| //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implements C++ name mangling according to the Itanium C++ ABI, |
| // which is used in GCC 3.2 and newer (and many compilers that are |
| // ABI-compatible with GCC): |
| // |
| // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling |
| // |
| //===----------------------------------------------------------------------===// |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/ABI.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #define MANGLE_CHECKER 0 |
| |
| #if MANGLE_CHECKER |
| #include <cxxabi.h> |
| #endif |
| |
| using namespace clang; |
| |
| namespace { |
| |
| /// Retrieve the declaration context that should be used when mangling the given |
| /// declaration. |
| static const DeclContext *getEffectiveDeclContext(const Decl *D) { |
| // The ABI assumes that lambda closure types that occur within |
| // default arguments live in the context of the function. However, due to |
| // the way in which Clang parses and creates function declarations, this is |
| // not the case: the lambda closure type ends up living in the context |
| // where the function itself resides, because the function declaration itself |
| // had not yet been created. Fix the context here. |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { |
| if (RD->isLambda()) |
| if (ParmVarDecl *ContextParam |
| = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) |
| return ContextParam->getDeclContext(); |
| } |
| |
| // Perform the same check for block literals. |
| if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { |
| if (ParmVarDecl *ContextParam |
| = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) |
| return ContextParam->getDeclContext(); |
| } |
| |
| const DeclContext *DC = D->getDeclContext(); |
| if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) { |
| return getEffectiveDeclContext(cast<Decl>(DC)); |
| } |
| |
| if (const auto *VD = dyn_cast<VarDecl>(D)) |
| if (VD->isExternC()) |
| return VD->getASTContext().getTranslationUnitDecl(); |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
| if (FD->isExternC()) |
| return FD->getASTContext().getTranslationUnitDecl(); |
| |
| return DC->getRedeclContext(); |
| } |
| |
| static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
| return getEffectiveDeclContext(cast<Decl>(DC)); |
| } |
| |
| static bool isLocalContainerContext(const DeclContext *DC) { |
| return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); |
| } |
| |
| static const RecordDecl *GetLocalClassDecl(const Decl *D) { |
| const DeclContext *DC = getEffectiveDeclContext(D); |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) { |
| if (isLocalContainerContext(DC)) |
| return dyn_cast<RecordDecl>(D); |
| D = cast<Decl>(DC); |
| DC = getEffectiveDeclContext(D); |
| } |
| return nullptr; |
| } |
| |
| static const FunctionDecl *getStructor(const FunctionDecl *fn) { |
| if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) |
| return ftd->getTemplatedDecl(); |
| |
| return fn; |
| } |
| |
| static const NamedDecl *getStructor(const NamedDecl *decl) { |
| const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); |
| return (fn ? getStructor(fn) : decl); |
| } |
| |
| static bool isLambda(const NamedDecl *ND) { |
| const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); |
| if (!Record) |
| return false; |
| |
| return Record->isLambda(); |
| } |
| |
| static const unsigned UnknownArity = ~0U; |
| |
| class ItaniumMangleContextImpl : public ItaniumMangleContext { |
| typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; |
| llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; |
| llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; |
| |
| public: |
| explicit ItaniumMangleContextImpl(ASTContext &Context, |
| DiagnosticsEngine &Diags) |
| : ItaniumMangleContext(Context, Diags) {} |
| |
| /// @name Mangler Entry Points |
| /// @{ |
| |
| bool shouldMangleCXXName(const NamedDecl *D) override; |
| bool shouldMangleStringLiteral(const StringLiteral *) override { |
| return false; |
| } |
| void mangleCXXName(const NamedDecl *D, raw_ostream &) override; |
| void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, |
| raw_ostream &) override; |
| void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
| const ThisAdjustment &ThisAdjustment, |
| raw_ostream &) override; |
| void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, |
| raw_ostream &) override; |
| void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; |
| void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; |
| void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, |
| const CXXRecordDecl *Type, raw_ostream &) override; |
| void mangleCXXRTTI(QualType T, raw_ostream &) override; |
| void mangleCXXRTTIName(QualType T, raw_ostream &) override; |
| void mangleTypeName(QualType T, raw_ostream &) override; |
| void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, |
| raw_ostream &) override; |
| void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, |
| raw_ostream &) override; |
| |
| void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; |
| void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; |
| void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; |
| void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; |
| void mangleDynamicAtExitDestructor(const VarDecl *D, |
| raw_ostream &Out) override; |
| void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, |
| raw_ostream &Out) override; |
| void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, |
| raw_ostream &Out) override; |
| void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; |
| void mangleItaniumThreadLocalWrapper(const VarDecl *D, |
| raw_ostream &) override; |
| |
| void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; |
| |
| bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
| // Lambda closure types are already numbered. |
| if (isLambda(ND)) |
| return false; |
| |
| // Anonymous tags are already numbered. |
| if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { |
| if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) |
| return false; |
| } |
| |
| // Use the canonical number for externally visible decls. |
| if (ND->isExternallyVisible()) { |
| unsigned discriminator = getASTContext().getManglingNumber(ND); |
| if (discriminator == 1) |
| return false; |
| disc = discriminator - 2; |
| return true; |
| } |
| |
| // Make up a reasonable number for internal decls. |
| unsigned &discriminator = Uniquifier[ND]; |
| if (!discriminator) { |
| const DeclContext *DC = getEffectiveDeclContext(ND); |
| discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; |
| } |
| if (discriminator == 1) |
| return false; |
| disc = discriminator-2; |
| return true; |
| } |
| /// @} |
| }; |
| |
| /// Manage the mangling of a single name. |
| class CXXNameMangler { |
| ItaniumMangleContextImpl &Context; |
| raw_ostream &Out; |
| bool NullOut = false; |
| /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. |
| /// This mode is used when mangler creates another mangler recursively to |
| /// calculate ABI tags for the function return value or the variable type. |
| /// Also it is required to avoid infinite recursion in some cases. |
| bool DisableDerivedAbiTags = false; |
| |
| /// The "structor" is the top-level declaration being mangled, if |
| /// that's not a template specialization; otherwise it's the pattern |
| /// for that specialization. |
| const NamedDecl *Structor; |
| unsigned StructorType; |
| |
| /// The next substitution sequence number. |
| unsigned SeqID; |
| |
| class FunctionTypeDepthState { |
| unsigned Bits; |
| |
| enum { InResultTypeMask = 1 }; |
| |
| public: |
| FunctionTypeDepthState() : Bits(0) {} |
| |
| /// The number of function types we're inside. |
| unsigned getDepth() const { |
| return Bits >> 1; |
| } |
| |
| /// True if we're in the return type of the innermost function type. |
| bool isInResultType() const { |
| return Bits & InResultTypeMask; |
| } |
| |
| FunctionTypeDepthState push() { |
| FunctionTypeDepthState tmp = *this; |
| Bits = (Bits & ~InResultTypeMask) + 2; |
| return tmp; |
| } |
| |
| void enterResultType() { |
| Bits |= InResultTypeMask; |
| } |
| |
| void leaveResultType() { |
| Bits &= ~InResultTypeMask; |
| } |
| |
| void pop(FunctionTypeDepthState saved) { |
| assert(getDepth() == saved.getDepth() + 1); |
| Bits = saved.Bits; |
| } |
| |
| } FunctionTypeDepth; |
| |
| // abi_tag is a gcc attribute, taking one or more strings called "tags". |
| // The goal is to annotate against which version of a library an object was |
| // built and to be able to provide backwards compatibility ("dual abi"). |
| // For more information see docs/ItaniumMangleAbiTags.rst. |
| typedef SmallVector<StringRef, 4> AbiTagList; |
| |
| // State to gather all implicit and explicit tags used in a mangled name. |
| // Must always have an instance of this while emitting any name to keep |
| // track. |
| class AbiTagState final { |
| public: |
| explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { |
| Parent = LinkHead; |
| LinkHead = this; |
| } |
| |
| // No copy, no move. |
| AbiTagState(const AbiTagState &) = delete; |
| AbiTagState &operator=(const AbiTagState &) = delete; |
| |
| ~AbiTagState() { pop(); } |
| |
| void write(raw_ostream &Out, const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
| if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { |
| assert( |
| !AdditionalAbiTags && |
| "only function and variables need a list of additional abi tags"); |
| if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { |
| if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { |
| UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), |
| AbiTag->tags().end()); |
| } |
| // Don't emit abi tags for namespaces. |
| return; |
| } |
| } |
| |
| AbiTagList TagList; |
| if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { |
| UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), |
| AbiTag->tags().end()); |
| TagList.insert(TagList.end(), AbiTag->tags().begin(), |
| AbiTag->tags().end()); |
| } |
| |
| if (AdditionalAbiTags) { |
| UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), |
| AdditionalAbiTags->end()); |
| TagList.insert(TagList.end(), AdditionalAbiTags->begin(), |
| AdditionalAbiTags->end()); |
| } |
| |
| llvm::sort(TagList.begin(), TagList.end()); |
| TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); |
| |
| writeSortedUniqueAbiTags(Out, TagList); |
| } |
| |
| const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } |
| void setUsedAbiTags(const AbiTagList &AbiTags) { |
| UsedAbiTags = AbiTags; |
| } |
| |
| const AbiTagList &getEmittedAbiTags() const { |
| return EmittedAbiTags; |
| } |
| |
| const AbiTagList &getSortedUniqueUsedAbiTags() { |
| llvm::sort(UsedAbiTags.begin(), UsedAbiTags.end()); |
| UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), |
| UsedAbiTags.end()); |
| return UsedAbiTags; |
| } |
| |
| private: |
| //! All abi tags used implicitly or explicitly. |
| AbiTagList UsedAbiTags; |
| //! All explicit abi tags (i.e. not from namespace). |
| AbiTagList EmittedAbiTags; |
| |
| AbiTagState *&LinkHead; |
| AbiTagState *Parent = nullptr; |
| |
| void pop() { |
| assert(LinkHead == this && |
| "abi tag link head must point to us on destruction"); |
| if (Parent) { |
| Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), |
| UsedAbiTags.begin(), UsedAbiTags.end()); |
| Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), |
| EmittedAbiTags.begin(), |
| EmittedAbiTags.end()); |
| } |
| LinkHead = Parent; |
| } |
| |
| void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { |
| for (const auto &Tag : AbiTags) { |
| EmittedAbiTags.push_back(Tag); |
| Out << "B"; |
| Out << Tag.size(); |
| Out << Tag; |
| } |
| } |
| }; |
| |
| AbiTagState *AbiTags = nullptr; |
| AbiTagState AbiTagsRoot; |
| |
| llvm::DenseMap<uintptr_t, unsigned> Substitutions; |
| llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; |
| |
| ASTContext &getASTContext() const { return Context.getASTContext(); } |
| |
| public: |
| CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| const NamedDecl *D = nullptr, bool NullOut_ = false) |
| : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), |
| StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) { |
| // These can't be mangled without a ctor type or dtor type. |
| assert(!D || (!isa<CXXDestructorDecl>(D) && |
| !isa<CXXConstructorDecl>(D))); |
| } |
| CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| const CXXConstructorDecl *D, CXXCtorType Type) |
| : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
| SeqID(0), AbiTagsRoot(AbiTags) { } |
| CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| const CXXDestructorDecl *D, CXXDtorType Type) |
| : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
| SeqID(0), AbiTagsRoot(AbiTags) { } |
| |
| CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) |
| : Context(Outer.Context), Out(Out_), NullOut(false), |
| Structor(Outer.Structor), StructorType(Outer.StructorType), |
| SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), |
| AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} |
| |
| CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) |
| : Context(Outer.Context), Out(Out_), NullOut(true), |
| Structor(Outer.Structor), StructorType(Outer.StructorType), |
| SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), |
| AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} |
| |
| #if MANGLE_CHECKER |
| ~CXXNameMangler() { |
| if (Out.str()[0] == '\01') |
| return; |
| |
| int status = 0; |
| char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status); |
| assert(status == 0 && "Could not demangle mangled name!"); |
| free(result); |
| } |
| #endif |
| raw_ostream &getStream() { return Out; } |
| |
| void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } |
| static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); |
| |
| void mangle(const NamedDecl *D); |
| void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); |
| void mangleNumber(const llvm::APSInt &I); |
| void mangleNumber(int64_t Number); |
| void mangleFloat(const llvm::APFloat &F); |
| void mangleFunctionEncoding(const FunctionDecl *FD); |
| void mangleSeqID(unsigned SeqID); |
| void mangleName(const NamedDecl *ND); |
| void mangleType(QualType T); |
| void mangleNameOrStandardSubstitution(const NamedDecl *ND); |
| |
| private: |
| |
| bool mangleSubstitution(const NamedDecl *ND); |
| bool mangleSubstitution(QualType T); |
| bool mangleSubstitution(TemplateName Template); |
| bool mangleSubstitution(uintptr_t Ptr); |
| |
| void mangleExistingSubstitution(TemplateName name); |
| |
| bool mangleStandardSubstitution(const NamedDecl *ND); |
| |
| void addSubstitution(const NamedDecl *ND) { |
| ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
| |
| addSubstitution(reinterpret_cast<uintptr_t>(ND)); |
| } |
| void addSubstitution(QualType T); |
| void addSubstitution(TemplateName Template); |
| void addSubstitution(uintptr_t Ptr); |
| // Destructive copy substitutions from other mangler. |
| void extendSubstitutions(CXXNameMangler* Other); |
| |
| void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
| bool recursive = false); |
| void mangleUnresolvedName(NestedNameSpecifier *qualifier, |
| DeclarationName name, |
| const TemplateArgumentLoc *TemplateArgs, |
| unsigned NumTemplateArgs, |
| unsigned KnownArity = UnknownArity); |
| |
| void mangleFunctionEncodingBareType(const FunctionDecl *FD); |
| |
| void mangleNameWithAbiTags(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleModuleName(const Module *M); |
| void mangleModuleNamePrefix(StringRef Name); |
| void mangleTemplateName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void mangleUnqualifiedName(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity, |
| AdditionalAbiTags); |
| } |
| void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, |
| unsigned KnownArity, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleUnscopedName(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleUnscopedTemplateName(const TemplateDecl *ND, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleUnscopedTemplateName(TemplateName, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleSourceName(const IdentifierInfo *II); |
| void mangleRegCallName(const IdentifierInfo *II); |
| void mangleSourceNameWithAbiTags( |
| const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); |
| void mangleLocalName(const Decl *D, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleBlockForPrefix(const BlockDecl *Block); |
| void mangleUnqualifiedBlock(const BlockDecl *Block); |
| void mangleLambda(const CXXRecordDecl *Lambda); |
| void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, |
| const AbiTagList *AdditionalAbiTags, |
| bool NoFunction=false); |
| void mangleNestedName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void manglePrefix(NestedNameSpecifier *qualifier); |
| void manglePrefix(const DeclContext *DC, bool NoFunction=false); |
| void manglePrefix(QualType type); |
| void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false); |
| void mangleTemplatePrefix(TemplateName Template); |
| bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, |
| StringRef Prefix = ""); |
| void mangleOperatorName(DeclarationName Name, unsigned Arity); |
| void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); |
| void mangleVendorQualifier(StringRef qualifier); |
| void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); |
| void mangleRefQualifier(RefQualifierKind RefQualifier); |
| |
| void mangleObjCMethodName(const ObjCMethodDecl *MD); |
| |
| // Declare manglers for every type class. |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) |
| #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); |
| #include "clang/AST/TypeNodes.def" |
| |
| void mangleType(const TagType*); |
| void mangleType(TemplateName); |
| static StringRef getCallingConvQualifierName(CallingConv CC); |
| void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); |
| void mangleExtFunctionInfo(const FunctionType *T); |
| void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, |
| const FunctionDecl *FD = nullptr); |
| void mangleNeonVectorType(const VectorType *T); |
| void mangleNeonVectorType(const DependentVectorType *T); |
| void mangleAArch64NeonVectorType(const VectorType *T); |
| void mangleAArch64NeonVectorType(const DependentVectorType *T); |
| |
| void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); |
| void mangleMemberExprBase(const Expr *base, bool isArrow); |
| void mangleMemberExpr(const Expr *base, bool isArrow, |
| NestedNameSpecifier *qualifier, |
| NamedDecl *firstQualifierLookup, |
| DeclarationName name, |
| const TemplateArgumentLoc *TemplateArgs, |
| unsigned NumTemplateArgs, |
| unsigned knownArity); |
| void mangleCastExpression(const Expr *E, StringRef CastEncoding); |
| void mangleInitListElements(const InitListExpr *InitList); |
| void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); |
| void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); |
| void mangleCXXDtorType(CXXDtorType T); |
| |
| void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void mangleTemplateArgs(const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void mangleTemplateArgs(const TemplateArgumentList &AL); |
| void mangleTemplateArg(TemplateArgument A); |
| |
| void mangleTemplateParameter(unsigned Index); |
| |
| void mangleFunctionParam(const ParmVarDecl *parm); |
| |
| void writeAbiTags(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags); |
| |
| // Returns sorted unique list of ABI tags. |
| AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); |
| // Returns sorted unique list of ABI tags. |
| AbiTagList makeVariableTypeTags(const VarDecl *VD); |
| }; |
| |
| } |
| |
| bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { |
| const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); |
| if (FD) { |
| LanguageLinkage L = FD->getLanguageLinkage(); |
| // Overloadable functions need mangling. |
| if (FD->hasAttr<OverloadableAttr>()) |
| return true; |
| |
| // "main" is not mangled. |
| if (FD->isMain()) |
| return false; |
| |
