|  | //===- SyntheticSections.cpp ----------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains linker-synthesized sections. Currently, | 
|  | // synthetic sections are created either output sections or input sections, | 
|  | // but we are rewriting code so that all synthetic sections are created as | 
|  | // input sections. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SyntheticSections.h" | 
|  | #include "Bits.h" | 
|  | #include "Config.h" | 
|  | #include "InputFiles.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "OutputSections.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Symbols.h" | 
|  | #include "Target.h" | 
|  | #include "Writer.h" | 
|  | #include "lld/Common/ErrorHandler.h" | 
|  | #include "lld/Common/Memory.h" | 
|  | #include "lld/Common/Strings.h" | 
|  | #include "lld/Common/Threads.h" | 
|  | #include "lld/Common/Version.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/BinaryFormat/Dwarf.h" | 
|  | #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" | 
|  | #include "llvm/Object/Decompressor.h" | 
|  | #include "llvm/Object/ELFObjectFile.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/LEB128.h" | 
|  | #include "llvm/Support/MD5.h" | 
|  | #include "llvm/Support/RandomNumberGenerator.h" | 
|  | #include "llvm/Support/SHA1.h" | 
|  | #include "llvm/Support/xxhash.h" | 
|  | #include <cstdlib> | 
|  | #include <thread> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::dwarf; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | using llvm::support::endian::read32le; | 
|  | using llvm::support::endian::write32le; | 
|  | using llvm::support::endian::write64le; | 
|  |  | 
|  | constexpr size_t MergeNoTailSection::NumShards; | 
|  |  | 
|  | // Returns an LLD version string. | 
|  | static ArrayRef<uint8_t> getVersion() { | 
|  | // Check LLD_VERSION first for ease of testing. | 
|  | // You can get consistent output by using the environment variable. | 
|  | // This is only for testing. | 
|  | StringRef S = getenv("LLD_VERSION"); | 
|  | if (S.empty()) | 
|  | S = Saver.save(Twine("Linker: ") + getLLDVersion()); | 
|  |  | 
|  | // +1 to include the terminating '\0'. | 
|  | return {(const uint8_t *)S.data(), S.size() + 1}; | 
|  | } | 
|  |  | 
|  | // Creates a .comment section containing LLD version info. | 
|  | // With this feature, you can identify LLD-generated binaries easily | 
|  | // by "readelf --string-dump .comment <file>". | 
|  | // The returned object is a mergeable string section. | 
|  | MergeInputSection *elf::createCommentSection() { | 
|  | return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, | 
|  | getVersion(), ".comment"); | 
|  | } | 
|  |  | 
|  | // .MIPS.abiflags section. | 
|  | template <class ELFT> | 
|  | MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags) | 
|  | : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), | 
|  | Flags(Flags) { | 
|  | this->Entsize = sizeof(Elf_Mips_ABIFlags); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | memcpy(Buf, &Flags, sizeof(Flags)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() { | 
|  | Elf_Mips_ABIFlags Flags = {}; | 
|  | bool Create = false; | 
|  |  | 
|  | for (InputSectionBase *Sec : InputSections) { | 
|  | if (Sec->Type != SHT_MIPS_ABIFLAGS) | 
|  | continue; | 
|  | Sec->Live = false; | 
|  | Create = true; | 
|  |  | 
|  | std::string Filename = toString(Sec->File); | 
|  | const size_t Size = Sec->Data.size(); | 
|  | // Older version of BFD (such as the default FreeBSD linker) concatenate | 
|  | // .MIPS.abiflags instead of merging. To allow for this case (or potential | 
|  | // zero padding) we ignore everything after the first Elf_Mips_ABIFlags | 
|  | if (Size < sizeof(Elf_Mips_ABIFlags)) { | 
|  | error(Filename + ": invalid size of .MIPS.abiflags section: got " + | 
|  | Twine(Size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); | 
|  | return nullptr; | 
|  | } | 
|  | auto *S = reinterpret_cast<const Elf_Mips_ABIFlags *>(Sec->Data.data()); | 
|  | if (S->version != 0) { | 
|  | error(Filename + ": unexpected .MIPS.abiflags version " + | 
|  | Twine(S->version)); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // LLD checks ISA compatibility in calcMipsEFlags(). Here we just | 
|  | // select the highest number of ISA/Rev/Ext. | 
|  | Flags.isa_level = std::max(Flags.isa_level, S->isa_level); | 
|  | Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev); | 
|  | Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext); | 
|  | Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size); | 
|  | Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size); | 
|  | Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size); | 
|  | Flags.ases |= S->ases; | 
|  | Flags.flags1 |= S->flags1; | 
|  | Flags.flags2 |= S->flags2; | 
|  | Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, Filename); | 
|  | }; | 
|  |  | 
|  | if (Create) | 
|  | return make<MipsAbiFlagsSection<ELFT>>(Flags); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // .MIPS.options section. | 
|  | template <class ELFT> | 
|  | MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo Reginfo) | 
