const Expr *Init = VD->getAnyInitializer(); |
| if (!Init) |
| return false; |
| |
| const Expr *E = Init->IgnoreParens(); |
| if (!tryUnwrapAllocSizeCall(E)) |
| return false; |
| |
| // Store E instead of E unwrapped so that the type of the LValue's base is |
| // what the user wanted. |
| Result.setInvalid(E); |
| |
| QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); |
| Result.addUnsizedArray(Info, E, Pointee); |
| return true; |
| } |
| |
| namespace { |
| class PointerExprEvaluator |
| : public ExprEvaluatorBase<PointerExprEvaluator> { |
| LValue &Result; |
| bool InvalidBaseOK; |
| |
| bool Success(const Expr *E) { |
| Result.set(E); |
| return true; |
| } |
| |
| bool evaluateLValue(const Expr *E, LValue &Result) { |
| return EvaluateLValue(E, Result, Info, InvalidBaseOK); |
| } |
| |
| bool evaluatePointer(const Expr *E, LValue &Result) { |
| return EvaluatePointer(E, Result, Info, InvalidBaseOK); |
| } |
| |
| bool visitNonBuiltinCallExpr(const CallExpr *E); |
| public: |
| |
| PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) |
| : ExprEvaluatorBaseTy(info), Result(Result), |
| InvalidBaseOK(InvalidBaseOK) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result.setFrom(Info.Ctx, V); |
| return true; |
| } |
| bool ZeroInitialization(const Expr *E) { |
| auto TargetVal = Info.Ctx.getTargetNullPointerValue(E->getType()); |
| Result.setNull(E->getType(), TargetVal); |
| return true; |
| } |
| |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitCastExpr(const CastExpr* E); |
| bool VisitUnaryAddrOf(const UnaryOperator *E); |
| bool VisitObjCStringLiteral(const ObjCStringLiteral *E) |
| { return Success(E); } |
| bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
| if (Info.noteFailure()) |
| EvaluateIgnoredValue(Info, E->getSubExpr()); |
| return Error(E); |
| } |
| bool VisitAddrLabelExpr(const AddrLabelExpr *E) |
| { return Success(E); } |
| bool VisitCallExpr(const CallExpr *E); |
| bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); |
| bool VisitBlockExpr(const BlockExpr *E) { |
| if (!E->getBlockDecl()->hasCaptures()) |
| return Success(E); |
| return Error(E); |
| } |
| bool VisitCXXThisExpr(const CXXThisExpr *E) { |
| // Can't look at 'this' when checking a potential constant expression. |
| if (Info.checkingPotentialConstantExpression()) |
| return false; |
| if (!Info.CurrentCall->This) { |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); |
| else |
| Info.FFDiag(E); |
| return false; |
| } |
| Result = *Info.CurrentCall->This; |
| // If we are inside a lambda's call operator, the 'this' expression refers |
| // to the enclosing '*this' object (either by value or reference) which is |
| // either copied into the closure object's field that represents the '*this' |
| // or refers to '*this'. |
| if (isLambdaCallOperator(Info.CurrentCall->Callee)) { |
| // Update 'Result' to refer to the data member/field of the closure object |
| // that represents the '*this' capture. |
| if (!HandleLValueMember(Info, E, Result, |
| Info.CurrentCall->LambdaThisCaptureField)) |
| return false; |
| // If we captured '*this' by reference, replace the field with its referent. |
| if (Info.CurrentCall->LambdaThisCaptureField->getType() |
| ->isPointerType()) { |
| APValue RVal; |
| if (!handleLValueToRValueConversion(Info, E, E->getType(), Result, |
| RVal)) |
| return false; |
| |
| Result.setFrom(Info.Ctx, RVal); |
| } |
| } |
| return true; |
| } |
| |
| // FIXME: Missing: @protocol, @selector |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, |
| bool InvalidBaseOK) { |
| assert(E->isRValue() && E->getType()->hasPointerRepresentation()); |
| return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); |
| } |
| |
| bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() != BO_Add && |
| E->getOpcode() != BO_Sub) |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| const Expr *PExp = E->getLHS(); |
| const Expr *IExp = E->getRHS(); |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| bool EvalPtrOK = evaluatePointer(PExp, Result); |
| if (!EvalPtrOK && !Info.noteFailure()) |
| return false; |
| |
| llvm::APSInt Offset; |
| if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) |
| return false; |
| |
| if (E->getOpcode() == BO_Sub) |
| negateAsSigned(Offset); |
| |
| QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); |
| return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); |
| } |
| |
| bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
| return evaluateLValue(E->getSubExpr(), Result); |
| } |
| |
| bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| |
| switch (E->getCastKind()) { |
| default: |
| break; |
| |
| case CK_BitCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_AddressSpaceConversion: |
| if (!Visit(SubExpr)) |
| return false; |
| // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are |
| // permitted in constant expressions in C++11. Bitcasts from cv void* are |
| // also static_casts, but we disallow them as a resolution to DR1312. |
| if (!E->getType()->isVoidPointerType()) { |
| // If we changed anything other than cvr-qualifiers, we can't use this |
| // value for constant folding. FIXME: Qualification conversions should |
| // always be CK_NoOp, but we get this wrong in C. |
| if (!Info.Ctx.hasCvrSimilarType(E->getType(), E->getSubExpr()->getType())) |
| Result.Designator.setInvalid(); |
| if (SubExpr->getType()->isVoidPointerType()) |
| CCEDiag(E, diag::note_constexpr_invalid_cast) |
| << 3 << SubExpr->getType(); |
| else |
| CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; |
| } |
| if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) |
| ZeroInitialization(E); |
| return true; |
| |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| if (!evaluatePointer(E->getSubExpr(), Result)) |
| return false; |
| if (!Result.Base && Result.Offset.isZero()) |
| return true; |
| |
| // Now figure out the necessary offset to add to the base LV to get from |
| // the derived class to the base class. |
| return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> |
| castAs<PointerType>()->getPointeeType(), |
| Result); |
| |
| case CK_BaseToDerived: |
| if (!Visit(E->getSubExpr())) |
| return false; |
| if (!Result.Base && Result.Offset.isZero()) |
| return true; |
| return HandleBaseToDerivedCast(Info, E, Result); |
| |
| case CK_NullToPointer: |
| VisitIgnoredValue(E->getSubExpr()); |
| return ZeroInitialization(E); |
| |
| case CK_IntegralToPointer: { |
| CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; |
| |
| APValue Value; |
| if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) |
| break; |
| |
| if (Value.isInt()) { |
| unsigned Size = Info.Ctx.getTypeSize(E->getType()); |
| uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); |
| Result.Base = (Expr*)nullptr; |
| Result.InvalidBase = false; |
| Result.Offset = CharUnits::fromQuantity(N); |
| Result.Designator.setInvalid(); |
| Result.IsNullPtr = false; |
| return true; |
| } else { |
| // Cast is of an lvalue, no need to change value. |
| Result.setFrom(Info.Ctx, Value); |
| return true; |
| } |
| } |
| |
| case CK_ArrayToPointerDecay: { |
| if (SubExpr->isGLValue()) { |
| if (!evaluateLValue(SubExpr, Result)) |
| return false; |
| } else { |
| APValue &Value = createTemporary(SubExpr, false, Result, |
| *Info.CurrentCall); |
| if (!EvaluateInPlace(Value, Info, Result, SubExpr)) |
| return false; |
| } |
| // The result is a pointer to the first element of the array. |
| auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); |
| if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
| Result.addArray(Info, E, CAT); |
| else |
| Result.addUnsizedArray(Info, E, AT->getElementType()); |
| return true; |
| } |
| |
| case CK_FunctionToPointerDecay: |
| return evaluateLValue(SubExpr, Result); |
| |
| case CK_LValueToRValue: { |
| LValue LVal; |
| if (!evaluateLValue(E->getSubExpr(), LVal)) |
| return false; |
| |
| APValue RVal; |
| // Note, we use the subexpression's type in order to retain cv-qualifiers. |
| if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), |
| LVal, RVal)) |
| return InvalidBaseOK && |
| evaluateLValueAsAllocSize(Info, LVal.Base, Result); |
| return Success(RVal, E); |
| } |
| } |
| |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| } |
| |
| static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) { |
| // C++ [expr.alignof]p3: |
| // When alignof is applied to a reference type, the result is the |
| // alignment of the referenced type. |
| if (const ReferenceType *Ref = T->getAs<ReferenceType>()) |
| T = Ref->getPointeeType(); |
| |
| // __alignof is defined to return the preferred alignment. |
| if (T.getQualifiers().hasUnaligned()) |
| return CharUnits::One(); |
| return Info.Ctx.toCharUnitsFromBits( |
| Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); |
| } |
| |
| static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) { |
| E = E->IgnoreParens(); |
| |
| // The kinds of expressions that we have special-case logic here for |
| // should be kept up to date with the special checks for those |
| // expressions in Sema. |
| |
| // alignof decl is always accepted, even if it doesn't make sense: we default |
| // to 1 in those cases. |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| return Info.Ctx.getDeclAlign(DRE->getDecl(), |
| /*RefAsPointee*/true); |
| |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) |
| return Info.Ctx.getDeclAlign(ME->getMemberDecl(), |
| /*RefAsPointee*/true); |
| |
| return GetAlignOfType(Info, E->getType()); |
| } |
| |
| // To be clear: this happily visits unsupported builtins. Better name welcomed. |
| bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { |
| if (ExprEvaluatorBaseTy::VisitCallExpr(E)) |
| return true; |
| |
| if (!(InvalidBaseOK && getAllocSizeAttr(E))) |
| return false; |
| |
| Result.setInvalid(E); |
| QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); |
| Result.addUnsizedArray(Info, E, PointeeTy); |
| return true; |
| } |
| |
| bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| if (IsStringLiteralCall(E)) |
| return Success(E); |
| |
| if (unsigned BuiltinOp = E->getBuiltinCallee()) |
| return VisitBuiltinCallExpr(E, BuiltinOp); |
| |
| return visitNonBuiltinCallExpr(E); |
| } |
| |
| bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, |
| unsigned BuiltinOp) { |
| switch (BuiltinOp) { |
| case Builtin::BI__builtin_addressof: |
| return evaluateLValue(E->getArg(0), Result); |
| case Builtin::BI__builtin_assume_aligned: { |
| // We need to be very careful here because: if the pointer does not have the |
| // asserted alignment, then the behavior is undefined, and undefined |
| // behavior is non-constant. |
| if (!evaluatePointer(E->getArg(0), Result)) |
| return false; |
| |
| LValue OffsetResult(Result); |
| APSInt Alignment; |
| if (!EvaluateInteger(E->getArg(1), Alignment, Info)) |
| return false; |
| CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); |
| |
| if (E->getNumArgs() > 2) { |
| APSInt Offset; |
| if (!EvaluateInteger(E->getArg(2), Offset, Info)) |
| return false; |
| |
| int64_t AdditionalOffset = -Offset.getZExtValue(); |
| OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); |
| } |
| |
| // If there is a base object, then it must have the correct alignment. |
| if (OffsetResult.Base) { |
| CharUnits BaseAlignment; |
| if (const ValueDecl *VD = |
| OffsetResult.Base.dyn_cast<const ValueDecl*>()) { |
| BaseAlignment = Info.Ctx.getDeclAlign(VD); |
| } else { |
| BaseAlignment = |
| GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>()); |
| } |
| |
| if (BaseAlignment < Align) { |
| Result.Designator.setInvalid(); |
| // FIXME: Add support to Diagnostic for long / long long. |
| CCEDiag(E->getArg(0), |
| diag::note_constexpr_baa_insufficient_alignment) << 0 |
| << (unsigned)BaseAlignment.getQuantity() |
| << (unsigned)Align.getQuantity(); |
| return false; |
| } |
| } |
| |
| // The offset must also have the correct alignment. |
| if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { |
| Result.Designator.setInvalid(); |
| |
| (OffsetResult.Base |
| ? CCEDiag(E->getArg(0), |
| diag::note_constexpr_baa_insufficient_alignment) << 1 |
| : CCEDiag(E->getArg(0), |
| diag::note_constexpr_baa_value_insufficient_alignment)) |
| << (int)OffsetResult.Offset.getQuantity() |
| << (unsigned)Align.getQuantity(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| case Builtin::BIstrchr: |
| case Builtin::BIwcschr: |
| case Builtin::BImemchr: |
| case Builtin::BIwmemchr: |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
| << /*isConstexpr*/0 << /*isConstructor*/0 |
| << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); |
| else |
| Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| LLVM_FALLTHROUGH; |
| case Builtin::BI__builtin_strchr: |
| case Builtin::BI__builtin_wcschr: |
| case Builtin::BI__builtin_memchr: |
| case Builtin::BI__builtin_char_memchr: |
| case Builtin::BI__builtin_wmemchr: { |
| if (!Visit(E->getArg(0))) |
| return false; |
| APSInt Desired; |
| if (!EvaluateInteger(E->getArg(1), Desired, Info)) |
| return false; |
| uint64_t MaxLength = uint64_t(-1); |
| if (BuiltinOp != Builtin::BIstrchr && |
| BuiltinOp != Builtin::BIwcschr && |
| BuiltinOp != Builtin::BI__builtin_strchr && |
| BuiltinOp != Builtin::BI__builtin_wcschr) { |
| APSInt N; |
| if (!EvaluateInteger(E->getArg(2), N, Info)) |
| return false; |
| MaxLength = N.getExtValue(); |
| } |
| |
| QualType CharTy = E->getArg(0)->getType()->getPointeeType(); |
| |
| // Figure out what value we're actually looking for (after converting to |
| // the corresponding unsigned type if necessary). |
| uint64_t DesiredVal; |
| bool StopAtNull = false; |
| switch (BuiltinOp) { |
| case Builtin::BIstrchr: |
| case Builtin::BI__builtin_strchr: |
| // strchr compares directly to the passed integer, and therefore |
| // always fails if given an int that is not a char. |
| if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, |
| E->getArg(1)->getType(), |
| Desired), |
| Desired)) |
| return ZeroInitialization(E); |
| StopAtNull = true; |
| LLVM_FALLTHROUGH; |
| case Builtin::BImemchr: |
| case Builtin::BI__builtin_memchr: |
| case Builtin::BI__builtin_char_memchr: |
| // memchr compares by converting both sides to unsigned char. That's also |
| // correct for strchr if we get this far (to cope with plain char being |
| // unsigned in the strchr case). |
| DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); |
| break; |
| |
| case Builtin::BIwcschr: |
| case Builtin::BI__builtin_wcschr: |
| StopAtNull = true; |
| LLVM_FALLTHROUGH; |
| case Builtin::BIwmemchr: |
| case Builtin::BI__builtin_wmemchr: |
| // wcschr and wmemchr are given a wchar_t to look for. Just use it. |
| DesiredVal = Desired.getZExtValue(); |
| break; |
| } |
| |
| for (; MaxLength; --MaxLength) { |
| APValue Char; |
| if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || |
| !Char.isInt()) |
| return false; |
| if (Char.getInt().getZExtValue() == DesiredVal) |
| return true; |
| if (StopAtNull && !Char.getInt()) |
| break; |
| if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) |
| return false; |
| } |
| // Not found: return nullptr. |
| return ZeroInitialization(E); |
| } |
| |
| default: |
| return visitNonBuiltinCallExpr(E); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Member Pointer Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class MemberPointerExprEvaluator |
| : public ExprEvaluatorBase<MemberPointerExprEvaluator> { |
| MemberPtr &Result; |
| |
| bool Success(const ValueDecl *D) { |
| Result = MemberPtr(D); |
| return true; |
| } |
| public: |
| |
| MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) |
| : ExprEvaluatorBaseTy(Info), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result.setFrom(V); |
| return true; |
| } |
| bool ZeroInitialization(const Expr *E) { |
| return Success((const ValueDecl*)nullptr); |
| } |
| |
| bool VisitCastExpr(const CastExpr *E); |
| bool VisitUnaryAddrOf(const UnaryOperator *E); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, |
| EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isMemberPointerType()); |
| return MemberPointerExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_NullToMemberPointer: |
| VisitIgnoredValue(E->getSubExpr()); |
| return ZeroInitialization(E); |
| |
| case CK_BaseToDerivedMemberPointer: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| if (E->path_empty()) |
| return true; |
| // Base-to-derived member pointer casts store the path in derived-to-base |
| // order, so iterate backwards. The CXXBaseSpecifier also provides us with |
| // the wrong end of the derived->base arc, so stagger the path by one class. |
| typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; |
| for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); |
| PathI != PathE; ++PathI) { |
| assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); |
| const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); |
| if (!Result.castToDerived(Derived)) |
| return Error(E); |
| } |
| const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); |
| if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) |
| return Error(E); |
| return true; |
| } |
| |
| case CK_DerivedToBaseMemberPointer: |
| if (!Visit(E->getSubExpr())) |
| return false; |
| for (CastExpr::path_const_iterator PathI = E->path_begin(), |
| PathE = E->path_end(); PathI != PathE; ++PathI) { |
| assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); |
| const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); |
| if (!Result.castToBase(Base)) |
| return Error(E); |
| } |
| return true; |
| } |
| } |
| |
| bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
| // C++11 [expr.unary.op]p3 has very strict rules on how the address of a |
| // member can be formed. |
| return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Record Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class RecordExprEvaluator |
| : public ExprEvaluatorBase<RecordExprEvaluator> { |
| const LValue &This; |
| APValue &Result; |
| public: |
| |
| RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) |
| : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result = V; |
| return true; |
| } |
| bool ZeroInitialization(const Expr *E) { |
| return ZeroInitialization(E, E->getType()); |
| } |
| bool ZeroInitialization(const Expr *E, QualType T); |
| |
| bool VisitCallExpr(const CallExpr *E) { |
| return handleCallExpr(E, Result, &This); |
| } |
| bool VisitCastExpr(const CastExpr *E); |
| bool VisitInitListExpr(const InitListExpr *E); |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| return VisitCXXConstructExpr(E, E->getType()); |
| } |
| bool VisitLambdaExpr(const LambdaExpr *E); |
| bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); |
| bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); |
| |
| bool VisitBinCmp(const BinaryOperator *E); |
| }; |
| } |
| |
| /// Perform zero-initialization on an object of non-union class type. |
| /// C++11 [dcl.init]p5: |
| /// To zero-initialize an object or reference of type T means: |
| /// [...] |
| /// -- if T is a (possibly cv-qualified) non-union class type, |
| /// each non-static data member and each base-class subobject is |
| /// zero-initialized |
| static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, |
| const RecordDecl *RD, |
| const LValue &This, APValue &Result) { |
| assert(!RD->isUnion() && "Expected non-union class type"); |
| const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); |
| Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, |
| std::distance(RD->field_begin(), RD->field_end())); |
| |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| |
| if (CD) { |
| unsigned Index = 0; |
| for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), |
| End = CD->bases_end(); I != End; ++I, ++Index) { |
| const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); |
| LValue Subobject = This; |
| if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) |
| return false; |
| if (!HandleClassZeroInitialization(Info, E, Base, Subobject, |
| Result.getStructBase(Index))) |
| return false; |
| } |
| } |
| |
| for (const auto *I : RD->fields()) { |
| // -- if T is a reference type, no initialization is performed. |
| if (I->getType()->isReferenceType()) |
| continue; |
| |
| LValue Subobject = This; |
| if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) |
| return false; |
| |
| ImplicitValueInitExpr VIE(I->getType()); |
| if (!EvaluateInPlace( |
| Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { |
| const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); |
| if (RD->isInvalidDecl()) return false; |
| if (RD->isUnion()) { |
| // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the |
| // object's first non-static named data member is zero-initialized |
| RecordDecl::field_iterator I = RD->field_begin(); |
| if (I == RD->field_end()) { |
| Result = APValue((const FieldDecl*)nullptr); |
| return true; |
| } |
| |
| LValue Subobject = This; |
| if (!HandleLValueMember(Info, E, Subobject, *I)) |
| return false; |
| Result = APValue(*I); |
| ImplicitValueInitExpr VIE(I->getType()); |
| return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); |
| } |
| |
| if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { |
| Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; |
| return false; |
| } |
| |
| return HandleClassZeroInitialization(Info, E, RD, This, Result); |
| } |
| |
| bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_ConstructorConversion: |
| return Visit(E->getSubExpr()); |
| |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: { |
| APValue DerivedObject; |
| if (!Evaluate(DerivedObject, Info, E->getSubExpr())) |
| return false; |
| if (!DerivedObject.isStruct()) |
| return Error(E->getSubExpr()); |
| |
| // Derived-to-base rvalue conversion: just slice off the derived part. |
| APValue *Value = &DerivedObject; |
| const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); |
| for (CastExpr::path_const_iterator PathI = E->path_begin(), |
| PathE = E->path_end(); PathI != PathE; ++PathI) { |
| assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); |
| const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); |
| Value = &Value->getStructBase(getBaseIndex(RD, Base)); |
| RD = Base; |
| } |
| Result = *Value; |
| return true; |
| } |
| } |
| } |
| |
| bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
| if (E->isTransparent()) |
| return Visit(E->getInit(0)); |
| |
| const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl(); |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| |
| if (RD->isUnion()) { |
| const FieldDecl *Field = E->getInitializedFieldInUnion(); |