| // The Windows ABI expects that we would never mangle "typical" |
| // user-defined entry points regardless of visibility or freestanding-ness. |
| // |
| // N.B. This is distinct from asking about "main". "main" has a lot of |
| // special rules associated with it in the standard while these |
| // user-defined entry points are outside of the purview of the standard. |
| // For example, there can be only one definition for "main" in a standards |
| // compliant program; however nothing forbids the existence of wmain and |
| // WinMain in the same translation unit. |
| if (FD->isMSVCRTEntryPoint()) |
| return false; |
| |
| // C++ functions and those whose names are not a simple identifier need |
| // mangling. |
| if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) |
| return true; |
| |
| // C functions are not mangled. |
| if (L == CLanguageLinkage) |
| return false; |
| } |
| |
| // Otherwise, no mangling is done outside C++ mode. |
| if (!getASTContext().getLangOpts().CPlusPlus) |
| return false; |
| |
| const VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (VD && !isa<DecompositionDecl>(D)) { |
| // C variables are not mangled. |
| if (VD->isExternC()) |
| return false; |
| |
| // Variables at global scope with non-internal linkage are not mangled |
| const DeclContext *DC = getEffectiveDeclContext(D); |
| // Check for extern variable declared locally. |
| if (DC->isFunctionOrMethod() && D->hasLinkage()) |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) |
| DC = getEffectiveParentContext(DC); |
| if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && |
| !CXXNameMangler::shouldHaveAbiTags(*this, VD) && |
| !isa<VarTemplateSpecializationDecl>(D)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void CXXNameMangler::writeAbiTags(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| assert(AbiTags && "require AbiTagState"); |
| AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); |
| } |
| |
| void CXXNameMangler::mangleSourceNameWithAbiTags( |
| const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { |
| mangleSourceName(ND->getIdentifier()); |
| writeAbiTags(ND, AdditionalAbiTags); |
| } |
| |
| void CXXNameMangler::mangle(const NamedDecl *D) { |
| // <mangled-name> ::= _Z <encoding> |
| // ::= <data name> |
| // ::= <special-name> |
| Out << "_Z"; |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) |
| mangleFunctionEncoding(FD); |
| else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| mangleName(VD); |
| else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) |
| mangleName(IFD->getAnonField()); |
| else |
| mangleName(cast<FieldDecl>(D)); |
| } |
| |
| void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { |
| // <encoding> ::= <function name> <bare-function-type> |
| |
| // Don't mangle in the type if this isn't a decl we should typically mangle. |
| if (!Context.shouldMangleDeclName(FD)) { |
| mangleName(FD); |
| return; |
| } |
| |
| AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); |
| if (ReturnTypeAbiTags.empty()) { |
| // There are no tags for return type, the simplest case. |
| mangleName(FD); |
| mangleFunctionEncodingBareType(FD); |
| return; |
| } |
| |
| // Mangle function name and encoding to temporary buffer. |
| // We have to output name and encoding to the same mangler to get the same |
| // substitution as it will be in final mangling. |
| SmallString<256> FunctionEncodingBuf; |
| llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); |
| CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); |
| // Output name of the function. |
| FunctionEncodingMangler.disableDerivedAbiTags(); |
| FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); |
| |
| // Remember length of the function name in the buffer. |
| size_t EncodingPositionStart = FunctionEncodingStream.str().size(); |
| FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); |
| |
| // Get tags from return type that are not present in function name or |
| // encoding. |
| const AbiTagList &UsedAbiTags = |
| FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); |
| AdditionalAbiTags.erase( |
| std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), |
| UsedAbiTags.begin(), UsedAbiTags.end(), |
| AdditionalAbiTags.begin()), |
| AdditionalAbiTags.end()); |
| |
| // Output name with implicit tags and function encoding from temporary buffer. |
| mangleNameWithAbiTags(FD, &AdditionalAbiTags); |
| Out << FunctionEncodingStream.str().substr(EncodingPositionStart); |
| |
| // Function encoding could create new substitutions so we have to add |
| // temp mangled substitutions to main mangler. |
| extendSubstitutions(&FunctionEncodingMangler); |
| } |
| |
| void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { |
| if (FD->hasAttr<EnableIfAttr>()) { |
| FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
| Out << "Ua9enable_ifI"; |
| // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use |
| // it here. |
| for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(), |
| E = FD->getAttrs().rend(); |
| I != E; ++I) { |
| EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); |
| if (!EIA) |
| continue; |
| Out << 'X'; |
| mangleExpression(EIA->getCond()); |
| Out << 'E'; |
| } |
| Out << 'E'; |
| FunctionTypeDepth.pop(Saved); |
| } |
| |
| // When mangling an inheriting constructor, the bare function type used is |
| // that of the inherited constructor. |
| if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) |
| if (auto Inherited = CD->getInheritedConstructor()) |
| FD = Inherited.getConstructor(); |
| |
| // Whether the mangling of a function type includes the return type depends on |
| // the context and the nature of the function. The rules for deciding whether |
| // the return type is included are: |
| // |
| // 1. Template functions (names or types) have return types encoded, with |
| // the exceptions listed below. |
| // 2. Function types not appearing as part of a function name mangling, |
| // e.g. parameters, pointer types, etc., have return type encoded, with the |
| // exceptions listed below. |
| // 3. Non-template function names do not have return types encoded. |
| // |
| // The exceptions mentioned in (1) and (2) above, for which the return type is |
| // never included, are |
| // 1. Constructors. |
| // 2. Destructors. |
| // 3. Conversion operator functions, e.g. operator int. |
| bool MangleReturnType = false; |
| if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { |
| if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || |
| isa<CXXConversionDecl>(FD))) |
| MangleReturnType = true; |
| |
| // Mangle the type of the primary template. |
| FD = PrimaryTemplate->getTemplatedDecl(); |
| } |
| |
| mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), |
| MangleReturnType, FD); |
| } |
| |
| static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { |
| while (isa<LinkageSpecDecl>(DC)) { |
| DC = getEffectiveParentContext(DC); |
| } |
| |
| return DC; |
| } |
| |
| /// Return whether a given namespace is the 'std' namespace. |
| static bool isStd(const NamespaceDecl *NS) { |
| if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) |
| ->isTranslationUnit()) |
| return false; |
| |
| const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); |
| return II && II->isStr("std"); |
| } |
| |
| // isStdNamespace - Return whether a given decl context is a toplevel 'std' |
| // namespace. |
| static bool isStdNamespace(const DeclContext *DC) { |
| if (!DC->isNamespace()) |
| return false; |
| |
| return isStd(cast<NamespaceDecl>(DC)); |
| } |
| |
| static const TemplateDecl * |
| isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { |
| // Check if we have a function template. |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { |
| if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
| TemplateArgs = FD->getTemplateSpecializationArgs(); |
| return TD; |
| } |
| } |
| |
| // Check if we have a class template. |
| if (const ClassTemplateSpecializationDecl *Spec = |
| dyn_cast<ClassTemplateSpecializationDecl>(ND)) { |
| TemplateArgs = &Spec->getTemplateArgs(); |
| return Spec->getSpecializedTemplate(); |
| } |
| |
| // Check if we have a variable template. |
| if (const VarTemplateSpecializationDecl *Spec = |
| dyn_cast<VarTemplateSpecializationDecl>(ND)) { |
| TemplateArgs = &Spec->getTemplateArgs(); |
| return Spec->getSpecializedTemplate(); |
| } |
| |
| return nullptr; |
| } |
| |
| void CXXNameMangler::mangleName(const NamedDecl *ND) { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { |
| // Variables should have implicit tags from its type. |
| AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); |
| if (VariableTypeAbiTags.empty()) { |
| // Simple case no variable type tags. |
| mangleNameWithAbiTags(VD, nullptr); |
| return; |
| } |
| |
| // Mangle variable name to null stream to collect tags. |
| llvm::raw_null_ostream NullOutStream; |
| CXXNameMangler VariableNameMangler(*this, NullOutStream); |
| VariableNameMangler.disableDerivedAbiTags(); |
| VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); |
| |
| // Get tags from variable type that are not present in its name. |
| const AbiTagList &UsedAbiTags = |
| VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); |
| AdditionalAbiTags.erase( |
| std::set_difference(VariableTypeAbiTags.begin(), |
| VariableTypeAbiTags.end(), UsedAbiTags.begin(), |
| UsedAbiTags.end(), AdditionalAbiTags.begin()), |
| AdditionalAbiTags.end()); |
| |
| // Output name with implicit tags. |
| mangleNameWithAbiTags(VD, &AdditionalAbiTags); |
| } else { |
| mangleNameWithAbiTags(ND, nullptr); |
| } |
| } |
| |
| void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| // <name> ::= [<module-name>] <nested-name> |
| // ::= [<module-name>] <unscoped-name> |
| // ::= [<module-name>] <unscoped-template-name> <template-args> |
| // ::= <local-name> |
| // |
| const DeclContext *DC = getEffectiveDeclContext(ND); |
| |
| // If this is an extern variable declared locally, the relevant DeclContext |
| // is that of the containing namespace, or the translation unit. |
| // FIXME: This is a hack; extern variables declared locally should have |
| // a proper semantic declaration context! |
| if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) |
| DC = getEffectiveParentContext(DC); |
| else if (GetLocalClassDecl(ND)) { |
| mangleLocalName(ND, AdditionalAbiTags); |
| return; |
| } |
| |
| DC = IgnoreLinkageSpecDecls(DC); |
| |
| if (isLocalContainerContext(DC)) { |
| mangleLocalName(ND, AdditionalAbiTags); |
| return; |
| } |
| |
| // Do not mangle the owning module for an external linkage declaration. |
| // This enables backwards-compatibility with non-modular code, and is |
| // a valid choice since conflicts are not permitted by C++ Modules TS |
| // [basic.def.odr]/6.2. |
| if (!ND->hasExternalFormalLinkage()) |
| if (Module *M = ND->getOwningModuleForLinkage()) |
| mangleModuleName(M); |
| |
| if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = nullptr; |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| mangleUnscopedTemplateName(TD, AdditionalAbiTags); |
| mangleTemplateArgs(*TemplateArgs); |
| return; |
| } |
| |
| mangleUnscopedName(ND, AdditionalAbiTags); |
| return; |
| } |
| |
| mangleNestedName(ND, DC, AdditionalAbiTags); |
| } |
| |
| void CXXNameMangler::mangleModuleName(const Module *M) { |
| // Implement the C++ Modules TS name mangling proposal; see |
| // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile |
| // |
| // <module-name> ::= W <unscoped-name>+ E |
| // ::= W <module-subst> <unscoped-name>* E |
| Out << 'W'; |
| mangleModuleNamePrefix(M->Name); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) { |
| // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10 |
| // ::= W <seq-id - 10> _ # otherwise |
| auto It = ModuleSubstitutions.find(Name); |
| if (It != ModuleSubstitutions.end()) { |
| if (It->second < 10) |
| Out << '_' << static_cast<char>('0' + It->second); |
| else |
| Out << 'W' << (It->second - 10) << '_'; |
| return; |
| } |
| |
| // FIXME: Preserve hierarchy in module names rather than flattening |
| // them to strings; use Module*s as substitution keys. |
| auto Parts = Name.rsplit('.'); |
| if (Parts.second.empty()) |
| Parts.second = Parts.first; |
| else |
| mangleModuleNamePrefix(Parts.first); |
| |
| Out << Parts.second.size() << Parts.second; |
| ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()}); |
| } |
| |
| void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); |
| |
| if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
| mangleUnscopedTemplateName(TD, nullptr); |
| mangleTemplateArgs(TemplateArgs, NumTemplateArgs); |
| } else { |
| mangleNestedName(TD, TemplateArgs, NumTemplateArgs); |
| } |
| } |
| |
| void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| // <unscoped-name> ::= <unqualified-name> |
| // ::= St <unqualified-name> # ::std:: |
| |
| if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) |
| Out << "St"; |
| |
| mangleUnqualifiedName(ND, AdditionalAbiTags); |
| } |
| |
| void CXXNameMangler::mangleUnscopedTemplateName( |
| const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) { |
| // <unscoped-template-name> ::= <unscoped-name> |
| // ::= <substitution> |
| if (mangleSubstitution(ND)) |
| return; |
| |
| // <template-template-param> ::= <template-param> |
| if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { |
| assert(!AdditionalAbiTags && |
| "template template param cannot have abi tags"); |
| mangleTemplateParameter(TTP->getIndex()); |
| } else if (isa<BuiltinTemplateDecl>(ND)) { |
| mangleUnscopedName(ND, AdditionalAbiTags); |
| } else { |
| mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags); |
| } |
| |
| addSubstitution(ND); |
| } |
| |
| void CXXNameMangler::mangleUnscopedTemplateName( |
| TemplateName Template, const AbiTagList *AdditionalAbiTags) { |
| // <unscoped-template-name> ::= <unscoped-name> |
| // ::= <substitution> |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return mangleUnscopedTemplateName(TD, AdditionalAbiTags); |
| |
| if (mangleSubstitution(Template)) |
| return; |
| |
| assert(!AdditionalAbiTags && |
| "dependent template name cannot have abi tags"); |
| |
| DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
| assert(Dependent && "Not a dependent template name?"); |
| if (const IdentifierInfo *Id = Dependent->getIdentifier()) |
| mangleSourceName(Id); |
| else |
| mangleOperatorName(Dependent->getOperator(), UnknownArity); |
| |
| addSubstitution(Template); |
| } |
| |
| void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { |
| // ABI: |
| // Floating-point literals are encoded using a fixed-length |
| // lowercase hexadecimal string corresponding to the internal |
| // representation (IEEE on Itanium), high-order bytes first, |
| // without leading zeroes. For example: "Lf bf800000 E" is -1.0f |
| // on Itanium. |
| // The 'without leading zeroes' thing seems to be an editorial |
| // mistake; see the discussion on cxx-abi-dev beginning on |
| // 2012-01-16. |
| |
| // Our requirements here are just barely weird enough to justify |
| // using a custom algorithm instead of post-processing APInt::toString(). |
| |
| llvm::APInt valueBits = f.bitcastToAPInt(); |
| unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; |
| assert(numCharacters != 0); |
| |
| // Allocate a buffer of the right number of characters. |
| SmallVector<char, 20> buffer(numCharacters); |
| |
| // Fill the buffer left-to-right. |
| for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { |
| // The bit-index of the next hex digit. |
| unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); |
| |
| // Project out 4 bits starting at 'digitIndex'. |
| uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; |
| hexDigit >>= (digitBitIndex % 64); |
| hexDigit &= 0xF; |
| |
| // Map that over to a lowercase hex digit. |
| static const char charForHex[16] = { |
| '0', '1', '2', '3', '4', '5', '6', '7', |
| '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
| }; |
| buffer[stringIndex] = charForHex[hexDigit]; |
| } |
| |
| Out.write(buffer.data(), numCharacters); |
| } |
| |
| void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { |
| if (Value.isSigned() && Value.isNegative()) { |
| Out << 'n'; |
| Value.abs().print(Out, /*signed*/ false); |
| } else { |
| Value.print(Out, /*signed*/ false); |
| } |
| } |
| |
| void CXXNameMangler::mangleNumber(int64_t Number) { |
| // <number> ::= [n] <non-negative decimal integer> |
| if (Number < 0) { |
| Out << 'n'; |
| Number = -Number; |
| } |
| |
| Out << Number; |
| } |
| |
| void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { |
| // <call-offset> ::= h <nv-offset> _ |
| // ::= v <v-offset> _ |
| // <nv-offset> ::= <offset number> # non-virtual base override |
| // <v-offset> ::= <offset number> _ <virtual offset number> |
| // # virtual base override, with vcall offset |
| if (!Virtual) { |
| Out << 'h'; |
| mangleNumber(NonVirtual); |
| Out << '_'; |
| return; |
| } |
| |
| Out << 'v'; |
| mangleNumber(NonVirtual); |
| Out << '_'; |
| mangleNumber(Virtual); |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::manglePrefix(QualType type) { |
| if (const auto *TST = type->getAs<TemplateSpecializationType>()) { |
| if (!mangleSubstitution(QualType(TST, 0))) { |
| mangleTemplatePrefix(TST->getTemplateName()); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); |
| addSubstitution(QualType(TST, 0)); |
| } |
| } else if (const auto *DTST = |
| type->getAs<DependentTemplateSpecializationType>()) { |
| if (!mangleSubstitution(QualType(DTST, 0))) { |
| TemplateName Template = getASTContext().getDependentTemplateName( |
| DTST->getQualifier(), DTST->getIdentifier()); |
| mangleTemplatePrefix(Template); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); |
| addSubstitution(QualType(DTST, 0)); |
| } |
| } else { |
| // We use the QualType mangle type variant here because it handles |
| // substitutions. |
| mangleType(type); |
| } |
| } |
| |
| /// Mangle everything prior to the base-unresolved-name in an unresolved-name. |
| /// |
| /// \param recursive - true if this is being called recursively, |
| /// i.e. if there is more prefix "to the right". |
| void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
| bool recursive) { |
| |
| // x, ::x |
| // <unresolved-name> ::= [gs] <base-unresolved-name> |
| |
| // T::x / decltype(p)::x |
| // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> |
| |
| // T::N::x /decltype(p)::N::x |
| // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
| // <base-unresolved-name> |
| |
| // A::x, N::y, A<T>::z; "gs" means leading "::" |
| // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E |
| // <base-unresolved-name> |
| |
| switch (qualifier->getKind()) { |
| case NestedNameSpecifier::Global: |
| Out << "gs"; |
| |
| // We want an 'sr' unless this is the entire NNS. |
| if (recursive) |
| Out << "sr"; |
| |
| // We never want an 'E' here. |
| return; |
| |
| case NestedNameSpecifier::Super: |
| llvm_unreachable("Can't mangle __super specifier"); |
| |
| case NestedNameSpecifier::Namespace: |
| if (qualifier->getPrefix()) |
| mangleUnresolvedPrefix(qualifier->getPrefix(), |
| /*recursive*/ true); |
| else |
| Out << "sr"; |
| mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); |
| break; |
| case NestedNameSpecifier::NamespaceAlias: |
| if (qualifier->getPrefix()) |
| mangleUnresolvedPrefix(qualifier->getPrefix(), |
| /*recursive*/ true); |
| else |
| Out << "sr"; |
| mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); |
| break; |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: { |
| const Type *type = qualifier->getAsType(); |
| |
| // We only want to use an unresolved-type encoding if this is one of: |
| // - a decltype |
| // - a template type parameter |
| // - a template template parameter with arguments |
| // In all of these cases, we should have no prefix. |
| if (qualifier->getPrefix()) { |
| mangleUnresolvedPrefix(qualifier->getPrefix(), |
| /*recursive*/ true); |
| } else { |
| // Otherwise, all the cases want this. |
| Out << "sr"; |
| } |
| |
| if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) |
| return; |
| |
| break; |
| } |
| |
| case NestedNameSpecifier::Identifier: |