|  | : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), | 
|  | Reginfo(Reginfo) { | 
|  | this->Entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *Options = reinterpret_cast<Elf_Mips_Options *>(Buf); | 
|  | Options->kind = ODK_REGINFO; | 
|  | Options->size = getSize(); | 
|  |  | 
|  | if (!Config->Relocatable) | 
|  | Reginfo.ri_gp_value = InX::MipsGot->getGp(); | 
|  | memcpy(Buf + sizeof(Elf_Mips_Options), &Reginfo, sizeof(Reginfo)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() { | 
|  | // N64 ABI only. | 
|  | if (!ELFT::Is64Bits) | 
|  | return nullptr; | 
|  |  | 
|  | std::vector<InputSectionBase *> Sections; | 
|  | for (InputSectionBase *Sec : InputSections) | 
|  | if (Sec->Type == SHT_MIPS_OPTIONS) | 
|  | Sections.push_back(Sec); | 
|  |  | 
|  | if (Sections.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | Elf_Mips_RegInfo Reginfo = {}; | 
|  | for (InputSectionBase *Sec : Sections) { | 
|  | Sec->Live = false; | 
|  |  | 
|  | std::string Filename = toString(Sec->File); | 
|  | ArrayRef<uint8_t> D = Sec->Data; | 
|  |  | 
|  | while (!D.empty()) { | 
|  | if (D.size() < sizeof(Elf_Mips_Options)) { | 
|  | error(Filename + ": invalid size of .MIPS.options section"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto *Opt = reinterpret_cast<const Elf_Mips_Options *>(D.data()); | 
|  | if (Opt->kind == ODK_REGINFO) { | 
|  | Reginfo.ri_gprmask |= Opt->getRegInfo().ri_gprmask; | 
|  | Sec->getFile<ELFT>()->MipsGp0 = Opt->getRegInfo().ri_gp_value; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!Opt->size) | 
|  | fatal(Filename + ": zero option descriptor size"); | 
|  | D = D.slice(Opt->size); | 
|  | } | 
|  | }; | 
|  |  | 
|  | return make<MipsOptionsSection<ELFT>>(Reginfo); | 
|  | } | 
|  |  | 
|  | // MIPS .reginfo section. | 
|  | template <class ELFT> | 
|  | MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo Reginfo) | 
|  | : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), | 
|  | Reginfo(Reginfo) { | 
|  | this->Entsize = sizeof(Elf_Mips_RegInfo); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | if (!Config->Relocatable) | 
|  | Reginfo.ri_gp_value = InX::MipsGot->getGp(); | 
|  | memcpy(Buf, &Reginfo, sizeof(Reginfo)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() { | 
|  | // Section should be alive for O32 and N32 ABIs only. | 
|  | if (ELFT::Is64Bits) | 
|  | return nullptr; | 
|  |  | 
|  | std::vector<InputSectionBase *> Sections; | 
|  | for (InputSectionBase *Sec : InputSections) | 
|  | if (Sec->Type == SHT_MIPS_REGINFO) | 
|  | Sections.push_back(Sec); | 
|  |  | 
|  | if (Sections.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | Elf_Mips_RegInfo Reginfo = {}; | 
|  | for (InputSectionBase *Sec : Sections) { | 
|  | Sec->Live = false; | 
|  |  | 
|  | if (Sec->Data.size() != sizeof(Elf_Mips_RegInfo)) { | 
|  | error(toString(Sec->File) + ": invalid size of .reginfo section"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | auto *R = reinterpret_cast<const Elf_Mips_RegInfo *>(Sec->Data.data()); | 
|  | Reginfo.ri_gprmask |= R->ri_gprmask; | 
|  | Sec->getFile<ELFT>()->MipsGp0 = R->ri_gp_value; | 
|  | }; | 
|  |  | 
|  | return make<MipsReginfoSection<ELFT>>(Reginfo); | 
|  | } | 
|  |  | 
|  | InputSection *elf::createInterpSection() { | 
|  | // StringSaver guarantees that the returned string ends with '\0'. | 
|  | StringRef S = Saver.save(Config->DynamicLinker); | 
|  | ArrayRef<uint8_t> Contents = {(const uint8_t *)S.data(), S.size() + 1}; | 
|  |  | 
|  | auto *Sec = make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, Contents, | 
|  | ".interp"); | 
|  | Sec->Live = true; | 
|  | return Sec; | 
|  | } | 
|  |  | 
|  | Defined *elf::addSyntheticLocal(StringRef Name, uint8_t Type, uint64_t Value, | 
|  | uint64_t Size, InputSectionBase &Section) { | 
|  | auto *S = make<Defined>(Section.File, Name, STB_LOCAL, STV_DEFAULT, Type, | 
|  | Value, Size, &Section); | 
|  | if (InX::SymTab) | 
|  | InX::SymTab->addSymbol(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | static size_t getHashSize() { | 
|  | switch (Config->BuildId) { | 
|  | case BuildIdKind::Fast: | 
|  | return 8; | 
|  | case BuildIdKind::Md5: | 
|  | case BuildIdKind::Uuid: | 
|  | return 16; | 
|  | case BuildIdKind::Sha1: | 
|  | return 20; | 
|  | case BuildIdKind::Hexstring: | 
|  | return Config->BuildIdVector.size(); | 
|  | default: | 
|  | llvm_unreachable("unknown BuildIdKind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | BuildIdSection::BuildIdSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), | 
|  | HashSize(getHashSize()) {} | 
|  |  | 
|  | void BuildIdSection::writeTo(uint8_t *Buf) { | 
|  | write32(Buf, 4);                      // Name size | 
|  | write32(Buf + 4, HashSize);           // Content size | 
|  | write32(Buf + 8, NT_GNU_BUILD_ID);    // Type | 
|  | memcpy(Buf + 12, "GNU", 4);           // Name string | 
|  | HashBuf = Buf + 16; | 
|  | } | 
|  |  | 
|  | // Split one uint8 array into small pieces of uint8 arrays. | 
|  | static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr, | 
|  | size_t ChunkSize) { | 
|  | std::vector<ArrayRef<uint8_t>> Ret; | 