| Result = APValue(Field); |
| if (!Field) |
| return true; |
| |
| // If the initializer list for a union does not contain any elements, the |
| // first element of the union is value-initialized. |
| // FIXME: The element should be initialized from an initializer list. |
| // Is this difference ever observable for initializer lists which |
| // we don't build? |
| ImplicitValueInitExpr VIE(Field->getType()); |
| const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE; |
| |
| LValue Subobject = This; |
| if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) |
| return false; |
| |
| // Temporarily override This, in case there's a CXXDefaultInitExpr in here. |
| ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, |
| isa<CXXDefaultInitExpr>(InitExpr)); |
| |
| return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr); |
| } |
| |
| auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); |
| if (Result.isUninit()) |
| Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, |
| std::distance(RD->field_begin(), RD->field_end())); |
| unsigned ElementNo = 0; |
| bool Success = true; |
| |
| // Initialize base classes. |
| if (CXXRD) { |
| for (const auto &Base : CXXRD->bases()) { |
| assert(ElementNo < E->getNumInits() && "missing init for base class"); |
| const Expr *Init = E->getInit(ElementNo); |
| |
| LValue Subobject = This; |
| if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) |
| return false; |
| |
| APValue &FieldVal = Result.getStructBase(ElementNo); |
| if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| ++ElementNo; |
| } |
| } |
| |
| // Initialize members. |
| for (const auto *Field : RD->fields()) { |
| // Anonymous bit-fields are not considered members of the class for |
| // purposes of aggregate initialization. |
| if (Field->isUnnamedBitfield()) |
| continue; |
| |
| LValue Subobject = This; |
| |
| bool HaveInit = ElementNo < E->getNumInits(); |
| |
| // FIXME: Diagnostics here should point to the end of the initializer |
| // list, not the start. |
| if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, |
| Subobject, Field, &Layout)) |
| return false; |
| |
| // Perform an implicit value-initialization for members beyond the end of |
| // the initializer list. |
| ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); |
| const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE; |
| |
| // Temporarily override This, in case there's a CXXDefaultInitExpr in here. |
| ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, |
| isa<CXXDefaultInitExpr>(Init)); |
| |
| APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); |
| if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || |
| (Field->isBitField() && !truncateBitfieldValue(Info, Init, |
| FieldVal, Field))) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| |
| return Success; |
| } |
| |
| bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, |
| QualType T) { |
| // Note that E's type is not necessarily the type of our class here; we might |
| // be initializing an array element instead. |
| const CXXConstructorDecl *FD = E->getConstructor(); |
| if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; |
| |
| bool ZeroInit = E->requiresZeroInitialization(); |
| if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { |
| // If we've already performed zero-initialization, we're already done. |
| if (!Result.isUninit()) |
| return true; |
| |
| // We can get here in two different ways: |
| // 1) We're performing value-initialization, and should zero-initialize |
| // the object, or |
| // 2) We're performing default-initialization of an object with a trivial |
| // constexpr default constructor, in which case we should start the |
| // lifetimes of all the base subobjects (there can be no data member |
| // subobjects in this case) per [basic.life]p1. |
| // Either way, ZeroInitialization is appropriate. |
| return ZeroInitialization(E, T); |
| } |
| |
| const FunctionDecl *Definition = nullptr; |
| auto Body = FD->getBody(Definition); |
| |
| if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) |
| return false; |
| |
| // Avoid materializing a temporary for an elidable copy/move constructor. |
| if (E->isElidable() && !ZeroInit) |
| if (const MaterializeTemporaryExpr *ME |
| = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0))) |
| return Visit(ME->GetTemporaryExpr()); |
| |
| if (ZeroInit && !ZeroInitialization(E, T)) |
| return false; |
| |
| auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); |
| return HandleConstructorCall(E, This, Args, |
| cast<CXXConstructorDecl>(Definition), Info, |
| Result); |
| } |
| |
| bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( |
| const CXXInheritedCtorInitExpr *E) { |
| if (!Info.CurrentCall) { |
| assert(Info.checkingPotentialConstantExpression()); |
| return false; |
| } |
| |
| const CXXConstructorDecl *FD = E->getConstructor(); |
| if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) |
| return false; |
| |
| const FunctionDecl *Definition = nullptr; |
| auto Body = FD->getBody(Definition); |
| |
| if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) |
| return false; |
| |
| return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, |
| cast<CXXConstructorDecl>(Definition), Info, |
| Result); |
| } |
| |
| bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( |
| const CXXStdInitializerListExpr *E) { |
| const ConstantArrayType *ArrayType = |
| Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); |
| |
| LValue Array; |
| if (!EvaluateLValue(E->getSubExpr(), Array, Info)) |
| return false; |
| |
| // Get a pointer to the first element of the array. |
| Array.addArray(Info, E, ArrayType); |
| |
| // FIXME: Perform the checks on the field types in SemaInit. |
| RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); |
| RecordDecl::field_iterator Field = Record->field_begin(); |
| if (Field == Record->field_end()) |
| return Error(E); |
| |
| // Start pointer. |
| if (!Field->getType()->isPointerType() || |
| !Info.Ctx.hasSameType(Field->getType()->getPointeeType(), |
| ArrayType->getElementType())) |
| return Error(E); |
| |
| // FIXME: What if the initializer_list type has base classes, etc? |
| Result = APValue(APValue::UninitStruct(), 0, 2); |
| Array.moveInto(Result.getStructField(0)); |
| |
| if (++Field == Record->field_end()) |
| return Error(E); |
| |
| if (Field->getType()->isPointerType() && |
| Info.Ctx.hasSameType(Field->getType()->getPointeeType(), |
| ArrayType->getElementType())) { |
| // End pointer. |
| if (!HandleLValueArrayAdjustment(Info, E, Array, |
| ArrayType->getElementType(), |
| ArrayType->getSize().getZExtValue())) |
| return false; |
| Array.moveInto(Result.getStructField(1)); |
| } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) |
| // Length. |
| Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); |
| else |
| return Error(E); |
| |
| if (++Field != Record->field_end()) |
| return Error(E); |
| |
| return true; |
| } |
| |
| bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { |
| const CXXRecordDecl *ClosureClass = E->getLambdaClass(); |
| if (ClosureClass->isInvalidDecl()) return false; |
| |
| if (Info.checkingPotentialConstantExpression()) return true; |
| |
| const size_t NumFields = |
| std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); |
| |
| assert(NumFields == (size_t)std::distance(E->capture_init_begin(), |
| E->capture_init_end()) && |
| "The number of lambda capture initializers should equal the number of " |
| "fields within the closure type"); |
| |
| Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); |
| // Iterate through all the lambda's closure object's fields and initialize |
| // them. |
| auto *CaptureInitIt = E->capture_init_begin(); |
| const LambdaCapture *CaptureIt = ClosureClass->captures_begin(); |
| bool Success = true; |
| for (const auto *Field : ClosureClass->fields()) { |
| assert(CaptureInitIt != E->capture_init_end()); |
| // Get the initializer for this field |
| Expr *const CurFieldInit = *CaptureInitIt++; |
| |
| // If there is no initializer, either this is a VLA or an error has |
| // occurred. |
| if (!CurFieldInit) |
| return Error(E); |
| |
| APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); |
| if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) { |
| if (!Info.keepEvaluatingAfterFailure()) |
| return false; |
| Success = false; |
| } |
| ++CaptureIt; |
| } |
| return Success; |
| } |
| |
| static bool EvaluateRecord(const Expr *E, const LValue &This, |
| APValue &Result, EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isRecordType() && |
| "can't evaluate expression as a record rvalue"); |
| return RecordExprEvaluator(Info, This, Result).Visit(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Temporary Evaluation |
| // |
| // Temporaries are represented in the AST as rvalues, but generally behave like |
| // lvalues. The full-object of which the temporary is a subobject is implicitly |
| // materialized so that a reference can bind to it. |
| //===----------------------------------------------------------------------===// |
| namespace { |
| class TemporaryExprEvaluator |
| : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { |
| public: |
| TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : |
| LValueExprEvaluatorBaseTy(Info, Result, false) {} |
| |
| /// Visit an expression which constructs the value of this temporary. |
| bool VisitConstructExpr(const Expr *E) { |
| APValue &Value = createTemporary(E, false, Result, *Info.CurrentCall); |
| return EvaluateInPlace(Value, Info, Result, E); |
| } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return LValueExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_ConstructorConversion: |
| return VisitConstructExpr(E->getSubExpr()); |
| } |
| } |
| bool VisitInitListExpr(const InitListExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| bool VisitCallExpr(const CallExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| bool VisitLambdaExpr(const LambdaExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Evaluate an expression of record type as a temporary. |
| static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isRecordType()); |
| return TemporaryExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Vector Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VectorExprEvaluator |
| : public ExprEvaluatorBase<VectorExprEvaluator> { |
| APValue &Result; |
| public: |
| |
| VectorExprEvaluator(EvalInfo &info, APValue &Result) |
| : ExprEvaluatorBaseTy(info), Result(Result) {} |
| |
| bool Success(ArrayRef<APValue> V, const Expr *E) { |
| assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); |
| // FIXME: remove this APValue copy. |
| Result = APValue(V.data(), V.size()); |
| return true; |
| } |
| bool Success(const APValue &V, const Expr *E) { |
| assert(V.isVector()); |
| Result = V; |
| return true; |
| } |
| bool ZeroInitialization(const Expr *E); |
| |
| bool VisitUnaryReal(const UnaryOperator *E) |
| { return Visit(E->getSubExpr()); } |
| bool VisitCastExpr(const CastExpr* E); |
| bool VisitInitListExpr(const InitListExpr *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div, |
| // binary comparisons, binary and/or/xor, |
| // shufflevector, ExtVectorElementExpr |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue"); |
| return VectorExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const VectorType *VTy = E->getType()->castAs<VectorType>(); |
| unsigned NElts = VTy->getNumElements(); |
| |
| const Expr *SE = E->getSubExpr(); |
| QualType SETy = SE->getType(); |
| |
| switch (E->getCastKind()) { |
| case CK_VectorSplat: { |
| APValue Val = APValue(); |
| if (SETy->isIntegerType()) { |
| APSInt IntResult; |
| if (!EvaluateInteger(SE, IntResult, Info)) |
| return false; |
| Val = APValue(std::move(IntResult)); |
| } else if (SETy->isRealFloatingType()) { |
| APFloat FloatResult(0.0); |
| if (!EvaluateFloat(SE, FloatResult, Info)) |
| return false; |
| Val = APValue(std::move(FloatResult)); |
| } else { |
| return Error(E); |
| } |
| |
| // Splat and create vector APValue. |
| SmallVector<APValue, 4> Elts(NElts, Val); |
| return Success(Elts, E); |
| } |
| case CK_BitCast: { |
| // Evaluate the operand into an APInt we can extract from. |
| llvm::APInt SValInt; |
| if (!EvalAndBitcastToAPInt(Info, SE, SValInt)) |
| return false; |
| // Extract the elements |
| QualType EltTy = VTy->getElementType(); |
| unsigned EltSize = Info.Ctx.getTypeSize(EltTy); |
| bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); |
| SmallVector<APValue, 4> Elts; |
| if (EltTy->isRealFloatingType()) { |
| const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy); |
| unsigned FloatEltSize = EltSize; |
| if (&Sem == &APFloat::x87DoubleExtended()) |
| FloatEltSize = 80; |
| for (unsigned i = 0; i < NElts; i++) { |
| llvm::APInt Elt; |
| if (BigEndian) |
| Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize); |
| else |
| Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize); |
| Elts.push_back(APValue(APFloat(Sem, Elt))); |
| } |
| } else if (EltTy->isIntegerType()) { |
| for (unsigned i = 0; i < NElts; i++) { |
| llvm::APInt Elt; |
| if (BigEndian) |
| Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize); |
| else |
| Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize); |
| Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType()))); |
| } |
| } else { |
| return Error(E); |
| } |
| return Success(Elts, E); |
| } |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| } |
| } |
| |
| bool |
| VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
| const VectorType *VT = E->getType()->castAs<VectorType>(); |
| unsigned NumInits = E->getNumInits(); |
| unsigned NumElements = VT->getNumElements(); |
| |
| QualType EltTy = VT->getElementType(); |
| SmallVector<APValue, 4> Elements; |
| |
| // The number of initializers can be less than the number of |
| // vector elements. For OpenCL, this can be due to nested vector |
| // initialization. For GCC compatibility, missing trailing elements |
| // should be initialized with zeroes. |
| unsigned CountInits = 0, CountElts = 0; |
| while (CountElts < NumElements) { |
| // Handle nested vector initialization. |
| if (CountInits < NumInits |
| && E->getInit(CountInits)->getType()->isVectorType()) { |
| APValue v; |
| if (!EvaluateVector(E->getInit(CountInits), v, Info)) |
| return Error(E); |
| unsigned vlen = v.getVectorLength(); |
| for (unsigned j = 0; j < vlen; j++) |
| Elements.push_back(v.getVectorElt(j)); |
| CountElts += vlen; |
| } else if (EltTy->isIntegerType()) { |
| llvm::APSInt sInt(32); |
| if (CountInits < NumInits) { |
| if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) |
| return false; |
| } else // trailing integer zero. |
| sInt = Info.Ctx.MakeIntValue(0, EltTy); |
| Elements.push_back(APValue(sInt)); |
| CountElts++; |
| } else { |
| llvm::APFloat f(0.0); |
| if (CountInits < NumInits) { |
| if (!EvaluateFloat(E->getInit(CountInits), f, Info)) |
| return false; |
| } else // trailing float zero. |
| f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); |
| Elements.push_back(APValue(f)); |
| CountElts++; |
| } |
| CountInits++; |
| } |
| return Success(Elements, E); |
| } |
| |
| bool |
| VectorExprEvaluator::ZeroInitialization(const Expr *E) { |
| const VectorType *VT = E->getType()->getAs<VectorType>(); |
| QualType EltTy = VT->getElementType(); |
| APValue ZeroElement; |
| if (EltTy->isIntegerType()) |
| ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); |
| else |
| ZeroElement = |
| APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); |
| |
| SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); |
| return Success(Elements, E); |
| } |
| |
| bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| VisitIgnoredValue(E->getSubExpr()); |
| return ZeroInitialization(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Array Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class ArrayExprEvaluator |
| : public ExprEvaluatorBase<ArrayExprEvaluator> { |
| const LValue &This; |
| APValue &Result; |
| public: |
| |
| ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) |
| : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| assert((V.isArray() || V.isLValue()) && |
| "expected array or string literal"); |
| Result = V; |
| return true; |
| } |
| |
| bool ZeroInitialization(const Expr *E) { |
| const ConstantArrayType *CAT = |
| Info.Ctx.getAsConstantArrayType(E->getType()); |
| if (!CAT) |
| return Error(E); |
| |
| Result = APValue(APValue::UninitArray(), 0, |
| CAT->getSize().getZExtValue()); |
| if (!Result.hasArrayFiller()) return true; |
| |
| // Zero-initialize all elements. |
| LValue Subobject = This; |
| Subobject.addArray(Info, E, CAT); |
| ImplicitValueInitExpr VIE(CAT->getElementType()); |
| return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); |
| } |
| |
| bool VisitCallExpr(const CallExpr *E) { |
| return handleCallExpr(E, Result, &This); |
| } |
| bool VisitInitListExpr(const InitListExpr *E); |
| bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E); |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E, |
| const LValue &Subobject, |
| APValue *Value, QualType Type); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateArray(const Expr *E, const LValue &This, |
| APValue &Result, EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue"); |
| return ArrayExprEvaluator(Info, This, Result).Visit(E); |
| } |
| |
| // Return true iff the given array filler may depend on the element index. |
| static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { |
| // For now, just whitelist non-class value-initialization and initialization |
| // lists comprised of them. |
| if (isa<ImplicitValueInitExpr>(FillerExpr)) |
| return false; |
| if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { |
| for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { |
| if (MaybeElementDependentArrayFiller(ILE->getInit(I))) |
| return true; |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
| const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType()); |
| if (!CAT) |
| return Error(E); |
| |
| // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] |
| // an appropriately-typed string literal enclosed in braces. |
| if (E->isStringLiteralInit()) { |
| LValue LV; |
| if (!EvaluateLValue(E->getInit(0), LV, Info)) |
| return false; |
| APValue Val; |
| LV.moveInto(Val); |
| return Success(Val, E); |
| } |
| |
| bool Success = true; |
| |
| assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && |
| "zero-initialized array shouldn't have any initialized elts"); |
| APValue Filler; |
| if (Result.isArray() && Result.hasArrayFiller()) |
| Filler = Result.getArrayFiller(); |
| |
| unsigned NumEltsToInit = E->getNumInits(); |
| unsigned NumElts = CAT->getSize().getZExtValue(); |
| const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr; |
| |
| // If the initializer might depend on the array index, run it for each |
| // array element. |
| if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr)) |
| NumEltsToInit = NumElts; |
| |
| LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " |
| << NumEltsToInit << ".\n"); |
| |
| Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); |
| |
| // If the array was previously zero-initialized, preserve the |
| // zero-initialized values. |
| if (!Filler.isUninit()) { |
| for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) |
| Result.getArrayInitializedElt(I) = Filler; |
| if (Result.hasArrayFiller()) |
| Result.getArrayFiller() = Filler; |
| } |
| |
| LValue Subobject = This; |
| Subobject.addArray(Info, E, CAT); |
| for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { |
| const Expr *Init = |
| Index < E->getNumInits() ? E->getInit(Index) : FillerExpr; |
| if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), |
| Info, Subobject, Init) || |
| !HandleLValueArrayAdjustment(Info, Init, Subobject, |
| CAT->getElementType(), 1)) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| |
| if (!Result.hasArrayFiller()) |
| return Success; |
| |
| // If we get here, we have a trivial filler, which we can just evaluate |
| // once and splat over the rest of the array elements. |
| assert(FillerExpr && "no array filler for incomplete init list"); |
| return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, |
| FillerExpr) && Success; |
| } |
| |
| bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { |
| if (E->getCommonExpr() && |
| !Evaluate(Info.CurrentCall->createTemporary(E->getCommonExpr(), false), |
| Info, E->getCommonExpr()->getSourceExpr())) |
| return false; |
| |
| auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); |
| |
| uint64_t Elements = CAT->getSize().getZExtValue(); |
| Result = APValue(APValue::UninitArray(), Elements, Elements); |
| |
| LValue Subobject = This; |
| Subobject.addArray(Info, E, CAT); |
| |
| bool Success = true; |
| for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { |
| if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), |
| Info, Subobject, E->getSubExpr()) || |
| !HandleLValueArrayAdjustment(Info, E, Subobject, |
| CAT->getElementType(), 1)) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| |
| return Success; |
| } |
| |
| bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| return VisitCXXConstructExpr(E, This, &Result, E->getType()); |
| } |
| |
| bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, |
| const LValue &Subobject, |
| APValue *Value, |
| QualType Type) { |
| bool HadZeroInit = !Value->isUninit(); |
| |
| if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { |
| unsigned N = CAT->getSize().getZExtValue(); |
| |
| // Preserve the array filler if we had prior zero-initialization. |
| APValue Filler = |
| HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() |
| : APValue(); |
| |
| *Value = APValue(APValue::UninitArray(), N, N); |
| |
| if (HadZeroInit) |
| for (unsigned I = 0; I != N; ++I) |
| Value->getArrayInitializedElt(I) = Filler; |
| |
| // Initialize the elements. |
| LValue ArrayElt = Subobject; |
| ArrayElt.addArray(Info, E, CAT); |
| for (unsigned I = 0; I != N; ++I) |
| if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I), |
| CAT->getElementType()) || |
| !HandleLValueArrayAdjustment(Info, E, ArrayElt, |
| CAT->getElementType(), 1)) |
| return false; |
| |
| return true; |
| } |
| |
| if (!Type->isRecordType()) |
| return Error(E); |
| |
| return RecordExprEvaluator(Info, Subobject, *Value) |
| .VisitCXXConstructExpr(E, Type); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Evaluation |
| // |
| // As a GNU extension, we support casting pointers to sufficiently-wide integer |
| // types and back in constant folding. Integer values are thus represented |