| // Member expressions can have these without prefixes. |
| if (qualifier->getPrefix()) |
| mangleUnresolvedPrefix(qualifier->getPrefix(), |
| /*recursive*/ true); |
| else |
| Out << "sr"; |
| |
| mangleSourceName(qualifier->getAsIdentifier()); |
| // An Identifier has no type information, so we can't emit abi tags for it. |
| break; |
| } |
| |
| // If this was the innermost part of the NNS, and we fell out to |
| // here, append an 'E'. |
| if (!recursive) |
| Out << 'E'; |
| } |
| |
| /// Mangle an unresolved-name, which is generally used for names which |
| /// weren't resolved to specific entities. |
| void CXXNameMangler::mangleUnresolvedName( |
| NestedNameSpecifier *qualifier, DeclarationName name, |
| const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, |
| unsigned knownArity) { |
| if (qualifier) mangleUnresolvedPrefix(qualifier); |
| switch (name.getNameKind()) { |
| // <base-unresolved-name> ::= <simple-id> |
| case DeclarationName::Identifier: |
| mangleSourceName(name.getAsIdentifierInfo()); |
| break; |
| // <base-unresolved-name> ::= dn <destructor-name> |
| case DeclarationName::CXXDestructorName: |
| Out << "dn"; |
| mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); |
| break; |
| // <base-unresolved-name> ::= on <operator-name> |
| case DeclarationName::CXXConversionFunctionName: |
| case DeclarationName::CXXLiteralOperatorName: |
| case DeclarationName::CXXOperatorName: |
| Out << "on"; |
| mangleOperatorName(name, knownArity); |
| break; |
| case DeclarationName::CXXConstructorName: |
| llvm_unreachable("Can't mangle a constructor name!"); |
| case DeclarationName::CXXUsingDirective: |
| llvm_unreachable("Can't mangle a using directive name!"); |
| case DeclarationName::CXXDeductionGuideName: |
| llvm_unreachable("Can't mangle a deduction guide name!"); |
| case DeclarationName::ObjCMultiArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCZeroArgSelector: |
| llvm_unreachable("Can't mangle Objective-C selector names here!"); |
| } |
| |
| // The <simple-id> and on <operator-name> productions end in an optional |
| // <template-args>. |
| if (TemplateArgs) |
| mangleTemplateArgs(TemplateArgs, NumTemplateArgs); |
| } |
| |
| void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, |
| DeclarationName Name, |
| unsigned KnownArity, |
| const AbiTagList *AdditionalAbiTags) { |
| unsigned Arity = KnownArity; |
| // <unqualified-name> ::= <operator-name> |
| // ::= <ctor-dtor-name> |
| // ::= <source-name> |
| switch (Name.getNameKind()) { |
| case DeclarationName::Identifier: { |
| const IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| |
| // We mangle decomposition declarations as the names of their bindings. |
| if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { |
| // FIXME: Non-standard mangling for decomposition declarations: |
| // |
| // <unqualified-name> ::= DC <source-name>* E |
| // |
| // These can never be referenced across translation units, so we do |
| // not need a cross-vendor mangling for anything other than demanglers. |
| // Proposed on cxx-abi-dev on 2016-08-12 |
| Out << "DC"; |
| for (auto *BD : DD->bindings()) |
| mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); |
| Out << 'E'; |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| } |
| |
| if (II) { |
| // Match GCC's naming convention for internal linkage symbols, for |
| // symbols that are not actually visible outside of this TU. GCC |
| // distinguishes between internal and external linkage symbols in |
| // its mangling, to support cases like this that were valid C++ prior |
| // to DR426: |
| // |
| // void test() { extern void foo(); } |
| // static void foo(); |
| // |
| // Don't bother with the L marker for names in anonymous namespaces; the |
| // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better |
| // matches GCC anyway, because GCC does not treat anonymous namespaces as |
| // implying internal linkage. |
| if (ND && ND->getFormalLinkage() == InternalLinkage && |
| !ND->isExternallyVisible() && |
| getEffectiveDeclContext(ND)->isFileContext() && |
| !ND->isInAnonymousNamespace()) |
| Out << 'L'; |
| |
| auto *FD = dyn_cast<FunctionDecl>(ND); |
| bool IsRegCall = FD && |
| FD->getType()->castAs<FunctionType>()->getCallConv() == |
| clang::CC_X86RegCall; |
| if (IsRegCall) |
| mangleRegCallName(II); |
| else |
| mangleSourceName(II); |
| |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| } |
| |
| // Otherwise, an anonymous entity. We must have a declaration. |
| assert(ND && "mangling empty name without declaration"); |
| |
| if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { |
| if (NS->isAnonymousNamespace()) { |
| // This is how gcc mangles these names. |
| Out << "12_GLOBAL__N_1"; |
| break; |
| } |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { |
| // We must have an anonymous union or struct declaration. |
| const RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl(); |
| |
| // Itanium C++ ABI 5.1.2: |
| // |
| // For the purposes of mangling, the name of an anonymous union is |
| // considered to be the name of the first named data member found by a |
| // pre-order, depth-first, declaration-order walk of the data members of |
| // the anonymous union. If there is no such data member (i.e., if all of |
| // the data members in the union are unnamed), then there is no way for |
| // a program to refer to the anonymous union, and there is therefore no |
| // need to mangle its name. |
| assert(RD->isAnonymousStructOrUnion() |
| && "Expected anonymous struct or union!"); |
| const FieldDecl *FD = RD->findFirstNamedDataMember(); |
| |
| // It's actually possible for various reasons for us to get here |
| // with an empty anonymous struct / union. Fortunately, it |
| // doesn't really matter what name we generate. |
| if (!FD) break; |
| assert(FD->getIdentifier() && "Data member name isn't an identifier!"); |
| |
| mangleSourceName(FD->getIdentifier()); |
| // Not emitting abi tags: internal name anyway. |
| break; |
| } |
| |
| // Class extensions have no name as a category, and it's possible |
| // for them to be the semantic parent of certain declarations |
| // (primarily, tag decls defined within declarations). Such |
| // declarations will always have internal linkage, so the name |
| // doesn't really matter, but we shouldn't crash on them. For |
| // safety, just handle all ObjC containers here. |
| if (isa<ObjCContainerDecl>(ND)) |
| break; |
| |
| // We must have an anonymous struct. |
| const TagDecl *TD = cast<TagDecl>(ND); |
| if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
| assert(TD->getDeclContext() == D->getDeclContext() && |
| "Typedef should not be in another decl context!"); |
| assert(D->getDeclName().getAsIdentifierInfo() && |
| "Typedef was not named!"); |
| mangleSourceName(D->getDeclName().getAsIdentifierInfo()); |
| assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); |
| // Explicit abi tags are still possible; take from underlying type, not |
| // from typedef. |
| writeAbiTags(TD, nullptr); |
| break; |
| } |
| |
| // <unnamed-type-name> ::= <closure-type-name> |
| // |
| // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ |
| // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'. |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { |
| if (Record->isLambda() && Record->getLambdaManglingNumber()) { |
| assert(!AdditionalAbiTags && |
| "Lambda type cannot have additional abi tags"); |
| mangleLambda(Record); |
| break; |
| } |
| } |
| |
| if (TD->isExternallyVisible()) { |
| unsigned UnnamedMangle = getASTContext().getManglingNumber(TD); |
| Out << "Ut"; |
| if (UnnamedMangle > 1) |
| Out << UnnamedMangle - 2; |
| Out << '_'; |
| writeAbiTags(TD, AdditionalAbiTags); |
| break; |
| } |
| |
| // Get a unique id for the anonymous struct. If it is not a real output |
| // ID doesn't matter so use fake one. |
| unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD); |
| |
| // Mangle it as a source name in the form |
| // [n] $_<id> |
| // where n is the length of the string. |
| SmallString<8> Str; |
| Str += "$_"; |
| Str += llvm::utostr(AnonStructId); |
| |
| Out << Str.size(); |
| Out << Str; |
| break; |
| } |
| |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| llvm_unreachable("Can't mangle Objective-C selector names here!"); |
| |
| case DeclarationName::CXXConstructorName: { |
| const CXXRecordDecl *InheritedFrom = nullptr; |
| const TemplateArgumentList *InheritedTemplateArgs = nullptr; |
| if (auto Inherited = |
| cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { |
| InheritedFrom = Inherited.getConstructor()->getParent(); |
| InheritedTemplateArgs = |
| Inherited.getConstructor()->getTemplateSpecializationArgs(); |
| } |
| |
| if (ND == Structor) |
| // If the named decl is the C++ constructor we're mangling, use the type |
| // we were given. |
| mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); |
| else |
| // Otherwise, use the complete constructor name. This is relevant if a |
| // class with a constructor is declared within a constructor. |
| mangleCXXCtorType(Ctor_Complete, InheritedFrom); |
| |
| // FIXME: The template arguments are part of the enclosing prefix or |
| // nested-name, but it's more convenient to mangle them here. |
| if (InheritedTemplateArgs) |
| mangleTemplateArgs(*InheritedTemplateArgs); |
| |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| } |
| |
| case DeclarationName::CXXDestructorName: |
| if (ND == Structor) |
| // If the named decl is the C++ destructor we're mangling, use the type we |
| // were given. |
| mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); |
| else |
| // Otherwise, use the complete destructor name. This is relevant if a |
| // class with a destructor is declared within a destructor. |
| mangleCXXDtorType(Dtor_Complete); |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| |
| case DeclarationName::CXXOperatorName: |
| if (ND && Arity == UnknownArity) { |
| Arity = cast<FunctionDecl>(ND)->getNumParams(); |
| |
| // If we have a member function, we need to include the 'this' pointer. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) |
| if (!MD->isStatic()) |
| Arity++; |
| } |
| LLVM_FALLTHROUGH; |
| case DeclarationName::CXXConversionFunctionName: |
| case DeclarationName::CXXLiteralOperatorName: |
| mangleOperatorName(Name, Arity); |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| |
| case DeclarationName::CXXDeductionGuideName: |
| llvm_unreachable("Can't mangle a deduction guide name!"); |
| |
| case DeclarationName::CXXUsingDirective: |
| llvm_unreachable("Can't mangle a using directive name!"); |
| } |
| } |
| |
| void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { |
| // <source-name> ::= <positive length number> __regcall3__ <identifier> |
| // <number> ::= [n] <non-negative decimal integer> |
| // <identifier> ::= <unqualified source code identifier> |
| Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" |
| << II->getName(); |
| } |
| |
| void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { |
| // <source-name> ::= <positive length number> <identifier> |
| // <number> ::= [n] <non-negative decimal integer> |
| // <identifier> ::= <unqualified source code identifier> |
| Out << II->getLength() << II->getName(); |
| } |
| |
| void CXXNameMangler::mangleNestedName(const NamedDecl *ND, |
| const DeclContext *DC, |
| const AbiTagList *AdditionalAbiTags, |
| bool NoFunction) { |
| // <nested-name> |
| // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E |
| // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
| // <template-args> E |
| |
| Out << 'N'; |
| if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { |
| Qualifiers MethodQuals = |
| Qualifiers::fromCVRUMask(Method->getTypeQualifiers()); |
| // We do not consider restrict a distinguishing attribute for overloading |
| // purposes so we must not mangle it. |
| MethodQuals.removeRestrict(); |
| mangleQualifiers(MethodQuals); |
| mangleRefQualifier(Method->getRefQualifier()); |
| } |
| |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = nullptr; |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| mangleTemplatePrefix(TD, NoFunction); |
| mangleTemplateArgs(*TemplateArgs); |
| } |
| else { |
| manglePrefix(DC, NoFunction); |
| mangleUnqualifiedName(ND, AdditionalAbiTags); |
| } |
| |
| Out << 'E'; |
| } |
| void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E |
| |
| Out << 'N'; |
| |
| mangleTemplatePrefix(TD); |
| mangleTemplateArgs(TemplateArgs, NumTemplateArgs); |
| |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleLocalName(const Decl *D, |
| const AbiTagList *AdditionalAbiTags) { |
| // <local-name> := Z <function encoding> E <entity name> [<discriminator>] |
| // := Z <function encoding> E s [<discriminator>] |
| // <local-name> := Z <function encoding> E d [ <parameter number> ] |
| // _ <entity name> |
| // <discriminator> := _ <non-negative number> |
| assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); |
| const RecordDecl *RD = GetLocalClassDecl(D); |
| const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D); |
| |
| Out << 'Z'; |
| |
| { |
| AbiTagState LocalAbiTags(AbiTags); |
| |
| if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) |
| mangleObjCMethodName(MD); |
| else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) |
| mangleBlockForPrefix(BD); |
| else |
| mangleFunctionEncoding(cast<FunctionDecl>(DC)); |
| |
| // Implicit ABI tags (from namespace) are not available in the following |
| // entity; reset to actually emitted tags, which are available. |
| LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); |
| } |
| |
| Out << 'E'; |
| |
| // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
| // be a bug that is fixed in trunk. |
| |
| if (RD) { |
| // The parameter number is omitted for the last parameter, 0 for the |
| // second-to-last parameter, 1 for the third-to-last parameter, etc. The |
| // <entity name> will of course contain a <closure-type-name>: Its |
| // numbering will be local to the particular argument in which it appears |
| // -- other default arguments do not affect its encoding. |
| const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); |
| if (CXXRD && CXXRD->isLambda()) { |
| if (const ParmVarDecl *Parm |
| = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { |
| if (const FunctionDecl *Func |
| = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { |
| Out << 'd'; |
| unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| if (Num > 1) |
| mangleNumber(Num - 2); |
| Out << '_'; |
| } |
| } |
| } |
| |
| // Mangle the name relative to the closest enclosing function. |
| // equality ok because RD derived from ND above |
| if (D == RD) { |
| mangleUnqualifiedName(RD, AdditionalAbiTags); |
| } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { |
| manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/); |
| assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); |
| mangleUnqualifiedBlock(BD); |
| } else { |
| const NamedDecl *ND = cast<NamedDecl>(D); |
| mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags, |
| true /*NoFunction*/); |
| } |
| } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { |
| // Mangle a block in a default parameter; see above explanation for |
| // lambdas. |
| if (const ParmVarDecl *Parm |
| = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { |
| if (const FunctionDecl *Func |
| = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { |
| Out << 'd'; |
| unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| if (Num > 1) |
| mangleNumber(Num - 2); |
| Out << '_'; |
| } |
| } |
| |
| assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); |
| mangleUnqualifiedBlock(BD); |
| } else { |
| mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags); |
| } |
| |
| if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { |
| unsigned disc; |
| if (Context.getNextDiscriminator(ND, disc)) { |
| if (disc < 10) |
| Out << '_' << disc; |
| else |
| Out << "__" << disc << '_'; |
| } |
| } |
| } |
| |
| void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { |
| if (GetLocalClassDecl(Block)) { |
| mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); |
| return; |
| } |
| const DeclContext *DC = getEffectiveDeclContext(Block); |
| if (isLocalContainerContext(DC)) { |
| mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); |
| return; |
| } |
| manglePrefix(getEffectiveDeclContext(Block)); |
| mangleUnqualifiedBlock(Block); |
| } |
| |
| void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { |
| if (Decl *Context = Block->getBlockManglingContextDecl()) { |
| if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && |
| Context->getDeclContext()->isRecord()) { |
| const auto *ND = cast<NamedDecl>(Context); |
| if (ND->getIdentifier()) { |
| mangleSourceNameWithAbiTags(ND); |
| Out << 'M'; |
| } |
| } |
| } |
| |
| // If we have a block mangling number, use it. |
| unsigned Number = Block->getBlockManglingNumber(); |
| // Otherwise, just make up a number. It doesn't matter what it is because |
| // the symbol in question isn't externally visible. |
| if (!Number) |
| Number = Context.getBlockId(Block, false); |
| else { |
| // Stored mangling numbers are 1-based. |
| --Number; |
| } |
| Out << "Ub"; |
| if (Number > 0) |
| Out << Number - 1; |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { |
| // If the context of a closure type is an initializer for a class member |
| // (static or nonstatic), it is encoded in a qualified name with a final |
| // <prefix> of the form: |
| // |
| // <data-member-prefix> := <member source-name> M |
| // |
| // Technically, the data-member-prefix is part of the <prefix>. However, |
| // since a closure type will always be mangled with a prefix, it's easier |
| // to emit that last part of the prefix here. |
| if (Decl *Context = Lambda->getLambdaContextDecl()) { |
| if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && |
| !isa<ParmVarDecl>(Context)) { |
| // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a |
| // reasonable mangling here. |
| if (const IdentifierInfo *Name |
| = cast<NamedDecl>(Context)->getIdentifier()) { |
| mangleSourceName(Name); |
| const TemplateArgumentList *TemplateArgs = nullptr; |
| if (isTemplate(cast<NamedDecl>(Context), TemplateArgs)) |
| mangleTemplateArgs(*TemplateArgs); |
| Out << 'M'; |
| } |
| } |
| } |
| |
| Out << "Ul"; |
| const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()-> |
| getAs<FunctionProtoType>(); |
| mangleBareFunctionType(Proto, /*MangleReturnType=*/false, |
| Lambda->getLambdaStaticInvoker()); |
| Out << "E"; |
| |
| // The number is omitted for the first closure type with a given |
| // <lambda-sig> in a given context; it is n-2 for the nth closure type |
| // (in lexical order) with that same <lambda-sig> and context. |
| // |
| // The AST keeps track of the number for us. |
| unsigned Number = Lambda->getLambdaManglingNumber(); |
| assert(Number > 0 && "Lambda should be mangled as an unnamed class"); |
| if (Number > 1) |
| mangleNumber(Number - 2); |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { |
| switch (qualifier->getKind()) { |
| case NestedNameSpecifier::Global: |
| // nothing |
| return; |
| |
| case NestedNameSpecifier::Super: |
| llvm_unreachable("Can't mangle __super specifier"); |
| |
| case NestedNameSpecifier::Namespace: |
| mangleName(qualifier->getAsNamespace()); |
| return; |
| |
| case NestedNameSpecifier::NamespaceAlias: |
| mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); |
| return; |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| manglePrefix(QualType(qualifier->getAsType(), 0)); |
| return; |
| |
| case NestedNameSpecifier::Identifier: |
| // Member expressions can have these without prefixes, but that |
| // should end up in mangleUnresolvedPrefix instead. |
| assert(qualifier->getPrefix()); |
| manglePrefix(qualifier->getPrefix()); |
| |
| mangleSourceName(qualifier->getAsIdentifier()); |
| return; |
| } |
| |
| llvm_unreachable("unexpected nested name specifier"); |
| } |
| |
| void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { |
| // <prefix> ::= <prefix> <unqualified-name> |
| // ::= <template-prefix> <template-args> |
| // ::= <template-param> |
| // ::= # empty |
| // ::= <substitution> |