|  | while (Arr.size() > ChunkSize) { | 
|  | Ret.push_back(Arr.take_front(ChunkSize)); | 
|  | Arr = Arr.drop_front(ChunkSize); | 
|  | } | 
|  | if (!Arr.empty()) | 
|  | Ret.push_back(Arr); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | // Computes a hash value of Data using a given hash function. | 
|  | // In order to utilize multiple cores, we first split data into 1MB | 
|  | // chunks, compute a hash for each chunk, and then compute a hash value | 
|  | // of the hash values. | 
|  | void BuildIdSection::computeHash( | 
|  | llvm::ArrayRef<uint8_t> Data, | 
|  | std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) { | 
|  | std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024); | 
|  | std::vector<uint8_t> Hashes(Chunks.size() * HashSize); | 
|  |  | 
|  | // Compute hash values. | 
|  | parallelForEachN(0, Chunks.size(), [&](size_t I) { | 
|  | HashFn(Hashes.data() + I * HashSize, Chunks[I]); | 
|  | }); | 
|  |  | 
|  | // Write to the final output buffer. | 
|  | HashFn(HashBuf, Hashes); | 
|  | } | 
|  |  | 
|  | BssSection::BssSection(StringRef Name, uint64_t Size, uint32_t Alignment) | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, Alignment, Name) { | 
|  | this->Bss = true; | 
|  | this->Size = Size; | 
|  | } | 
|  |  | 
|  | void BuildIdSection::writeBuildId(ArrayRef<uint8_t> Buf) { | 
|  | switch (Config->BuildId) { | 
|  | case BuildIdKind::Fast: | 
|  | computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { | 
|  | write64le(Dest, xxHash64(Arr)); | 
|  | }); | 
|  | break; | 
|  | case BuildIdKind::Md5: | 
|  | computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { | 
|  | memcpy(Dest, MD5::hash(Arr).data(), 16); | 
|  | }); | 
|  | break; | 
|  | case BuildIdKind::Sha1: | 
|  | computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { | 
|  | memcpy(Dest, SHA1::hash(Arr).data(), 20); | 
|  | }); | 
|  | break; | 
|  | case BuildIdKind::Uuid: | 
|  | if (auto EC = getRandomBytes(HashBuf, HashSize)) | 
|  | error("entropy source failure: " + EC.message()); | 
|  | break; | 
|  | case BuildIdKind::Hexstring: | 
|  | memcpy(HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size()); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unknown BuildIdKind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | EhFrameSection::EhFrameSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} | 
|  |  | 
|  | // Search for an existing CIE record or create a new one. | 
|  | // CIE records from input object files are uniquified by their contents | 
|  | // and where their relocations point to. | 
|  | template <class ELFT, class RelTy> | 
|  | CieRecord *EhFrameSection::addCie(EhSectionPiece &Cie, ArrayRef<RelTy> Rels) { | 
|  | Symbol *Personality = nullptr; | 
|  | unsigned FirstRelI = Cie.FirstRelocation; | 
|  | if (FirstRelI != (unsigned)-1) | 
|  | Personality = | 
|  | &Cie.Sec->template getFile<ELFT>()->getRelocTargetSym(Rels[FirstRelI]); | 
|  |  | 
|  | // Search for an existing CIE by CIE contents/relocation target pair. | 
|  | CieRecord *&Rec = CieMap[{Cie.data(), Personality}]; | 
|  |  | 
|  | // If not found, create a new one. | 
|  | if (!Rec) { | 
|  | Rec = make<CieRecord>(); | 
|  | Rec->Cie = &Cie; | 
|  | CieRecords.push_back(Rec); | 
|  | } | 
|  | return Rec; | 
|  | } | 
|  |  | 
|  | // There is one FDE per function. Returns true if a given FDE | 
|  | // points to a live function. | 
|  | template <class ELFT, class RelTy> | 
|  | bool EhFrameSection::isFdeLive(EhSectionPiece &Fde, ArrayRef<RelTy> Rels) { | 
|  | auto *Sec = cast<EhInputSection>(Fde.Sec); | 
|  | unsigned FirstRelI = Fde.FirstRelocation; | 
|  |  | 
|  | // An FDE should point to some function because FDEs are to describe | 
|  | // functions. That's however not always the case due to an issue of | 
|  | // ld.gold with -r. ld.gold may discard only functions and leave their | 
|  | // corresponding FDEs, which results in creating bad .eh_frame sections. | 
|  | // To deal with that, we ignore such FDEs. | 
|  | if (FirstRelI == (unsigned)-1) | 
|  | return false; | 
|  |  | 
|  | const RelTy &Rel = Rels[FirstRelI]; | 
|  | Symbol &B = Sec->template getFile<ELFT>()->getRelocTargetSym(Rel); | 
|  |  | 
|  | // FDEs for garbage-collected or merged-by-ICF sections are dead. | 
|  | if (auto *D = dyn_cast<Defined>(&B)) | 
|  | if (SectionBase *Sec = D->Section) | 
|  | return Sec->Live; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // .eh_frame is a sequence of CIE or FDE records. In general, there | 
|  | // is one CIE record per input object file which is followed by | 
|  | // a list of FDEs. This function searches an existing CIE or create a new | 
|  | // one and associates FDEs to the CIE. | 
|  | template <class ELFT, class RelTy> | 
|  | void EhFrameSection::addSectionAux(EhInputSection *Sec, ArrayRef<RelTy> Rels) { | 
|  | OffsetToCie.clear(); | 
|  | for (EhSectionPiece &Piece : Sec->Pieces) { | 
|  | // The empty record is the end marker. | 
|  | if (Piece.Size == 4) | 
|  | return; | 
|  |  | 
|  | size_t Offset = Piece.InputOff; | 
|  | uint32_t ID = read32(Piece.data().data() + 4); | 
|  | if (ID == 0) { | 