| // either as an integer-valued APValue, or as an lvalue-valued APValue. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class IntExprEvaluator |
| : public ExprEvaluatorBase<IntExprEvaluator> { |
| APValue &Result; |
| public: |
| IntExprEvaluator(EvalInfo &info, APValue &result) |
| : ExprEvaluatorBaseTy(info), Result(result) {} |
| |
| bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { |
| assert(E->getType()->isIntegralOrEnumerationType() && |
| "Invalid evaluation result."); |
| assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && |
| "Invalid evaluation result."); |
| assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| "Invalid evaluation result."); |
| Result = APValue(SI); |
| return true; |
| } |
| bool Success(const llvm::APSInt &SI, const Expr *E) { |
| return Success(SI, E, Result); |
| } |
| |
| bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { |
| assert(E->getType()->isIntegralOrEnumerationType() && |
| "Invalid evaluation result."); |
| assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| "Invalid evaluation result."); |
| Result = APValue(APSInt(I)); |
| Result.getInt().setIsUnsigned( |
| E->getType()->isUnsignedIntegerOrEnumerationType()); |
| return true; |
| } |
| bool Success(const llvm::APInt &I, const Expr *E) { |
| return Success(I, E, Result); |
| } |
| |
| bool Success(uint64_t Value, const Expr *E, APValue &Result) { |
| assert(E->getType()->isIntegralOrEnumerationType() && |
| "Invalid evaluation result."); |
| Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); |
| return true; |
| } |
| bool Success(uint64_t Value, const Expr *E) { |
| return Success(Value, E, Result); |
| } |
| |
| bool Success(CharUnits Size, const Expr *E) { |
| return Success(Size.getQuantity(), E); |
| } |
| |
| bool Success(const APValue &V, const Expr *E) { |
| if (V.isLValue() || V.isAddrLabelDiff()) { |
| Result = V; |
| return true; |
| } |
| return Success(V.getInt(), E); |
| } |
| |
| bool ZeroInitialization(const Expr *E) { return Success(0, E); } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitIntegerLiteral(const IntegerLiteral *E) { |
| return Success(E->getValue(), E); |
| } |
| bool VisitCharacterLiteral(const CharacterLiteral *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool CheckReferencedDecl(const Expr *E, const Decl *D); |
| bool VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (CheckReferencedDecl(E, E->getDecl())) |
| return true; |
| |
| return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); |
| } |
| bool VisitMemberExpr(const MemberExpr *E) { |
| if (CheckReferencedDecl(E, E->getMemberDecl())) { |
| VisitIgnoredBaseExpression(E->getBase()); |
| return true; |
| } |
| |
| return ExprEvaluatorBaseTy::VisitMemberExpr(E); |
| } |
| |
| bool VisitCallExpr(const CallExpr *E); |
| bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitOffsetOfExpr(const OffsetOfExpr *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| |
| bool VisitCastExpr(const CastExpr* E); |
| bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); |
| |
| bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { |
| if (Info.ArrayInitIndex == uint64_t(-1)) { |
| // We were asked to evaluate this subexpression independent of the |
| // enclosing ArrayInitLoopExpr. We can't do that. |
| Info.FFDiag(E); |
| return false; |
| } |
| return Success(Info.ArrayInitIndex, E); |
| } |
| |
| // Note, GNU defines __null as an integer, not a pointer. |
| bool VisitGNUNullExpr(const GNUNullExpr *E) { |
| return ZeroInitialization(E); |
| } |
| |
| bool VisitTypeTraitExpr(const TypeTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitUnaryReal(const UnaryOperator *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| |
| bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); |
| bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); |
| |
| // FIXME: Missing: array subscript of vector, member of vector |
| }; |
| |
| class FixedPointExprEvaluator |
| : public ExprEvaluatorBase<FixedPointExprEvaluator> { |
| APValue &Result; |
| |
| public: |
| FixedPointExprEvaluator(EvalInfo &info, APValue &result) |
| : ExprEvaluatorBaseTy(info), Result(result) {} |
| |
| bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { |
| assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); |
| assert(SI.isSigned() == E->getType()->isSignedFixedPointType() && |
| "Invalid evaluation result."); |
| assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| "Invalid evaluation result."); |
| Result = APValue(SI); |
| return true; |
| } |
| bool Success(const llvm::APSInt &SI, const Expr *E) { |
| return Success(SI, E, Result); |
| } |
| |
| bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { |
| assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); |
| assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| "Invalid evaluation result."); |
| Result = APValue(APSInt(I)); |
| Result.getInt().setIsUnsigned(E->getType()->isUnsignedFixedPointType()); |
| return true; |
| } |
| bool Success(const llvm::APInt &I, const Expr *E) { |
| return Success(I, E, Result); |
| } |
| |
| bool Success(uint64_t Value, const Expr *E, APValue &Result) { |
| assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); |
| Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); |
| return true; |
| } |
| bool Success(uint64_t Value, const Expr *E) { |
| return Success(Value, E, Result); |
| } |
| |
| bool Success(CharUnits Size, const Expr *E) { |
| return Success(Size.getQuantity(), E); |
| } |
| |
| bool Success(const APValue &V, const Expr *E) { |
| if (V.isLValue() || V.isAddrLabelDiff()) { |
| Result = V; |
| return true; |
| } |
| return Success(V.getInt(), E); |
| } |
| |
| bool ZeroInitialization(const Expr *E) { return Success(0, E); } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitFixedPointLiteral(const FixedPointLiteral *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| }; |
| } // end anonymous namespace |
| |
| /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and |
| /// produce either the integer value or a pointer. |
| /// |
| /// GCC has a heinous extension which folds casts between pointer types and |
| /// pointer-sized integral types. We support this by allowing the evaluation of |
| /// an integer rvalue to produce a pointer (represented as an lvalue) instead. |
| /// Some simple arithmetic on such values is supported (they are treated much |
| /// like char*). |
| static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
| EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType()); |
| return IntExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { |
| APValue Val; |
| if (!EvaluateIntegerOrLValue(E, Val, Info)) |
| return false; |
| if (!Val.isInt()) { |
| // FIXME: It would be better to produce the diagnostic for casting |
| // a pointer to an integer. |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| Result = Val.getInt(); |
| return true; |
| } |
| |
| /// Check whether the given declaration can be directly converted to an integral |
| /// rvalue. If not, no diagnostic is produced; there are other things we can |
| /// try. |
| bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { |
| // Enums are integer constant exprs. |
| if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { |
| // Check for signedness/width mismatches between E type and ECD value. |
| bool SameSign = (ECD->getInitVal().isSigned() |
| == E->getType()->isSignedIntegerOrEnumerationType()); |
| bool SameWidth = (ECD->getInitVal().getBitWidth() |
| == Info.Ctx.getIntWidth(E->getType())); |
| if (SameSign && SameWidth) |
| return Success(ECD->getInitVal(), E); |
| else { |
| // Get rid of mismatch (otherwise Success assertions will fail) |
| // by computing a new value matching the type of E. |
| llvm::APSInt Val = ECD->getInitVal(); |
| if (!SameSign) |
| Val.setIsSigned(!ECD->getInitVal().isSigned()); |
| if (!SameWidth) |
| Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); |
| return Success(Val, E); |
| } |
| } |
| return false; |
| } |
| |
| /// Values returned by __builtin_classify_type, chosen to match the values |
| /// produced by GCC's builtin. |
| enum class GCCTypeClass { |
| None = -1, |
| Void = 0, |
| Integer = 1, |
| // GCC reserves 2 for character types, but instead classifies them as |
| // integers. |
| Enum = 3, |
| Bool = 4, |
| Pointer = 5, |
| // GCC reserves 6 for references, but appears to never use it (because |
| // expressions never have reference type, presumably). |
| PointerToDataMember = 7, |
| RealFloat = 8, |
| Complex = 9, |
| // GCC reserves 10 for functions, but does not use it since GCC version 6 due |
| // to decay to pointer. (Prior to version 6 it was only used in C++ mode). |
| // GCC claims to reserve 11 for pointers to member functions, but *actually* |
| // uses 12 for that purpose, same as for a class or struct. Maybe it |
| // internally implements a pointer to member as a struct? Who knows. |
| PointerToMemberFunction = 12, // Not a bug, see above. |
| ClassOrStruct = 12, |
| Union = 13, |
| // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to |
| // decay to pointer. (Prior to version 6 it was only used in C++ mode). |
| // GCC reserves 15 for strings, but actually uses 5 (pointer) for string |
| // literals. |
| }; |
| |
| /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
| /// as GCC. |
| static GCCTypeClass |
| EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) { |
| assert(!T->isDependentType() && "unexpected dependent type"); |
| |
| QualType CanTy = T.getCanonicalType(); |
| const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy); |
| |
| switch (CanTy->getTypeClass()) { |
| #define TYPE(ID, BASE) |
| #define DEPENDENT_TYPE(ID, BASE) case Type::ID: |
| #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: |
| #include "clang/AST/TypeNodes.def" |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| llvm_unreachable("unexpected non-canonical or dependent type"); |
| |
| case Type::Builtin: |
| switch (BT->getKind()) { |
| #define BUILTIN_TYPE(ID, SINGLETON_ID) |
| #define SIGNED_TYPE(ID, SINGLETON_ID) \ |
| case BuiltinType::ID: return GCCTypeClass::Integer; |
| #define FLOATING_TYPE(ID, SINGLETON_ID) \ |
| case BuiltinType::ID: return GCCTypeClass::RealFloat; |
| #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ |
| case BuiltinType::ID: break; |
| #include "clang/AST/BuiltinTypes.def" |
| case BuiltinType::Void: |
| return GCCTypeClass::Void; |
| |
| case BuiltinType::Bool: |
| return GCCTypeClass::Bool; |
| |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| case BuiltinType::WChar_U: |
| case BuiltinType::Char8: |
| case BuiltinType::Char16: |
| case BuiltinType::Char32: |
| case BuiltinType::UShort: |
| case BuiltinType::UInt: |
| case BuiltinType::ULong: |
| case BuiltinType::ULongLong: |
| case BuiltinType::UInt128: |
| return GCCTypeClass::Integer; |
| |
| case BuiltinType::UShortAccum: |
| case BuiltinType::UAccum: |
| case BuiltinType::ULongAccum: |
| case BuiltinType::UShortFract: |
| case BuiltinType::UFract: |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatUShortAccum: |
| case BuiltinType::SatUAccum: |
| case BuiltinType::SatULongAccum: |
| case BuiltinType::SatUShortFract: |
| case BuiltinType::SatUFract: |
| case BuiltinType::SatULongFract: |
| return GCCTypeClass::None; |
| |
| case BuiltinType::NullPtr: |
| |
| case BuiltinType::ObjCId: |
| case BuiltinType::ObjCClass: |
| case BuiltinType::ObjCSel: |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLImageTypes.def" |
| case BuiltinType::OCLSampler: |
| case BuiltinType::OCLEvent: |
| case BuiltinType::OCLClkEvent: |
| case BuiltinType::OCLQueue: |
| case BuiltinType::OCLReserveID: |
| return GCCTypeClass::None; |
| |
| case BuiltinType::Dependent: |
| llvm_unreachable("unexpected dependent type"); |
| }; |
| llvm_unreachable("unexpected placeholder type"); |
| |
| case Type::Enum: |
| return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; |
| |
| case Type::Pointer: |
| case Type::ConstantArray: |
| case Type::VariableArray: |
| case Type::IncompleteArray: |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| return GCCTypeClass::Pointer; |
| |
| case Type::MemberPointer: |
| return CanTy->isMemberDataPointerType() |
| ? GCCTypeClass::PointerToDataMember |
| : GCCTypeClass::PointerToMemberFunction; |
| |
| case Type::Complex: |
| return GCCTypeClass::Complex; |
| |
| case Type::Record: |
| return CanTy->isUnionType() ? GCCTypeClass::Union |
| : GCCTypeClass::ClassOrStruct; |
| |
| case Type::Atomic: |
| // GCC classifies _Atomic T the same as T. |
| return EvaluateBuiltinClassifyType( |
| CanTy->castAs<AtomicType>()->getValueType(), LangOpts); |
| |
| case Type::BlockPointer: |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::Pipe: |
| // GCC classifies vectors as None. We follow its lead and classify all |
| // other types that don't fit into the regular classification the same way. |
| return GCCTypeClass::None; |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| llvm_unreachable("invalid type for expression"); |
| } |
| |
| llvm_unreachable("unexpected type class"); |
| } |
| |
| /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
| /// as GCC. |
| static GCCTypeClass |
| EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { |
| // If no argument was supplied, default to None. This isn't |
| // ideal, however it is what gcc does. |
| if (E->getNumArgs() == 0) |
| return GCCTypeClass::None; |
| |
| // FIXME: Bizarrely, GCC treats a call with more than one argument as not |
| // being an ICE, but still folds it to a constant using the type of the first |
| // argument. |
| return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); |
| } |
| |
| /// EvaluateBuiltinConstantPForLValue - Determine the result of |
| /// __builtin_constant_p when applied to the given lvalue. |
| /// |
| /// An lvalue is only "constant" if it is a pointer or reference to the first |
| /// character of a string literal. |
| template<typename LValue> |
| static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) { |
| const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>(); |
| return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero(); |
| } |
| |
| /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to |
| /// GCC as we can manage. |
| static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) { |
| QualType ArgType = Arg->getType(); |
| |
| // __builtin_constant_p always has one operand. The rules which gcc follows |
| // are not precisely documented, but are as follows: |
| // |
| // - If the operand is of integral, floating, complex or enumeration type, |
| // and can be folded to a known value of that type, it returns 1. |
| // - If the operand and can be folded to a pointer to the first character |
| // of a string literal (or such a pointer cast to an integral type), it |
| // returns 1. |
| // |
| // Otherwise, it returns 0. |
| // |
| // FIXME: GCC also intends to return 1 for literals of aggregate types, but |
| // its support for this does not currently work. |
| if (ArgType->isIntegralOrEnumerationType()) { |
| Expr::EvalResult Result; |
| if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects) |
| return false; |
| |
| APValue &V = Result.Val; |
| if (V.getKind() == APValue::Int) |
| return true; |
| if (V.getKind() == APValue::LValue) |
| return EvaluateBuiltinConstantPForLValue(V); |
| } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) { |
| return Arg->isEvaluatable(Ctx); |
| } else if (ArgType->isPointerType() || Arg->isGLValue()) { |
| LValue LV; |
| Expr::EvalStatus Status; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
| if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info) |
| : EvaluatePointer(Arg, LV, Info)) && |
| !Status.HasSideEffects) |
| return EvaluateBuiltinConstantPForLValue(LV); |
| } |
| |
| // Anything else isn't considered to be sufficiently constant. |
| return false; |
| } |
| |
| /// Retrieves the "underlying object type" of the given expression, |
| /// as used by __builtin_object_size. |
| static QualType getObjectType(APValue::LValueBase B) { |
| if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| return VD->getType(); |
| } else if (const Expr *E = B.get<const Expr*>()) { |
| if (isa<CompoundLiteralExpr>(E)) |
| return E->getType(); |
| } |
| |
| return QualType(); |
| } |
| |
| /// A more selective version of E->IgnoreParenCasts for |
| /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only |
| /// to change the type of E. |
| /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` |
| /// |
| /// Always returns an RValue with a pointer representation. |
| static const Expr *ignorePointerCastsAndParens(const Expr *E) { |
| assert(E->isRValue() && E->getType()->hasPointerRepresentation()); |
| |
| auto *NoParens = E->IgnoreParens(); |
| auto *Cast = dyn_cast<CastExpr>(NoParens); |
| if (Cast == nullptr) |
| return NoParens; |
| |
| // We only conservatively allow a few kinds of casts, because this code is |
| // inherently a simple solution that seeks to support the common case. |
| auto CastKind = Cast->getCastKind(); |
| if (CastKind != CK_NoOp && CastKind != CK_BitCast && |
| CastKind != CK_AddressSpaceConversion) |
| return NoParens; |
| |
| auto *SubExpr = Cast->getSubExpr(); |
| if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue()) |
| return NoParens; |
| return ignorePointerCastsAndParens(SubExpr); |
| } |
| |
| /// Checks to see if the given LValue's Designator is at the end of the LValue's |
| /// record layout. e.g. |
| /// struct { struct { int a, b; } fst, snd; } obj; |
| /// obj.fst // no |
| /// obj.snd // yes |
| /// obj.fst.a // no |
| /// obj.fst.b // no |
| /// obj.snd.a // no |
| /// obj.snd.b // yes |
| /// |
| /// Please note: this function is specialized for how __builtin_object_size |
| /// views "objects". |
| /// |
| /// If this encounters an invalid RecordDecl or otherwise cannot determine the |
| /// correct result, it will always return true. |
| static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { |
| assert(!LVal.Designator.Invalid); |
| |
| auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { |
| const RecordDecl *Parent = FD->getParent(); |
| Invalid = Parent->isInvalidDecl(); |
| if (Invalid || Parent->isUnion()) |
| return true; |
| const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); |
| return FD->getFieldIndex() + 1 == Layout.getFieldCount(); |
| }; |
| |
| auto &Base = LVal.getLValueBase(); |
| if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { |
| if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { |
| bool Invalid; |
| if (!IsLastOrInvalidFieldDecl(FD, Invalid)) |
| return Invalid; |
| } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { |
| for (auto *FD : IFD->chain()) { |
| bool Invalid; |
| if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) |
| return Invalid; |
| } |
| } |
| } |
| |
| unsigned I = 0; |
| QualType BaseType = getType(Base); |
| if (LVal.Designator.FirstEntryIsAnUnsizedArray) { |
| // If we don't know the array bound, conservatively assume we're looking at |
| // the final array element. |
| ++I; |
| if (BaseType->isIncompleteArrayType()) |
| BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); |
| else |
| BaseType = BaseType->castAs<PointerType>()->getPointeeType(); |
| } |
| |
| for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { |
| const auto &Entry = LVal.Designator.Entries[I]; |
| if (BaseType->isArrayType()) { |
| // Because __builtin_object_size treats arrays as objects, we can ignore |
| // the index iff this is the last array in the Designator. |
| if (I + 1 == E) |
| return true; |
| const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); |
| uint64_t Index = Entry.ArrayIndex; |
| if (Index + 1 != CAT->getSize()) |
| return false; |
| BaseType = CAT->getElementType(); |
| } else if (BaseType->isAnyComplexType()) { |
| const auto *CT = BaseType->castAs<ComplexType>(); |
| uint64_t Index = Entry.ArrayIndex; |
| if (Index != 1) |
| return false; |
| BaseType = CT->getElementType(); |
| } else if (auto *FD = getAsField(Entry)) { |
| bool Invalid; |
| if (!IsLastOrInvalidFieldDecl(FD, Invalid)) |
| return Invalid; |
| BaseType = FD->getType(); |
| } else { |
| assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// Tests to see if the LValue has a user-specified designator (that isn't |
| /// necessarily valid). Note that this always returns 'true' if the LValue has |
| /// an unsized array as its first designator entry, because there's currently no |
| /// way to tell if the user typed *foo or foo[0]. |
| static bool refersToCompleteObject(const LValue &LVal) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| if (!LVal.Designator.Entries.empty()) |
| return LVal.Designator.isMostDerivedAnUnsizedArray(); |
| |
| if (!LVal.InvalidBase) |
| return true; |
| |
| // If `E` is a MemberExpr, then the first part of the designator is hiding in |
| // the LValueBase. |
| const auto *E = LVal.Base.dyn_cast<const Expr *>(); |
| return !E || !isa<MemberExpr>(E); |
| } |
| |
| /// Attempts to detect a user writing into a piece of memory that's impossible |
| /// to figure out the size of by just using types. |
| static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { |
| const SubobjectDesignator &Designator = LVal.Designator; |
| // Notes: |
| // - Users can only write off of the end when we have an invalid base. Invalid |
| // bases imply we don't know where the memory came from. |
| // - We used to be a bit more aggressive here; we'd only be conservative if |
| // the array at the end was flexible, or if it had 0 or 1 elements. This |
| // broke some common standard library extensions (PR30346), but was |
| // otherwise seemingly fine. It may be useful to reintroduce this behavior |
| // with some sort of whitelist. OTOH, it seems that GCC is always |
| // conservative with the last element in structs (if it's an array), so our |
| // current behavior is more compatible than a whitelisting approach would |
| // be. |
| return LVal.InvalidBase && |
| Designator.Entries.size() == Designator.MostDerivedPathLength && |
| Designator.MostDerivedIsArrayElement && |
| isDesignatorAtObjectEnd(Ctx, LVal); |
| } |
| |
| /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. |
| /// Fails if the conversion would cause loss of precision. |
| static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, |
| CharUnits &Result) { |
| auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); |
| if (Int.ugt(CharUnitsMax)) |
| return false; |
| Result = CharUnits::fromQuantity(Int.getZExtValue()); |
| return true; |
| } |
| |
| /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will |