| |
| DC = IgnoreLinkageSpecDecls(DC); |
| |
| if (DC->isTranslationUnit()) |
| return; |
| |
| if (NoFunction && isLocalContainerContext(DC)) |
| return; |
| |
| assert(!isLocalContainerContext(DC)); |
| |
| const NamedDecl *ND = cast<NamedDecl>(DC); |
| if (mangleSubstitution(ND)) |
| return; |
| |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = nullptr; |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| mangleTemplatePrefix(TD); |
| mangleTemplateArgs(*TemplateArgs); |
| } else { |
| manglePrefix(getEffectiveDeclContext(ND), NoFunction); |
| mangleUnqualifiedName(ND, nullptr); |
| } |
| |
| addSubstitution(ND); |
| } |
| |
| void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { |
| // <template-prefix> ::= <prefix> <template unqualified-name> |
| // ::= <template-param> |
| // ::= <substitution> |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return mangleTemplatePrefix(TD); |
| |
| if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) |
| manglePrefix(Qualified->getQualifier()); |
| |
| if (OverloadedTemplateStorage *Overloaded |
| = Template.getAsOverloadedTemplate()) { |
| mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(), |
| UnknownArity, nullptr); |
| return; |
| } |
| |
| DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
| assert(Dependent && "Unknown template name kind?"); |
| if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) |
| manglePrefix(Qualifier); |
| mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr); |
| } |
| |
| void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND, |
| bool NoFunction) { |
| // <template-prefix> ::= <prefix> <template unqualified-name> |
| // ::= <template-param> |
| // ::= <substitution> |
| // <template-template-param> ::= <template-param> |
| // <substitution> |
| |
| if (mangleSubstitution(ND)) |
| return; |
| |
| // <template-template-param> ::= <template-param> |
| if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { |
| mangleTemplateParameter(TTP->getIndex()); |
| } else { |
| manglePrefix(getEffectiveDeclContext(ND), NoFunction); |
| if (isa<BuiltinTemplateDecl>(ND)) |
| mangleUnqualifiedName(ND, nullptr); |
| else |
| mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr); |
| } |
| |
| addSubstitution(ND); |
| } |
| |
| /// Mangles a template name under the production <type>. Required for |
| /// template template arguments. |
| /// <type> ::= <class-enum-type> |
| /// ::= <template-param> |
| /// ::= <substitution> |
| void CXXNameMangler::mangleType(TemplateName TN) { |
| if (mangleSubstitution(TN)) |
| return; |
| |
| TemplateDecl *TD = nullptr; |
| |
| switch (TN.getKind()) { |
| case TemplateName::QualifiedTemplate: |
| TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); |
| goto HaveDecl; |
| |
| case TemplateName::Template: |
| TD = TN.getAsTemplateDecl(); |
| goto HaveDecl; |
| |
| HaveDecl: |
| if (isa<TemplateTemplateParmDecl>(TD)) |
| mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex()); |
| else |
| mangleName(TD); |
| break; |
| |
| case TemplateName::OverloadedTemplate: |
| llvm_unreachable("can't mangle an overloaded template name as a <type>"); |
| |
| case TemplateName::DependentTemplate: { |
| const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); |
| assert(Dependent->isIdentifier()); |
| |
| // <class-enum-type> ::= <name> |
| // <name> ::= <nested-name> |
| mangleUnresolvedPrefix(Dependent->getQualifier()); |
| mangleSourceName(Dependent->getIdentifier()); |
| break; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| // Substituted template parameters are mangled as the substituted |
| // template. This will check for the substitution twice, which is |
| // fine, but we have to return early so that we don't try to *add* |
| // the substitution twice. |
| SubstTemplateTemplateParmStorage *subst |
| = TN.getAsSubstTemplateTemplateParm(); |
| mangleType(subst->getReplacement()); |
| return; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| // FIXME: not clear how to mangle this! |
| // template <template <class> class T...> class A { |
| // template <template <class> class U...> void foo(B<T,U> x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| } |
| } |
| |
| addSubstitution(TN); |
| } |
| |
| bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, |
| StringRef Prefix) { |
| // Only certain other types are valid as prefixes; enumerate them. |
| switch (Ty->getTypeClass()) { |
| case Type::Builtin: |
| case Type::Complex: |
| case Type::Adjusted: |
| case Type::Decayed: |
| case Type::Pointer: |
| case Type::BlockPointer: |
| case Type::LValueReference: |
| case Type::RValueReference: |
| case Type::MemberPointer: |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::DependentSizedArray: |
| case Type::DependentAddressSpace: |
| case Type::DependentVector: |
| case Type::DependentSizedExtVector: |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::FunctionProto: |
| case Type::FunctionNoProto: |
| case Type::Paren: |
| case Type::Attributed: |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| case Type::PackExpansion: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::ObjCTypeParam: |
| case Type::Atomic: |
| case Type::Pipe: |
| llvm_unreachable("type is illegal as a nested name specifier"); |
| |
| case Type::SubstTemplateTypeParmPack: |
| // FIXME: not clear how to mangle this! |
| // template <class T...> class A { |
| // template <class U...> void foo(decltype(T::foo(U())) x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| |
| // <unresolved-type> ::= <template-param> |
| // ::= <decltype> |
| // ::= <template-template-param> <template-args> |
| // (this last is not official yet) |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::Decltype: |
| case Type::TemplateTypeParm: |
| case Type::UnaryTransform: |
| case Type::SubstTemplateTypeParm: |
| unresolvedType: |
| // Some callers want a prefix before the mangled type. |
| Out << Prefix; |
| |
| // This seems to do everything we want. It's not really |
| // sanctioned for a substituted template parameter, though. |
| mangleType(Ty); |
| |
| // We never want to print 'E' directly after an unresolved-type, |
| // so we return directly. |
| return true; |
| |
| case Type::Typedef: |
| mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); |
| break; |
| |
| case Type::UnresolvedUsing: |
| mangleSourceNameWithAbiTags( |
| cast<UnresolvedUsingType>(Ty)->getDecl()); |
| break; |
| |
| case Type::Enum: |
| case Type::Record: |
| mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); |
| break; |
| |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *TST = |
| cast<TemplateSpecializationType>(Ty); |
| TemplateName TN = TST->getTemplateName(); |
| switch (TN.getKind()) { |
| case TemplateName::Template: |
| case TemplateName::QualifiedTemplate: { |
| TemplateDecl *TD = TN.getAsTemplateDecl(); |
| |
| // If the base is a template template parameter, this is an |
| // unresolved type. |
| assert(TD && "no template for template specialization type"); |
| if (isa<TemplateTemplateParmDecl>(TD)) |
| goto unresolvedType; |
| |
| mangleSourceNameWithAbiTags(TD); |
| break; |
| } |
| |
| case TemplateName::OverloadedTemplate: |
| case TemplateName::DependentTemplate: |
| llvm_unreachable("invalid base for a template specialization type"); |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| SubstTemplateTemplateParmStorage *subst = |
| TN.getAsSubstTemplateTemplateParm(); |
| mangleExistingSubstitution(subst->getReplacement()); |
| break; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| // FIXME: not clear how to mangle this! |
| // template <template <class U> class T...> class A { |
| // template <class U...> void foo(decltype(T<U>::foo) x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| } |
| } |
| |
| mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); |
| break; |
| } |
| |
| case Type::InjectedClassName: |
| mangleSourceNameWithAbiTags( |
| cast<InjectedClassNameType>(Ty)->getDecl()); |
| break; |
| |
| case Type::DependentName: |
| mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); |
| break; |
| |
| case Type::DependentTemplateSpecialization: { |
| const DependentTemplateSpecializationType *DTST = |
| cast<DependentTemplateSpecializationType>(Ty); |
| mangleSourceName(DTST->getIdentifier()); |
| mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); |
| break; |
| } |
| |
| case Type::Elaborated: |
| return mangleUnresolvedTypeOrSimpleId( |
| cast<ElaboratedType>(Ty)->getNamedType(), Prefix); |
| } |
| |
| return false; |
| } |
| |
| void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { |
| switch (Name.getNameKind()) { |
| case DeclarationName::CXXConstructorName: |
| case DeclarationName::CXXDestructorName: |
| case DeclarationName::CXXDeductionGuideName: |
| case DeclarationName::CXXUsingDirective: |
| case DeclarationName::Identifier: |
| case DeclarationName::ObjCMultiArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCZeroArgSelector: |
| llvm_unreachable("Not an operator name"); |
| |
| case DeclarationName::CXXConversionFunctionName: |
| // <operator-name> ::= cv <type> # (cast) |
| Out << "cv"; |
| mangleType(Name.getCXXNameType()); |
| break; |
| |
| case DeclarationName::CXXLiteralOperatorName: |
| Out << "li"; |
| mangleSourceName(Name.getCXXLiteralIdentifier()); |
| return; |
| |
| case DeclarationName::CXXOperatorName: |
| mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); |
| break; |
| } |
| } |
| |
| void |
| CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { |
| switch (OO) { |
| // <operator-name> ::= nw # new |
| case OO_New: Out << "nw"; break; |
| // ::= na # new[] |
| case OO_Array_New: Out << "na"; break; |
| // ::= dl # delete |
| case OO_Delete: Out << "dl"; break; |
| // ::= da # delete[] |
| case OO_Array_Delete: Out << "da"; break; |
| // ::= ps # + (unary) |
| // ::= pl # + (binary or unknown) |
| case OO_Plus: |
| Out << (Arity == 1? "ps" : "pl"); break; |
| // ::= ng # - (unary) |
| // ::= mi # - (binary or unknown) |
| case OO_Minus: |
| Out << (Arity == 1? "ng" : "mi"); break; |
| // ::= ad # & (unary) |
| // ::= an # & (binary or unknown) |
| case OO_Amp: |
| Out << (Arity == 1? "ad" : "an"); break; |
| // ::= de # * (unary) |
| // ::= ml # * (binary or unknown) |
| case OO_Star: |
| // Use binary when unknown. |
| Out << (Arity == 1? "de" : "ml"); break; |
| // ::= co # ~ |
| case OO_Tilde: Out << "co"; break; |
| // ::= dv # / |
| case OO_Slash: Out << "dv"; break; |
| // ::= rm # % |
| case OO_Percent: Out << "rm"; break; |
| // ::= or # | |
| case OO_Pipe: Out << "or"; break; |
| // ::= eo # ^ |
| case OO_Caret: Out << "eo"; break; |
| // ::= aS # = |
| case OO_Equal: Out << "aS"; break; |
| // ::= pL # += |
| case OO_PlusEqual: Out << "pL"; break; |
| // ::= mI # -= |
| case OO_MinusEqual: Out << "mI"; break; |
| // ::= mL # *= |
| case OO_StarEqual: Out << "mL"; break; |
| // ::= dV # /= |
| case OO_SlashEqual: Out << "dV"; break; |
| // ::= rM # %= |
| case OO_PercentEqual: Out << "rM"; break; |
| // ::= aN # &= |
| case OO_AmpEqual: Out << "aN"; break; |
| // ::= oR # |= |
| case OO_PipeEqual: Out << "oR"; break; |
| // ::= eO # ^= |
| case OO_CaretEqual: Out << "eO"; break; |
| // ::= ls # << |
| case OO_LessLess: Out << "ls"; break; |
| // ::= rs # >> |
| case OO_GreaterGreater: Out << "rs"; break; |
| // ::= lS # <<= |
| case OO_LessLessEqual: Out << "lS"; break; |
| // ::= rS # >>= |
| case OO_GreaterGreaterEqual: Out << "rS"; break; |
| // ::= eq # == |
| case OO_EqualEqual: Out << "eq"; break; |
| // ::= ne # != |
| case OO_ExclaimEqual: Out << "ne"; break; |
| // ::= lt # < |
| case OO_Less: Out << "lt"; break; |
| // ::= gt # > |
| case OO_Greater: Out << "gt"; break; |
| // ::= le # <= |
| case OO_LessEqual: Out << "le"; break; |
| // ::= ge # >= |
| case OO_GreaterEqual: Out << "ge"; break; |
| // ::= nt # ! |
| case OO_Exclaim: Out << "nt"; break; |
| // ::= aa # && |
| case OO_AmpAmp: Out << "aa"; break; |
| // ::= oo # || |
| case OO_PipePipe: Out << "oo"; break; |
| // ::= pp # ++ |
| case OO_PlusPlus: Out << "pp"; break; |
| // ::= mm # -- |
| case OO_MinusMinus: Out << "mm"; break; |
| // ::= cm # , |
| case OO_Comma: Out << "cm"; break; |
| // ::= pm # ->* |
| case OO_ArrowStar: Out << "pm"; break; |
| // ::= pt # -> |
| case OO_Arrow: Out << "pt"; break; |
| // ::= cl # () |
| case OO_Call: Out << "cl"; break; |
| // ::= ix # [] |
| case OO_Subscript: Out << "ix"; break; |
| |
| // ::= qu # ? |
| // The conditional operator can't be overloaded, but we still handle it when |
| // mangling expressions. |
| case OO_Conditional: Out << "qu"; break; |
| // Proposal on cxx-abi-dev, 2015-10-21. |
| // ::= aw # co_await |
| case OO_Coawait: Out << "aw"; break; |
| // Proposed in cxx-abi github issue 43. |
| // ::= ss # <=> |
| case OO_Spaceship: Out << "ss"; break; |
| |
| case OO_None: |
| case NUM_OVERLOADED_OPERATORS: |
| llvm_unreachable("Not an overloaded operator"); |
| } |
| } |
| |
| void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { |
| // Vendor qualifiers come first and if they are order-insensitive they must |
| // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. |
| |
| // <type> ::= U <addrspace-expr> |
| if (DAST) { |
| Out << "U2ASI"; |
| mangleExpression(DAST->getAddrSpaceExpr()); |
| Out << "E"; |
| } |
| |
| // Address space qualifiers start with an ordinary letter. |
| if (Quals.hasAddressSpace()) { |
| // Address space extension: |
| // |
| // <type> ::= U <target-addrspace> |
| // <type> ::= U <OpenCL-addrspace> |
| // <type> ::= U <CUDA-addrspace> |
| |
| SmallString<64> ASString; |
| LangAS AS = Quals.getAddressSpace(); |
| |
| if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { |
| // <target-addrspace> ::= "AS" <address-space-number> |
| unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); |
| if (TargetAS != 0) |
| ASString = "AS" + llvm::utostr(TargetAS); |
| } else { |
| switch (AS) { |
| default: llvm_unreachable("Not a language specific address space"); |
| // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | |
| // "private"| "generic" ] |
| case LangAS::opencl_global: ASString = "CLglobal"; break; |
| case LangAS::opencl_local: ASString = "CLlocal"; break; |
| case LangAS::opencl_constant: ASString = "CLconstant"; break; |
| case LangAS::opencl_private: ASString = "CLprivate"; break; |
| case LangAS::opencl_generic: ASString = "CLgeneric"; break; |
| // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] |
| case LangAS::cuda_device: ASString = "CUdevice"; break; |
| case LangAS::cuda_constant: ASString = "CUconstant"; break; |
| case LangAS::cuda_shared: ASString = "CUshared"; break; |
| } |
| } |
| if (!ASString.empty()) |
| mangleVendorQualifier(ASString); |
| } |
| |
| // The ARC ownership qualifiers start with underscores. |
| // Objective-C ARC Extension: |
| // |
| // <type> ::= U "__strong" |
| // <type> ::= U "__weak" |
| // <type> ::= U "__autoreleasing" |
| // |
| // Note: we emit __weak first to preserve the order as |
| // required by the Itanium ABI. |
| if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) |
| mangleVendorQualifier("__weak"); |
| |
| // __unaligned (from -fms-extensions) |
| if (Quals.hasUnaligned()) |
| mangleVendorQualifier("__unaligned"); |
| |
| // Remaining ARC ownership qualifiers. |
| switch (Quals.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| break; |
| |
| case Qualifiers::OCL_Weak: |
| // Do nothing as we already handled this case above. |
| break; |
| |
| case Qualifiers::OCL_Strong: |
| mangleVendorQualifier("__strong"); |
| break; |
| |
| case Qualifiers::OCL_Autoreleasing: |
| mangleVendorQualifier("__autoreleasing"); |
| break; |
| |
| case Qualifiers::OCL_ExplicitNone: |
| // The __unsafe_unretained qualifier is *not* mangled, so that |
| // __unsafe_unretained types in ARC produce the same manglings as the |
| // equivalent (but, naturally, unqualified) types in non-ARC, providing |
| // better ABI compatibility. |
| // |
| // It's safe to do this because unqualified 'id' won't show up |
| // in any type signatures that need to be mangled. |
| break; |
| } |
| |
| // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const |
| if (Quals.hasRestrict()) |
| Out << 'r'; |
| if (Quals.hasVolatile()) |
| Out << 'V'; |
| if (Quals.hasConst()) |
| Out << 'K'; |
| } |
| |
| void CXXNameMangler::mangleVendorQualifier(StringRef name) { |
| Out << 'U' << name.size() << name; |
| } |
| |
| void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
| // <ref-qualifier> ::= R # lvalue reference |
| // ::= O # rvalue-reference |
| switch (RefQualifier) { |
| case RQ_None: |
| break; |
| |
| case RQ_LValue: |
| Out << 'R'; |
| break; |
| |
| case RQ_RValue: |
| Out << 'O'; |
| break; |
| } |
| } |
| |
| void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
| Context.mangleObjCMethodName(MD, Out); |
| } |
| |
| static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, |
| ASTContext &Ctx) { |
| if (Quals) |
| return true; |
| if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) |
| return true; |
| if (Ty->isOpenCLSpecificType()) |
| return true; |
| if (Ty->isBuiltinType()) |
| return false; |
| // Through to Clang 6.0, we accidentally treated undeduced auto types as |
| // substitution candidates. |
| if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && |
| isa<AutoType>(Ty)) |
| return false; |
| return true; |
| } |
| |
| void CXXNameMangler::mangleType(QualType T) { |
| // If our type is instantiation-dependent but not dependent, we mangle |
| // it as it was written in the source, removing any top-level sugar. |
| // Otherwise, use the canonical type. |
| // |
| // FIXME: This is an approximation of the instantiation-dependent name |
| // mangling rules, since we should really be using the type as written and |
| // augmented via semantic analysis (i.e., with implicit conversions and |
| // default template arguments) for any instantiation-dependent type. |
| // Unfortunately, that requires several changes to our AST: |
| // - Instantiation-dependent TemplateSpecializationTypes will need to be |
| // uniqued, so that we can handle substitutions properly |
| // - Default template arguments will need to be represented in the |
| // TemplateSpecializationType, since they need to be mangled even though |
| // they aren't written. |
| // - Conversions on non-type template arguments need to be expressed, since |
| // they can affect the mangling of sizeof/alignof. |
| // |
| // FIXME: This is wrong when mapping to the canonical type for a dependent |
| // type discards instantiation-dependent portions of the type, such as for: |
| // |
| // template<typename T, int N> void f(T (&)[sizeof(N)]); |
| // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) |
| // |
| // It's also wrong in the opposite direction when instantiation-dependent, |
| // canonically-equivalent types differ in some irrelevant portion of inner |
| // type sugar. In such cases, we fail to form correct substitutions, eg: |
| // |
| // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); |
| // |
| // We should instead canonicalize the non-instantiation-dependent parts, |
| // regardless of whether the type as a whole is dependent or instantiation |
| // dependent. |
| if (!T->isInstantiationDependentType() || T->isDependentType()) |
| T = T.getCanonicalType(); |
| else { |
| // Desugar any types that are purely sugar. |
| do { |
| // Don't desugar through template specialization types that aren't |
| // type aliases. We need to mangle the template arguments as written. |
| if (const TemplateSpecializationType *TST |
| = dyn_cast<TemplateSpecializationType>(T)) |
| if (!TST->isTypeAlias()) |
| break; |
| |
| QualType Desugared |
| = T.getSingleStepDesugaredType(Context.getASTContext()); |
| if (Desugared == T) |
| break; |
| |
| T = Desugared; |
| } while (true); |
| } |
| SplitQualType split = T.split(); |
| Qualifiers quals = split.Quals; |
| const Type *ty = split.Ty; |
| |
| bool isSubstitutable = |
| isTypeSubstitutable(quals, ty, Context.getASTContext()); |
| if (isSubstitutable && mangleSubstitution(T)) |
| return; |
| |
| // If we're mangling a qualified array type, push the qualifiers to |
| // the element type. |
| if (quals && isa<ArrayType>(T)) { |