|  | OffsetToCie[Offset] = addCie<ELFT>(Piece, Rels); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | uint32_t CieOffset = Offset + 4 - ID; | 
|  | CieRecord *Rec = OffsetToCie[CieOffset]; | 
|  | if (!Rec) | 
|  | fatal(toString(Sec) + ": invalid CIE reference"); | 
|  |  | 
|  | if (!isFdeLive<ELFT>(Piece, Rels)) | 
|  | continue; | 
|  | Rec->Fdes.push_back(&Piece); | 
|  | NumFdes++; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void EhFrameSection::addSection(InputSectionBase *C) { | 
|  | auto *Sec = cast<EhInputSection>(C); | 
|  | Sec->Parent = this; | 
|  |  | 
|  | Alignment = std::max(Alignment, Sec->Alignment); | 
|  | Sections.push_back(Sec); | 
|  |  | 
|  | for (auto *DS : Sec->DependentSections) | 
|  | DependentSections.push_back(DS); | 
|  |  | 
|  | if (Sec->Pieces.empty()) | 
|  | return; | 
|  |  | 
|  | if (Sec->AreRelocsRela) | 
|  | addSectionAux<ELFT>(Sec, Sec->template relas<ELFT>()); | 
|  | else | 
|  | addSectionAux<ELFT>(Sec, Sec->template rels<ELFT>()); | 
|  | } | 
|  |  | 
|  | static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) { | 
|  | memcpy(Buf, D.data(), D.size()); | 
|  |  | 
|  | size_t Aligned = alignTo(D.size(), Config->Wordsize); | 
|  |  | 
|  | // Zero-clear trailing padding if it exists. | 
|  | memset(Buf + D.size(), 0, Aligned - D.size()); | 
|  |  | 
|  | // Fix the size field. -4 since size does not include the size field itself. | 
|  | write32(Buf, Aligned - 4); | 
|  | } | 
|  |  | 
|  | void EhFrameSection::finalizeContents() { | 
|  | assert(!this->Size); // Not finalized. | 
|  | size_t Off = 0; | 
|  | for (CieRecord *Rec : CieRecords) { | 
|  | Rec->Cie->OutputOff = Off; | 
|  | Off += alignTo(Rec->Cie->Size, Config->Wordsize); | 
|  |  | 
|  | for (EhSectionPiece *Fde : Rec->Fdes) { | 
|  | Fde->OutputOff = Off; | 
|  | Off += alignTo(Fde->Size, Config->Wordsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The LSB standard does not allow a .eh_frame section with zero | 
|  | // Call Frame Information records. glibc unwind-dw2-fde.c | 
|  | // classify_object_over_fdes expects there is a CIE record length 0 as a | 
|  | // terminator. Thus we add one unconditionally. | 
|  | Off += 4; | 
|  |  | 
|  | this->Size = Off; | 
|  | } | 
|  |  | 
|  | // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table | 
|  | // to get an FDE from an address to which FDE is applied. This function | 
|  | // returns a list of such pairs. | 
|  | std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const { | 
|  | uint8_t *Buf = getParent()->Loc + OutSecOff; | 
|  | std::vector<FdeData> Ret; | 
|  |  | 
|  | uint64_t VA = InX::EhFrameHdr->getVA(); | 
|  | for (CieRecord *Rec : CieRecords) { | 
|  | uint8_t Enc = getFdeEncoding(Rec->Cie); | 
|  | for (EhSectionPiece *Fde : Rec->Fdes) { | 
|  | uint64_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); | 
|  | uint64_t FdeVA = getParent()->Addr + Fde->OutputOff; | 
|  | if (!isInt<32>(Pc - VA)) | 
|  | fatal(toString(Fde->Sec) + ": PC offset is too large: 0x" + | 
|  | Twine::utohexstr(Pc - VA)); | 
|  | Ret.push_back({uint32_t(Pc - VA), uint32_t(FdeVA - VA)}); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sort the FDE list by their PC and uniqueify. Usually there is only | 
|  | // one FDE for a PC (i.e. function), but if ICF merges two functions | 
|  | // into one, there can be more than one FDEs pointing to the address. | 
|  | auto Less = [](const FdeData &A, const FdeData &B) { | 
|  | return A.PcRel < B.PcRel; | 
|  | }; | 
|  | std::stable_sort(Ret.begin(), Ret.end(), Less); | 
|  | auto Eq = [](const FdeData &A, const FdeData &B) { | 
|  | return A.PcRel == B.PcRel; | 
|  | }; | 
|  | Ret.erase(std::unique(Ret.begin(), Ret.end(), Eq), Ret.end()); | 
|  |  | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static uint64_t readFdeAddr(uint8_t *Buf, int Size) { | 
|  | switch (Size) { | 
|  | case DW_EH_PE_udata2: | 
|  | return read16(Buf); | 
|  | case DW_EH_PE_sdata2: | 
|  | return (int16_t)read16(Buf); | 
|  | case DW_EH_PE_udata4: | 
|  | return read32(Buf); | 
|  | case DW_EH_PE_sdata4: | 
|  | return (int32_t)read32(Buf); | 
|  | case DW_EH_PE_udata8: | 
|  | case DW_EH_PE_sdata8: | 
|  | return read64(Buf); | 
|  | case DW_EH_PE_absptr: | 
|  | return readUint(Buf); | 
|  | } | 
|  | fatal("unknown FDE size encoding"); | 
|  | } | 
|  |  | 
|  | // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. | 
|  | // We need it to create .eh_frame_hdr section. | 
|  | uint64_t EhFrameSection::getFdePc(uint8_t *Buf, size_t FdeOff, | 
|  | uint8_t Enc) const { | 
|  | // The starting address to which this FDE applies is | 
|  | // stored at FDE + 8 byte. | 
|  | size_t Off = FdeOff + 8; | 
|  | uint64_t Addr = readFdeAddr(Buf + Off, Enc & 0xf); | 
|  | if ((Enc & 0x70) == DW_EH_PE_absptr) | 
|  | return Addr; | 
|  | if ((Enc & 0x70) == DW_EH_PE_pcrel) | 
|  | return Addr + getParent()->Addr + Off; | 
|  | fatal("unknown FDE size relative encoding"); | 
|  | } | 
|  |  | 
|  | void EhFrameSection::writeTo(uint8_t *Buf) { | 
|  | // Write CIE and FDE records. | 
|  | for (CieRecord *Rec : CieRecords) { | 
|  | size_t CieOffset = Rec->Cie->OutputOff; | 