| /// determine how many bytes exist from the beginning of the object to either |
| /// the end of the current subobject, or the end of the object itself, depending |
| /// on what the LValue looks like + the value of Type. |
| /// |
| /// If this returns false, the value of Result is undefined. |
| static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, |
| unsigned Type, const LValue &LVal, |
| CharUnits &EndOffset) { |
| bool DetermineForCompleteObject = refersToCompleteObject(LVal); |
| |
| auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { |
| if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) |
| return false; |
| return HandleSizeof(Info, ExprLoc, Ty, Result); |
| }; |
| |
| // We want to evaluate the size of the entire object. This is a valid fallback |
| // for when Type=1 and the designator is invalid, because we're asked for an |
| // upper-bound. |
| if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { |
| // Type=3 wants a lower bound, so we can't fall back to this. |
| if (Type == 3 && !DetermineForCompleteObject) |
| return false; |
| |
| llvm::APInt APEndOffset; |
| if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
| getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) |
| return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); |
| |
| if (LVal.InvalidBase) |
| return false; |
| |
| QualType BaseTy = getObjectType(LVal.getLValueBase()); |
| return CheckedHandleSizeof(BaseTy, EndOffset); |
| } |
| |
| // We want to evaluate the size of a subobject. |
| const SubobjectDesignator &Designator = LVal.Designator; |
| |
| // The following is a moderately common idiom in C: |
| // |
| // struct Foo { int a; char c[1]; }; |
| // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); |
| // strcpy(&F->c[0], Bar); |
| // |
| // In order to not break too much legacy code, we need to support it. |
| if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { |
| // If we can resolve this to an alloc_size call, we can hand that back, |
| // because we know for certain how many bytes there are to write to. |
| llvm::APInt APEndOffset; |
| if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
| getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) |
| return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); |
| |
| // If we cannot determine the size of the initial allocation, then we can't |
| // given an accurate upper-bound. However, we are still able to give |
| // conservative lower-bounds for Type=3. |
| if (Type == 1) |
| return false; |
| } |
| |
| CharUnits BytesPerElem; |
| if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) |
| return false; |
| |
| // According to the GCC documentation, we want the size of the subobject |
| // denoted by the pointer. But that's not quite right -- what we actually |
| // want is the size of the immediately-enclosing array, if there is one. |
| int64_t ElemsRemaining; |
| if (Designator.MostDerivedIsArrayElement && |
| Designator.Entries.size() == Designator.MostDerivedPathLength) { |
| uint64_t ArraySize = Designator.getMostDerivedArraySize(); |
| uint64_t ArrayIndex = Designator.Entries.back().ArrayIndex; |
| ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; |
| } else { |
| ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; |
| } |
| |
| EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; |
| return true; |
| } |
| |
| /// Tries to evaluate the __builtin_object_size for @p E. If successful, |
| /// returns true and stores the result in @p Size. |
| /// |
| /// If @p WasError is non-null, this will report whether the failure to evaluate |
| /// is to be treated as an Error in IntExprEvaluator. |
| static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, |
| EvalInfo &Info, uint64_t &Size) { |
| // Determine the denoted object. |
| LValue LVal; |
| { |
| // The operand of __builtin_object_size is never evaluated for side-effects. |
| // If there are any, but we can determine the pointed-to object anyway, then |
| // ignore the side-effects. |
| SpeculativeEvaluationRAII SpeculativeEval(Info); |
| FoldOffsetRAII Fold(Info); |
| |
| if (E->isGLValue()) { |
| // It's possible for us to be given GLValues if we're called via |
| // Expr::tryEvaluateObjectSize. |
| APValue RVal; |
| if (!EvaluateAsRValue(Info, E, RVal)) |
| return false; |
| LVal.setFrom(Info.Ctx, RVal); |
| } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, |
| /*InvalidBaseOK=*/true)) |
| return false; |
| } |
| |
| // If we point to before the start of the object, there are no accessible |
| // bytes. |
| if (LVal.getLValueOffset().isNegative()) { |
| Size = 0; |
| return true; |
| } |
| |
| CharUnits EndOffset; |
| if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) |
| return false; |
| |
| // If we've fallen outside of the end offset, just pretend there's nothing to |
| // write to/read from. |
| if (EndOffset <= LVal.getLValueOffset()) |
| Size = 0; |
| else |
| Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); |
| return true; |
| } |
| |
| bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| if (unsigned BuiltinOp = E->getBuiltinCallee()) |
| return VisitBuiltinCallExpr(E, BuiltinOp); |
| |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| } |
| |
| bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, |
| unsigned BuiltinOp) { |
| switch (unsigned BuiltinOp = E->getBuiltinCallee()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| |
| case Builtin::BI__builtin_object_size: { |
| // The type was checked when we built the expression. |
| unsigned Type = |
| E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); |
| assert(Type <= 3 && "unexpected type"); |
| |
| uint64_t Size; |
| if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) |
| return Success(Size, E); |
| |
| if (E->getArg(0)->HasSideEffects(Info.Ctx)) |
| return Success((Type & 2) ? 0 : -1, E); |
| |
| // Expression had no side effects, but we couldn't statically determine the |
| // size of the referenced object. |
| switch (Info.EvalMode) { |
| case EvalInfo::EM_ConstantExpression: |
| case EvalInfo::EM_PotentialConstantExpression: |
| case EvalInfo::EM_ConstantFold: |
| case EvalInfo::EM_EvaluateForOverflow: |
| case EvalInfo::EM_IgnoreSideEffects: |
| case EvalInfo::EM_OffsetFold: |
| // Leave it to IR generation. |
| return Error(E); |
| case EvalInfo::EM_ConstantExpressionUnevaluated: |
| case EvalInfo::EM_PotentialConstantExpressionUnevaluated: |
| // Reduce it to a constant now. |
| return Success((Type & 2) ? 0 : -1, E); |
| } |
| |
| llvm_unreachable("unexpected EvalMode"); |
| } |
| |
| case Builtin::BI__builtin_bswap16: |
| case Builtin::BI__builtin_bswap32: |
| case Builtin::BI__builtin_bswap64: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| return Success(Val.byteSwap(), E); |
| } |
| |
| case Builtin::BI__builtin_classify_type: |
| return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); |
| |
| // FIXME: BI__builtin_clrsb |
| // FIXME: BI__builtin_clrsbl |
| // FIXME: BI__builtin_clrsbll |
| |
| case Builtin::BI__builtin_clz: |
| case Builtin::BI__builtin_clzl: |
| case Builtin::BI__builtin_clzll: |
| case Builtin::BI__builtin_clzs: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| if (!Val) |
| return Error(E); |
| |
| return Success(Val.countLeadingZeros(), E); |
| } |
| |
| case Builtin::BI__builtin_constant_p: |
| return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E); |
| |
| case Builtin::BI__builtin_ctz: |
| case Builtin::BI__builtin_ctzl: |
| case Builtin::BI__builtin_ctzll: |
| case Builtin::BI__builtin_ctzs: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| if (!Val) |
| return Error(E); |
| |
| return Success(Val.countTrailingZeros(), E); |
| } |
| |
| case Builtin::BI__builtin_eh_return_data_regno: { |
| int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); |
| Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); |
| return Success(Operand, E); |
| } |
| |
| case Builtin::BI__builtin_expect: |
| return Visit(E->getArg(0)); |
| |
| case Builtin::BI__builtin_ffs: |
| case Builtin::BI__builtin_ffsl: |
| case Builtin::BI__builtin_ffsll: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| unsigned N = Val.countTrailingZeros(); |
| return Success(N == Val.getBitWidth() ? 0 : N + 1, E); |
| } |
| |
| case Builtin::BI__builtin_fpclassify: { |
| APFloat Val(0.0); |
| if (!EvaluateFloat(E->getArg(5), Val, Info)) |
| return false; |
| unsigned Arg; |
| switch (Val.getCategory()) { |
| case APFloat::fcNaN: Arg = 0; break; |
| case APFloat::fcInfinity: Arg = 1; break; |
| case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; |
| case APFloat::fcZero: Arg = 4; break; |
| } |
| return Visit(E->getArg(Arg)); |
| } |
| |
| case Builtin::BI__builtin_isinf_sign: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isinf: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isInfinity() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isfinite: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isFinite() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isnan: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isNaN() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isnormal: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isNormal() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_parity: |
| case Builtin::BI__builtin_parityl: |
| case Builtin::BI__builtin_parityll: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| return Success(Val.countPopulation() % 2, E); |
| } |
| |
| case Builtin::BI__builtin_popcount: |
| case Builtin::BI__builtin_popcountl: |
| case Builtin::BI__builtin_popcountll: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| return Success(Val.countPopulation(), E); |
| } |
| |
| case Builtin::BIstrlen: |
| case Builtin::BIwcslen: |
| // A call to strlen is not a constant expression. |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
| << /*isConstexpr*/0 << /*isConstructor*/0 |
| << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); |
| else |
| Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| LLVM_FALLTHROUGH; |
| case Builtin::BI__builtin_strlen: |
| case Builtin::BI__builtin_wcslen: { |
| // As an extension, we support __builtin_strlen() as a constant expression, |
| // and support folding strlen() to a constant. |
| LValue String; |
| if (!EvaluatePointer(E->getArg(0), String, Info)) |
| return false; |
| |
| QualType CharTy = E->getArg(0)->getType()->getPointeeType(); |
| |
| // Fast path: if it's a string literal, search the string value. |
| if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( |
| String.getLValueBase().dyn_cast<const Expr *>())) { |
| // The string literal may have embedded null characters. Find the first |
| // one and truncate there. |
| StringRef Str = S->getBytes(); |
| int64_t Off = String.Offset.getQuantity(); |
| if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && |
| S->getCharByteWidth() == 1 && |
| // FIXME: Add fast-path for wchar_t too. |
| Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { |
| Str = Str.substr(Off); |
| |
| StringRef::size_type Pos = Str.find(0); |
| if (Pos != StringRef::npos) |
| Str = Str.substr(0, Pos); |
| |
| return Success(Str.size(), E); |
| } |
| |
| // Fall through to slow path to issue appropriate diagnostic. |
| } |
| |
| // Slow path: scan the bytes of the string looking for the terminating 0. |
| for (uint64_t Strlen = 0; /**/; ++Strlen) { |
| APValue Char; |
| if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || |
| !Char.isInt()) |
| return false; |
| if (!Char.getInt()) |
| return Success(Strlen, E); |
| if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) |
| return false; |
| } |
| } |
| |
| case Builtin::BIstrcmp: |
| case Builtin::BIwcscmp: |
| case Builtin::BIstrncmp: |
| case Builtin::BIwcsncmp: |
| case Builtin::BImemcmp: |
| case Builtin::BIwmemcmp: |
| // A call to strlen is not a constant expression. |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
| << /*isConstexpr*/0 << /*isConstructor*/0 |
| << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); |
| else |
| Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| LLVM_FALLTHROUGH; |
| case Builtin::BI__builtin_strcmp: |
| case Builtin::BI__builtin_wcscmp: |
| case Builtin::BI__builtin_strncmp: |
| case Builtin::BI__builtin_wcsncmp: |
| case Builtin::BI__builtin_memcmp: |
| case Builtin::BI__builtin_wmemcmp: { |
| LValue String1, String2; |
| if (!EvaluatePointer(E->getArg(0), String1, Info) || |
| !EvaluatePointer(E->getArg(1), String2, Info)) |
| return false; |
| |
| QualType CharTy = E->getArg(0)->getType()->getPointeeType(); |
| |
| uint64_t MaxLength = uint64_t(-1); |
| if (BuiltinOp != Builtin::BIstrcmp && |
| BuiltinOp != Builtin::BIwcscmp && |
| BuiltinOp != Builtin::BI__builtin_strcmp && |
| BuiltinOp != Builtin::BI__builtin_wcscmp) { |
| APSInt N; |
| if (!EvaluateInteger(E->getArg(2), N, Info)) |
| return false; |
| MaxLength = N.getExtValue(); |
| } |
| bool StopAtNull = (BuiltinOp != Builtin::BImemcmp && |
| BuiltinOp != Builtin::BIwmemcmp && |
| BuiltinOp != Builtin::BI__builtin_memcmp && |
| BuiltinOp != Builtin::BI__builtin_wmemcmp); |
| bool IsWide = BuiltinOp == Builtin::BIwcscmp || |
| BuiltinOp == Builtin::BIwcsncmp || |
| BuiltinOp == Builtin::BIwmemcmp || |
| BuiltinOp == Builtin::BI__builtin_wcscmp || |
| BuiltinOp == Builtin::BI__builtin_wcsncmp || |
| BuiltinOp == Builtin::BI__builtin_wmemcmp; |
| for (; MaxLength; --MaxLength) { |
| APValue Char1, Char2; |
| if (!handleLValueToRValueConversion(Info, E, CharTy, String1, Char1) || |
| !handleLValueToRValueConversion(Info, E, CharTy, String2, Char2) || |
| !Char1.isInt() || !Char2.isInt()) |
| return false; |
| if (Char1.getInt() != Char2.getInt()) { |
| if (IsWide) // wmemcmp compares with wchar_t signedness. |
| return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); |
| // memcmp always compares unsigned chars. |
| return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); |
| } |
| if (StopAtNull && !Char1.getInt()) |
| return Success(0, E); |
| assert(!(StopAtNull && !Char2.getInt())); |
| if (!HandleLValueArrayAdjustment(Info, E, String1, CharTy, 1) || |
| !HandleLValueArrayAdjustment(Info, E, String2, CharTy, 1)) |
| return false; |
| } |
| // We hit the strncmp / memcmp limit. |
| return Success(0, E); |
| } |
| |
| case Builtin::BI__atomic_always_lock_free: |
| case Builtin::BI__atomic_is_lock_free: |
| case Builtin::BI__c11_atomic_is_lock_free: { |
| APSInt SizeVal; |
| if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) |
| return false; |
| |
| // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power |
| // of two less than the maximum inline atomic width, we know it is |
| // lock-free. If the size isn't a power of two, or greater than the |
| // maximum alignment where we promote atomics, we know it is not lock-free |
| // (at least not in the sense of atomic_is_lock_free). Otherwise, |
| // the answer can only be determined at runtime; for example, 16-byte |
| // atomics have lock-free implementations on some, but not all, |
| // x86-64 processors. |
| |
| // Check power-of-two. |
| CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); |
| if (Size.isPowerOfTwo()) { |
| // Check against inlining width. |
| unsigned InlineWidthBits = |
| Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); |
| if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { |
| if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || |
| Size == CharUnits::One() || |
| E->getArg(1)->isNullPointerConstant(Info.Ctx, |
| Expr::NPC_NeverValueDependent)) |
| // OK, we will inline appropriately-aligned operations of this size, |
| // and _Atomic(T) is appropriately-aligned. |
| return Success(1, E); |
| |
| QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()-> |
| castAs<PointerType>()->getPointeeType(); |
| if (!PointeeType->isIncompleteType() && |
| Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { |
| // OK, we will inline operations on this object. |
| return Success(1, E); |
| } |
| } |
| } |
| |
| return BuiltinOp == Builtin::BI__atomic_always_lock_free ? |
| Success(0, E) : Error(E); |
| } |
| case Builtin::BIomp_is_initial_device: |
| // We can decide statically which value the runtime would return if called. |
| return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E); |
| case Builtin::BI__builtin_add_overflow: |
| case Builtin::BI__builtin_sub_overflow: |
| case Builtin::BI__builtin_mul_overflow: |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: { |
| LValue ResultLValue; |
| APSInt LHS, RHS; |
| |
| QualType ResultType = E->getArg(2)->getType()->getPointeeType(); |
| if (!EvaluateInteger(E->getArg(0), LHS, Info) || |
| !EvaluateInteger(E->getArg(1), RHS, Info) || |
| !EvaluatePointer(E->getArg(2), ResultLValue, Info)) |
| return false; |
| |
| APSInt Result; |
| bool DidOverflow = false; |
| |
| // If the types don't have to match, enlarge all 3 to the largest of them. |
| if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
| BuiltinOp == Builtin::BI__builtin_sub_overflow || |
| BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
| bool IsSigned = LHS.isSigned() || RHS.isSigned() || |
| ResultType->isSignedIntegerOrEnumerationType(); |
| bool AllSigned = LHS.isSigned() && RHS.isSigned() && |
| ResultType->isSignedIntegerOrEnumerationType(); |
| uint64_t LHSSize = LHS.getBitWidth(); |
| uint64_t RHSSize = RHS.getBitWidth(); |
| uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); |
| uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); |
| |
| // Add an additional bit if the signedness isn't uniformly agreed to. We |
| // could do this ONLY if there is a signed and an unsigned that both have |
| // MaxBits, but the code to check that is pretty nasty. The issue will be |
| // caught in the shrink-to-result later anyway. |
| if (IsSigned && !AllSigned) |
| ++MaxBits; |
| |
| LHS = APSInt(IsSigned ? LHS.sextOrSelf(MaxBits) : LHS.zextOrSelf(MaxBits), |
| !IsSigned); |
| RHS = APSInt(IsSigned ? RHS.sextOrSelf(MaxBits) : RHS.zextOrSelf(MaxBits), |
| !IsSigned); |
| Result = APSInt(MaxBits, !IsSigned); |
| } |
| |
| // Find largest int. |
| switch (BuiltinOp) { |
| default: |
| llvm_unreachable("Invalid value for BuiltinOp"); |
| case Builtin::BI__builtin_add_overflow: |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) |
| : LHS.uadd_ov(RHS, DidOverflow); |
| break; |
| case Builtin::BI__builtin_sub_overflow: |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) |
| : LHS.usub_ov(RHS, DidOverflow); |
| break; |
| case Builtin::BI__builtin_mul_overflow: |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) |
| : LHS.umul_ov(RHS, DidOverflow); |
| break; |
| } |
| |
| // In the case where multiple sizes are allowed, truncate and see if |
| // the values are the same. |
| if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
| BuiltinOp == Builtin::BI__builtin_sub_overflow || |
| BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
| // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, |
| // since it will give us the behavior of a TruncOrSelf in the case where |
| // its parameter <= its size. We previously set Result to be at least the |
| // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth |
| // will work exactly like TruncOrSelf. |
| APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); |
| Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); |
| |
| if (!APSInt::isSameValue(Temp, Result)) |
| DidOverflow = true; |
| Result = Temp; |
| } |
| |
| APValue APV{Result}; |
| if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) |
| return false; |
| return Success(DidOverflow, E); |
| } |
| } |
| } |
| |
| static bool HasSameBase(const LValue &A, const LValue &B) { |
| if (!A.getLValueBase()) |
| return !B.getLValueBase(); |
| if (!B.getLValueBase()) |
| return false; |
| |
| if (A.getLValueBase().getOpaqueValue() != |
| B.getLValueBase().getOpaqueValue()) { |
| const Decl *ADecl = GetLValueBaseDecl(A); |
| if (!ADecl) |
| return false; |
| const Decl *BDecl = GetLValueBaseDecl(B); |
| if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl()) |
| return false; |
| } |
| |
| return IsGlobalLValue(A.getLValueBase()) || |
| (A.getLValueCallIndex() == B.getLValueCallIndex() && |
| A.getLValueVersion() == B.getLValueVersion()); |
| } |
| |
| /// Determine whether this is a pointer past the end of the complete |
| /// object referred to by the lvalue. |
| static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, |
| const LValue &LV) { |
| // A null pointer can be viewed as being "past the end" but we don't |
| // choose to look at it that way here. |
| if (!LV.getLValueBase()) |
| return false; |
| |
| // If the designator is valid and refers to a subobject, we're not pointing |
| // past the end. |
| if (!LV.getLValueDesignator().Invalid && |
| !LV.getLValueDesignator().isOnePastTheEnd()) |
| return false; |
| |
| // A pointer to an incomplete type might be past-the-end if the type's size is |
| // zero. We cannot tell because the type is incomplete. |
| QualType Ty = getType(LV.getLValueBase()); |
| if (Ty->isIncompleteType()) |
| return true; |
| |
| // We're a past-the-end pointer if we point to the byte after the object, |
| // no matter what our type or path is. |
| auto Size = Ctx.getTypeSizeInChars(Ty); |
| return LV.getLValueOffset() == Size; |
| } |
| |
| namespace { |
| |
| /// Data recursive integer evaluator of certain binary operators. |
| /// |
| /// We use a data recursive algorithm for binary operators so that we are able |
| /// to handle extreme cases of chained binary operators without causing stack |
| /// overflow. |
| class DataRecursiveIntBinOpEvaluator { |
| struct EvalResult { |
| APValue Val; |
| bool Failed; |
| |
| EvalResult() : Failed(false) { } |
| |
| void swap(EvalResult &RHS) { |
| Val.swap(RHS.Val); |
| Failed = RHS.Failed; |
| RHS.Failed = false; |
| } |
| }; |
| |
| struct Job { |
| const Expr *E; |
| EvalResult LHSResult; // meaningful only for binary operator expression. |
| enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; |
| |
| Job() = default; |
| Job(Job &&) = default; |
| |
| void startSpeculativeEval(EvalInfo &Info) { |
| SpecEvalRAII = SpeculativeEvaluationRAII(Info); |
| } |
| |
| private: |
| SpeculativeEvaluationRAII SpecEvalRAII; |
| }; |
| |
| SmallVector<Job, 16> Queue; |
| |
| IntExprEvaluator &IntEval; |
| EvalInfo &Info; |
| APValue &FinalResult; |
| |
| public: |
| DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) |
| : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } |
| |
| /// True if \param E is a binary operator that we are going to handle |
| /// data recursively. |
| /// We handle binary operators that are comma, logical, or that have operands |