| ty = Context.getASTContext().getAsArrayType(T); |
| quals = Qualifiers(); |
| |
| // Note that we don't update T: we want to add the |
| // substitution at the original type. |
| } |
| |
| if (quals || ty->isDependentAddressSpaceType()) { |
| if (const DependentAddressSpaceType *DAST = |
| dyn_cast<DependentAddressSpaceType>(ty)) { |
| SplitQualType splitDAST = DAST->getPointeeType().split(); |
| mangleQualifiers(splitDAST.Quals, DAST); |
| mangleType(QualType(splitDAST.Ty, 0)); |
| } else { |
| mangleQualifiers(quals); |
| |
| // Recurse: even if the qualified type isn't yet substitutable, |
| // the unqualified type might be. |
| mangleType(QualType(ty, 0)); |
| } |
| } else { |
| switch (ty->getTypeClass()) { |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
| return; |
| #define TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| mangleType(static_cast<const CLASS##Type*>(ty)); \ |
| break; |
| #include "clang/AST/TypeNodes.def" |
| } |
| } |
| |
| // Add the substitution. |
| if (isSubstitutable) |
| addSubstitution(T); |
| } |
| |
| void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { |
| if (!mangleStandardSubstitution(ND)) |
| mangleName(ND); |
| } |
| |
| void CXXNameMangler::mangleType(const BuiltinType *T) { |
| // <type> ::= <builtin-type> |
| // <builtin-type> ::= v # void |
| // ::= w # wchar_t |
| // ::= b # bool |
| // ::= c # char |
| // ::= a # signed char |
| // ::= h # unsigned char |
| // ::= s # short |
| // ::= t # unsigned short |
| // ::= i # int |
| // ::= j # unsigned int |
| // ::= l # long |
| // ::= m # unsigned long |
| // ::= x # long long, __int64 |
| // ::= y # unsigned long long, __int64 |
| // ::= n # __int128 |
| // ::= o # unsigned __int128 |
| // ::= f # float |
| // ::= d # double |
| // ::= e # long double, __float80 |
| // ::= g # __float128 |
| // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) |
| // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) |
| // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) |
| // ::= Dh # IEEE 754r half-precision floating point (16 bits) |
| // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); |
| // ::= Di # char32_t |
| // ::= Ds # char16_t |
| // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) |
| // ::= u <source-name> # vendor extended type |
| std::string type_name; |
| switch (T->getKind()) { |
| case BuiltinType::Void: |
| Out << 'v'; |
| break; |
| case BuiltinType::Bool: |
| Out << 'b'; |
| break; |
| case BuiltinType::Char_U: |
| case BuiltinType::Char_S: |
| Out << 'c'; |
| break; |
| case BuiltinType::UChar: |
| Out << 'h'; |
| break; |
| case BuiltinType::UShort: |
| Out << 't'; |
| break; |
| case BuiltinType::UInt: |
| Out << 'j'; |
| break; |
| case BuiltinType::ULong: |
| Out << 'm'; |
| break; |
| case BuiltinType::ULongLong: |
| Out << 'y'; |
| break; |
| case BuiltinType::UInt128: |
| Out << 'o'; |
| break; |
| case BuiltinType::SChar: |
| Out << 'a'; |
| break; |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: |
| Out << 'w'; |
| break; |
| case BuiltinType::Char8: |
| Out << "Du"; |
| break; |
| case BuiltinType::Char16: |
| Out << "Ds"; |
| break; |
| case BuiltinType::Char32: |
| Out << "Di"; |
| break; |
| case BuiltinType::Short: |
| Out << 's'; |
| break; |
| case BuiltinType::Int: |
| Out << 'i'; |
| break; |
| case BuiltinType::Long: |
| Out << 'l'; |
| break; |
| case BuiltinType::LongLong: |
| Out << 'x'; |
| break; |
| case BuiltinType::Int128: |
| Out << 'n'; |
| break; |
| case BuiltinType::Float16: |
| Out << "DF16_"; |
| break; |
| case BuiltinType::ShortAccum: |
| case BuiltinType::Accum: |
| case BuiltinType::LongAccum: |
| case BuiltinType::UShortAccum: |
| case BuiltinType::UAccum: |
| case BuiltinType::ULongAccum: |
| case BuiltinType::ShortFract: |
| case BuiltinType::Fract: |
| case BuiltinType::LongFract: |
| case BuiltinType::UShortFract: |
| case BuiltinType::UFract: |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatShortAccum: |
| case BuiltinType::SatAccum: |
| case BuiltinType::SatLongAccum: |
| case BuiltinType::SatUShortAccum: |
| case BuiltinType::SatUAccum: |
| case BuiltinType::SatULongAccum: |
| case BuiltinType::SatShortFract: |
| case BuiltinType::SatFract: |
| case BuiltinType::SatLongFract: |
| case BuiltinType::SatUShortFract: |
| case BuiltinType::SatUFract: |
| case BuiltinType::SatULongFract: |
| llvm_unreachable("Fixed point types are disabled for c++"); |
| case BuiltinType::Half: |
| Out << "Dh"; |
| break; |
| case BuiltinType::Float: |
| Out << 'f'; |
| break; |
| case BuiltinType::Double: |
| Out << 'd'; |
| break; |
| case BuiltinType::LongDouble: |
| Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble() |
| ? 'g' |
| : 'e'); |
| break; |
| case BuiltinType::Float128: |
| if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()) |
| Out << "U10__float128"; // Match the GCC mangling |
| else |
| Out << 'g'; |
| break; |
| case BuiltinType::NullPtr: |
| Out << "Dn"; |
| break; |
| |
| #define BUILTIN_TYPE(Id, SingletonId) |
| #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/AST/BuiltinTypes.def" |
| case BuiltinType::Dependent: |
| if (!NullOut) |
| llvm_unreachable("mangling a placeholder type"); |
| break; |
| case BuiltinType::ObjCId: |
| Out << "11objc_object"; |
| break; |
| case BuiltinType::ObjCClass: |
| Out << "10objc_class"; |
| break; |
| case BuiltinType::ObjCSel: |
| Out << "13objc_selector"; |
| break; |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: \ |
| type_name = "ocl_" #ImgType "_" #Suffix; \ |
| Out << type_name.size() << type_name; \ |
| break; |
| #include "clang/Basic/OpenCLImageTypes.def" |
| case BuiltinType::OCLSampler: |
| Out << "11ocl_sampler"; |
| break; |
| case BuiltinType::OCLEvent: |
| Out << "9ocl_event"; |
| break; |
| case BuiltinType::OCLClkEvent: |
| Out << "12ocl_clkevent"; |
| break; |
| case BuiltinType::OCLQueue: |
| Out << "9ocl_queue"; |
| break; |
| case BuiltinType::OCLReserveID: |
| Out << "13ocl_reserveid"; |
| break; |
| } |
| } |
| |
| StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { |
| switch (CC) { |
| case CC_C: |
| return ""; |
| |
| case CC_X86StdCall: |
| case CC_X86FastCall: |
| case CC_X86ThisCall: |
| case CC_X86VectorCall: |
| case CC_X86Pascal: |
| case CC_Win64: |
| case CC_X86_64SysV: |
| case CC_X86RegCall: |
| case CC_AAPCS: |
| case CC_AAPCS_VFP: |
| case CC_IntelOclBicc: |
| case CC_SpirFunction: |
| case CC_OpenCLKernel: |
| case CC_PreserveMost: |
| case CC_PreserveAll: |
| // FIXME: we should be mangling all of the above. |
| return ""; |
| |
| case CC_Swift: |
| return "swiftcall"; |
| } |
| llvm_unreachable("bad calling convention"); |
| } |
| |
| void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { |
| // Fast path. |
| if (T->getExtInfo() == FunctionType::ExtInfo()) |
| return; |
| |
| // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
| // This will get more complicated in the future if we mangle other |
| // things here; but for now, since we mangle ns_returns_retained as |
| // a qualifier on the result type, we can get away with this: |
| StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); |
| if (!CCQualifier.empty()) |
| mangleVendorQualifier(CCQualifier); |
| |
| // FIXME: regparm |
| // FIXME: noreturn |
| } |
| |
| void |
| CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { |
| // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
| |
| // Note that these are *not* substitution candidates. Demanglers might |
| // have trouble with this if the parameter type is fully substituted. |
| |
| switch (PI.getABI()) { |
| case ParameterABI::Ordinary: |
| break; |
| |
| // All of these start with "swift", so they come before "ns_consumed". |
| case ParameterABI::SwiftContext: |
| case ParameterABI::SwiftErrorResult: |
| case ParameterABI::SwiftIndirectResult: |
| mangleVendorQualifier(getParameterABISpelling(PI.getABI())); |
| break; |
| } |
| |
| if (PI.isConsumed()) |
| mangleVendorQualifier("ns_consumed"); |
| |
| if (PI.isNoEscape()) |
| mangleVendorQualifier("noescape"); |
| } |
| |
| // <type> ::= <function-type> |
| // <function-type> ::= [<CV-qualifiers>] F [Y] |
| // <bare-function-type> [<ref-qualifier>] E |
| void CXXNameMangler::mangleType(const FunctionProtoType *T) { |
| mangleExtFunctionInfo(T); |
| |
| // Mangle CV-qualifiers, if present. These are 'this' qualifiers, |
| // e.g. "const" in "int (A::*)() const". |
| mangleQualifiers(Qualifiers::fromCVRUMask(T->getTypeQuals())); |
| |
| // Mangle instantiation-dependent exception-specification, if present, |
| // per cxx-abi-dev proposal on 2016-10-11. |
| if (T->hasInstantiationDependentExceptionSpec()) { |
| if (isComputedNoexcept(T->getExceptionSpecType())) { |
| Out << "DO"; |
| mangleExpression(T->getNoexceptExpr()); |
| Out << "E"; |
| } else { |
| assert(T->getExceptionSpecType() == EST_Dynamic); |
| Out << "Dw"; |
| for (auto ExceptTy : T->exceptions()) |
| mangleType(ExceptTy); |
| Out << "E"; |
| } |
| } else if (T->isNothrow()) { |
| Out << "Do"; |
| } |
| |
| Out << 'F'; |
| |
| // FIXME: We don't have enough information in the AST to produce the 'Y' |
| // encoding for extern "C" function types. |
| mangleBareFunctionType(T, /*MangleReturnType=*/true); |
| |
| // Mangle the ref-qualifier, if present. |
| mangleRefQualifier(T->getRefQualifier()); |
| |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { |
| // Function types without prototypes can arise when mangling a function type |
| // within an overloadable function in C. We mangle these as the absence of any |
| // parameter types (not even an empty parameter list). |
| Out << 'F'; |
| |
| FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
| |
| FunctionTypeDepth.enterResultType(); |
| mangleType(T->getReturnType()); |
| FunctionTypeDepth.leaveResultType(); |
| |
| FunctionTypeDepth.pop(saved); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, |
| bool MangleReturnType, |
| const FunctionDecl *FD) { |
| // Record that we're in a function type. See mangleFunctionParam |
| // for details on what we're trying to achieve here. |
| FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
| |
| // <bare-function-type> ::= <signature type>+ |
| if (MangleReturnType) { |
| FunctionTypeDepth.enterResultType(); |
| |
| // Mangle ns_returns_retained as an order-sensitive qualifier here. |
| if (Proto->getExtInfo().getProducesResult() && FD == nullptr) |
| mangleVendorQualifier("ns_returns_retained"); |
| |
| // Mangle the return type without any direct ARC ownership qualifiers. |
| QualType ReturnTy = Proto->getReturnType(); |
| if (ReturnTy.getObjCLifetime()) { |
| auto SplitReturnTy = ReturnTy.split(); |
| SplitReturnTy.Quals.removeObjCLifetime(); |
| ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); |
| } |
| mangleType(ReturnTy); |
| |
| FunctionTypeDepth.leaveResultType(); |
| } |
| |
| if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { |
| // <builtin-type> ::= v # void |
| Out << 'v'; |
| |
| FunctionTypeDepth.pop(saved); |
| return; |
| } |
| |
| assert(!FD || FD->getNumParams() == Proto->getNumParams()); |
| for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { |
| // Mangle extended parameter info as order-sensitive qualifiers here. |
| if (Proto->hasExtParameterInfos() && FD == nullptr) { |
| mangleExtParameterInfo(Proto->getExtParameterInfo(I)); |
| } |
| |
| // Mangle the type. |
| QualType ParamTy = Proto->getParamType(I); |
| mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); |
| |
| if (FD) { |
| if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { |
| // Attr can only take 1 character, so we can hardcode the length below. |
| assert(Attr->getType() <= 9 && Attr->getType() >= 0); |
| Out << "U17pass_object_size" << Attr->getType(); |
| } |
| } |
| } |
| |
| FunctionTypeDepth.pop(saved); |
| |
| // <builtin-type> ::= z # ellipsis |
| if (Proto->isVariadic()) |
| Out << 'z'; |
| } |
| |
| // <type> ::= <class-enum-type> |
| // <class-enum-type> ::= <name> |
| void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { |
| mangleName(T->getDecl()); |
| } |
| |
| // <type> ::= <class-enum-type> |
| // <class-enum-type> ::= <name> |
| void CXXNameMangler::mangleType(const EnumType *T) { |
| mangleType(static_cast<const TagType*>(T)); |
| } |
| void CXXNameMangler::mangleType(const RecordType *T) { |
| mangleType(static_cast<const TagType*>(T)); |
| } |
| void CXXNameMangler::mangleType(const TagType *T) { |
| mangleName(T->getDecl()); |
| } |
| |
| // <type> ::= <array-type> |
| // <array-type> ::= A <positive dimension number> _ <element type> |
| // ::= A [<dimension expression>] _ <element type> |
| void CXXNameMangler::mangleType(const ConstantArrayType *T) { |
| Out << 'A' << T->getSize() << '_'; |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const VariableArrayType *T) { |
| Out << 'A'; |
| // decayed vla types (size 0) will just be skipped. |
| if (T->getSizeExpr()) |
| mangleExpression(T->getSizeExpr()); |
| Out << '_'; |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { |
| Out << 'A'; |
| mangleExpression(T->getSizeExpr()); |
| Out << '_'; |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const IncompleteArrayType *T) { |
| Out << "A_"; |
| mangleType(T->getElementType()); |
| } |
| |
| // <type> ::= <pointer-to-member-type> |
| // <pointer-to-member-type> ::= M <class type> <member type> |
| void CXXNameMangler::mangleType(const MemberPointerType *T) { |
| Out << 'M'; |
| mangleType(QualType(T->getClass(), 0)); |
| QualType PointeeType = T->getPointeeType(); |
| if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { |
| mangleType(FPT); |
| |
| // Itanium C++ ABI 5.1.8: |
| // |
| // The type of a non-static member function is considered to be different, |
| // for the purposes of substitution, from the type of a namespace-scope or |
| // static member function whose type appears similar. The types of two |
| // non-static member functions are considered to be different, for the |
| // purposes of substitution, if the functions are members of different |
| // classes. In other words, for the purposes of substitution, the class of |
| // which the function is a member is considered part of the type of |
| // function. |
| |
| // Given that we already substitute member function pointers as a |
| // whole, the net effect of this rule is just to unconditionally |
| // suppress substitution on the function type in a member pointer. |
| // We increment the SeqID here to emulate adding an entry to the |
| // substitution table. |
| ++SeqID; |
| } else |
| mangleType(PointeeType); |
| } |
| |
| // <type> ::= <template-param> |
| void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { |
| mangleTemplateParameter(T->getIndex()); |
| } |
| |
| // <type> ::= <template-param> |
| void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { |
| // FIXME: not clear how to mangle this! |
| // template <class T...> class A { |
| // template <class U...> void foo(T(*)(U) x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| } |
| |
| // <type> ::= P <type> # pointer-to |
| void CXXNameMangler::mangleType(const PointerType *T) { |
| Out << 'P'; |
| mangleType(T->getPointeeType()); |
| } |
| void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { |
| Out << 'P'; |
| mangleType(T->getPointeeType()); |
| } |
| |
| // <type> ::= R <type> # reference-to |
| void CXXNameMangler::mangleType(const LValueReferenceType *T) { |
| Out << 'R'; |
| mangleType(T->getPointeeType()); |
| } |
| |
| // <type> ::= O <type> # rvalue reference-to (C++0x) |
| void CXXNameMangler::mangleType(const RValueReferenceType *T) { |
| Out << 'O'; |
| mangleType(T->getPointeeType()); |
| } |
| |
| // <type> ::= C <type> # complex pair (C 2000) |
| void CXXNameMangler::mangleType(const ComplexType *T) { |
| Out << 'C'; |
| mangleType(T->getElementType()); |
| } |
| |
| // ARM's ABI for Neon vector types specifies that they should be mangled as |
| // if they are structs (to match ARM's initial implementation). The |
| // vector type must be one of the special types predefined by ARM. |
| void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { |
| QualType EltType = T->getElementType(); |
| assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); |
| const char *EltName = nullptr; |
| if (T->getVectorKind() == VectorType::NeonPolyVector) { |
| switch (cast<BuiltinType>(EltType)->getKind()) { |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| EltName = "poly8_t"; |
| break; |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| EltName = "poly16_t"; |
| break; |
| case BuiltinType::ULongLong: |
| EltName = "poly64_t"; |
| break; |
| default: llvm_unreachable("unexpected Neon polynomial vector element type"); |
| } |
| } else { |
| switch (cast<BuiltinType>(EltType)->getKind()) { |
| case BuiltinType::SChar: EltName = "int8_t"; break; |
| case BuiltinType::UChar: EltName = "uint8_t"; break; |
| case BuiltinType::Short: EltName = "int16_t"; break; |
| case BuiltinType::UShort: EltName = "uint16_t"; break; |
| case BuiltinType::Int: EltName = "int32_t"; break; |
| case BuiltinType::UInt: EltName = "uint32_t"; break; |
| case BuiltinType::LongLong: EltName = "int64_t"; break; |
| case BuiltinType::ULongLong: EltName = "uint64_t"; break; |
| case BuiltinType::Double: EltName = "float64_t"; break; |
| case BuiltinType::Float: EltName = "float32_t"; break; |
| case BuiltinType::Half: EltName = "float16_t";break; |
| default: |
| llvm_unreachable("unexpected Neon vector element type"); |
| } |
| } |
| const char *BaseName = nullptr; |
| unsigned BitSize = (T->getNumElements() * |
| getASTContext().getTypeSize(EltType)); |
| if (BitSize == 64) |
| BaseName = "__simd64_"; |
| else { |
| assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); |
| BaseName = "__simd128_"; |
| } |
| Out << strlen(BaseName) + strlen(EltName); |
| Out << BaseName << EltName; |
| } |
| |
| void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "cannot mangle this dependent neon vector type yet"); |
| Diags.Report(T->getAttributeLoc(), DiagID); |
| } |
| |
| static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { |
| switch (EltType->getKind()) { |
| case BuiltinType::SChar: |
| return "Int8"; |
| case BuiltinType::Short: |
| return "Int16"; |
| case BuiltinType::Int: |
| return "Int32"; |
| case BuiltinType::Long: |
| case BuiltinType::LongLong: |
| return "Int64"; |
| case BuiltinType::UChar: |
| return "Uint8"; |
| case BuiltinType::UShort: |
| return "Uint16"; |
| case BuiltinType::UInt: |
| return "Uint32"; |
| case BuiltinType::ULong: |
| case BuiltinType::ULongLong: |
| return "Uint64"; |
| case BuiltinType::Half: |
| return "Float16"; |
| case BuiltinType::Float: |
| return "Float32"; |
| case BuiltinType::Double: |
| return "Float64"; |
| default: |
| llvm_unreachable("Unexpected vector element base type"); |
| } |
| } |
| |
| // AArch64's ABI for Neon vector types specifies that they should be mangled as |
| // the equivalent internal name. The vector type must be one of the special |
| // types predefined by ARM. |
| void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { |
| QualType EltType = T->getElementType(); |
| assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); |
| unsigned BitSize = |
| (T->getNumElements() * getASTContext().getTypeSize(EltType)); |
| (void)BitSize; // Silence warning. |
| |
| assert((BitSize == 64 || BitSize == 128) && |
| "Neon vector type not 64 or 128 bits"); |
| |
| StringRef EltName; |
| if (T->getVectorKind() == VectorType::NeonPolyVector) { |
| switch (cast<BuiltinType>(EltType)->getKind()) { |
| case BuiltinType::UChar: |
| EltName = "Poly8"; |
| break; |
| case BuiltinType::UShort: |
| EltName = "Poly16"; |
| break; |
| case BuiltinType::ULong: |
| case BuiltinType::ULongLong: |
| EltName = "Poly64"; |
| break; |
| default: |
| llvm_unreachable("unexpected Neon polynomial vector element type"); |
| } |
| } else |
| EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); |
| |
| std::string TypeName = |
| ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str(); |
| Out << TypeName.length() << TypeName; |
| } |
| void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "cannot mangle this dependent neon vector type yet"); |
| Diags.Report(T->getAttributeLoc(), DiagID); |
| } |
| |