|  | writeCieFde(Buf + CieOffset, Rec->Cie->data()); | 
|  |  | 
|  | for (EhSectionPiece *Fde : Rec->Fdes) { | 
|  | size_t Off = Fde->OutputOff; | 
|  | writeCieFde(Buf + Off, Fde->data()); | 
|  |  | 
|  | // FDE's second word should have the offset to an associated CIE. | 
|  | // Write it. | 
|  | write32(Buf + Off + 4, Off + 4 - CieOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply relocations. .eh_frame section contents are not contiguous | 
|  | // in the output buffer, but relocateAlloc() still works because | 
|  | // getOffset() takes care of discontiguous section pieces. | 
|  | for (EhInputSection *S : Sections) | 
|  | S->relocateAlloc(Buf, nullptr); | 
|  | } | 
|  |  | 
|  | GotSection::GotSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, | 
|  | Target->GotEntrySize, ".got") { | 
|  | // PPC64 saves the ElfSym::GlobalOffsetTable .TOC. as the first entry in the | 
|  | // .got. If there are no references to .TOC. in the symbol table, | 
|  | // ElfSym::GlobalOffsetTable will not be defined and we won't need to save | 
|  | // .TOC. in the .got. When it is defined, we increase NumEntries by the number | 
|  | // of entries used to emit ElfSym::GlobalOffsetTable. | 
|  | if (ElfSym::GlobalOffsetTable && !Target->GotBaseSymInGotPlt) | 
|  | NumEntries += Target->GotHeaderEntriesNum; | 
|  | } | 
|  |  | 
|  | void GotSection::addEntry(Symbol &Sym) { | 
|  | Sym.GotIndex = NumEntries; | 
|  | ++NumEntries; | 
|  | } | 
|  |  | 
|  | bool GotSection::addDynTlsEntry(Symbol &Sym) { | 
|  | if (Sym.GlobalDynIndex != -1U) | 
|  | return false; | 
|  | Sym.GlobalDynIndex = NumEntries; | 
|  | // Global Dynamic TLS entries take two GOT slots. | 
|  | NumEntries += 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Reserves TLS entries for a TLS module ID and a TLS block offset. | 
|  | // In total it takes two GOT slots. | 
|  | bool GotSection::addTlsIndex() { | 
|  | if (TlsIndexOff != uint32_t(-1)) | 
|  | return false; | 
|  | TlsIndexOff = NumEntries * Config->Wordsize; | 
|  | NumEntries += 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint64_t GotSection::getGlobalDynAddr(const Symbol &B) const { | 
|  | return this->getVA() + B.GlobalDynIndex * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t GotSection::getGlobalDynOffset(const Symbol &B) const { | 
|  | return B.GlobalDynIndex * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | void GotSection::finalizeContents() { | 
|  | Size = NumEntries * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | bool GotSection::empty() const { | 
|  | // We need to emit a GOT even if it's empty if there's a relocation that is | 
|  | // relative to GOT(such as GOTOFFREL) or there's a symbol that points to a GOT | 
|  | // (i.e. _GLOBAL_OFFSET_TABLE_) that the target defines relative to the .got. | 
|  | return NumEntries == 0 && !HasGotOffRel && | 
|  | !(ElfSym::GlobalOffsetTable && !Target->GotBaseSymInGotPlt); | 
|  | } | 
|  |  | 
|  | void GotSection::writeTo(uint8_t *Buf) { | 
|  | // Buf points to the start of this section's buffer, | 
|  | // whereas InputSectionBase::relocateAlloc() expects its argument | 
|  | // to point to the start of the output section. | 
|  | Target->writeGotHeader(Buf); | 
|  | relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + Size); | 
|  | } | 
|  |  | 
|  | static uint64_t getMipsPageAddr(uint64_t Addr) { | 
|  | return (Addr + 0x8000) & ~0xffff; | 
|  | } | 
|  |  | 
|  | static uint64_t getMipsPageCount(uint64_t Size) { | 
|  | return (Size + 0xfffe) / 0xffff + 1; | 
|  | } | 
|  |  | 
|  | MipsGotSection::MipsGotSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, | 
|  | ".got") {} | 
|  |  | 
|  | void MipsGotSection::addEntry(InputFile &File, Symbol &Sym, int64_t Addend, | 
|  | RelExpr Expr) { | 
|  | FileGot &G = getGot(File); | 
|  | if (Expr == R_MIPS_GOT_LOCAL_PAGE) { | 
|  | if (const OutputSection *OS = Sym.getOutputSection()) | 
|  | G.PagesMap.insert({OS, {}}); | 
|  | else | 
|  | G.Local16.insert({{nullptr, getMipsPageAddr(Sym.getVA(Addend))}, 0}); | 
|  | } else if (Sym.isTls()) | 
|  | G.Tls.insert({&Sym, 0}); | 
|  | else if (Sym.IsPreemptible && Expr == R_ABS) | 
|  | G.Relocs.insert({&Sym, 0}); | 
|  | else if (Sym.IsPreemptible) | 
|  | G.Global.insert({&Sym, 0}); | 
|  | else if (Expr == R_MIPS_GOT_OFF32) | 
|  | G.Local32.insert({{&Sym, Addend}, 0}); | 
|  | else | 
|  | G.Local16.insert({{&Sym, Addend}, 0}); | 
|  | } | 
|  |  | 
|  | void MipsGotSection::addDynTlsEntry(InputFile &File, Symbol &Sym) { | 
|  | getGot(File).DynTlsSymbols.insert({&Sym, 0}); | 
|  | } | 
|  |  | 
|  | void MipsGotSection::addTlsIndex(InputFile &File) { | 
|  | getGot(File).DynTlsSymbols.insert({nullptr, 0}); | 
|  | } | 
|  |  | 
|  | size_t MipsGotSection::FileGot::getEntriesNum() const { | 
|  | return getPageEntriesNum() + Local16.size() + Global.size() + Relocs.size() + | 
|  | Tls.size() + DynTlsSymbols.size() * 2; | 
|  | } | 
|  |  | 
|  | size_t MipsGotSection::FileGot::getPageEntriesNum() const { | 
|  | size_t Num = 0; | 
|  | for (const std::pair<const OutputSection *, FileGot::PageBlock> &P : PagesMap) | 