| /// with integral or enumeration type. |
| static bool shouldEnqueue(const BinaryOperator *E) { |
| return E->getOpcode() == BO_Comma || E->isLogicalOp() || |
| (E->isRValue() && E->getType()->isIntegralOrEnumerationType() && |
| E->getLHS()->getType()->isIntegralOrEnumerationType() && |
| E->getRHS()->getType()->isIntegralOrEnumerationType()); |
| } |
| |
| bool Traverse(const BinaryOperator *E) { |
| enqueue(E); |
| EvalResult PrevResult; |
| while (!Queue.empty()) |
| process(PrevResult); |
| |
| if (PrevResult.Failed) return false; |
| |
| FinalResult.swap(PrevResult.Val); |
| return true; |
| } |
| |
| private: |
| bool Success(uint64_t Value, const Expr *E, APValue &Result) { |
| return IntEval.Success(Value, E, Result); |
| } |
| bool Success(const APSInt &Value, const Expr *E, APValue &Result) { |
| return IntEval.Success(Value, E, Result); |
| } |
| bool Error(const Expr *E) { |
| return IntEval.Error(E); |
| } |
| bool Error(const Expr *E, diag::kind D) { |
| return IntEval.Error(E, D); |
| } |
| |
| OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { |
| return Info.CCEDiag(E, D); |
| } |
| |
| // Returns true if visiting the RHS is necessary, false otherwise. |
| bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, |
| bool &SuppressRHSDiags); |
| |
| bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, |
| const BinaryOperator *E, APValue &Result); |
| |
| void EvaluateExpr(const Expr *E, EvalResult &Result) { |
| Result.Failed = !Evaluate(Result.Val, Info, E); |
| if (Result.Failed) |
| Result.Val = APValue(); |
| } |
| |
| void process(EvalResult &Result); |
| |
| void enqueue(const Expr *E) { |
| E = E->IgnoreParens(); |
| Queue.resize(Queue.size()+1); |
| Queue.back().E = E; |
| Queue.back().Kind = Job::AnyExprKind; |
| } |
| }; |
| |
| } |
| |
| bool DataRecursiveIntBinOpEvaluator:: |
| VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, |
| bool &SuppressRHSDiags) { |
| if (E->getOpcode() == BO_Comma) { |
| // Ignore LHS but note if we could not evaluate it. |
| if (LHSResult.Failed) |
| return Info.noteSideEffect(); |
| return true; |
| } |
| |
| if (E->isLogicalOp()) { |
| bool LHSAsBool; |
| if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { |
| // We were able to evaluate the LHS, see if we can get away with not |
| // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
| if (LHSAsBool == (E->getOpcode() == BO_LOr)) { |
| Success(LHSAsBool, E, LHSResult.Val); |
| return false; // Ignore RHS |
| } |
| } else { |
| LHSResult.Failed = true; |
| |
| // Since we weren't able to evaluate the left hand side, it |
| // might have had side effects. |
| if (!Info.noteSideEffect()) |
| return false; |
| |
| // We can't evaluate the LHS; however, sometimes the result |
| // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
| // Don't ignore RHS and suppress diagnostics from this arm. |
| SuppressRHSDiags = true; |
| } |
| |
| return true; |
| } |
| |
| assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && |
| E->getRHS()->getType()->isIntegralOrEnumerationType()); |
| |
| if (LHSResult.Failed && !Info.noteFailure()) |
| return false; // Ignore RHS; |
| |
| return true; |
| } |
| |
| static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, |
| bool IsSub) { |
| // Compute the new offset in the appropriate width, wrapping at 64 bits. |
| // FIXME: When compiling for a 32-bit target, we should use 32-bit |
| // offsets. |
| assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); |
| CharUnits &Offset = LVal.getLValueOffset(); |
| uint64_t Offset64 = Offset.getQuantity(); |
| uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); |
| Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 |
| : Offset64 + Index64); |
| } |
| |
| bool DataRecursiveIntBinOpEvaluator:: |
| VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, |
| const BinaryOperator *E, APValue &Result) { |
| if (E->getOpcode() == BO_Comma) { |
| if (RHSResult.Failed) |
| return false; |
| Result = RHSResult.Val; |
| return true; |
| } |
| |
| if (E->isLogicalOp()) { |
| bool lhsResult, rhsResult; |
| bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); |
| bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); |
| |
| if (LHSIsOK) { |
| if (RHSIsOK) { |
| if (E->getOpcode() == BO_LOr) |
| return Success(lhsResult || rhsResult, E, Result); |
| else |
| return Success(lhsResult && rhsResult, E, Result); |
| } |
| } else { |
| if (RHSIsOK) { |
| // We can't evaluate the LHS; however, sometimes the result |
| // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
| if (rhsResult == (E->getOpcode() == BO_LOr)) |
| return Success(rhsResult, E, Result); |
| } |
| } |
| |
| return false; |
| } |
| |
| assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && |
| E->getRHS()->getType()->isIntegralOrEnumerationType()); |
| |
| if (LHSResult.Failed || RHSResult.Failed) |
| return false; |
| |
| const APValue &LHSVal = LHSResult.Val; |
| const APValue &RHSVal = RHSResult.Val; |
| |
| // Handle cases like (unsigned long)&a + 4. |
| if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { |
| Result = LHSVal; |
| addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); |
| return true; |
| } |
| |
| // Handle cases like 4 + (unsigned long)&a |
| if (E->getOpcode() == BO_Add && |
| RHSVal.isLValue() && LHSVal.isInt()) { |
| Result = RHSVal; |
| addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); |
| return true; |
| } |
| |
| if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { |
| // Handle (intptr_t)&&A - (intptr_t)&&B. |
| if (!LHSVal.getLValueOffset().isZero() || |
| !RHSVal.getLValueOffset().isZero()) |
| return false; |
| const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); |
| const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); |
| if (!LHSExpr || !RHSExpr) |
| return false; |
| const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); |
| const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); |
| if (!LHSAddrExpr || !RHSAddrExpr) |
| return false; |
| // Make sure both labels come from the same function. |
| if (LHSAddrExpr->getLabel()->getDeclContext() != |
| RHSAddrExpr->getLabel()->getDeclContext()) |
| return false; |
| Result = APValue(LHSAddrExpr, RHSAddrExpr); |
| return true; |
| } |
| |
| // All the remaining cases expect both operands to be an integer |
| if (!LHSVal.isInt() || !RHSVal.isInt()) |
| return Error(E); |
| |
| // Set up the width and signedness manually, in case it can't be deduced |
| // from the operation we're performing. |
| // FIXME: Don't do this in the cases where we can deduce it. |
| APSInt Value(Info.Ctx.getIntWidth(E->getType()), |
| E->getType()->isUnsignedIntegerOrEnumerationType()); |
| if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), |
| RHSVal.getInt(), Value)) |
| return false; |
| return Success(Value, E, Result); |
| } |
| |
| void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { |
| Job &job = Queue.back(); |
| |
| switch (job.Kind) { |
| case Job::AnyExprKind: { |
| if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { |
| if (shouldEnqueue(Bop)) { |
| job.Kind = Job::BinOpKind; |
| enqueue(Bop->getLHS()); |
| return; |
| } |
| } |
| |
| EvaluateExpr(job.E, Result); |
| Queue.pop_back(); |
| return; |
| } |
| |
| case Job::BinOpKind: { |
| const BinaryOperator *Bop = cast<BinaryOperator>(job.E); |
| bool SuppressRHSDiags = false; |
| if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { |
| Queue.pop_back(); |
| return; |
| } |
| if (SuppressRHSDiags) |
| job.startSpeculativeEval(Info); |
| job.LHSResult.swap(Result); |
| job.Kind = Job::BinOpVisitedLHSKind; |
| enqueue(Bop->getRHS()); |
| return; |
| } |
| |
| case Job::BinOpVisitedLHSKind: { |
| const BinaryOperator *Bop = cast<BinaryOperator>(job.E); |
| EvalResult RHS; |
| RHS.swap(Result); |
| Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); |
| Queue.pop_back(); |
| return; |
| } |
| } |
| |
| llvm_unreachable("Invalid Job::Kind!"); |
| } |
| |
| namespace { |
| /// Used when we determine that we should fail, but can keep evaluating prior to |
| /// noting that we had a failure. |
| class DelayedNoteFailureRAII { |
| EvalInfo &Info; |
| bool NoteFailure; |
| |
| public: |
| DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true) |
| : Info(Info), NoteFailure(NoteFailure) {} |
| ~DelayedNoteFailureRAII() { |
| if (NoteFailure) { |
| bool ContinueAfterFailure = Info.noteFailure(); |
| (void)ContinueAfterFailure; |
| assert(ContinueAfterFailure && |
| "Shouldn't have kept evaluating on failure."); |
| } |
| } |
| }; |
| } |
| |
| template <class SuccessCB, class AfterCB> |
| static bool |
| EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, |
| SuccessCB &&Success, AfterCB &&DoAfter) { |
| assert(E->isComparisonOp() && "expected comparison operator"); |
| assert((E->getOpcode() == BO_Cmp || |
| E->getType()->isIntegralOrEnumerationType()) && |
| "unsupported binary expression evaluation"); |
| auto Error = [&](const Expr *E) { |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| }; |
| |
| using CCR = ComparisonCategoryResult; |
| bool IsRelational = E->isRelationalOp(); |
| bool IsEquality = E->isEqualityOp(); |
| if (E->getOpcode() == BO_Cmp) { |
| const ComparisonCategoryInfo &CmpInfo = |
| Info.Ctx.CompCategories.getInfoForType(E->getType()); |
| IsRelational = CmpInfo.isOrdered(); |
| IsEquality = CmpInfo.isEquality(); |
| } |
| |
| QualType LHSTy = E->getLHS()->getType(); |
| QualType RHSTy = E->getRHS()->getType(); |
| |
| if (LHSTy->isIntegralOrEnumerationType() && |
| RHSTy->isIntegralOrEnumerationType()) { |
| APSInt LHS, RHS; |
| bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) |
| return false; |
| if (LHS < RHS) |
| return Success(CCR::Less, E); |
| if (LHS > RHS) |
| return Success(CCR::Greater, E); |
| return Success(CCR::Equal, E); |
| } |
| |
| if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { |
| ComplexValue LHS, RHS; |
| bool LHSOK; |
| if (E->isAssignmentOp()) { |
| LValue LV; |
| EvaluateLValue(E->getLHS(), LV, Info); |
| LHSOK = false; |
| } else if (LHSTy->isRealFloatingType()) { |
| LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); |
| if (LHSOK) { |
| LHS.makeComplexFloat(); |
| LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); |
| } |
| } else { |
| LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); |
| } |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (E->getRHS()->getType()->isRealFloatingType()) { |
| if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) |
| return false; |
| RHS.makeComplexFloat(); |
| RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); |
| } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) |
| return false; |
| |
| if (LHS.isComplexFloat()) { |
| APFloat::cmpResult CR_r = |
| LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); |
| APFloat::cmpResult CR_i = |
| LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); |
| bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; |
| return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E); |
| } else { |
| assert(IsEquality && "invalid complex comparison"); |
| bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && |
| LHS.getComplexIntImag() == RHS.getComplexIntImag(); |
| return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E); |
| } |
| } |
| |
| if (LHSTy->isRealFloatingType() && |
| RHSTy->isRealFloatingType()) { |
| APFloat RHS(0.0), LHS(0.0); |
| |
| bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) |
| return false; |
| |
| assert(E->isComparisonOp() && "Invalid binary operator!"); |
| auto GetCmpRes = [&]() { |
| switch (LHS.compare(RHS)) { |
| case APFloat::cmpEqual: |
| return CCR::Equal; |
| case APFloat::cmpLessThan: |
| return CCR::Less; |
| case APFloat::cmpGreaterThan: |
| return CCR::Greater; |
| case APFloat::cmpUnordered: |
| return CCR::Unordered; |
| } |
| llvm_unreachable("Unrecognised APFloat::cmpResult enum"); |
| }; |
| return Success(GetCmpRes(), E); |
| } |
| |
| if (LHSTy->isPointerType() && RHSTy->isPointerType()) { |
| LValue LHSValue, RHSValue; |
| |
| bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) |
| return false; |
| |
| // Reject differing bases from the normal codepath; we special-case |
| // comparisons to null. |
| if (!HasSameBase(LHSValue, RHSValue)) { |
| // Inequalities and subtractions between unrelated pointers have |
| // unspecified or undefined behavior. |
| if (!IsEquality) |
| return Error(E); |
| // A constant address may compare equal to the address of a symbol. |
| // The one exception is that address of an object cannot compare equal |
| // to a null pointer constant. |
| if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || |
| (!RHSValue.Base && !RHSValue.Offset.isZero())) |
| return Error(E); |
| // It's implementation-defined whether distinct literals will have |
| // distinct addresses. In clang, the result of such a comparison is |
| // unspecified, so it is not a constant expression. However, we do know |
| // that the address of a literal will be non-null. |
| if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) && |
| LHSValue.Base && RHSValue.Base) |
| return Error(E); |
| // We can't tell whether weak symbols will end up pointing to the same |
| // object. |
| if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) |
| return Error(E); |
| // We can't compare the address of the start of one object with the |
| // past-the-end address of another object, per C++ DR1652. |
| if ((LHSValue.Base && LHSValue.Offset.isZero() && |
| isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) || |
| (RHSValue.Base && RHSValue.Offset.isZero() && |
| isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))) |
| return Error(E); |
| // We can't tell whether an object is at the same address as another |
| // zero sized object. |
| if ((RHSValue.Base && isZeroSized(LHSValue)) || |
| (LHSValue.Base && isZeroSized(RHSValue))) |
| return Error(E); |
| return Success(CCR::Nonequal, E); |
| } |
| |
| const CharUnits &LHSOffset = LHSValue.getLValueOffset(); |
| const CharUnits &RHSOffset = RHSValue.getLValueOffset(); |
| |
| SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); |
| SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); |
| |
| // C++11 [expr.rel]p3: |
| // Pointers to void (after pointer conversions) can be compared, with a |
| // result defined as follows: If both pointers represent the same |
| // address or are both the null pointer value, the result is true if the |
| // operator is <= or >= and false otherwise; otherwise the result is |
| // unspecified. |
| // We interpret this as applying to pointers to *cv* void. |
| if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational) |
| Info.CCEDiag(E, diag::note_constexpr_void_comparison); |
| |
| // C++11 [expr.rel]p2: |
| // - If two pointers point to non-static data members of the same object, |
| // or to subobjects or array elements fo such members, recursively, the |
| // pointer to the later declared member compares greater provided the |
| // two members have the same access control and provided their class is |
| // not a union. |
| // [...] |
| // - Otherwise pointer comparisons are unspecified. |
| if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { |
| bool WasArrayIndex; |
| unsigned Mismatch = FindDesignatorMismatch( |
| getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); |
| // At the point where the designators diverge, the comparison has a |
| // specified value if: |
| // - we are comparing array indices |
| // - we are comparing fields of a union, or fields with the same access |
| // Otherwise, the result is unspecified and thus the comparison is not a |
| // constant expression. |
| if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && |
| Mismatch < RHSDesignator.Entries.size()) { |
| const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); |
| const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); |
| if (!LF && !RF) |
| Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); |
| else if (!LF) |
| Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) |
| << getAsBaseClass(LHSDesignator.Entries[Mismatch]) |
| << RF->getParent() << RF; |
| else if (!RF) |
| Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) |
| << getAsBaseClass(RHSDesignator.Entries[Mismatch]) |
| << LF->getParent() << LF; |
| else if (!LF->getParent()->isUnion() && |
| LF->getAccess() != RF->getAccess()) |
| Info.CCEDiag(E, |
| diag::note_constexpr_pointer_comparison_differing_access) |
| << LF << LF->getAccess() << RF << RF->getAccess() |
| << LF->getParent(); |
| } |
| } |
| |
| // The comparison here must be unsigned, and performed with the same |
| // width as the pointer. |
| unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); |
| uint64_t CompareLHS = LHSOffset.getQuantity(); |
| uint64_t CompareRHS = RHSOffset.getQuantity(); |
| assert(PtrSize <= 64 && "Unexpected pointer width"); |
| uint64_t Mask = ~0ULL >> (64 - PtrSize); |
| CompareLHS &= Mask; |
| CompareRHS &= Mask; |
| |
| // If there is a base and this is a relational operator, we can only |
| // compare pointers within the object in question; otherwise, the result |
| // depends on where the object is located in memory. |
| if (!LHSValue.Base.isNull() && IsRelational) { |
| QualType BaseTy = getType(LHSValue.Base); |
| if (BaseTy->isIncompleteType()) |
| return Error(E); |
| CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); |
| uint64_t OffsetLimit = Size.getQuantity(); |
| if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) |
| return Error(E); |
| } |
| |
| if (CompareLHS < CompareRHS) |
| return Success(CCR::Less, E); |
| if (CompareLHS > CompareRHS) |
| return Success(CCR::Greater, E); |
| return Success(CCR::Equal, E); |
| } |
| |
| if (LHSTy->isMemberPointerType()) { |
| assert(IsEquality && "unexpected member pointer operation"); |
| assert(RHSTy->isMemberPointerType() && "invalid comparison"); |
| |
| MemberPtr LHSValue, RHSValue; |
| |
| bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) |
| return false; |
| |
| // C++11 [expr.eq]p2: |
| // If both operands are null, they compare equal. Otherwise if only one is |
| // null, they compare unequal. |
| if (!LHSValue.getDecl() || !RHSValue.getDecl()) { |
| bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); |
| return Success(Equal ? CCR::Equal : CCR::Nonequal, E); |
| } |
| |
| // Otherwise if either is a pointer to a virtual member function, the |
| // result is unspecified. |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) |
| if (MD->isVirtual()) |
| Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) |
| if (MD->isVirtual()) |
| Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
| |
| // Otherwise they compare equal if and only if they would refer to the |
| // same member of the same most derived object or the same subobject if |
| // they were dereferenced with a hypothetical object of the associated |
| // class type. |
| bool Equal = LHSValue == RHSValue; |
| return Success(Equal ? CCR::Equal : CCR::Nonequal, E); |
| } |
| |
| if (LHSTy->isNullPtrType()) { |
| assert(E->isComparisonOp() && "unexpected nullptr operation"); |
| assert(RHSTy->isNullPtrType() && "missing pointer conversion"); |
| // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t |
| // are compared, the result is true of the operator is <=, >= or ==, and |
| // false otherwise. |
| return Success(CCR::Equal, E); |
| } |
| |
| return DoAfter(); |
| } |
| |
| bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { |
| if (!CheckLiteralType(Info, E)) |
| return false; |
| |
| auto OnSuccess = [&](ComparisonCategoryResult ResKind, |
| const BinaryOperator *E) { |
| // Evaluation succeeded. Lookup the information for the comparison category |
| // type and fetch the VarDecl for the result. |
| const ComparisonCategoryInfo &CmpInfo = |
| Info.Ctx.CompCategories.getInfoForType(E->getType()); |
| const VarDecl *VD = |
| CmpInfo.getValueInfo(CmpInfo.makeWeakResult(ResKind))->VD; |
| // Check and evaluate the result as a constant expression. |
| LValue LV; |
| LV.set(VD); |
| if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) |
| return false; |
| return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result); |
| }; |
| return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { |
| return ExprEvaluatorBaseTy::VisitBinCmp(E); |
| }); |
| } |
| |
| bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| // We don't call noteFailure immediately because the assignment happens after |
| // we evaluate LHS and RHS. |
| if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp()) |
| return Error(E); |
| |
| DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp()); |
| if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) |
| return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); |
| |
| assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || |
| !E->getRHS()->getType()->isIntegralOrEnumerationType()) && |
| "DataRecursiveIntBinOpEvaluator should have handled integral types"); |
| |
| if (E->isComparisonOp()) { |
| // Evaluate builtin binary comparisons by evaluating them as C++2a three-way |
| // comparisons and then translating the result. |
| auto OnSuccess = [&](ComparisonCategoryResult ResKind, |
| const BinaryOperator *E) { |
| using CCR = ComparisonCategoryResult; |
| bool IsEqual = ResKind == CCR::Equal, |
| IsLess = ResKind == CCR::Less, |
| IsGreater = ResKind == CCR::Greater; |
| auto Op = E->getOpcode(); |
| switch (Op) { |
| default: |
| llvm_unreachable("unsupported binary operator"); |
| case BO_EQ: |
| case BO_NE: |
| return Success(IsEqual == (Op == BO_EQ), E); |
| case BO_LT: return Success(IsLess, E); |
| case BO_GT: return Success(IsGreater, E); |
| case BO_LE: return Success(IsEqual || IsLess, E); |
| case BO_GE: return Success(IsEqual || IsGreater, E); |
| } |
| }; |
| return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| }); |
| } |
| |
| QualType LHSTy = E->getLHS()->getType(); |
| QualType RHSTy = E->getRHS()->getType(); |
| |
| if (LHSTy->isPointerType() && RHSTy->isPointerType() && |
| E->getOpcode() == BO_Sub) { |
| LValue LHSValue, RHSValue; |
| |
| bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) |
| return false; |
| |
| // Reject differing bases from the normal codepath; we special-case |
| // comparisons to null. |
| if (!HasSameBase(LHSValue, RHSValue)) { |
| // Handle &&A - &&B. |
| if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) |
| return Error(E); |
| const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); |
| const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); |
| if (!LHSExpr || !RHSExpr) |
| return Error(E); |
| const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); |