| // GNU extension: vector types |
| // <type> ::= <vector-type> |
| // <vector-type> ::= Dv <positive dimension number> _ |
| // <extended element type> |
| // ::= Dv [<dimension expression>] _ <element type> |
| // <extended element type> ::= <element type> |
| // ::= p # AltiVec vector pixel |
| // ::= b # Altivec vector bool |
| void CXXNameMangler::mangleType(const VectorType *T) { |
| if ((T->getVectorKind() == VectorType::NeonVector || |
| T->getVectorKind() == VectorType::NeonPolyVector)) { |
| llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
| llvm::Triple::ArchType Arch = |
| getASTContext().getTargetInfo().getTriple().getArch(); |
| if ((Arch == llvm::Triple::aarch64 || |
| Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) |
| mangleAArch64NeonVectorType(T); |
| else |
| mangleNeonVectorType(T); |
| return; |
| } |
| Out << "Dv" << T->getNumElements() << '_'; |
| if (T->getVectorKind() == VectorType::AltiVecPixel) |
| Out << 'p'; |
| else if (T->getVectorKind() == VectorType::AltiVecBool) |
| Out << 'b'; |
| else |
| mangleType(T->getElementType()); |
| } |
| |
| void CXXNameMangler::mangleType(const DependentVectorType *T) { |
| if ((T->getVectorKind() == VectorType::NeonVector || |
| T->getVectorKind() == VectorType::NeonPolyVector)) { |
| llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
| llvm::Triple::ArchType Arch = |
| getASTContext().getTargetInfo().getTriple().getArch(); |
| if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && |
| !Target.isOSDarwin()) |
| mangleAArch64NeonVectorType(T); |
| else |
| mangleNeonVectorType(T); |
| return; |
| } |
| |
| Out << "Dv"; |
| mangleExpression(T->getSizeExpr()); |
| Out << '_'; |
| if (T->getVectorKind() == VectorType::AltiVecPixel) |
| Out << 'p'; |
| else if (T->getVectorKind() == VectorType::AltiVecBool) |
| Out << 'b'; |
| else |
| mangleType(T->getElementType()); |
| } |
| |
| void CXXNameMangler::mangleType(const ExtVectorType *T) { |
| mangleType(static_cast<const VectorType*>(T)); |
| } |
| void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { |
| Out << "Dv"; |
| mangleExpression(T->getSizeExpr()); |
| Out << '_'; |
| mangleType(T->getElementType()); |
| } |
| |
| void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { |
| SplitQualType split = T->getPointeeType().split(); |
| mangleQualifiers(split.Quals, T); |
| mangleType(QualType(split.Ty, 0)); |
| } |
| |
| void CXXNameMangler::mangleType(const PackExpansionType *T) { |
| // <type> ::= Dp <type> # pack expansion (C++0x) |
| Out << "Dp"; |
| mangleType(T->getPattern()); |
| } |
| |
| void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { |
| mangleSourceName(T->getDecl()->getIdentifier()); |
| } |
| |
| void CXXNameMangler::mangleType(const ObjCObjectType *T) { |
| // Treat __kindof as a vendor extended type qualifier. |
| if (T->isKindOfType()) |
| Out << "U8__kindof"; |
| |
| if (!T->qual_empty()) { |
| // Mangle protocol qualifiers. |
| SmallString<64> QualStr; |
| llvm::raw_svector_ostream QualOS(QualStr); |
| QualOS << "objcproto"; |
| for (const auto *I : T->quals()) { |
| StringRef name = I->getName(); |
| QualOS << name.size() << name; |
| } |
| Out << 'U' << QualStr.size() << QualStr; |
| } |
| |
| mangleType(T->getBaseType()); |
| |
| if (T->isSpecialized()) { |
| // Mangle type arguments as I <type>+ E |
| Out << 'I'; |
| for (auto typeArg : T->getTypeArgs()) |
| mangleType(typeArg); |
| Out << 'E'; |
| } |
| } |
| |
| void CXXNameMangler::mangleType(const BlockPointerType *T) { |
| Out << "U13block_pointer"; |
| mangleType(T->getPointeeType()); |
| } |
| |
| void CXXNameMangler::mangleType(const InjectedClassNameType *T) { |
| // Mangle injected class name types as if the user had written the |
| // specialization out fully. It may not actually be possible to see |
| // this mangling, though. |
| mangleType(T->getInjectedSpecializationType()); |
| } |
| |
| void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { |
| if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { |
| mangleTemplateName(TD, T->getArgs(), T->getNumArgs()); |
| } else { |
| if (mangleSubstitution(QualType(T, 0))) |
| return; |
| |
| mangleTemplatePrefix(T->getTemplateName()); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(T->getArgs(), T->getNumArgs()); |
| addSubstitution(QualType(T, 0)); |
| } |
| } |
| |
| void CXXNameMangler::mangleType(const DependentNameType *T) { |
| // Proposal by cxx-abi-dev, 2014-03-26 |
| // <class-enum-type> ::= <name> # non-dependent or dependent type name or |
| // # dependent elaborated type specifier using |
| // # 'typename' |
| // ::= Ts <name> # dependent elaborated type specifier using |
| // # 'struct' or 'class' |
| // ::= Tu <name> # dependent elaborated type specifier using |
| // # 'union' |
| // ::= Te <name> # dependent elaborated type specifier using |
| // # 'enum' |
| switch (T->getKeyword()) { |
| case ETK_None: |
| case ETK_Typename: |
| break; |
| case ETK_Struct: |
| case ETK_Class: |
| case ETK_Interface: |
| Out << "Ts"; |
| break; |
| case ETK_Union: |
| Out << "Tu"; |
| break; |
| case ETK_Enum: |
| Out << "Te"; |
| break; |
| } |
| // Typename types are always nested |
| Out << 'N'; |
| manglePrefix(T->getQualifier()); |
| mangleSourceName(T->getIdentifier()); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { |
| // Dependently-scoped template types are nested if they have a prefix. |
| Out << 'N'; |
| |
| // TODO: avoid making this TemplateName. |
| TemplateName Prefix = |
| getASTContext().getDependentTemplateName(T->getQualifier(), |
| T->getIdentifier()); |
| mangleTemplatePrefix(Prefix); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(T->getArgs(), T->getNumArgs()); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleType(const TypeOfType *T) { |
| // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
| // "extension with parameters" mangling. |
| Out << "u6typeof"; |
| } |
| |
| void CXXNameMangler::mangleType(const TypeOfExprType *T) { |
| // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
| // "extension with parameters" mangling. |
| Out << "u6typeof"; |
| } |
| |
| void CXXNameMangler::mangleType(const DecltypeType *T) { |
| Expr *E = T->getUnderlyingExpr(); |
| |
| // type ::= Dt <expression> E # decltype of an id-expression |
| // # or class member access |
| // ::= DT <expression> E # decltype of an expression |
| |
| // This purports to be an exhaustive list of id-expressions and |
| // class member accesses. Note that we do not ignore parentheses; |
| // parentheses change the semantics of decltype for these |
| // expressions (and cause the mangler to use the other form). |
| if (isa<DeclRefExpr>(E) || |
| isa<MemberExpr>(E) || |
| isa<UnresolvedLookupExpr>(E) || |
| isa<DependentScopeDeclRefExpr>(E) || |
| isa<CXXDependentScopeMemberExpr>(E) || |
| isa<UnresolvedMemberExpr>(E)) |
| Out << "Dt"; |
| else |
| Out << "DT"; |
| mangleExpression(E); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleType(const UnaryTransformType *T) { |
| // If this is dependent, we need to record that. If not, we simply |
| // mangle it as the underlying type since they are equivalent. |
| if (T->isDependentType()) { |
| Out << 'U'; |
| |
| switch (T->getUTTKind()) { |
| case UnaryTransformType::EnumUnderlyingType: |
| Out << "3eut"; |
| break; |
| } |
| } |
| |
| mangleType(T->getBaseType()); |
| } |
| |
| void CXXNameMangler::mangleType(const AutoType *T) { |
| assert(T->getDeducedType().isNull() && |
| "Deduced AutoType shouldn't be handled here!"); |
| assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && |
| "shouldn't need to mangle __auto_type!"); |
| // <builtin-type> ::= Da # auto |
| // ::= Dc # decltype(auto) |
| Out << (T->isDecltypeAuto() ? "Dc" : "Da"); |
| } |
| |
| void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { |
| // FIXME: This is not the right mangling. We also need to include a scope |
| // here in some cases. |
| QualType D = T->getDeducedType(); |
| if (D.isNull()) |
| mangleUnscopedTemplateName(T->getTemplateName(), nullptr); |
| else |
| mangleType(D); |
| } |
| |
| void CXXNameMangler::mangleType(const AtomicType *T) { |
| // <type> ::= U <source-name> <type> # vendor extended type qualifier |
| // (Until there's a standardized mangling...) |
| Out << "U7_Atomic"; |
| mangleType(T->getValueType()); |
| } |
| |
| void CXXNameMangler::mangleType(const PipeType *T) { |
| // Pipe type mangling rules are described in SPIR 2.0 specification |
| // A.1 Data types and A.3 Summary of changes |
| // <type> ::= 8ocl_pipe |
| Out << "8ocl_pipe"; |
| } |
| |
| void CXXNameMangler::mangleIntegerLiteral(QualType T, |
| const llvm::APSInt &Value) { |
| // <expr-primary> ::= L <type> <value number> E # integer literal |
| Out << 'L'; |
| |
| mangleType(T); |
| if (T->isBooleanType()) { |
| // Boolean values are encoded as 0/1. |
| Out << (Value.getBoolValue() ? '1' : '0'); |
| } else { |
| mangleNumber(Value); |
| } |
| Out << 'E'; |
| |
| } |
| |
| void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { |
| // Ignore member expressions involving anonymous unions. |
| while (const auto *RT = Base->getType()->getAs<RecordType>()) { |
| if (!RT->getDecl()->isAnonymousStructOrUnion()) |
| break; |
| const auto *ME = dyn_cast<MemberExpr>(Base); |
| if (!ME) |
| break; |
| Base = ME->getBase(); |
| IsArrow = ME->isArrow(); |
| } |
| |
| if (Base->isImplicitCXXThis()) { |
| // Note: GCC mangles member expressions to the implicit 'this' as |
| // *this., whereas we represent them as this->. The Itanium C++ ABI |
| // does not specify anything here, so we follow GCC. |
| Out << "dtdefpT"; |
| } else { |
| Out << (IsArrow ? "pt" : "dt"); |
| mangleExpression(Base); |
| } |
| } |
| |
| /// Mangles a member expression. |
| void CXXNameMangler::mangleMemberExpr(const Expr *base, |
| bool isArrow, |
| NestedNameSpecifier *qualifier, |
| NamedDecl *firstQualifierLookup, |
| DeclarationName member, |
| const TemplateArgumentLoc *TemplateArgs, |
| unsigned NumTemplateArgs, |
| unsigned arity) { |
| // <expression> ::= dt <expression> <unresolved-name> |
| // ::= pt <expression> <unresolved-name> |
| if (base) |
| mangleMemberExprBase(base, isArrow); |
| mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity); |
| } |
| |
| /// Look at the callee of the given call expression and determine if |
| /// it's a parenthesized id-expression which would have triggered ADL |
| /// otherwise. |
| static bool isParenthesizedADLCallee(const CallExpr *call) { |
| const Expr *callee = call->getCallee(); |
| const Expr *fn = callee->IgnoreParens(); |
| |
| // Must be parenthesized. IgnoreParens() skips __extension__ nodes, |
| // too, but for those to appear in the callee, it would have to be |
| // parenthesized. |
| if (callee == fn) return false; |
| |
| // Must be an unresolved lookup. |
| const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); |
| if (!lookup) return false; |
| |
| assert(!lookup->requiresADL()); |
| |
| // Must be an unqualified lookup. |
| if (lookup->getQualifier()) return false; |
| |
| // Must not have found a class member. Note that if one is a class |
| // member, they're all class members. |
| if (lookup->getNumDecls() > 0 && |
| (*lookup->decls_begin())->isCXXClassMember()) |
| return false; |
| |
| // Otherwise, ADL would have been triggered. |
| return true; |
| } |
| |
| void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { |
| const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); |
| Out << CastEncoding; |
| mangleType(ECE->getType()); |
| mangleExpression(ECE->getSubExpr()); |
| } |
| |
| void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { |
| if (auto *Syntactic = InitList->getSyntacticForm()) |
| InitList = Syntactic; |
| for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) |
| mangleExpression(InitList->getInit(i)); |
| } |
| |
| void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) { |
| // <expression> ::= <unary operator-name> <expression> |
| // ::= <binary operator-name> <expression> <expression> |
| // ::= <trinary operator-name> <expression> <expression> <expression> |
| // ::= cv <type> expression # conversion with one argument |
| // ::= cv <type> _ <expression>* E # conversion with a different number of arguments |
| // ::= dc <type> <expression> # dynamic_cast<type> (expression) |
| // ::= sc <type> <expression> # static_cast<type> (expression) |
| // ::= cc <type> <expression> # const_cast<type> (expression) |
| // ::= rc <type> <expression> # reinterpret_cast<type> (expression) |
| // ::= st <type> # sizeof (a type) |
| // ::= at <type> # alignof (a type) |
| // ::= <template-param> |
| // ::= <function-param> |
| // ::= sr <type> <unqualified-name> # dependent name |
| // ::= sr <type> <unqualified-name> <template-args> # dependent template-id |
| // ::= ds <expression> <expression> # expr.*expr |
| // ::= sZ <template-param> # size of a parameter pack |
| // ::= sZ <function-param> # size of a function parameter pack |
| // ::= <expr-primary> |
| // <expr-primary> ::= L <type> <value number> E # integer literal |
| // ::= L <type <value float> E # floating literal |
| // ::= L <mangled-name> E # external name |
| // ::= fpT # 'this' expression |
| QualType ImplicitlyConvertedToType; |
| |
| recurse: |
| switch (E->getStmtClass()) { |
| case Expr::NoStmtClass: |
| #define ABSTRACT_STMT(Type) |
| #define EXPR(Type, Base) |
| #define STMT(Type, Base) \ |
| case Expr::Type##Class: |
| #include "clang/AST/StmtNodes.inc" |
| // fallthrough |
| |
| // These all can only appear in local or variable-initialization |
| // contexts and so should never appear in a mangling. |
| case Expr::AddrLabelExprClass: |
| case Expr::DesignatedInitUpdateExprClass: |
| case Expr::ImplicitValueInitExprClass: |
| case Expr::ArrayInitLoopExprClass: |
| case Expr::ArrayInitIndexExprClass: |
| case Expr::NoInitExprClass: |
| case Expr::ParenListExprClass: |
| case Expr::LambdaExprClass: |
| case Expr::MSPropertyRefExprClass: |
| case Expr::MSPropertySubscriptExprClass: |
| case Expr::TypoExprClass: // This should no longer exist in the AST by now. |
| case Expr::OMPArraySectionExprClass: |
| case Expr::CXXInheritedCtorInitExprClass: |
| llvm_unreachable("unexpected statement kind"); |
| |
| // FIXME: invent manglings for all these. |
| case Expr::BlockExprClass: |
| case Expr::ChooseExprClass: |
| case Expr::CompoundLiteralExprClass: |
| case Expr::ExtVectorElementExprClass: |
| case Expr::GenericSelectionExprClass: |
| case Expr::ObjCEncodeExprClass: |
| case Expr::ObjCIsaExprClass: |
| case Expr::ObjCIvarRefExprClass: |
| case Expr::ObjCMessageExprClass: |
| case Expr::ObjCPropertyRefExprClass: |
| case Expr::ObjCProtocolExprClass: |
| case Expr::ObjCSelectorExprClass: |
| case Expr::ObjCStringLiteralClass: |
| case Expr::ObjCBoxedExprClass: |
| case Expr::ObjCArrayLiteralClass: |
| case Expr::ObjCDictionaryLiteralClass: |
| case Expr::ObjCSubscriptRefExprClass: |
| case Expr::ObjCIndirectCopyRestoreExprClass: |
| case Expr::ObjCAvailabilityCheckExprClass: |
| case Expr::OffsetOfExprClass: |
| case Expr::PredefinedExprClass: |
| case Expr::ShuffleVectorExprClass: |
| case Expr::ConvertVectorExprClass: |
| case Expr::StmtExprClass: |
| case Expr::TypeTraitExprClass: |
| case Expr::ArrayTypeTraitExprClass: |
| case Expr::ExpressionTraitExprClass: |
| case Expr::VAArgExprClass: |
| case Expr::CUDAKernelCallExprClass: |
| case Expr::AsTypeExprClass: |
| case Expr::PseudoObjectExprClass: |
| case Expr::AtomicExprClass: |
| case Expr::FixedPointLiteralClass: |
| { |
| if (!NullOut) { |
| // As bad as this diagnostic is, it's better than crashing. |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot yet mangle expression type %0"); |
| Diags.Report(E->getExprLoc(), DiagID) |
| << E->getStmtClassName() << E->getSourceRange(); |
| } |
| break; |
| } |
| |
| case Expr::CXXUuidofExprClass: { |
| const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); |
| if (UE->isTypeOperand()) { |
| QualType UuidT = UE->getTypeOperand(Context.getASTContext()); |
| Out << "u8__uuidoft"; |
| mangleType(UuidT); |
| } else { |
| Expr *UuidExp = UE->getExprOperand(); |
| Out << "u8__uuidofz"; |
| mangleExpression(UuidExp, Arity); |
| } |
| break; |
| } |
| |
| // Even gcc-4.5 doesn't mangle this. |
| case Expr::BinaryConditionalOperatorClass: { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = |
| Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "?: operator with omitted middle operand cannot be mangled"); |
| Diags.Report(E->getExprLoc(), DiagID) |
| << E->getStmtClassName() << E->getSourceRange(); |
| break; |
| } |
| |
| // These are used for internal purposes and cannot be meaningfully mangled. |
| case Expr::OpaqueValueExprClass: |
| llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); |
| |
| case Expr::InitListExprClass: { |
| Out << "il"; |
| mangleInitListElements(cast<InitListExpr>(E)); |
| Out << "E"; |
| break; |
| } |
| |
| case Expr::DesignatedInitExprClass: { |
| auto *DIE = cast<DesignatedInitExpr>(E); |
| for (const auto &Designator : DIE->designators()) { |
| if (Designator.isFieldDesignator()) { |
| Out << "di"; |
| mangleSourceName(Designator.getFieldName()); |
| } else if (Designator.isArrayDesignator()) { |
| Out << "dx"; |
| mangleExpression(DIE->getArrayIndex(Designator)); |
| } else { |
| assert(Designator.isArrayRangeDesignator() && |
| "unknown designator kind"); |
| Out << "dX"; |
| mangleExpression(DIE->getArrayRangeStart(Designator)); |
| mangleExpression(DIE->getArrayRangeEnd(Designator)); |
| } |
| } |
| mangleExpression(DIE->getInit()); |
| break; |
| } |
| |
| case Expr::CXXDefaultArgExprClass: |
| mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity); |
| break; |
| |
| case Expr::CXXDefaultInitExprClass: |
| mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity); |
| break; |
| |
| case Expr::CXXStdInitializerListExprClass: |
| mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity); |
| break; |
| |
| case Expr::SubstNonTypeTemplateParmExprClass: |
| mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), |
| Arity); |
| break; |
| |
| case Expr::UserDefinedLiteralClass: |
| // We follow g++'s approach of mangling a UDL as a call to the literal |
| // operator. |
| case Expr::CXXMemberCallExprClass: // fallthrough |
| case Expr::CallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(E); |
| |
| // <expression> ::= cp <simple-id> <expression>* E |
| // We use this mangling only when the call would use ADL except |
| // for being parenthesized. Per discussion with David |
| // Vandervoorde, 2011.04.25. |
| if (isParenthesizedADLCallee(CE)) { |
| Out << "cp"; |
| // The callee here is a parenthesized UnresolvedLookupExpr with |
| // no qualifier and should always get mangled as a <simple-id> |
| // anyway. |
| |
| // <expression> ::= cl <expression>* E |
| } else { |
| Out << "cl"; |
| } |
| |
| unsigned CallArity = CE->getNumArgs(); |
| for (const Expr *Arg : CE->arguments()) |
| if (isa<PackExpansionExpr>(Arg)) |
| CallArity = UnknownArity; |
| |
| mangleExpression(CE->getCallee(), CallArity); |
| for (const Expr *Arg : CE->arguments()) |
| mangleExpression(Arg); |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::CXXNewExprClass: { |
| const CXXNewExpr *New = cast<CXXNewExpr>(E); |
| if (New->isGlobalNew()) Out << "gs"; |
| Out << (New->isArray() ? "na" : "nw"); |
| for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), |
| E = New->placement_arg_end(); I != E; ++I) |
| mangleExpression(*I); |
| Out << '_'; |
| mangleType(New->getAllocatedType()); |
| if (New->hasInitializer()) { |
| if (New->getInitializationStyle() == CXXNewExpr::ListInit) |
| Out << "il"; |
| else |
| Out << "pi"; |
| const Expr *Init = New->getInitializer(); |
| if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { |
| // Directly inline the initializers. |
| for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), |
| E = CCE->arg_end(); |
| I != E; ++I) |
| mangleExpression(*I); |
| } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { |
| for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) |
| mangleExpression(PLE->getExpr(i)); |
| } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && |
| isa<InitListExpr>(Init)) { |
| // Only take InitListExprs apart for list-initialization. |