|  | Num += P.second.Count; | 
|  | return Num; | 
|  | } | 
|  |  | 
|  | size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { | 
|  | size_t Count = getPageEntriesNum() + Local16.size() + Global.size(); | 
|  | // If there are relocation-only entries in the GOT, TLS entries | 
|  | // are allocated after them. TLS entries should be addressable | 
|  | // by 16-bit index so count both reloc-only and TLS entries. | 
|  | if (!Tls.empty() || !DynTlsSymbols.empty()) | 
|  | Count += Relocs.size() + Tls.size() + DynTlsSymbols.size() * 2; | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &F) { | 
|  | if (!F.MipsGotIndex.hasValue()) { | 
|  | Gots.emplace_back(); | 
|  | Gots.back().File = &F; | 
|  | F.MipsGotIndex = Gots.size() - 1; | 
|  | } | 
|  | return Gots[*F.MipsGotIndex]; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getPageEntryOffset(const InputFile *F, | 
|  | const Symbol &Sym, | 
|  | int64_t Addend) const { | 
|  | const FileGot &G = Gots[*F->MipsGotIndex]; | 
|  | uint64_t Index = 0; | 
|  | if (const OutputSection *OutSec = Sym.getOutputSection()) { | 
|  | uint64_t SecAddr = getMipsPageAddr(OutSec->Addr); | 
|  | uint64_t SymAddr = getMipsPageAddr(Sym.getVA(Addend)); | 
|  | Index = G.PagesMap.lookup(OutSec).FirstIndex + (SymAddr - SecAddr) / 0xffff; | 
|  | } else { | 
|  | Index = G.Local16.lookup({nullptr, getMipsPageAddr(Sym.getVA(Addend))}); | 
|  | } | 
|  | return Index * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getSymEntryOffset(const InputFile *F, const Symbol &S, | 
|  | int64_t Addend) const { | 
|  | const FileGot &G = Gots[*F->MipsGotIndex]; | 
|  | Symbol *Sym = const_cast<Symbol *>(&S); | 
|  | if (Sym->isTls()) | 
|  | return G.Tls.lookup(Sym) * Config->Wordsize; | 
|  | if (Sym->IsPreemptible) | 
|  | return G.Global.lookup(Sym) * Config->Wordsize; | 
|  | return G.Local16.lookup({Sym, Addend}) * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *F) const { | 
|  | const FileGot &G = Gots[*F->MipsGotIndex]; | 
|  | return G.DynTlsSymbols.lookup(nullptr) * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *F, | 
|  | const Symbol &S) const { | 
|  | const FileGot &G = Gots[*F->MipsGotIndex]; | 
|  | Symbol *Sym = const_cast<Symbol *>(&S); | 
|  | return G.DynTlsSymbols.lookup(Sym) * Config->Wordsize; | 
|  | } | 
|  |  | 
|  | const Symbol *MipsGotSection::getFirstGlobalEntry() const { | 
|  | if (Gots.empty()) | 
|  | return nullptr; | 
|  | const FileGot &PrimGot = Gots.front(); | 
|  | if (!PrimGot.Global.empty()) | 
|  | return PrimGot.Global.front().first; | 
|  | if (!PrimGot.Relocs.empty()) | 
|  | return PrimGot.Relocs.front().first; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | unsigned MipsGotSection::getLocalEntriesNum() const { | 
|  | if (Gots.empty()) | 
|  | return HeaderEntriesNum; | 
|  | return HeaderEntriesNum + Gots.front().getPageEntriesNum() + | 
|  | Gots.front().Local16.size(); | 
|  | } | 
|  |  | 
|  | bool MipsGotSection::tryMergeGots(FileGot &Dst, FileGot &Src, bool IsPrimary) { | 
|  | FileGot Tmp = Dst; | 
|  | set_union(Tmp.PagesMap, Src.PagesMap); | 
|  | set_union(Tmp.Local16, Src.Local16); | 
|  | set_union(Tmp.Global, Src.Global); | 
|  | set_union(Tmp.Relocs, Src.Relocs); | 
|  | set_union(Tmp.Tls, Src.Tls); | 
|  | set_union(Tmp.DynTlsSymbols, Src.DynTlsSymbols); | 
|  |  | 
|  | size_t Count = IsPrimary ? HeaderEntriesNum : 0; | 
|  | Count += Tmp.getIndexedEntriesNum(); | 
|  |  | 
|  | if (Count * Config->Wordsize > Config->MipsGotSize) | 
|  | return false; | 
|  |  | 
|  | std::swap(Tmp, Dst); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MipsGotSection::finalizeContents() { updateAllocSize(); } | 
|  |  | 
|  | bool MipsGotSection::updateAllocSize() { | 
|  | Size = HeaderEntriesNum * Config->Wordsize; | 
|  | for (const FileGot &G : Gots) | 
|  | Size += G.getEntriesNum() * Config->Wordsize; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsGotSection::build() { | 
|  | if (Gots.empty()) | 
|  | return; | 
|  |  | 
|  | std::vector<FileGot> MergedGots(1); | 
|  |  | 
|  | // For each GOT move non-preemptible symbols from the `Global` | 
|  | // to `Local16` list. Preemptible symbol might become non-preemptible | 
|  | // one if, for example, it gets a related copy relocation. | 
|  | for (FileGot &Got : Gots) { | 
|  | for (auto &P: Got.Global) | 
|  | if (!P.first->IsPreemptible) | 
|  | Got.Local16.insert({{P.first, 0}, 0}); | 
|  | Got.Global.remove_if([&](const std::pair<Symbol *, size_t> &P) { | 
|  | return !P.first->IsPreemptible; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // For each GOT remove "reloc-only" entry if there is "global" | 
|  | // entry for the same symbol. And add local entries which indexed | 
|  | // using 32-bit value at the end of 16-bit entries. | 
|  | for (FileGot &Got : Gots) { | 
|  | Got.Relocs.remove_if([&](const std::pair<Symbol *, size_t> &P) { | 
|  | return Got.Global.count(P.first); | 
|  | }); | 
|  | set_union(Got.Local16, Got.Local32); | 
|  | Got.Local32.clear(); | 
|  | } | 
|  |  | 
|  | // Evaluate number of "reloc-only" entries in the resulting GOT. | 
|  | // To do that put all unique "reloc-only" and "global" entries | 