| const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); |
| if (!LHSAddrExpr || !RHSAddrExpr) |
| return Error(E); |
| // Make sure both labels come from the same function. |
| if (LHSAddrExpr->getLabel()->getDeclContext() != |
| RHSAddrExpr->getLabel()->getDeclContext()) |
| return Error(E); |
| return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); |
| } |
| const CharUnits &LHSOffset = LHSValue.getLValueOffset(); |
| const CharUnits &RHSOffset = RHSValue.getLValueOffset(); |
| |
| SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); |
| SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); |
| |
| // C++11 [expr.add]p6: |
| // Unless both pointers point to elements of the same array object, or |
| // one past the last element of the array object, the behavior is |
| // undefined. |
| if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && |
| !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, |
| RHSDesignator)) |
| Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); |
| |
| QualType Type = E->getLHS()->getType(); |
| QualType ElementType = Type->getAs<PointerType>()->getPointeeType(); |
| |
| CharUnits ElementSize; |
| if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) |
| return false; |
| |
| // As an extension, a type may have zero size (empty struct or union in |
| // C, array of zero length). Pointer subtraction in such cases has |
| // undefined behavior, so is not constant. |
| if (ElementSize.isZero()) { |
| Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) |
| << ElementType; |
| return false; |
| } |
| |
| // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, |
| // and produce incorrect results when it overflows. Such behavior |
| // appears to be non-conforming, but is common, so perhaps we should |
| // assume the standard intended for such cases to be undefined behavior |
| // and check for them. |
| |
| // Compute (LHSOffset - RHSOffset) / Size carefully, checking for |
| // overflow in the final conversion to ptrdiff_t. |
| APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); |
| APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); |
| APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), |
| false); |
| APSInt TrueResult = (LHS - RHS) / ElemSize; |
| APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); |
| |
| if (Result.extend(65) != TrueResult && |
| !HandleOverflow(Info, E, TrueResult, E->getType())) |
| return false; |
| return Success(Result, E); |
| } |
| |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| } |
| |
| /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with |
| /// a result as the expression's type. |
| bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( |
| const UnaryExprOrTypeTraitExpr *E) { |
| switch(E->getKind()) { |
| case UETT_AlignOf: { |
| if (E->isArgumentType()) |
| return Success(GetAlignOfType(Info, E->getArgumentType()), E); |
| else |
| return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E); |
| } |
| |
| case UETT_VecStep: { |
| QualType Ty = E->getTypeOfArgument(); |
| |
| if (Ty->isVectorType()) { |
| unsigned n = Ty->castAs<VectorType>()->getNumElements(); |
| |
| // The vec_step built-in functions that take a 3-component |
| // vector return 4. (OpenCL 1.1 spec 6.11.12) |
| if (n == 3) |
| n = 4; |
| |
| return Success(n, E); |
| } else |
| return Success(1, E); |
| } |
| |
| case UETT_SizeOf: { |
| QualType SrcTy = E->getTypeOfArgument(); |
| // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| // the result is the size of the referenced type." |
| if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) |
| SrcTy = Ref->getPointeeType(); |
| |
| CharUnits Sizeof; |
| if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof)) |
| return false; |
| return Success(Sizeof, E); |
| } |
| case UETT_OpenMPRequiredSimdAlign: |
| assert(E->isArgumentType()); |
| return Success( |
| Info.Ctx.toCharUnitsFromBits( |
| Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) |
| .getQuantity(), |
| E); |
| } |
| |
| llvm_unreachable("unknown expr/type trait"); |
| } |
| |
| bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { |
| CharUnits Result; |
| unsigned n = OOE->getNumComponents(); |
| if (n == 0) |
| return Error(OOE); |
| QualType CurrentType = OOE->getTypeSourceInfo()->getType(); |
| for (unsigned i = 0; i != n; ++i) { |
| OffsetOfNode ON = OOE->getComponent(i); |
| switch (ON.getKind()) { |
| case OffsetOfNode::Array: { |
| const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); |
| APSInt IdxResult; |
| if (!EvaluateInteger(Idx, IdxResult, Info)) |
| return false; |
| const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); |
| if (!AT) |
| return Error(OOE); |
| CurrentType = AT->getElementType(); |
| CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); |
| Result += IdxResult.getSExtValue() * ElementSize; |
| break; |
| } |
| |
| case OffsetOfNode::Field: { |
| FieldDecl *MemberDecl = ON.getField(); |
| const RecordType *RT = CurrentType->getAs<RecordType>(); |
| if (!RT) |
| return Error(OOE); |
| RecordDecl *RD = RT->getDecl(); |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
| unsigned i = MemberDecl->getFieldIndex(); |
| assert(i < RL.getFieldCount() && "offsetof field in wrong type"); |
| Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); |
| CurrentType = MemberDecl->getType().getNonReferenceType(); |
| break; |
| } |
| |
| case OffsetOfNode::Identifier: |
| llvm_unreachable("dependent __builtin_offsetof"); |
| |
| case OffsetOfNode::Base: { |
| CXXBaseSpecifier *BaseSpec = ON.getBase(); |
| if (BaseSpec->isVirtual()) |
| return Error(OOE); |
| |
| // Find the layout of the class whose base we are looking into. |
| const RecordType *RT = CurrentType->getAs<RecordType>(); |
| if (!RT) |
| return Error(OOE); |
| RecordDecl *RD = RT->getDecl(); |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
| |
| // Find the base class itself. |
| CurrentType = BaseSpec->getType(); |
| const RecordType *BaseRT = CurrentType->getAs<RecordType>(); |
| if (!BaseRT) |
| return Error(OOE); |
| |
| // Add the offset to the base. |
| Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); |
| break; |
| } |
| } |
| } |
| return Success(Result, OOE); |
| } |
| |
| bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| return Error(E); |
| case UO_Extension: |
| // FIXME: Should extension allow i-c-e extension expressions in its scope? |
| // If so, we could clear the diagnostic ID. |
| return Visit(E->getSubExpr()); |
| case UO_Plus: |
| // The result is just the value. |
| return Visit(E->getSubExpr()); |
| case UO_Minus: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| if (!Result.isInt()) return Error(E); |
| const APSInt &Value = Result.getInt(); |
| if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() && |
| !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), |
| E->getType())) |
| return false; |
| return Success(-Value, E); |
| } |
| case UO_Not: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| if (!Result.isInt()) return Error(E); |
| return Success(~Result.getInt(), E); |
| } |
| case UO_LNot: { |
| bool bres; |
| if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) |
| return false; |
| return Success(!bres, E); |
| } |
| } |
| } |
| |
| /// HandleCast - This is used to evaluate implicit or explicit casts where the |
| /// result type is integer. |
| bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| QualType DestType = E->getType(); |
| QualType SrcType = SubExpr->getType(); |
| |
| switch (E->getCastKind()) { |
| case CK_BaseToDerived: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_ReinterpretMemberPointer: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralToFloating: |
| case CK_FloatingCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_BuiltinFnToFnPtr: |
| case CK_ZeroToOCLEvent: |
| case CK_ZeroToOCLQueue: |
| case CK_NonAtomicToAtomic: |
| case CK_AddressSpaceConversion: |
| case CK_IntToOCLSampler: |
| llvm_unreachable("invalid cast kind for integral value"); |
| |
| case CK_BitCast: |
| case CK_Dependent: |
| case CK_LValueBitCast: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| case CK_CopyAndAutoreleaseBlockObject: |
| return Error(E); |
| |
| case CK_UserDefinedConversion: |
| case CK_LValueToRValue: |
| case CK_AtomicToNonAtomic: |
| case CK_NoOp: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_MemberPointerToBoolean: |
| case CK_PointerToBoolean: |
| case CK_IntegralToBoolean: |
| case CK_FloatingToBoolean: |
| case CK_BooleanToSignedIntegral: |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToBoolean: { |
| bool BoolResult; |
| if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) |
| return false; |
| uint64_t IntResult = BoolResult; |
| if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) |
| IntResult = (uint64_t)-1; |
| return Success(IntResult, E); |
| } |
| |
| case CK_IntegralCast: { |
| if (!Visit(SubExpr)) |
| return false; |
| |
| if (!Result.isInt()) { |
| // Allow casts of address-of-label differences if they are no-ops |
| // or narrowing. (The narrowing case isn't actually guaranteed to |
| // be constant-evaluatable except in some narrow cases which are hard |
| // to detect here. We let it through on the assumption the user knows |
| // what they are doing.) |
| if (Result.isAddrLabelDiff()) |
| return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); |
| // Only allow casts of lvalues if they are lossless. |
| return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); |
| } |
| |
| return Success(HandleIntToIntCast(Info, E, DestType, SrcType, |
| Result.getInt()), E); |
| } |
| |
| case CK_PointerToIntegral: { |
| CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; |
| |
| LValue LV; |
| if (!EvaluatePointer(SubExpr, LV, Info)) |
| return false; |
| |
| if (LV.getLValueBase()) { |
| // Only allow based lvalue casts if they are lossless. |
| // FIXME: Allow a larger integer size than the pointer size, and allow |
| // narrowing back down to pointer width in subsequent integral casts. |
| // FIXME: Check integer type's active bits, not its type size. |
| if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) |
| return Error(E); |
| |
| LV.Designator.setInvalid(); |
| LV.moveInto(Result); |
| return true; |
| } |
| |
| uint64_t V; |
| if (LV.isNullPointer()) |
| V = Info.Ctx.getTargetNullPointerValue(SrcType); |
| else |
| V = LV.getLValueOffset().getQuantity(); |
| |
| APSInt AsInt = Info.Ctx.MakeIntValue(V, SrcType); |
| return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); |
| } |
| |
| case CK_IntegralComplexToReal: { |
| ComplexValue C; |
| if (!EvaluateComplex(SubExpr, C, Info)) |
| return false; |
| return Success(C.getComplexIntReal(), E); |
| } |
| |
| case CK_FloatingToIntegral: { |
| APFloat F(0.0); |
| if (!EvaluateFloat(SubExpr, F, Info)) |
| return false; |
| |
| APSInt Value; |
| if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) |
| return false; |
| return Success(Value, E); |
| } |
| } |
| |
| llvm_unreachable("unknown cast resulting in integral value"); |
| } |
| |
| bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| ComplexValue LV; |
| if (!EvaluateComplex(E->getSubExpr(), LV, Info)) |
| return false; |
| if (!LV.isComplexInt()) |
| return Error(E); |
| return Success(LV.getComplexIntReal(), E); |
| } |
| |
| return Visit(E->getSubExpr()); |
| } |
| |
| bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isComplexIntegerType()) { |
| ComplexValue LV; |
| if (!EvaluateComplex(E->getSubExpr(), LV, Info)) |
| return false; |
| if (!LV.isComplexInt()) |
| return Error(E); |
| return Success(LV.getComplexIntImag(), E); |
| } |
| |
| VisitIgnoredValue(E->getSubExpr()); |
| return Success(0, E); |
| } |
| |
| bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { |
| return Success(E->getPackLength(), E); |
| } |
| |
| bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: |
| // Invalid unary operators |
| return Error(E); |
| case UO_Plus: |
| // The result is just the value. |
| return Visit(E->getSubExpr()); |
| case UO_Minus: { |
| if (!Visit(E->getSubExpr())) return false; |
| if (!Result.isInt()) return Error(E); |
| const APSInt &Value = Result.getInt(); |
| if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) { |
| SmallString<64> S; |
| FixedPointValueToString(S, Value, |
| Info.Ctx.getTypeInfo(E->getType()).Width, |
| /*Radix=*/10); |
| Info.CCEDiag(E, diag::note_constexpr_overflow) << S << E->getType(); |
| if (Info.noteUndefinedBehavior()) return false; |
| } |
| return Success(-Value, E); |
| } |
| case UO_LNot: { |
| bool bres; |
| if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) |
| return false; |
| return Success(!bres, E); |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Float Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class FloatExprEvaluator |
| : public ExprEvaluatorBase<FloatExprEvaluator> { |
| APFloat &Result; |
| public: |
| FloatExprEvaluator(EvalInfo &info, APFloat &result) |
| : ExprEvaluatorBaseTy(info), Result(result) {} |
| |
| bool Success(const APValue &V, const Expr *e) { |
| Result = V.getFloat(); |
| return true; |
| } |
| |
| bool ZeroInitialization(const Expr *E) { |
| Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); |
| return true; |
| } |
| |
| bool VisitCallExpr(const CallExpr *E); |
| |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitFloatingLiteral(const FloatingLiteral *E); |
| bool VisitCastExpr(const CastExpr *E); |
| |
| bool VisitUnaryReal(const UnaryOperator *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| |
| // FIXME: Missing: array subscript of vector, member of vector |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isRealFloatingType()); |
| return FloatExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| static bool TryEvaluateBuiltinNaN(const ASTContext &Context, |
| QualType ResultTy, |
| const Expr *Arg, |
| bool SNaN, |
| llvm::APFloat &Result) { |
| const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); |
| if (!S) return false; |
| |
| const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); |
| |
| llvm::APInt fill; |
| |
| // Treat empty strings as if they were zero. |
| if (S->getString().empty()) |
| fill = llvm::APInt(32, 0); |
| else if (S->getString().getAsInteger(0, fill)) |
| return false; |
| |
| if (Context.getTargetInfo().isNan2008()) { |
| if (SNaN) |
| Result = llvm::APFloat::getSNaN(Sem, false, &fill); |
| else |
| Result = llvm::APFloat::getQNaN(Sem, false, &fill); |
| } else { |
| // Prior to IEEE 754-2008, architectures were allowed to choose whether |
| // the first bit of their significand was set for qNaN or sNaN. MIPS chose |
| // a different encoding to what became a standard in 2008, and for pre- |
| // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as |
| // sNaN. This is now known as "legacy NaN" encoding. |
| if (SNaN) |
| Result = llvm::APFloat::getQNaN(Sem, false, &fill); |
| else |
| Result = llvm::APFloat::getSNaN(Sem, false, &fill); |
| } |
| |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| switch (E->getBuiltinCallee()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| |
| case Builtin::BI__builtin_huge_val: |
| case Builtin::BI__builtin_huge_valf: |
| case Builtin::BI__builtin_huge_vall: |
| case Builtin::BI__builtin_huge_valf128: |
| case Builtin::BI__builtin_inf: |
| case Builtin::BI__builtin_inff: |
| case Builtin::BI__builtin_infl: |
| case Builtin::BI__builtin_inff128: { |
| const llvm::fltSemantics &Sem = |
| Info.Ctx.getFloatTypeSemantics(E->getType()); |
| Result = llvm::APFloat::getInf(Sem); |
| return true; |
| } |
| |
| case Builtin::BI__builtin_nans: |
| case Builtin::BI__builtin_nansf: |
| case Builtin::BI__builtin_nansl: |
| case Builtin::BI__builtin_nansf128: |
| if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), |
| true, Result)) |
| return Error(E); |
| return true; |
| |
| case Builtin::BI__builtin_nan: |
| case Builtin::BI__builtin_nanf: |
| case Builtin::BI__builtin_nanl: |
| case Builtin::BI__builtin_nanf128: |
| // If this is __builtin_nan() turn this into a nan, otherwise we |
| // can't constant fold it. |
| if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), |
| false, Result)) |
| return Error(E); |
| return true; |
| |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabsl: |
| case Builtin::BI__builtin_fabsf128: |
| if (!EvaluateFloat(E->getArg(0), Result, Info)) |
| return false; |
| |
| if (Result.isNegative()) |
| Result.changeSign(); |
| return true; |
| |
| // FIXME: Builtin::BI__builtin_powi |
| // FIXME: Builtin::BI__builtin_powif |
| // FIXME: Builtin::BI__builtin_powil |
| |
| case Builtin::BI__builtin_copysign: |
| case Builtin::BI__builtin_copysignf: |
| case Builtin::BI__builtin_copysignl: |
| case Builtin::BI__builtin_copysignf128: { |
| APFloat RHS(0.); |
| if (!EvaluateFloat(E->getArg(0), Result, Info) || |
| !EvaluateFloat(E->getArg(1), RHS, Info)) |
| return false; |
| Result.copySign(RHS); |
| return true; |
| } |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| ComplexValue CV; |
| if (!EvaluateComplex(E->getSubExpr(), CV, Info)) |
| return false; |
| Result = CV.FloatReal; |
| return true; |
| } |
| |
| return Visit(E->getSubExpr()); |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| ComplexValue CV; |
| if (!EvaluateComplex(E->getSubExpr(), CV, Info)) |
| return false; |
| Result = CV.FloatImag; |
| return true; |
| } |
| |
| VisitIgnoredValue(E->getSubExpr()); |
| const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); |
| Result = llvm::APFloat::getZero(Sem); |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: return Error(E); |
| case UO_Plus: |
| return EvaluateFloat(E->getSubExpr(), Result, Info); |
| case UO_Minus: |
| if (!EvaluateFloat(E->getSubExpr(), Result, Info)) |
| return false; |
| Result.changeSign(); |
| return true; |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| APFloat RHS(0.0); |
| bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && |
| handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); |
| } |
| |
| bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { |
| Result = E->getValue(); |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const Expr* SubExpr = E->getSubExpr(); |
| |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_IntegralToFloating: { |
| APSInt IntResult; |
| return EvaluateInteger(SubExpr, IntResult, Info) && |
| HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult, |
| E->getType(), Result); |
| } |
| |
| case CK_FloatingCast: { |
| if (!Visit(SubExpr)) |
| return false; |
| return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), |
| Result); |
| } |
| |
| case CK_FloatingComplexToReal: { |
| ComplexValue V; |
| if (!EvaluateComplex(SubExpr, V, Info)) |
| return false; |
| Result = V.getComplexFloatReal(); |
| return true; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Complex Evaluation (for float and integer) |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class ComplexExprEvaluator |
| : public ExprEvaluatorBase<ComplexExprEvaluator> { |
| ComplexValue &Result; |
| |
| public: |
| ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) |
| : ExprEvaluatorBaseTy(info), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *e) { |
| Result.setFrom(V); |
| return true; |
| } |
| |
| bool ZeroInitialization(const Expr *E); |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitImaginaryLiteral(const ImaginaryLiteral *E); |
| bool VisitCastExpr(const CastExpr *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| bool VisitInitListExpr(const InitListExpr *E); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateComplex(const Expr *E, ComplexValue &Result, |
| EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isAnyComplexType()); |
| return ComplexExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { |
| QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); |
| if (ElemTy->isRealFloatingType()) { |
| Result.makeComplexFloat(); |
| APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); |
| Result.FloatReal = Zero; |
| Result.FloatImag = Zero; |
| } else { |
| Result.makeComplexInt(); |
| APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); |
| Result.IntReal = Zero; |
| Result.IntImag = Zero; |
| } |
| return true; |
| } |
| |
| bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { |
| const Expr* SubExpr = E->getSubExpr(); |
| |
| if (SubExpr->getType()->isRealFloatingType()) { |
| Result.makeComplexFloat(); |
| APFloat &Imag = Result.FloatImag; |
| if (!EvaluateFloat(SubExpr, Imag, Info)) |
| return false; |
| |
| Result.FloatReal = APFloat(Imag.getSemantics()); |
| return true; |
| } else { |
| assert(SubExpr->getType()->isIntegerType() && |
| "Unexpected imaginary literal."); |
| |
| Result.makeComplexInt(); |
| APSInt &Imag = Result.IntImag; |
| if (!EvaluateInteger(SubExpr, Imag, Info)) |
| return false; |
| |
| Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); |
| return true; |
| } |
| } |
| |
| bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| |
| switch (E->getCastKind()) { |
| case CK_BitCast: |
| case CK_BaseToDerived: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_MemberPointerToBoolean: |
| case CK_ReinterpretMemberPointer: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_PointerToBoolean: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_BooleanToSignedIntegral: |
| case CK_IntegralToBoolean: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingToBoolean: |
| case CK_FloatingCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexToBoolean: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| case CK_CopyAndAutoreleaseBlockObject: |
| case CK_BuiltinFnToFnPtr: |
| case CK_ZeroToOCLEvent: |
| case CK_ZeroToOCLQueue: |
| case CK_NonAtomicToAtomic: |
| case CK_AddressSpaceConversion: |
| case CK_IntToOCLSampler: |
| llvm_unreachable("invalid cast kind for complex value"); |
| |
| case CK_LValueToRValue: |
| case CK_AtomicToNonAtomic: |
| case CK_NoOp: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_Dependent: |
| case CK_LValueBitCast: |
| case CK_UserDefinedConversion: |
| return Error(E); |
| |
| case CK_FloatingRealToComplex: { |
| APFloat &Real = Result.FloatReal; |
| if (!EvaluateFloat(E->getSubExpr(), Real, Info)) |
| return false; |
| |
| Result.makeComplexFloat(); |
| Result.FloatImag = APFloat(Real.getSemantics()); |
| return true; |
| } |
| |
| case CK_FloatingComplexCast: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->getAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); |
| |
| return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && |
| HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); |
| } |
| |