| mangleInitListElements(cast<InitListExpr>(Init)); |
| } else |
| mangleExpression(Init); |
| } |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::CXXPseudoDestructorExprClass: { |
| const auto *PDE = cast<CXXPseudoDestructorExpr>(E); |
| if (const Expr *Base = PDE->getBase()) |
| mangleMemberExprBase(Base, PDE->isArrow()); |
| NestedNameSpecifier *Qualifier = PDE->getQualifier(); |
| if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { |
| if (Qualifier) { |
| mangleUnresolvedPrefix(Qualifier, |
| /*Recursive=*/true); |
| mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()); |
| Out << 'E'; |
| } else { |
| Out << "sr"; |
| if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType())) |
| Out << 'E'; |
| } |
| } else if (Qualifier) { |
| mangleUnresolvedPrefix(Qualifier); |
| } |
| // <base-unresolved-name> ::= dn <destructor-name> |
| Out << "dn"; |
| QualType DestroyedType = PDE->getDestroyedType(); |
| mangleUnresolvedTypeOrSimpleId(DestroyedType); |
| break; |
| } |
| |
| case Expr::MemberExprClass: { |
| const MemberExpr *ME = cast<MemberExpr>(E); |
| mangleMemberExpr(ME->getBase(), ME->isArrow(), |
| ME->getQualifier(), nullptr, |
| ME->getMemberDecl()->getDeclName(), |
| ME->getTemplateArgs(), ME->getNumTemplateArgs(), |
| Arity); |
| break; |
| } |
| |
| case Expr::UnresolvedMemberExprClass: { |
| const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); |
| mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), |
| ME->isArrow(), ME->getQualifier(), nullptr, |
| ME->getMemberName(), |
| ME->getTemplateArgs(), ME->getNumTemplateArgs(), |
| Arity); |
| break; |
| } |
| |
| case Expr::CXXDependentScopeMemberExprClass: { |
| const CXXDependentScopeMemberExpr *ME |
| = cast<CXXDependentScopeMemberExpr>(E); |
| mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), |
| ME->isArrow(), ME->getQualifier(), |
| ME->getFirstQualifierFoundInScope(), |
| ME->getMember(), |
| ME->getTemplateArgs(), ME->getNumTemplateArgs(), |
| Arity); |
| break; |
| } |
| |
| case Expr::UnresolvedLookupExprClass: { |
| const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); |
| mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), |
| ULE->getTemplateArgs(), ULE->getNumTemplateArgs(), |
| Arity); |
| break; |
| } |
| |
| case Expr::CXXUnresolvedConstructExprClass: { |
| const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); |
| unsigned N = CE->arg_size(); |
| |
| if (CE->isListInitialization()) { |
| assert(N == 1 && "unexpected form for list initialization"); |
| auto *IL = cast<InitListExpr>(CE->getArg(0)); |
| Out << "tl"; |
| mangleType(CE->getType()); |
| mangleInitListElements(IL); |
| Out << "E"; |
| return; |
| } |
| |
| Out << "cv"; |
| mangleType(CE->getType()); |
| if (N != 1) Out << '_'; |
| for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); |
| if (N != 1) Out << 'E'; |
| break; |
| } |
| |
| case Expr::CXXConstructExprClass: { |
| const auto *CE = cast<CXXConstructExpr>(E); |
| if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { |
| assert( |
| CE->getNumArgs() >= 1 && |
| (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && |
| "implicit CXXConstructExpr must have one argument"); |
| return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0)); |
| } |
| Out << "il"; |
| for (auto *E : CE->arguments()) |
| mangleExpression(E); |
| Out << "E"; |
| break; |
| } |
| |
| case Expr::CXXTemporaryObjectExprClass: { |
| const auto *CE = cast<CXXTemporaryObjectExpr>(E); |
| unsigned N = CE->getNumArgs(); |
| bool List = CE->isListInitialization(); |
| |
| if (List) |
| Out << "tl"; |
| else |
| Out << "cv"; |
| mangleType(CE->getType()); |
| if (!List && N != 1) |
| Out << '_'; |
| if (CE->isStdInitListInitialization()) { |
| // We implicitly created a std::initializer_list<T> for the first argument |
| // of a constructor of type U in an expression of the form U{a, b, c}. |
| // Strip all the semantic gunk off the initializer list. |
| auto *SILE = |
| cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); |
| auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); |
| mangleInitListElements(ILE); |
| } else { |
| for (auto *E : CE->arguments()) |
| mangleExpression(E); |
| } |
| if (List || N != 1) |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::CXXScalarValueInitExprClass: |
| Out << "cv"; |
| mangleType(E->getType()); |
| Out << "_E"; |
| break; |
| |
| case Expr::CXXNoexceptExprClass: |
| Out << "nx"; |
| mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); |
| break; |
| |
| case Expr::UnaryExprOrTypeTraitExprClass: { |
| const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); |
| |
| if (!SAE->isInstantiationDependent()) { |
| // Itanium C++ ABI: |
| // If the operand of a sizeof or alignof operator is not |
| // instantiation-dependent it is encoded as an integer literal |
| // reflecting the result of the operator. |
| // |
| // If the result of the operator is implicitly converted to a known |
| // integer type, that type is used for the literal; otherwise, the type |
| // of std::size_t or std::ptrdiff_t is used. |
| QualType T = (ImplicitlyConvertedToType.isNull() || |
| !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() |
| : ImplicitlyConvertedToType; |
| llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); |
| mangleIntegerLiteral(T, V); |
| break; |
| } |
| |
| switch(SAE->getKind()) { |
| case UETT_SizeOf: |
| Out << 's'; |
| break; |
| case UETT_AlignOf: |
| Out << 'a'; |
| break; |
| case UETT_VecStep: { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot yet mangle vec_step expression"); |
| Diags.Report(DiagID); |
| return; |
| } |
| case UETT_OpenMPRequiredSimdAlign: |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "cannot yet mangle __builtin_omp_required_simd_align expression"); |
| Diags.Report(DiagID); |
| return; |
| } |
| if (SAE->isArgumentType()) { |
| Out << 't'; |
| mangleType(SAE->getArgumentType()); |
| } else { |
| Out << 'z'; |
| mangleExpression(SAE->getArgumentExpr()); |
| } |
| break; |
| } |
| |
| case Expr::CXXThrowExprClass: { |
| const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); |
| // <expression> ::= tw <expression> # throw expression |
| // ::= tr # rethrow |
| if (TE->getSubExpr()) { |
| Out << "tw"; |
| mangleExpression(TE->getSubExpr()); |
| } else { |
| Out << "tr"; |
| } |
| break; |
| } |
| |
| case Expr::CXXTypeidExprClass: { |
| const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); |
| // <expression> ::= ti <type> # typeid (type) |
| // ::= te <expression> # typeid (expression) |
| if (TIE->isTypeOperand()) { |
| Out << "ti"; |
| mangleType(TIE->getTypeOperand(Context.getASTContext())); |
| } else { |
| Out << "te"; |
| mangleExpression(TIE->getExprOperand()); |
| } |
| break; |
| } |
| |
| case Expr::CXXDeleteExprClass: { |
| const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); |
| // <expression> ::= [gs] dl <expression> # [::] delete expr |
| // ::= [gs] da <expression> # [::] delete [] expr |
| if (DE->isGlobalDelete()) Out << "gs"; |
| Out << (DE->isArrayForm() ? "da" : "dl"); |
| mangleExpression(DE->getArgument()); |
| break; |
| } |
| |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *UO = cast<UnaryOperator>(E); |
| mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), |
| /*Arity=*/1); |
| mangleExpression(UO->getSubExpr()); |
| break; |
| } |
| |
| case Expr::ArraySubscriptExprClass: { |
| const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); |
| |
| // Array subscript is treated as a syntactically weird form of |
| // binary operator. |
| Out << "ix"; |
| mangleExpression(AE->getLHS()); |
| mangleExpression(AE->getRHS()); |
| break; |
| } |
| |
| case Expr::CompoundAssignOperatorClass: // fallthrough |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *BO = cast<BinaryOperator>(E); |
| if (BO->getOpcode() == BO_PtrMemD) |
| Out << "ds"; |
| else |
| mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), |
| /*Arity=*/2); |
| mangleExpression(BO->getLHS()); |
| mangleExpression(BO->getRHS()); |
| break; |
| } |
| |
| case Expr::ConditionalOperatorClass: { |
| const ConditionalOperator *CO = cast<ConditionalOperator>(E); |
| mangleOperatorName(OO_Conditional, /*Arity=*/3); |
| mangleExpression(CO->getCond()); |
| mangleExpression(CO->getLHS(), Arity); |
| mangleExpression(CO->getRHS(), Arity); |
| break; |
| } |
| |
| case Expr::ImplicitCastExprClass: { |
| ImplicitlyConvertedToType = E->getType(); |
| E = cast<ImplicitCastExpr>(E)->getSubExpr(); |
| goto recurse; |
| } |
| |
| case Expr::ObjCBridgedCastExprClass: { |
| // Mangle ownership casts as a vendor extended operator __bridge, |
| // __bridge_transfer, or __bridge_retain. |
| StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); |
| Out << "v1U" << Kind.size() << Kind; |
| } |
| // Fall through to mangle the cast itself. |
| LLVM_FALLTHROUGH; |
| |
| case Expr::CStyleCastExprClass: |
| mangleCastExpression(E, "cv"); |
| break; |
| |
| case Expr::CXXFunctionalCastExprClass: { |
| auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); |
| // FIXME: Add isImplicit to CXXConstructExpr. |
| if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) |
| if (CCE->getParenOrBraceRange().isInvalid()) |
| Sub = CCE->getArg(0)->IgnoreImplicit(); |
| if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) |
| Sub = StdInitList->getSubExpr()->IgnoreImplicit(); |
| if (auto *IL = dyn_cast<InitListExpr>(Sub)) { |
| Out << "tl"; |
| mangleType(E->getType()); |
| mangleInitListElements(IL); |
| Out << "E"; |
| } else { |
| mangleCastExpression(E, "cv"); |
| } |
| break; |
| } |
| |
| case Expr::CXXStaticCastExprClass: |
| mangleCastExpression(E, "sc"); |
| break; |
| case Expr::CXXDynamicCastExprClass: |
| mangleCastExpression(E, "dc"); |
| break; |
| case Expr::CXXReinterpretCastExprClass: |
| mangleCastExpression(E, "rc"); |
| break; |
| case Expr::CXXConstCastExprClass: |
| mangleCastExpression(E, "cc"); |
| break; |
| |
| case Expr::CXXOperatorCallExprClass: { |
| const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); |
| unsigned NumArgs = CE->getNumArgs(); |
| // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax |
| // (the enclosing MemberExpr covers the syntactic portion). |
| if (CE->getOperator() != OO_Arrow) |
| mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); |
| // Mangle the arguments. |
| for (unsigned i = 0; i != NumArgs; ++i) |
| mangleExpression(CE->getArg(i)); |
| break; |
| } |
| |
| case Expr::ParenExprClass: |
| mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity); |
| break; |
| |
| case Expr::DeclRefExprClass: { |
| const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); |
| |
| switch (D->getKind()) { |
| default: |
| // <expr-primary> ::= L <mangled-name> E # external name |
| Out << 'L'; |
| mangle(D); |
| Out << 'E'; |
| break; |
| |
| case Decl::ParmVar: |
| mangleFunctionParam(cast<ParmVarDecl>(D)); |
| break; |
| |
| case Decl::EnumConstant: { |
| const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); |
| mangleIntegerLiteral(ED->getType(), ED->getInitVal()); |
| break; |
| } |
| |
| case Decl::NonTypeTemplateParm: { |
| const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); |
| mangleTemplateParameter(PD->getIndex()); |
| break; |
| } |
| |
| } |
| |
| break; |
| } |
| |
| case Expr::SubstNonTypeTemplateParmPackExprClass: |
| // FIXME: not clear how to mangle this! |
| // template <unsigned N...> class A { |
| // template <class U...> void foo(U (&x)[N]...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| |
| case Expr::FunctionParmPackExprClass: { |
| // FIXME: not clear how to mangle this! |
| const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); |
| Out << "v110_SUBSTPACK"; |
| mangleFunctionParam(FPPE->getParameterPack()); |
| break; |
| } |
| |
| case Expr::DependentScopeDeclRefExprClass: { |
| const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); |
| mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), |
| DRE->getTemplateArgs(), DRE->getNumTemplateArgs(), |
| Arity); |
| break; |
| } |
| |
| case Expr::CXXBindTemporaryExprClass: |
| mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr()); |
| break; |
| |
| case Expr::ExprWithCleanupsClass: |
| mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity); |
| break; |
| |
| case Expr::FloatingLiteralClass: { |
| const FloatingLiteral *FL = cast<FloatingLiteral>(E); |
| Out << 'L'; |
| mangleType(FL->getType()); |
| mangleFloat(FL->getValue()); |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::CharacterLiteralClass: |
| Out << 'L'; |
| mangleType(E->getType()); |
| Out << cast<CharacterLiteral>(E)->getValue(); |
| Out << 'E'; |
| break; |
| |
| // FIXME. __objc_yes/__objc_no are mangled same as true/false |
| case Expr::ObjCBoolLiteralExprClass: |
| Out << "Lb"; |
| Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); |
| Out << 'E'; |
| break; |
| |
| case Expr::CXXBoolLiteralExprClass: |
| Out << "Lb"; |
| Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); |
| Out << 'E'; |
| break; |
| |
| case Expr::IntegerLiteralClass: { |
| llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); |
| if (E->getType()->isSignedIntegerType()) |
| Value.setIsSigned(true); |
| mangleIntegerLiteral(E->getType(), Value); |
| break; |
| } |
| |
| case Expr::ImaginaryLiteralClass: { |
| const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); |
| // Mangle as if a complex literal. |
| // Proposal from David Vandevoorde, 2010.06.30. |
| Out << 'L'; |
| mangleType(E->getType()); |
| if (const FloatingLiteral *Imag = |
| dyn_cast<FloatingLiteral>(IE->getSubExpr())) { |
| // Mangle a floating-point zero of the appropriate type. |
| mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); |
| Out << '_'; |
| mangleFloat(Imag->getValue()); |
| } else { |
| Out << "0_"; |
| llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); |
| if (IE->getSubExpr()->getType()->isSignedIntegerType()) |
| Value.setIsSigned(true); |
| mangleNumber(Value); |
| } |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::StringLiteralClass: { |
| // Revised proposal from David Vandervoorde, 2010.07.15. |
| Out << 'L'; |
| assert(isa<ConstantArrayType>(E->getType())); |
| mangleType(E->getType()); |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::GNUNullExprClass: |
| // FIXME: should this really be mangled the same as nullptr? |
| // fallthrough |
| |
| case Expr::CXXNullPtrLiteralExprClass: { |
| Out << "LDnE"; |
| break; |
| } |
| |
| case Expr::PackExpansionExprClass: |
| Out << "sp"; |
| mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); |
| break; |
| |
| case Expr::SizeOfPackExprClass: { |
| auto *SPE = cast<SizeOfPackExpr>(E); |
| if (SPE->isPartiallySubstituted()) { |
| Out << "sP"; |
| for (const auto &A : SPE->getPartialArguments()) |
| mangleTemplateArg(A); |
| Out << "E"; |
| break; |
| } |
| |
| Out << "sZ"; |
| const NamedDecl *Pack = SPE->getPack(); |
| if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) |
| mangleTemplateParameter(TTP->getIndex()); |
| else if (const NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Pack)) |
| mangleTemplateParameter(NTTP->getIndex()); |
| else if (const TemplateTemplateParmDecl *TempTP |
| = dyn_cast<TemplateTemplateParmDecl>(Pack)) |
| mangleTemplateParameter(TempTP->getIndex()); |
| else |
| mangleFunctionParam(cast<ParmVarDecl>(Pack)); |
| break; |
| } |
| |
| case Expr::MaterializeTemporaryExprClass: { |
| mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()); |
| break; |
| } |
| |
| case Expr::CXXFoldExprClass: { |
| auto *FE = cast<CXXFoldExpr>(E); |
| if (FE->isLeftFold()) |
| Out << (FE->getInit() ? "fL" : "fl"); |
| else |
| Out << (FE->getInit() ? "fR" : "fr"); |
| |
| if (FE->getOperator() == BO_PtrMemD) |
| Out << "ds"; |
| else |
| mangleOperatorName( |
| BinaryOperator::getOverloadedOperator(FE->getOperator()), |
| /*Arity=*/2); |
| |
| if (FE->getLHS()) |
| mangleExpression(FE->getLHS()); |
| if (FE->getRHS()) |
| mangleExpression(FE->getRHS()); |
| break; |
| } |
| |
| case Expr::CXXThisExprClass: |
| Out << "fpT"; |
| break; |
| |
| case Expr::CoawaitExprClass: |
| // FIXME: Propose a non-vendor mangling. |
| Out << "v18co_await"; |
| mangleExpression(cast<CoawaitExpr>(E)->getOperand()); |
| break; |
| |
| case Expr::DependentCoawaitExprClass: |
| // FIXME: Propose a non-vendor mangling. |
| Out << "v18co_await"; |
| mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand()); |
| break; |
| |
| case Expr::CoyieldExprClass: |
| // FIXME: Propose a non-vendor mangling. |
| Out << "v18co_yield"; |
| mangleExpression(cast<CoawaitExpr>(E)->getOperand()); |
| break; |
| } |
| } |
| |
| /// Mangle an expression which refers to a parameter variable. |
| /// |
| /// <expression> ::= <function-param> |
| /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 |
| /// <function-param> ::= fp <top-level CV-qualifiers> |
| /// <parameter-2 non-negative number> _ # L == 0, I > 0 |
| /// <function-param> ::= fL <L-1 non-negative number> |
| /// p <top-level CV-qualifiers> _ # L > 0, I == 0 |
| /// <function-param> ::= fL <L-1 non-negative number> |
| /// p <top-level CV-qualifiers> |
| /// <I-1 non-negative number> _ # L > 0, I > 0 |
| /// |
| /// L is the nesting depth of the parameter, defined as 1 if the |
| /// parameter comes from the innermost function prototype scope |
| /// enclosing the current context, 2 if from the next enclosing |
| /// function prototype scope, and so on, with one special case: if |
| /// we've processed the full parameter clause for the innermost |
| /// function type, then L is one less. This definition conveniently |
| /// makes it irrelevant whether a function's result type was written |
| /// trailing or leading, but is otherwise overly complicated; the |
| /// numbering was first designed without considering references to |
| /// parameter in locations other than return types, and then the |
| /// mangling had to be generalized without changing the existing |
| /// manglings. |
| /// |
| /// I is the zero-based index of the parameter within its parameter |
| /// declaration clause. Note that the original ABI document describes |
| /// this using 1-based ordinals. |
| void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { |
| unsigned parmDepth = parm->getFunctionScopeDepth(); |
| unsigned parmIndex = parm->getFunctionScopeIndex(); |
| |
| // Compute 'L'. |
| // parmDepth does not include the declaring function prototype. |
| // FunctionTypeDepth does account for that. |
| assert(parmDepth < FunctionTypeDepth.getDepth()); |
| unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; |
| if (FunctionTypeDepth.isInResultType()) |
| nestingDepth--; |
| |
| if (nestingDepth == 0) { |
| Out << "fp"; |
| } else { |
| Out << "fL" << (nestingDepth - 1) << 'p'; |
| } |
| |
| // Top-level qualifiers. We don't have to worry about arrays here, |
| // because parameters declared as arrays should already have been |
| // transformed to have pointer type. FIXME: apparently these don't |
| // get mangled if used as an rvalue of a known non-class type? |
| assert(!parm->getType()->isArrayType() |
| && "parameter's type is still an array type?"); |
| |
| if (const DependentAddressSpaceType *DAST = |
| dyn_cast<DependentAddressSpaceType>(parm->getType())) { |
| mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST); |
| } else { |
| mangleQualifiers(parm->getType().getQualifiers()); |
| } |
| |
| // Parameter index. |
| if (parmIndex != 0) { |
| Out << (parmIndex - 1); |
| } |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, |
| const CXXRecordDecl *InheritedFrom) { |
| // <ctor-dtor-name> ::= C1 # complete object constructor |
| // ::= C2 # base object constructor |
| // ::= CI1 <type> # complete inheriting constructor |
| // ::= CI2 <type> # base inheriting constructor |
| // |
| // In addition, C5 is a comdat name with C1 and C2 in it. |
| Out << 'C'; |
| if (InheritedFrom) |
| Out << 'I'; |
| switch (T) { |
| case Ctor_Complete: |
| Out << '1'; |
| break; |
| case Ctor_Base: |
| Out << '2'; |
| break; |
| case Ctor_Comdat: |
| Out << '5'; |
| break; |
| case Ctor_DefaultClosure: |
| case Ctor_CopyingClosure: |
| llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); |
| } |
| if (InheritedFrom) |