|  | // from all GOTs to the future primary GOT. | 
|  | FileGot *PrimGot = &MergedGots.front(); | 
|  | for (FileGot &Got : Gots) { | 
|  | set_union(PrimGot->Relocs, Got.Global); | 
|  | set_union(PrimGot->Relocs, Got.Relocs); | 
|  | Got.Relocs.clear(); | 
|  | } | 
|  |  | 
|  | // Evaluate number of "page" entries in each GOT. | 
|  | for (FileGot &Got : Gots) { | 
|  | for (std::pair<const OutputSection *, FileGot::PageBlock> &P : | 
|  | Got.PagesMap) { | 
|  | const OutputSection *OS = P.first; | 
|  | uint64_t SecSize = 0; | 
|  | for (BaseCommand *Cmd : OS->SectionCommands) { | 
|  | if (auto *ISD = dyn_cast<InputSectionDescription>(Cmd)) | 
|  | for (InputSection *IS : ISD->Sections) { | 
|  | uint64_t Off = alignTo(SecSize, IS->Alignment); | 
|  | SecSize = Off + IS->getSize(); | 
|  | } | 
|  | } | 
|  | P.second.Count = getMipsPageCount(SecSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Merge GOTs. Try to join as much as possible GOTs but do not exceed | 
|  | // maximum GOT size. At first, try to fill the primary GOT because | 
|  | // the primary GOT can be accessed in the most effective way. If it | 
|  | // is not possible, try to fill the last GOT in the list, and finally | 
|  | // create a new GOT if both attempts failed. | 
|  | for (FileGot &SrcGot : Gots) { | 
|  | InputFile *File = SrcGot.File; | 
|  | if (tryMergeGots(MergedGots.front(), SrcGot, true)) { | 
|  | File->MipsGotIndex = 0; | 
|  | } else { | 
|  | // If this is the first time we failed to merge with the primary GOT, | 
|  | // MergedGots.back() will also be the primary GOT. We must make sure not | 
|  | // to try to merge again with IsPrimary=false, as otherwise, if the | 
|  | // inputs are just right, we could allow the primary GOT to become 1 or 2 | 
|  | // words too big due to ignoring the header size. | 
|  | if (MergedGots.size() == 1 || | 
|  | !tryMergeGots(MergedGots.back(), SrcGot, false)) { | 
|  | MergedGots.emplace_back(); | 
|  | std::swap(MergedGots.back(), SrcGot); | 
|  | } | 
|  | File->MipsGotIndex = MergedGots.size() - 1; | 
|  | } | 
|  | } | 
|  | std::swap(Gots, MergedGots); | 
|  |  | 
|  | // Reduce number of "reloc-only" entries in the primary GOT | 
|  | // by substracting "global" entries exist in the primary GOT. | 
|  | PrimGot = &Gots.front(); | 
|  | PrimGot->Relocs.remove_if([&](const std::pair<Symbol *, size_t> &P) { | 
|  | return PrimGot->Global.count(P.first); | 
|  | }); | 
|  |  | 
|  | // Calculate indexes for each GOT entry. | 
|  | size_t Index = HeaderEntriesNum; | 
|  | for (FileGot &Got : Gots) { | 
|  | Got.StartIndex = &Got == PrimGot ? 0 : Index; | 
|  | for (std::pair<const OutputSection *, FileGot::PageBlock> &P : | 
|  | Got.PagesMap) { | 
|  | // For each output section referenced by GOT page relocations calculate | 
|  | // and save into PagesMap an upper bound of MIPS GOT entries required | 
|  | // to store page addresses of local symbols. We assume the worst case - | 
|  | // each 64kb page of the output section has at least one GOT relocation | 
|  | // against it. And take in account the case when the section intersects | 
|  | // page boundaries. | 
|  | P.second.FirstIndex = Index; | 
|  | Index += P.second.Count; | 
|  | } | 
|  | for (auto &P: Got.Local16) | 
|  | P.second = Index++; | 
|  | for (auto &P: Got.Global) | 
|  | P.second = Index++; | 
|  | for (auto &P: Got.Relocs) | 
|  | P.second = Index++; | 
|  | for (auto &P: Got.Tls) | 
|  | P.second = Index++; | 
|  | for (auto &P: Got.DynTlsSymbols) { | 
|  | P.second = Index; | 
|  | Index += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update Symbol::GotIndex field to use this | 
|  | // value later in the `sortMipsSymbols` function. | 
|  | for (auto &P : PrimGot->Global) | 
|  | P.first->GotIndex = P.second; | 
|  | for (auto &P : PrimGot->Relocs) | 
|  | P.first->GotIndex = P.second; | 
|  |  | 
|  | // Create dynamic relocations. | 
|  | for (FileGot &Got : Gots) { | 
|  | // Create dynamic relocations for TLS entries. | 
|  | for (std::pair<Symbol *, size_t> &P : Got.Tls) { | 
|  | Symbol *S = P.first; | 
|  | uint64_t Offset = P.second * Config->Wordsize; | 
|  | if (S->IsPreemptible) | 
|  | InX::RelaDyn->addReloc(Target->TlsGotRel, this, Offset, S); | 
|  | } | 
|  | for (std::pair<Symbol *, size_t> &P : Got.DynTlsSymbols) { | 
|  | Symbol *S = P.first; | 
|  | uint64_t Offset = P.second * Config->Wordsize; | 
|  | if (S == nullptr) { | 
|  | if (!Config->Pic) | 
|  | continue; | 
|  | InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, this, Offset, S); | 
|  | } else { | 
|  | // When building a shared library we still need a dynamic relocation | 
|  | // for the module index. Therefore only checking for | 
|  | // S->IsPreemptible is not sufficient (this happens e.g. for | 
|  | // thread-locals that have been marked as local through a linker script) | 
|  | if (!S->IsPreemptible && !Config->Pic) | 
|  | continue; | 
|  | InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, this, Offset, S); | 
|  | // However, we can skip writing the TLS offset reloc for non-preemptible | 