| case CK_FloatingComplexToIntegralComplex: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->getAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); |
| Result.makeComplexInt(); |
| return HandleFloatToIntCast(Info, E, From, Result.FloatReal, |
| To, Result.IntReal) && |
| HandleFloatToIntCast(Info, E, From, Result.FloatImag, |
| To, Result.IntImag); |
| } |
| |
| case CK_IntegralRealToComplex: { |
| APSInt &Real = Result.IntReal; |
| if (!EvaluateInteger(E->getSubExpr(), Real, Info)) |
| return false; |
| |
| Result.makeComplexInt(); |
| Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); |
| return true; |
| } |
| |
| case CK_IntegralComplexCast: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->getAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); |
| |
| Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); |
| Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); |
| return true; |
| } |
| |
| case CK_IntegralComplexToFloatingComplex: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
| Result.makeComplexFloat(); |
| return HandleIntToFloatCast(Info, E, From, Result.IntReal, |
| To, Result.FloatReal) && |
| HandleIntToFloatCast(Info, E, From, Result.IntImag, |
| To, Result.FloatImag); |
| } |
| } |
| |
| llvm_unreachable("unknown cast resulting in complex value"); |
| } |
| |
| bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| // Track whether the LHS or RHS is real at the type system level. When this is |
| // the case we can simplify our evaluation strategy. |
| bool LHSReal = false, RHSReal = false; |
| |
| bool LHSOK; |
| if (E->getLHS()->getType()->isRealFloatingType()) { |
| LHSReal = true; |
| APFloat &Real = Result.FloatReal; |
| LHSOK = EvaluateFloat(E->getLHS(), Real, Info); |
| if (LHSOK) { |
| Result.makeComplexFloat(); |
| Result.FloatImag = APFloat(Real.getSemantics()); |
| } |
| } else { |
| LHSOK = Visit(E->getLHS()); |
| } |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| ComplexValue RHS; |
| if (E->getRHS()->getType()->isRealFloatingType()) { |
| RHSReal = true; |
| APFloat &Real = RHS.FloatReal; |
| if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) |
| return false; |
| RHS.makeComplexFloat(); |
| RHS.FloatImag = APFloat(Real.getSemantics()); |
| } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) |
| return false; |
| |
| assert(!(LHSReal && RHSReal) && |
| "Cannot have both operands of a complex operation be real."); |
| switch (E->getOpcode()) { |
| default: return Error(E); |
| case BO_Add: |
| if (Result.isComplexFloat()) { |
| Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), |
| APFloat::rmNearestTiesToEven); |
| if (LHSReal) |
| Result.getComplexFloatImag() = RHS.getComplexFloatImag(); |
| else if (!RHSReal) |
| Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), |
| APFloat::rmNearestTiesToEven); |
| } else { |
| Result.getComplexIntReal() += RHS.getComplexIntReal(); |
| Result.getComplexIntImag() += RHS.getComplexIntImag(); |
| } |
| break; |
| case BO_Sub: |
| if (Result.isComplexFloat()) { |
| Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), |
| APFloat::rmNearestTiesToEven); |
| if (LHSReal) { |
| Result.getComplexFloatImag() = RHS.getComplexFloatImag(); |
| Result.getComplexFloatImag().changeSign(); |
| } else if (!RHSReal) { |
| Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), |
| APFloat::rmNearestTiesToEven); |
| } |
| } else { |
| Result.getComplexIntReal() -= RHS.getComplexIntReal(); |
| Result.getComplexIntImag() -= RHS.getComplexIntImag(); |
| } |
| break; |
| case BO_Mul: |
| if (Result.isComplexFloat()) { |
| // This is an implementation of complex multiplication according to the |
| // constraints laid out in C11 Annex G. The implemention uses the |
| // following naming scheme: |
| // (a + ib) * (c + id) |
| ComplexValue LHS = Result; |
| APFloat &A = LHS.getComplexFloatReal(); |
| APFloat &B = LHS.getComplexFloatImag(); |
| APFloat &C = RHS.getComplexFloatReal(); |
| APFloat &D = RHS.getComplexFloatImag(); |
| APFloat &ResR = Result.getComplexFloatReal(); |
| APFloat &ResI = Result.getComplexFloatImag(); |
| if (LHSReal) { |
| assert(!RHSReal && "Cannot have two real operands for a complex op!"); |
| ResR = A * C; |
| ResI = A * D; |
| } else if (RHSReal) { |
| ResR = C * A; |
| ResI = C * B; |
| } else { |
| // In the fully general case, we need to handle NaNs and infinities |
| // robustly. |
| APFloat AC = A * C; |
| APFloat BD = B * D; |
| APFloat AD = A * D; |
| APFloat BC = B * C; |
| ResR = AC - BD; |
| ResI = AD + BC; |
| if (ResR.isNaN() && ResI.isNaN()) { |
| bool Recalc = false; |
| if (A.isInfinity() || B.isInfinity()) { |
| A = APFloat::copySign( |
| APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); |
| B = APFloat::copySign( |
| APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); |
| if (C.isNaN()) |
| C = APFloat::copySign(APFloat(C.getSemantics()), C); |
| if (D.isNaN()) |
| D = APFloat::copySign(APFloat(D.getSemantics()), D); |
| Recalc = true; |
| } |
| if (C.isInfinity() || D.isInfinity()) { |
| C = APFloat::copySign( |
| APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); |
| D = APFloat::copySign( |
| APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); |
| if (A.isNaN()) |
| A = APFloat::copySign(APFloat(A.getSemantics()), A); |
| if (B.isNaN()) |
| B = APFloat::copySign(APFloat(B.getSemantics()), B); |
| Recalc = true; |
| } |
| if (!Recalc && (AC.isInfinity() || BD.isInfinity() || |
| AD.isInfinity() || BC.isInfinity())) { |
| if (A.isNaN()) |
| A = APFloat::copySign(APFloat(A.getSemantics()), A); |
| if (B.isNaN()) |
| B = APFloat::copySign(APFloat(B.getSemantics()), B); |
| if (C.isNaN()) |
| C = APFloat::copySign(APFloat(C.getSemantics()), C); |
| if (D.isNaN()) |
| D = APFloat::copySign(APFloat(D.getSemantics()), D); |
| Recalc = true; |
| } |
| if (Recalc) { |
| ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); |
| ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); |
| } |
| } |
| } |
| } else { |
| ComplexValue LHS = Result; |
| Result.getComplexIntReal() = |
| (LHS.getComplexIntReal() * RHS.getComplexIntReal() - |
| LHS.getComplexIntImag() * RHS.getComplexIntImag()); |
| Result.getComplexIntImag() = |
| (LHS.getComplexIntReal() * RHS.getComplexIntImag() + |
| LHS.getComplexIntImag() * RHS.getComplexIntReal()); |
| } |
| break; |
| case BO_Div: |
| if (Result.isComplexFloat()) { |
| // This is an implementation of complex division according to the |
| // constraints laid out in C11 Annex G. The implemention uses the |
| // following naming scheme: |
| // (a + ib) / (c + id) |
| ComplexValue LHS = Result; |
| APFloat &A = LHS.getComplexFloatReal(); |
| APFloat &B = LHS.getComplexFloatImag(); |
| APFloat &C = RHS.getComplexFloatReal(); |
| APFloat &D = RHS.getComplexFloatImag(); |
| APFloat &ResR = Result.getComplexFloatReal(); |
| APFloat &ResI = Result.getComplexFloatImag(); |
| if (RHSReal) { |
| ResR = A / C; |
| ResI = B / C; |
| } else { |
| if (LHSReal) { |
| // No real optimizations we can do here, stub out with zero. |
| B = APFloat::getZero(A.getSemantics()); |
| } |
| int DenomLogB = 0; |
| APFloat MaxCD = maxnum(abs(C), abs(D)); |
| if (MaxCD.isFinite()) { |
| DenomLogB = ilogb(MaxCD); |
| C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); |
| D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); |
| } |
| APFloat Denom = C * C + D * D; |
| ResR = scalbn((A * C + B * D) / Denom, -DenomLogB, |
| APFloat::rmNearestTiesToEven); |
| ResI = scalbn((B * C - A * D) / Denom, -DenomLogB, |
| APFloat::rmNearestTiesToEven); |
| if (ResR.isNaN() && ResI.isNaN()) { |
| if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { |
| ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; |
| ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; |
| } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && |
| D.isFinite()) { |
| A = APFloat::copySign( |
| APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); |
| B = APFloat::copySign( |
| APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); |
| ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); |
| ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); |
| } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { |
| C = APFloat::copySign( |
| APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); |
| D = APFloat::copySign( |
| APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); |
| ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); |
| ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); |
| } |
| } |
| } |
| } else { |
| if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) |
| return Error(E, diag::note_expr_divide_by_zero); |
| |
| ComplexValue LHS = Result; |
| APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + |
| RHS.getComplexIntImag() * RHS.getComplexIntImag(); |
| Result.getComplexIntReal() = |
| (LHS.getComplexIntReal() * RHS.getComplexIntReal() + |
| LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; |
| Result.getComplexIntImag() = |
| (LHS.getComplexIntImag() * RHS.getComplexIntReal() - |
| LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; |
| } |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| // Get the operand value into 'Result'. |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: |
| return Error(E); |
| case UO_Extension: |
| return true; |
| case UO_Plus: |
| // The result is always just the subexpr. |
| return true; |
| case UO_Minus: |
| if (Result.isComplexFloat()) { |
| Result.getComplexFloatReal().changeSign(); |
| Result.getComplexFloatImag().changeSign(); |
| } |
| else { |
| Result.getComplexIntReal() = -Result.getComplexIntReal(); |
| Result.getComplexIntImag() = -Result.getComplexIntImag(); |
| } |
| return true; |
| case UO_Not: |
| if (Result.isComplexFloat()) |
| Result.getComplexFloatImag().changeSign(); |
| else |
| Result.getComplexIntImag() = -Result.getComplexIntImag(); |
| return true; |
| } |
| } |
| |
| bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
| if (E->getNumInits() == 2) { |
| if (E->getType()->isComplexType()) { |
| Result.makeComplexFloat(); |
| if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) |
| return false; |
| if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) |
| return false; |
| } else { |
| Result.makeComplexInt(); |
| if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) |
| return false; |
| if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) |
| return false; |
| } |
| return true; |
| } |
| return ExprEvaluatorBaseTy::VisitInitListExpr(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic |
| // implicit conversion. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class AtomicExprEvaluator : |
| public ExprEvaluatorBase<AtomicExprEvaluator> { |
| const LValue *This; |
| APValue &Result; |
| public: |
| AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) |
| : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result = V; |
| return true; |
| } |
| |
| bool ZeroInitialization(const Expr *E) { |
| ImplicitValueInitExpr VIE( |
| E->getType()->castAs<AtomicType>()->getValueType()); |
| // For atomic-qualified class (and array) types in C++, initialize the |
| // _Atomic-wrapped subobject directly, in-place. |
| return This ? EvaluateInPlace(Result, Info, *This, &VIE) |
| : Evaluate(Result, Info, &VIE); |
| } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| case CK_NonAtomicToAtomic: |
| return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) |
| : Evaluate(Result, Info, E->getSubExpr()); |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, |
| EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isAtomicType()); |
| return AtomicExprEvaluator(Info, This, Result).Visit(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Void expression evaluation, primarily for a cast to void on the LHS of a |
| // comma operator |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VoidExprEvaluator |
| : public ExprEvaluatorBase<VoidExprEvaluator> { |
| public: |
| VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} |
| |
| bool Success(const APValue &V, const Expr *e) { return true; } |
| |
| bool ZeroInitialization(const Expr *E) { return true; } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| case CK_ToVoid: |
| VisitIgnoredValue(E->getSubExpr()); |
| return true; |
| } |
| } |
| |
| bool VisitCallExpr(const CallExpr *E) { |
| switch (E->getBuiltinCallee()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| case Builtin::BI__assume: |
| case Builtin::BI__builtin_assume: |
| // The argument is not evaluated! |
| return true; |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isVoidType()); |
| return VoidExprEvaluator(Info).Visit(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top level Expr::EvaluateAsRValue method. |
| //===----------------------------------------------------------------------===// |
| |
| static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { |
| // In C, function designators are not lvalues, but we evaluate them as if they |
| // are. |
| QualType T = E->getType(); |
| if (E->isGLValue() || T->isFunctionType()) { |
| LValue LV; |
| if (!EvaluateLValue(E, LV, Info)) |
| return false; |
| LV.moveInto(Result); |
| } else if (T->isVectorType()) { |
| if (!EvaluateVector(E, Result, Info)) |
| return false; |
| } else if (T->isIntegralOrEnumerationType()) { |
| if (!IntExprEvaluator(Info, Result).Visit(E)) |
| return false; |
| } else if (T->hasPointerRepresentation()) { |
| LValue LV; |
| if (!EvaluatePointer(E, LV, Info)) |
| return false; |
| LV.moveInto(Result); |
| } else if (T->isRealFloatingType()) { |
| llvm::APFloat F(0.0); |
| if (!EvaluateFloat(E, F, Info)) |
| return false; |
| Result = APValue(F); |
| } else if (T->isAnyComplexType()) { |
| ComplexValue C; |
| if (!EvaluateComplex(E, C, Info)) |
| return false; |
| C.moveInto(Result); |
| } else if (T->isFixedPointType()) { |
| if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; |
| } else if (T->isMemberPointerType()) { |
| MemberPtr P; |
| if (!EvaluateMemberPointer(E, P, Info)) |
| return false; |
| P.moveInto(Result); |
| return true; |
| } else if (T->isArrayType()) { |
| LValue LV; |
| APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall); |
| if (!EvaluateArray(E, LV, Value, Info)) |
| return false; |
| Result = Value; |
| } else if (T->isRecordType()) { |
| LValue LV; |
| APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall); |
| if (!EvaluateRecord(E, LV, Value, Info)) |
| return false; |
| Result = Value; |
| } else if (T->isVoidType()) { |
| if (!Info.getLangOpts().CPlusPlus11) |
| Info.CCEDiag(E, diag::note_constexpr_nonliteral) |
| << E->getType(); |
| if (!EvaluateVoid(E, Info)) |
| return false; |
| } else if (T->isAtomicType()) { |
| QualType Unqual = T.getAtomicUnqualifiedType(); |
| if (Unqual->isArrayType() || Unqual->isRecordType()) { |
| LValue LV; |
| APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall); |
| if (!EvaluateAtomic(E, &LV, Value, Info)) |
| return false; |
| } else { |
| if (!EvaluateAtomic(E, nullptr, Result, Info)) |
| return false; |
| } |
| } else if (Info.getLangOpts().CPlusPlus11) { |
| Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); |
| return false; |
| } else { |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some |
| /// cases, the in-place evaluation is essential, since later initializers for |
| /// an object can indirectly refer to subobjects which were initialized earlier. |
| static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, |
| const Expr *E, bool AllowNonLiteralTypes) { |
| assert(!E->isValueDependent()); |
| |
| if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) |
| return false; |
| |
| if (E->isRValue()) { |
| // Evaluate arrays and record types in-place, so that later initializers can |
| // refer to earlier-initialized members of the object. |
| QualType T = E->getType(); |
| if (T->isArrayType()) |
| return EvaluateArray(E, This, Result, Info); |
| else if (T->isRecordType()) |
| return EvaluateRecord(E, This, Result, Info); |
| else if (T->isAtomicType()) { |
| QualType Unqual = T.getAtomicUnqualifiedType(); |
| if (Unqual->isArrayType() || Unqual->isRecordType()) |
| return EvaluateAtomic(E, &This, Result, Info); |
| } |
| } |
| |
| // For any other type, in-place evaluation is unimportant. |
| return Evaluate(Result, Info, E); |
| } |
| |
| /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit |
| /// lvalue-to-rvalue cast if it is an lvalue. |
| static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { |
| if (E->getType().isNull()) |
| return false; |
| |
| if (!CheckLiteralType(Info, E)) |
| return false; |
| |
| if (!::Evaluate(Result, Info, E)) |
| return false; |
| |
| if (E->isGLValue()) { |
| LValue LV; |
| LV.setFrom(Info.Ctx, Result); |
| if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) |
| return false; |
| } |
| |
| // Check this core constant expression is a constant expression. |
| return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result); |
| } |
| |
| static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, |
| const ASTContext &Ctx, bool &IsConst) { |
| // Fast-path evaluations of integer literals, since we sometimes see files |
| // containing vast quantities of these. |
| if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { |
| Result.Val = APValue(APSInt(L->getValue(), |
| L->getType()->isUnsignedIntegerType())); |
| IsConst = true; |
| return true; |
| } |
| |
| // This case should be rare, but we need to check it before we check on |
| // the type below. |
| if (Exp->getType().isNull()) { |
| IsConst = false; |
| return true; |
| } |
| |
| // FIXME: Evaluating values of large array and record types can cause |
| // performance problems. Only do so in C++11 for now. |
| if (Exp->isRValue() && (Exp->getType()->isArrayType() || |
| Exp->getType()->isRecordType()) && |
| !Ctx.getLangOpts().CPlusPlus11) { |
| IsConst = false; |
| return true; |
| } |
| return false; |
| } |
| |
| |
| /// EvaluateAsRValue - Return true if this is a constant which we can fold using |
| /// any crazy technique (that has nothing to do with language standards) that |
| /// we want to. If this function returns true, it returns the folded constant |
| /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion |
| /// will be applied to the result. |
| bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const { |
| bool IsConst; |
| if (FastEvaluateAsRValue(this, Result, Ctx, IsConst)) |
| return IsConst; |
| |
| EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
| return ::EvaluateAsRValue(Info, this, Result.Val); |
| } |
| |
| bool Expr::EvaluateAsBooleanCondition(bool &Result, |
| const ASTContext &Ctx) const { |
| EvalResult Scratch; |
| return EvaluateAsRValue(Scratch, Ctx) && |
| HandleConversionToBool(Scratch.Val, Result); |
| } |
| |
| static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, |
| Expr::SideEffectsKind SEK) { |
| return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || |
| (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); |
| } |
| |
| bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx, |
| SideEffectsKind AllowSideEffects) const { |
| if (!getType()->isIntegralOrEnumerationType()) |
| return false; |
| |
| EvalResult ExprResult; |
| if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() || |
| hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) |
| return false; |
| |
| Result = ExprResult.Val.getInt(); |
| return true; |
| } |
| |
| bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, |
| SideEffectsKind AllowSideEffects) const { |
| if (!getType()->isRealFloatingType()) |
| return false; |
| |
| EvalResult ExprResult; |
| if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isFloat() || |
| hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) |
| return false; |
| |
| Result = ExprResult.Val.getFloat(); |
| return true; |
| } |
| |
| bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const { |
| EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); |
| |
| LValue LV; |
| if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects || |
| !CheckLValueConstantExpression(Info, getExprLoc(), |
| Ctx.getLValueReferenceType(getType()), LV, |
| Expr::EvaluateForCodeGen)) |
| return false; |
| |
| LV.moveInto(Result.Val); |
| return true; |
| } |
| |
| bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage, |
| const ASTContext &Ctx) const { |
| EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; |
| EvalInfo Info(Ctx, Result, EM); |
| if (!::Evaluate(Result.Val, Info, this)) |
| return false; |
| |
| return CheckConstantExpression(Info, getExprLoc(), getType(), Result.Val, |
| Usage); |
| } |
| |
| bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, |
| const VarDecl *VD, |
| SmallVectorImpl<PartialDiagnosticAt> &Notes) const { |
| // FIXME: Evaluating initializers for large array and record types can cause |
| // performance problems. Only do so in C++11 for now. |
| if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) && |
| !Ctx.getLangOpts().CPlusPlus11) |
| return false; |
| |
| Expr::EvalStatus EStatus; |
| EStatus.Diag = &Notes; |
| |
| EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr() |
| ? EvalInfo::EM_ConstantExpression |
| : EvalInfo::EM_ConstantFold); |
| InitInfo.setEvaluatingDecl(VD, Value); |
| |
| LValue LVal; |
| LVal.set(VD); |
| |
| // C++11 [basic.start.init]p2: |
| // Variables with static storage duration or thread storage duration shall be |
| // zero-initialized before any other initialization takes place. |
| // This behavior is not present in C. |
| if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() && |
| !VD->getType()->isReferenceType()) { |
| ImplicitValueInitExpr VIE(VD->getType()); |
| if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, |
| /*AllowNonLiteralTypes=*/true)) |
| return false; |
| } |
| |
| if (!EvaluateInPlace(Value, InitInfo, LVal, this, |
| /*AllowNonLiteralTypes=*/true) || |
| EStatus.HasSideEffects) |
| return false; |
| |
| return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(), |
| Value); |
| } |
| |
| /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be |
| /// constant folded, but discard the result. |
| bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { |
| EvalResult Result; |
| return EvaluateAsRValue(Result, Ctx) && |
| !hasUnacceptableSideEffect(Result, SEK); |
| } |
| |
| APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, |
| SmallVectorImpl<PartialDiagnosticAt> *Diag) const { |
| EvalResult EvalResult; |
| EvalResult.Diag = Diag; |
| bool Result = EvaluateAsRValue(EvalResult, Ctx); |
| (void)Result; |
| assert(Result && "Could not evaluate expression"); |
| assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer"); |
| |
| return EvalResult.Val.getInt(); |
| } |