| mangleName(InheritedFrom); |
| } |
| |
| void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { |
| // <ctor-dtor-name> ::= D0 # deleting destructor |
| // ::= D1 # complete object destructor |
| // ::= D2 # base object destructor |
| // |
| // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. |
| switch (T) { |
| case Dtor_Deleting: |
| Out << "D0"; |
| break; |
| case Dtor_Complete: |
| Out << "D1"; |
| break; |
| case Dtor_Base: |
| Out << "D2"; |
| break; |
| case Dtor_Comdat: |
| Out << "D5"; |
| break; |
| } |
| } |
| |
| void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| // <template-args> ::= I <template-arg>+ E |
| Out << 'I'; |
| for (unsigned i = 0; i != NumTemplateArgs; ++i) |
| mangleTemplateArg(TemplateArgs[i].getArgument()); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) { |
| // <template-args> ::= I <template-arg>+ E |
| Out << 'I'; |
| for (unsigned i = 0, e = AL.size(); i != e; ++i) |
| mangleTemplateArg(AL[i]); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| // <template-args> ::= I <template-arg>+ E |
| Out << 'I'; |
| for (unsigned i = 0; i != NumTemplateArgs; ++i) |
| mangleTemplateArg(TemplateArgs[i]); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleTemplateArg(TemplateArgument A) { |
| // <template-arg> ::= <type> # type or template |
| // ::= X <expression> E # expression |
| // ::= <expr-primary> # simple expressions |
| // ::= J <template-arg>* E # argument pack |
| if (!A.isInstantiationDependent() || A.isDependent()) |
| A = Context.getASTContext().getCanonicalTemplateArgument(A); |
| |
| switch (A.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Cannot mangle NULL template argument"); |
| |
| case TemplateArgument::Type: |
| mangleType(A.getAsType()); |
| break; |
| case TemplateArgument::Template: |
| // This is mangled as <type>. |
| mangleType(A.getAsTemplate()); |
| break; |
| case TemplateArgument::TemplateExpansion: |
| // <type> ::= Dp <type> # pack expansion (C++0x) |
| Out << "Dp"; |
| mangleType(A.getAsTemplateOrTemplatePattern()); |
| break; |
| case TemplateArgument::Expression: { |
| // It's possible to end up with a DeclRefExpr here in certain |
| // dependent cases, in which case we should mangle as a |
| // declaration. |
| const Expr *E = A.getAsExpr()->IgnoreParens(); |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| const ValueDecl *D = DRE->getDecl(); |
| if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { |
| Out << 'L'; |
| mangle(D); |
| Out << 'E'; |
| break; |
| } |
| } |
| |
| Out << 'X'; |
| mangleExpression(E); |
| Out << 'E'; |
| break; |
| } |
| case TemplateArgument::Integral: |
| mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); |
| break; |
| case TemplateArgument::Declaration: { |
| // <expr-primary> ::= L <mangled-name> E # external name |
| // Clang produces AST's where pointer-to-member-function expressions |
| // and pointer-to-function expressions are represented as a declaration not |
| // an expression. We compensate for it here to produce the correct mangling. |
| ValueDecl *D = A.getAsDecl(); |
| bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType(); |
| if (compensateMangling) { |
| Out << 'X'; |
| mangleOperatorName(OO_Amp, 1); |
| } |
| |
| Out << 'L'; |
| // References to external entities use the mangled name; if the name would |
| // not normally be mangled then mangle it as unqualified. |
| mangle(D); |
| Out << 'E'; |
| |
| if (compensateMangling) |
| Out << 'E'; |
| |
| break; |
| } |
| case TemplateArgument::NullPtr: { |
| // <expr-primary> ::= L <type> 0 E |
| Out << 'L'; |
| mangleType(A.getNullPtrType()); |
| Out << "0E"; |
| break; |
| } |
| case TemplateArgument::Pack: { |
| // <template-arg> ::= J <template-arg>* E |
| Out << 'J'; |
| for (const auto &P : A.pack_elements()) |
| mangleTemplateArg(P); |
| Out << 'E'; |
| } |
| } |
| } |
| |
| void CXXNameMangler::mangleTemplateParameter(unsigned Index) { |
| // <template-param> ::= T_ # first template parameter |
| // ::= T <parameter-2 non-negative number> _ |
| if (Index == 0) |
| Out << "T_"; |
| else |
| Out << 'T' << (Index - 1) << '_'; |
| } |
| |
| void CXXNameMangler::mangleSeqID(unsigned SeqID) { |
| if (SeqID == 1) |
| Out << '0'; |
| else if (SeqID > 1) { |
| SeqID--; |
| |
| // <seq-id> is encoded in base-36, using digits and upper case letters. |
| char Buffer[7]; // log(2**32) / log(36) ~= 7 |
| MutableArrayRef<char> BufferRef(Buffer); |
| MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); |
| |
| for (; SeqID != 0; SeqID /= 36) { |
| unsigned C = SeqID % 36; |
| *I++ = (C < 10 ? '0' + C : 'A' + C - 10); |
| } |
| |
| Out.write(I.base(), I - BufferRef.rbegin()); |
| } |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { |
| bool result = mangleSubstitution(tname); |
| assert(result && "no existing substitution for template name"); |
| (void) result; |
| } |
| |
| // <substitution> ::= S <seq-id> _ |
| // ::= S_ |
| bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { |
| // Try one of the standard substitutions first. |
| if (mangleStandardSubstitution(ND)) |
| return true; |
| |
| ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
| return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); |
| } |
| |
| /// Determine whether the given type has any qualifiers that are relevant for |
| /// substitutions. |
| static bool hasMangledSubstitutionQualifiers(QualType T) { |
| Qualifiers Qs = T.getQualifiers(); |
| return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); |
| } |
| |
| bool CXXNameMangler::mangleSubstitution(QualType T) { |
| if (!hasMangledSubstitutionQualifiers(T)) { |
| if (const RecordType *RT = T->getAs<RecordType>()) |
| return mangleSubstitution(RT->getDecl()); |
| } |
| |
| uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
| |
| return mangleSubstitution(TypePtr); |
| } |
| |
| bool CXXNameMangler::mangleSubstitution(TemplateName Template) { |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return mangleSubstitution(TD); |
| |
| Template = Context.getASTContext().getCanonicalTemplateName(Template); |
| return mangleSubstitution( |
| reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
| } |
| |
| bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { |
| llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); |
| if (I == Substitutions.end()) |
| return false; |
| |
| unsigned SeqID = I->second; |
| Out << 'S'; |
| mangleSeqID(SeqID); |
| |
| return true; |
| } |
| |
| static bool isCharType(QualType T) { |
| if (T.isNull()) |
| return false; |
| |
| return T->isSpecificBuiltinType(BuiltinType::Char_S) || |
| T->isSpecificBuiltinType(BuiltinType::Char_U); |
| } |
| |
| /// Returns whether a given type is a template specialization of a given name |
| /// with a single argument of type char. |
| static bool isCharSpecialization(QualType T, const char *Name) { |
| if (T.isNull()) |
| return false; |
| |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| const ClassTemplateSpecializationDecl *SD = |
| dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); |
| if (!SD) |
| return false; |
| |
| if (!isStdNamespace(getEffectiveDeclContext(SD))) |
| return false; |
| |
| const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
| if (TemplateArgs.size() != 1) |
| return false; |
| |
| if (!isCharType(TemplateArgs[0].getAsType())) |
| return false; |
| |
| return SD->getIdentifier()->getName() == Name; |
| } |
| |
| template <std::size_t StrLen> |
| static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD, |
| const char (&Str)[StrLen]) { |
| if (!SD->getIdentifier()->isStr(Str)) |
| return false; |
| |
| const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
| if (TemplateArgs.size() != 2) |
| return false; |
| |
| if (!isCharType(TemplateArgs[0].getAsType())) |
| return false; |
| |
| if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) |
| return false; |
| |
| return true; |
| } |
| |
| bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { |
| // <substitution> ::= St # ::std:: |
| if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { |
| if (isStd(NS)) { |
| Out << "St"; |
| return true; |
| } |
| } |
| |
| if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { |
| if (!isStdNamespace(getEffectiveDeclContext(TD))) |
| return false; |
| |
| // <substitution> ::= Sa # ::std::allocator |
| if (TD->getIdentifier()->isStr("allocator")) { |
| Out << "Sa"; |
| return true; |
| } |
| |
| // <<substitution> ::= Sb # ::std::basic_string |
| if (TD->getIdentifier()->isStr("basic_string")) { |
| Out << "Sb"; |
| return true; |
| } |
| } |
| |
| if (const ClassTemplateSpecializationDecl *SD = |
| dyn_cast<ClassTemplateSpecializationDecl>(ND)) { |
| if (!isStdNamespace(getEffectiveDeclContext(SD))) |
| return false; |
| |
| // <substitution> ::= Ss # ::std::basic_string<char, |
| // ::std::char_traits<char>, |
| // ::std::allocator<char> > |
| if (SD->getIdentifier()->isStr("basic_string")) { |
| const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
| |
| if (TemplateArgs.size() != 3) |
| return false; |
| |
| if (!isCharType(TemplateArgs[0].getAsType())) |
| return false; |
| |
| if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) |
| return false; |
| |
| if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) |
| return false; |
| |
| Out << "Ss"; |
| return true; |
| } |
| |
| // <substitution> ::= Si # ::std::basic_istream<char, |
| // ::std::char_traits<char> > |
| if (isStreamCharSpecialization(SD, "basic_istream")) { |
| Out << "Si"; |
| return true; |
| } |
| |
| // <substitution> ::= So # ::std::basic_ostream<char, |
| // ::std::char_traits<char> > |
| if (isStreamCharSpecialization(SD, "basic_ostream")) { |
| Out << "So"; |
| return true; |
| } |
| |
| // <substitution> ::= Sd # ::std::basic_iostream<char, |
| // ::std::char_traits<char> > |
| if (isStreamCharSpecialization(SD, "basic_iostream")) { |
| Out << "Sd"; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void CXXNameMangler::addSubstitution(QualType T) { |
| if (!hasMangledSubstitutionQualifiers(T)) { |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| addSubstitution(RT->getDecl()); |
| return; |
| } |
| } |
| |
| uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
| addSubstitution(TypePtr); |
| } |
| |
| void CXXNameMangler::addSubstitution(TemplateName Template) { |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return addSubstitution(TD); |
| |
| Template = Context.getASTContext().getCanonicalTemplateName(Template); |
| addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
| } |
| |
| void CXXNameMangler::addSubstitution(uintptr_t Ptr) { |
| assert(!Substitutions.count(Ptr) && "Substitution already exists!"); |
| Substitutions[Ptr] = SeqID++; |
| } |
| |
| void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { |
| assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); |
| if (Other->SeqID > SeqID) { |
| Substitutions.swap(Other->Substitutions); |
| SeqID = Other->SeqID; |
| } |
| } |
| |
| CXXNameMangler::AbiTagList |
| CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { |
| // When derived abi tags are disabled there is no need to make any list. |
| if (DisableDerivedAbiTags) |
| return AbiTagList(); |
| |
| llvm::raw_null_ostream NullOutStream; |
| CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); |
| TrackReturnTypeTags.disableDerivedAbiTags(); |
| |
| const FunctionProtoType *Proto = |
| cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); |
| FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); |
| TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); |
| TrackReturnTypeTags.mangleType(Proto->getReturnType()); |
| TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); |
| TrackReturnTypeTags.FunctionTypeDepth.pop(saved); |
| |
| return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| } |
| |
| CXXNameMangler::AbiTagList |
| CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { |
| // When derived abi tags are disabled there is no need to make any list. |
| if (DisableDerivedAbiTags) |
| return AbiTagList(); |
| |
| llvm::raw_null_ostream NullOutStream; |
| CXXNameMangler TrackVariableType(*this, NullOutStream); |
| TrackVariableType.disableDerivedAbiTags(); |
| |
| TrackVariableType.mangleType(VD->getType()); |
| |
| return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| } |
| |
| bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, |
| const VarDecl *VD) { |
| llvm::raw_null_ostream NullOutStream; |
| CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); |
| TrackAbiTags.mangle(VD); |
| return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); |
| } |
| |
| // |
| |
| /// Mangles the name of the declaration D and emits that name to the given |
| /// output stream. |
| /// |
| /// If the declaration D requires a mangled name, this routine will emit that |
| /// mangled name to \p os and return true. Otherwise, \p os will be unchanged |
| /// and this routine will return false. In this case, the caller should just |
| /// emit the identifier of the declaration (\c D->getIdentifier()) as its |
| /// name. |
| void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D, |
| raw_ostream &Out) { |
| assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && |
| "Invalid mangleName() call, argument is not a variable or function!"); |
| assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && |
| "Invalid mangleName() call on 'structor decl!"); |
| |
| PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
| getASTContext().getSourceManager(), |
| "Mangling declaration"); |
| |
| CXXNameMangler Mangler(*this, Out, D); |
| Mangler.mangle(D); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, |
| CXXCtorType Type, |
| raw_ostream &Out) { |
| CXXNameMangler Mangler(*this, Out, D, Type); |
| Mangler.mangle(D); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, |
| CXXDtorType Type, |
| raw_ostream &Out) { |
| CXXNameMangler Mangler(*this, Out, D, Type); |
| Mangler.mangle(D); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, |
| raw_ostream &Out) { |
| CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); |
| Mangler.mangle(D); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, |
| raw_ostream &Out) { |
| CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); |
| Mangler.mangle(D); |
| } |
| |
| void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, |
| const ThunkInfo &Thunk, |
| raw_ostream &Out) { |
| // <special-name> ::= T <call-offset> <base encoding> |
| // # base is the nominal target function of thunk |
| // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> |
| // # base is the nominal target function of thunk |
| // # first call-offset is 'this' adjustment |
| // # second call-offset is result adjustment |
| |
| assert(!isa<CXXDestructorDecl>(MD) && |
| "Use mangleCXXDtor for destructor decls!"); |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZT"; |
| if (!Thunk.Return.isEmpty()) |
| Mangler.getStream() << 'c'; |
| |
| // Mangle the 'this' pointer adjustment. |
| Mangler.mangleCallOffset(Thunk.This.NonVirtual, |
| Thunk.This.Virtual.Itanium.VCallOffsetOffset); |
| |
| // Mangle the return pointer adjustment if there is one. |
| if (!Thunk.Return.isEmpty()) |
| Mangler.mangleCallOffset(Thunk.Return.NonVirtual, |
| Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); |
| |
| Mangler.mangleFunctionEncoding(MD); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXDtorThunk( |
| const CXXDestructorDecl *DD, CXXDtorType Type, |
| const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { |
| // <special-name> ::= T <call-offset> <base encoding> |
| // # base is the nominal target function of thunk |
| CXXNameMangler Mangler(*this, Out, DD, Type); |
| Mangler.getStream() << "_ZT"; |
| |
| // Mangle the 'this' pointer adjustment. |
| Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, |
| ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); |
| |
| Mangler.mangleFunctionEncoding(DD); |
| } |
| |
| /// Returns the mangled name for a guard variable for the passed in VarDecl. |
| void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, |
| raw_ostream &Out) { |
| // <special-name> ::= GV <object name> # Guard variable for one-time |
| // # initialization |
| CXXNameMangler Mangler(*this, Out); |
| // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
| // be a bug that is fixed in trunk. |
| Mangler.getStream() << "_ZGV"; |
| Mangler.mangleName(D); |
| } |
| |
| void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, |
| raw_ostream &Out) { |
| // These symbols are internal in the Itanium ABI, so the names don't matter. |
| // Clang has traditionally used this symbol and allowed LLVM to adjust it to |
| // avoid duplicate symbols. |
| Out << "__cxx_global_var_init"; |
| } |
| |
| void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, |
| raw_ostream &Out) { |
| // Prefix the mangling of D with __dtor_. |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "__dtor_"; |
| if (shouldMangleDeclName(D)) |
| Mangler.mangle(D); |
| else |
| Mangler.getStream() << D->getName(); |
| } |
| |
| void ItaniumMangleContextImpl::mangleSEHFilterExpression( |
| const NamedDecl *EnclosingDecl, raw_ostream &Out) { |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "__filt_"; |
| if (shouldMangleDeclName(EnclosingDecl)) |
| Mangler.mangle(EnclosingDecl); |
| else |
| Mangler.getStream() << EnclosingDecl->getName(); |
| } |
| |
| void ItaniumMangleContextImpl::mangleSEHFinallyBlock( |
| const NamedDecl *EnclosingDecl, raw_ostream &Out) { |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "__fin_"; |
| if (shouldMangleDeclName(EnclosingDecl)) |
| Mangler.mangle(EnclosingDecl); |
| else |
| Mangler.getStream() << EnclosingDecl->getName(); |
| } |
| |
| void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, |
| raw_ostream &Out) { |
| // <special-name> ::= TH <object name> |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTH"; |
| Mangler.mangleName(D); |
| } |
| |
| void |
| ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, |
| raw_ostream &Out) { |
| // <special-name> ::= TW <object name> |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTW"; |
| Mangler.mangleName(D); |
| } |
| |
| void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, |
| unsigned ManglingNumber, |
| raw_ostream &Out) { |
| // We match the GCC mangling here. |
| // <special-name> ::= GR <object name> |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZGR"; |
| Mangler.mangleName(D); |
| assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); |
| Mangler.mangleSeqID(ManglingNumber - 1); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, |
| raw_ostream &Out) { |
| // <special-name> ::= TV <type> # virtual table |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTV"; |
| Mangler.mangleNameOrStandardSubstitution(RD); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, |
| raw_ostream &Out) { |
| // <special-name> ::= TT <type> # VTT structure |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTT"; |
| Mangler.mangleNameOrStandardSubstitution(RD); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, |
| int64_t Offset, |
| const CXXRecordDecl *Type, |
| raw_ostream &Out) { |
| // <special-name> ::= TC <type> <offset number> _ <base type> |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTC"; |
| Mangler.mangleNameOrStandardSubstitution(RD); |
| Mangler.getStream() << Offset; |
| Mangler.getStream() << '_'; |
| Mangler.mangleNameOrStandardSubstitution(Type); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { |
| // <special-name> ::= TI <type> # typeinfo structure |
| assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTI"; |
| Mangler.mangleType(Ty); |
| } |
| |
| void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty, |
| raw_ostream &Out) { |
| // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTS"; |
| Mangler.mangleType(Ty); |
| } |
| |
| void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) { |
| mangleCXXRTTIName(Ty, Out); |
| } |
| |
| void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { |
| llvm_unreachable("Can't mangle string literals"); |
| } |
| |
| ItaniumMangleContext * |
| ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { |
| return new ItaniumMangleContextImpl(Context, Diags); |
| } |