| |
| void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { |
| bool IsConst; |
| EvalResult EvalResult; |
| if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) { |
| EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow); |
| (void)::EvaluateAsRValue(Info, this, EvalResult.Val); |
| } |
| } |
| |
| bool Expr::EvalResult::isGlobalLValue() const { |
| assert(Val.isLValue()); |
| return IsGlobalLValue(Val.getLValueBase()); |
| } |
| |
| |
| /// isIntegerConstantExpr - this recursive routine will test if an expression is |
| /// an integer constant expression. |
| |
| /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, |
| /// comma, etc |
| |
| // CheckICE - This function does the fundamental ICE checking: the returned |
| // ICEDiag contains an ICEKind indicating whether the expression is an ICE, |
| // and a (possibly null) SourceLocation indicating the location of the problem. |
| // |
| // Note that to reduce code duplication, this helper does no evaluation |
| // itself; the caller checks whether the expression is evaluatable, and |
| // in the rare cases where CheckICE actually cares about the evaluated |
| // value, it calls into Evaluate. |
| |
| namespace { |
| |
| enum ICEKind { |
| /// This expression is an ICE. |
| IK_ICE, |
| /// This expression is not an ICE, but if it isn't evaluated, it's |
| /// a legal subexpression for an ICE. This return value is used to handle |
| /// the comma operator in C99 mode, and non-constant subexpressions. |
| IK_ICEIfUnevaluated, |
| /// This expression is not an ICE, and is not a legal subexpression for one. |
| IK_NotICE |
| }; |
| |
| struct ICEDiag { |
| ICEKind Kind; |
| SourceLocation Loc; |
| |
| ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} |
| }; |
| |
| } |
| |
| static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } |
| |
| static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } |
| |
| static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { |
| Expr::EvalResult EVResult; |
| if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects || |
| !EVResult.Val.isInt()) |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| |
| return NoDiag(); |
| } |
| |
| static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { |
| assert(!E->isValueDependent() && "Should not see value dependent exprs!"); |
| if (!E->getType()->isIntegralOrEnumerationType()) |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| |
| switch (E->getStmtClass()) { |
| #define ABSTRACT_STMT(Node) |
| #define STMT(Node, Base) case Expr::Node##Class: |
| #define EXPR(Node, Base) |
| #include "clang/AST/StmtNodes.inc" |
| case Expr::PredefinedExprClass: |
| case Expr::FloatingLiteralClass: |
| case Expr::ImaginaryLiteralClass: |
| case Expr::StringLiteralClass: |
| case Expr::ArraySubscriptExprClass: |
| case Expr::OMPArraySectionExprClass: |
| case Expr::MemberExprClass: |
| case Expr::CompoundAssignOperatorClass: |
| case Expr::CompoundLiteralExprClass: |
| case Expr::ExtVectorElementExprClass: |
| case Expr::DesignatedInitExprClass: |
| case Expr::ArrayInitLoopExprClass: |
| case Expr::ArrayInitIndexExprClass: |
| case Expr::NoInitExprClass: |
| case Expr::DesignatedInitUpdateExprClass: |
| case Expr::ImplicitValueInitExprClass: |
| case Expr::ParenListExprClass: |
| case Expr::VAArgExprClass: |
| case Expr::AddrLabelExprClass: |
| case Expr::StmtExprClass: |
| case Expr::CXXMemberCallExprClass: |
| case Expr::CUDAKernelCallExprClass: |
| case Expr::CXXDynamicCastExprClass: |
| case Expr::CXXTypeidExprClass: |
| case Expr::CXXUuidofExprClass: |
| case Expr::MSPropertyRefExprClass: |
| case Expr::MSPropertySubscriptExprClass: |
| case Expr::CXXNullPtrLiteralExprClass: |
| case Expr::UserDefinedLiteralClass: |
| case Expr::CXXThisExprClass: |
| case Expr::CXXThrowExprClass: |
| case Expr::CXXNewExprClass: |
| case Expr::CXXDeleteExprClass: |
| case Expr::CXXPseudoDestructorExprClass: |
| case Expr::UnresolvedLookupExprClass: |
| case Expr::TypoExprClass: |
| case Expr::DependentScopeDeclRefExprClass: |
| case Expr::CXXConstructExprClass: |
| case Expr::CXXInheritedCtorInitExprClass: |
| case Expr::CXXStdInitializerListExprClass: |
| case Expr::CXXBindTemporaryExprClass: |
| case Expr::ExprWithCleanupsClass: |
| case Expr::CXXTemporaryObjectExprClass: |
| case Expr::CXXUnresolvedConstructExprClass: |
| case Expr::CXXDependentScopeMemberExprClass: |
| case Expr::UnresolvedMemberExprClass: |
| case Expr::ObjCStringLiteralClass: |
| case Expr::ObjCBoxedExprClass: |
| case Expr::ObjCArrayLiteralClass: |
| case Expr::ObjCDictionaryLiteralClass: |
| case Expr::ObjCEncodeExprClass: |
| case Expr::ObjCMessageExprClass: |
| case Expr::ObjCSelectorExprClass: |
| case Expr::ObjCProtocolExprClass: |
| case Expr::ObjCIvarRefExprClass: |
| case Expr::ObjCPropertyRefExprClass: |
| case Expr::ObjCSubscriptRefExprClass: |
| case Expr::ObjCIsaExprClass: |
| case Expr::ObjCAvailabilityCheckExprClass: |
| case Expr::ShuffleVectorExprClass: |
| case Expr::ConvertVectorExprClass: |
| case Expr::BlockExprClass: |
| case Expr::NoStmtClass: |
| case Expr::OpaqueValueExprClass: |
| case Expr::PackExpansionExprClass: |
| case Expr::SubstNonTypeTemplateParmPackExprClass: |
| case Expr::FunctionParmPackExprClass: |
| case Expr::AsTypeExprClass: |
| case Expr::ObjCIndirectCopyRestoreExprClass: |
| case Expr::MaterializeTemporaryExprClass: |
| case Expr::PseudoObjectExprClass: |
| case Expr::AtomicExprClass: |
| case Expr::LambdaExprClass: |
| case Expr::CXXFoldExprClass: |
| case Expr::CoawaitExprClass: |
| case Expr::DependentCoawaitExprClass: |
| case Expr::CoyieldExprClass: |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| |
| case Expr::InitListExprClass: { |
| // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the |
| // form "T x = { a };" is equivalent to "T x = a;". |
| // Unless we're initializing a reference, T is a scalar as it is known to be |
| // of integral or enumeration type. |
| if (E->isRValue()) |
| if (cast<InitListExpr>(E)->getNumInits() == 1) |
| return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| } |
| |
| case Expr::SizeOfPackExprClass: |
| case Expr::GNUNullExprClass: |
| // GCC considers the GNU __null value to be an integral constant expression. |
| return NoDiag(); |
| |
| case Expr::SubstNonTypeTemplateParmExprClass: |
| return |
| CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); |
| |
| case Expr::ParenExprClass: |
| return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); |
| case Expr::GenericSelectionExprClass: |
| return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); |
| case Expr::IntegerLiteralClass: |
| case Expr::FixedPointLiteralClass: |
| case Expr::CharacterLiteralClass: |
| case Expr::ObjCBoolLiteralExprClass: |
| case Expr::CXXBoolLiteralExprClass: |
| case Expr::CXXScalarValueInitExprClass: |
| case Expr::TypeTraitExprClass: |
| case Expr::ArrayTypeTraitExprClass: |
| case Expr::ExpressionTraitExprClass: |
| case Expr::CXXNoexceptExprClass: |
| return NoDiag(); |
| case Expr::CallExprClass: |
| case Expr::CXXOperatorCallExprClass: { |
| // C99 6.6/3 allows function calls within unevaluated subexpressions of |
| // constant expressions, but they can never be ICEs because an ICE cannot |
| // contain an operand of (pointer to) function type. |
| const CallExpr *CE = cast<CallExpr>(E); |
| if (CE->getBuiltinCallee()) |
| return CheckEvalInICE(E, Ctx); |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| } |
| case Expr::DeclRefExprClass: { |
| if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) |
| return NoDiag(); |
| const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl(); |
| if (Ctx.getLangOpts().CPlusPlus && |
| D && IsConstNonVolatile(D->getType())) { |
| // Parameter variables are never constants. Without this check, |
| // getAnyInitializer() can find a default argument, which leads |
| // to chaos. |
| if (isa<ParmVarDecl>(D)) |
| return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); |
| |
| // C++ 7.1.5.1p2 |
| // A variable of non-volatile const-qualified integral or enumeration |
| // type initialized by an ICE can be used in ICEs. |
| if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { |
| if (!Dcl->getType()->isIntegralOrEnumerationType()) |
| return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); |
| |
| const VarDecl *VD; |
| // Look for a declaration of this variable that has an initializer, and |
| // check whether it is an ICE. |
| if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE()) |
| return NoDiag(); |
| else |
| return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); |
| } |
| } |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| } |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(E); |
| switch (Exp->getOpcode()) { |
| case UO_PostInc: |
| case UO_PostDec: |
| case UO_PreInc: |
| case UO_PreDec: |
| case UO_AddrOf: |
| case UO_Deref: |
| case UO_Coawait: |
| // C99 6.6/3 allows increment and decrement within unevaluated |
| // subexpressions of constant expressions, but they can never be ICEs |
| // because an ICE cannot contain an lvalue operand. |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| case UO_Extension: |
| case UO_LNot: |
| case UO_Plus: |
| case UO_Minus: |
| case UO_Not: |
| case UO_Real: |
| case UO_Imag: |
| return CheckICE(Exp->getSubExpr(), Ctx); |
| } |
| |
| // OffsetOf falls through here. |
| LLVM_FALLTHROUGH; |
| } |
| case Expr::OffsetOfExprClass: { |
| // Note that per C99, offsetof must be an ICE. And AFAIK, using |
| // EvaluateAsRValue matches the proposed gcc behavior for cases like |
| // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect |
| // compliance: we should warn earlier for offsetof expressions with |
| // array subscripts that aren't ICEs, and if the array subscripts |
| // are ICEs, the value of the offsetof must be an integer constant. |
| return CheckEvalInICE(E, Ctx); |
| } |
| case Expr::UnaryExprOrTypeTraitExprClass: { |
| const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); |
| if ((Exp->getKind() == UETT_SizeOf) && |
| Exp->getTypeOfArgument()->isVariableArrayType()) |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| return NoDiag(); |
| } |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(E); |
| switch (Exp->getOpcode()) { |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| case BO_Assign: |
| case BO_MulAssign: |
| case BO_DivAssign: |
| case BO_RemAssign: |
| case BO_AddAssign: |
| case BO_SubAssign: |
| case BO_ShlAssign: |
| case BO_ShrAssign: |
| case BO_AndAssign: |
| case BO_XorAssign: |
| case BO_OrAssign: |
| // C99 6.6/3 allows assignments within unevaluated subexpressions of |
| // constant expressions, but they can never be ICEs because an ICE cannot |
| // contain an lvalue operand. |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| |
| case BO_Mul: |
| case BO_Div: |
| case BO_Rem: |
| case BO_Add: |
| case BO_Sub: |
| case BO_Shl: |
| case BO_Shr: |
| case BO_LT: |
| case BO_GT: |
| case BO_LE: |
| case BO_GE: |
| case BO_EQ: |
| case BO_NE: |
| case BO_And: |
| case BO_Xor: |
| case BO_Or: |
| case BO_Comma: |
| case BO_Cmp: { |
| ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| if (Exp->getOpcode() == BO_Div || |
| Exp->getOpcode() == BO_Rem) { |
| // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure |
| // we don't evaluate one. |
| if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { |
| llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); |
| if (REval == 0) |
| return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart()); |
| if (REval.isSigned() && REval.isAllOnesValue()) { |
| llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); |
| if (LEval.isMinSignedValue()) |
| return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart()); |
| } |
| } |
| } |
| if (Exp->getOpcode() == BO_Comma) { |
| if (Ctx.getLangOpts().C99) { |
| // C99 6.6p3 introduces a strange edge case: comma can be in an ICE |
| // if it isn't evaluated. |
| if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) |
| return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart()); |
| } else { |
| // In both C89 and C++, commas in ICEs are illegal. |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| } |
| } |
| return Worst(LHSResult, RHSResult); |
| } |
| case BO_LAnd: |
| case BO_LOr: { |
| ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { |
| // Rare case where the RHS has a comma "side-effect"; we need |
| // to actually check the condition to see whether the side |
| // with the comma is evaluated. |
| if ((Exp->getOpcode() == BO_LAnd) != |
| (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) |
| return RHSResult; |
| return NoDiag(); |
| } |
| |
| return Worst(LHSResult, RHSResult); |
| } |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case Expr::ImplicitCastExprClass: |
| case Expr::CStyleCastExprClass: |
| case Expr::CXXFunctionalCastExprClass: |
| case Expr::CXXStaticCastExprClass: |
| case Expr::CXXReinterpretCastExprClass: |
| case Expr::CXXConstCastExprClass: |
| case Expr::ObjCBridgedCastExprClass: { |
| const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); |
| if (isa<ExplicitCastExpr>(E)) { |
| if (const FloatingLiteral *FL |
| = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { |
| unsigned DestWidth = Ctx.getIntWidth(E->getType()); |
| bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); |
| APSInt IgnoredVal(DestWidth, !DestSigned); |
| bool Ignored; |
| // If the value does not fit in the destination type, the behavior is |
| // undefined, so we are not required to treat it as a constant |
| // expression. |
| if (FL->getValue().convertToInteger(IgnoredVal, |
| llvm::APFloat::rmTowardZero, |
| &Ignored) & APFloat::opInvalidOp) |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| return NoDiag(); |
| } |
| } |
| switch (cast<CastExpr>(E)->getCastKind()) { |
| case CK_LValueToRValue: |
| case CK_AtomicToNonAtomic: |
| case CK_NonAtomicToAtomic: |
| case CK_NoOp: |
| case CK_IntegralToBoolean: |
| case CK_IntegralCast: |
| return CheckICE(SubExpr, Ctx); |
| default: |
| return ICEDiag(IK_NotICE, E->getLocStart()); |
| } |
| } |
| case Expr::BinaryConditionalOperatorClass: { |
| const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); |
| ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); |
| if (CommonResult.Kind == IK_NotICE) return CommonResult; |
| ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
| if (FalseResult.Kind == IK_NotICE) return FalseResult; |
| if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; |
| if (FalseResult.Kind == IK_ICEIfUnevaluated && |
| Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); |
| return FalseResult; |
| } |
| case Expr::ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(E); |
| // If the condition (ignoring parens) is a __builtin_constant_p call, |
| // then only the true side is actually considered in an integer constant |
| // expression, and it is fully evaluated. This is an important GNU |
| // extension. See GCC PR38377 for discussion. |
| if (const CallExpr *CallCE |
| = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) |
| if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) |
| return CheckEvalInICE(E, Ctx); |
| ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); |
| if (CondResult.Kind == IK_NotICE) |
| return CondResult; |
| |
| ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); |
| ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
| |
| if (TrueResult.Kind == IK_NotICE) |
| return TrueResult; |
| if (FalseResult.Kind == IK_NotICE) |
| return FalseResult; |
| if (CondResult.Kind == IK_ICEIfUnevaluated) |
| return CondResult; |
| if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) |
| return NoDiag(); |
| // Rare case where the diagnostics depend on which side is evaluated |
| // Note that if we get here, CondResult is 0, and at least one of |
| // TrueResult and FalseResult is non-zero. |
| if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) |
| return FalseResult; |
| return TrueResult; |
| } |
| case Expr::CXXDefaultArgExprClass: |
| return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); |
| case Expr::CXXDefaultInitExprClass: |
| return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); |
| case Expr::ChooseExprClass: { |
| return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); |
| } |
| } |
| |
| llvm_unreachable("Invalid StmtClass!"); |
| } |
| |
| /// Evaluate an expression as a C++11 integral constant expression. |
| static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, |
| const Expr *E, |
| llvm::APSInt *Value, |
| SourceLocation *Loc) { |
| if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { |
| if (Loc) *Loc = E->getExprLoc(); |
| return false; |
| } |
| |
| APValue Result; |
| if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) |
| return false; |
| |
| if (!Result.isInt()) { |
| if (Loc) *Loc = E->getExprLoc(); |
| return false; |
| } |
| |
| if (Value) *Value = Result.getInt(); |
| return true; |
| } |
| |
| bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, |
| SourceLocation *Loc) const { |
| if (Ctx.getLangOpts().CPlusPlus11) |
| return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); |
| |
| ICEDiag D = CheckICE(this, Ctx); |
| if (D.Kind != IK_ICE) { |
| if (Loc) *Loc = D.Loc; |
| return false; |
| } |
| return true; |
| } |
| |
| bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx, |
| SourceLocation *Loc, bool isEvaluated) const { |
| if (Ctx.getLangOpts().CPlusPlus11) |
| return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc); |
| |
| if (!isIntegerConstantExpr(Ctx, Loc)) |
| return false; |
| // The only possible side-effects here are due to UB discovered in the |
| // evaluation (for instance, INT_MAX + 1). In such a case, we are still |
| // required to treat the expression as an ICE, so we produce the folded |
| // value. |
| if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects)) |
| llvm_unreachable("ICE cannot be evaluated!"); |
| return true; |
| } |
| |
| bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { |
| return CheckICE(this, Ctx).Kind == IK_ICE; |
| } |
| |
| bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, |
| SourceLocation *Loc) const { |
| // We support this checking in C++98 mode in order to diagnose compatibility |
| // issues. |
| assert(Ctx.getLangOpts().CPlusPlus); |
| |
| // Build evaluation settings. |
| Expr::EvalStatus Status; |
| SmallVector<PartialDiagnosticAt, 8> Diags; |
| Status.Diag = &Diags; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
| |
| APValue Scratch; |
| bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch); |
| |
| if (!Diags.empty()) { |
| IsConstExpr = false; |
| if (Loc) *Loc = Diags[0].first; |
| } else if (!IsConstExpr) { |
| // FIXME: This shouldn't happen. |
| if (Loc) *Loc = getExprLoc(); |
| } |
| |
| return IsConstExpr; |
| } |
| |
| bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, |
| const FunctionDecl *Callee, |
| ArrayRef<const Expr*> Args, |
| const Expr *This) const { |
| Expr::EvalStatus Status; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); |
| |
| LValue ThisVal; |
| const LValue *ThisPtr = nullptr; |
| if (This) { |
| #ifndef NDEBUG |
| auto *MD = dyn_cast<CXXMethodDecl>(Callee); |
| assert(MD && "Don't provide `this` for non-methods."); |
| assert(!MD->isStatic() && "Don't provide `this` for static methods."); |
| #endif |
| if (EvaluateObjectArgument(Info, This, ThisVal)) |
| ThisPtr = &ThisVal; |
| if (Info.EvalStatus.HasSideEffects) |
| return false; |
| } |
| |
| ArgVector ArgValues(Args.size()); |
| for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); |
| I != E; ++I) { |
| if ((*I)->isValueDependent() || |
| !Evaluate(ArgValues[I - Args.begin()], Info, *I)) |
| // If evaluation fails, throw away the argument entirely. |
| ArgValues[I - Args.begin()] = APValue(); |
| if (Info.EvalStatus.HasSideEffects) |
| return false; |
| } |
| |
| // Build fake call to Callee. |
| CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, |
| ArgValues.data()); |
| return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects; |
| } |
| |
| bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, |
| SmallVectorImpl< |
| PartialDiagnosticAt> &Diags) { |
| // FIXME: It would be useful to check constexpr function templates, but at the |
| // moment the constant expression evaluator cannot cope with the non-rigorous |
| // ASTs which we build for dependent expressions. |
| if (FD->isDependentContext()) |
| return true; |
| |
| Expr::EvalStatus Status; |
| Status.Diag = &Diags; |
| |
| EvalInfo Info(FD->getASTContext(), Status, |
| EvalInfo::EM_PotentialConstantExpression); |
| |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
| const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; |
| |
| // Fabricate an arbitrary expression on the stack and pretend that it |
| // is a temporary being used as the 'this' pointer. |
| LValue This; |
| ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); |
| This.set({&VIE, Info.CurrentCall->Index}); |
| |
| ArrayRef<const Expr*> Args; |
| |
| APValue Scratch; |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { |
| // Evaluate the call as a constant initializer, to allow the construction |
| // of objects of non-literal types. |
| Info.setEvaluatingDecl(This.getLValueBase(), Scratch); |
| HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); |
| } else { |
| SourceLocation Loc = FD->getLocation(); |
| HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr, |
| Args, FD->getBody(), Info, Scratch, nullptr); |
| } |
| |
| return Diags.empty(); |
| } |
| |
| bool Expr::isPotentialConstantExprUnevaluated(Expr *E, |
| const FunctionDecl *FD, |
| SmallVectorImpl< |
| PartialDiagnosticAt> &Diags) { |
| Expr::EvalStatus Status; |
| Status.Diag = &Diags; |
| |
| EvalInfo Info(FD->getASTContext(), Status, |
| EvalInfo::EM_PotentialConstantExpressionUnevaluated); |
| |
| // Fabricate a call stack frame to give the arguments a plausible cover story. |
| ArrayRef<const Expr*> Args; |
| ArgVector ArgValues(0); |
| bool Success = EvaluateArgs(Args, ArgValues, Info); |
| (void)Success; |
| assert(Success && |
| "Failed to set up arguments for potential constant evaluation"); |
| CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data()); |
| |
| APValue ResultScratch; |
| Evaluate(ResultScratch, Info, E); |
| return Diags.empty(); |
| } |
| |
| bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, |
| unsigned Type) const { |
| if (!getType()->isPointerType()) |
| return false; |
| |
| Expr::EvalStatus Status; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
| return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); |
| } |