|  | // symbols since it is known even in shared libraries | 
|  | if (!S->IsPreemptible) | 
|  | continue; | 
|  | Offset += Config->Wordsize; | 
|  | InX::RelaDyn->addReloc(Target->TlsOffsetRel, this, Offset, S); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do not create dynamic relocations for non-TLS | 
|  | // entries in the primary GOT. | 
|  | if (&Got == PrimGot) | 
|  | continue; | 
|  |  | 
|  | // Dynamic relocations for "global" entries. | 
|  | for (const std::pair<Symbol *, size_t> &P : Got.Global) { | 
|  | uint64_t Offset = P.second * Config->Wordsize; | 
|  | InX::RelaDyn->addReloc(Target->RelativeRel, this, Offset, P.first); | 
|  | } | 
|  | if (!Config->Pic) | 
|  | continue; | 
|  | // Dynamic relocations for "local" entries in case of PIC. | 
|  | for (const std::pair<const OutputSection *, FileGot::PageBlock> &L : | 
|  | Got.PagesMap) { | 
|  | size_t PageCount = L.second.Count; | 
|  | for (size_t PI = 0; PI < PageCount; ++PI) { | 
|  | uint64_t Offset = (L.second.FirstIndex + PI) * Config->Wordsize; | 
|  | InX::RelaDyn->addReloc({Target->RelativeRel, this, Offset, L.first, | 
|  | int64_t(PI * 0x10000)}); | 
|  | } | 
|  | } | 
|  | for (const std::pair<GotEntry, size_t> &P : Got.Local16) { | 
|  | uint64_t Offset = P.second * Config->Wordsize; | 
|  | InX::RelaDyn->addReloc({Target->RelativeRel, this, Offset, true, | 
|  | P.first.first, P.first.second}); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MipsGotSection::empty() const { | 
|  | // We add the .got section to the result for dynamic MIPS target because | 
|  | // its address and properties are mentioned in the .dynamic section. | 
|  | return Config->Relocatable; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getGp(const InputFile *F) const { | 
|  | // For files without related GOT or files refer a primary GOT | 
|  | // returns "common" _gp value. For secondary GOTs calculate | 
|  | // individual _gp values. | 
|  | if (!F || !F->MipsGotIndex.hasValue() || *F->MipsGotIndex == 0) | 
|  | return ElfSym::MipsGp->getVA(0); | 
|  | return getVA() + Gots[*F->MipsGotIndex].StartIndex * Config->Wordsize + | 
|  | 0x7ff0; | 
|  | } | 
|  |  | 
|  | void MipsGotSection::writeTo(uint8_t *Buf) { | 
|  | // Set the MSB of the second GOT slot. This is not required by any | 
|  | // MIPS ABI documentation, though. | 
|  | // | 
|  | // There is a comment in glibc saying that "The MSB of got[1] of a | 
|  | // gnu object is set to identify gnu objects," and in GNU gold it | 
|  | // says "the second entry will be used by some runtime loaders". | 
|  | // But how this field is being used is unclear. | 
|  | // | 
|  | // We are not really willing to mimic other linkers behaviors | 
|  | // without understanding why they do that, but because all files | 
|  | // generated by GNU tools have this special GOT value, and because | 
|  | // we've been doing this for years, it is probably a safe bet to | 
|  | // keep doing this for now. We really need to revisit this to see | 
|  | // if we had to do this. | 
|  | writeUint(Buf + Config->Wordsize, (uint64_t)1 << (Config->Wordsize * 8 - 1)); | 
|  | for (const FileGot &G : Gots) { | 
|  | auto Write = [&](size_t I, const Symbol *S, int64_t A) { | 
|  | uint64_t VA = A; | 
|  | if (S) { | 
|  | VA = S->getVA(A); | 
|  | if (S->StOther & STO_MIPS_MICROMIPS) | 
|  | VA |= 1; | 
|  | } | 
|  | writeUint(Buf + I * Config->Wordsize, VA); | 
|  | }; | 
|  | // Write 'page address' entries to the local part of the GOT. | 
|  | for (const std::pair<const OutputSection *, FileGot::PageBlock> &L : | 
|  | G.PagesMap) { | 
|  | size_t PageCount = L.second.Count; | 
|  | uint64_t FirstPageAddr = getMipsPageAddr(L.first->Addr); | 
|  | for (size_t PI = 0; PI < PageCount; ++PI) | 
|  | Write(L.second.FirstIndex + PI, nullptr, FirstPageAddr + PI * 0x10000); | 
|  | } | 
|  | // Local, global, TLS, reloc-only  entries. | 
|  | // If TLS entry has a corresponding dynamic relocations, leave it | 
|  | // initialized by zero. Write down adjusted TLS symbol's values otherwise. | 
|  | // To calculate the adjustments use offsets for thread-local storage. | 
|  | // https://www.linux-mips.org/wiki/NPTL | 
|  | for (const std::pair<GotEntry, size_t> &P : G.Local16) | 
|  | Write(P.second, P.first.first, P.first.second); | 
|  | // Write VA to the primary GOT only. For secondary GOTs that | 
|  | // will be done by REL32 dynamic relocations. | 
|  | if (&G == &Gots.front()) | 
|  | for (const std::pair<const Symbol *, size_t> &P : G.Global) | 
|  | Write(P.second, P.first, 0); | 
|  | for (const std::pair<Symbol *, size_t> &P : G.Relocs) | 
|  | Write(P.second, P.first, 0); | 
|  | for (const std::pair<Symbol *, size_t> &P : G.Tls) | 
|  | Write(P.second, P.first, P.first->IsPreemptible ? 0 : -0x7000); | 
|  | for (const std::pair<Symbol *, size_t> &P : G.DynTlsSymbols) { | 
|  | if (P.first == nullptr && !Config->Pic) | 
|  | Write(P.second, nullptr, 1); | 
|  | else if (P.first && !P.first->IsPreemptible) { | 
|  | // If we are emitting PIC code with relocations we mustn't write | 
|  | // anything to the GOT here. When using Elf_Rel relocations the value | 
|  | // one will be treated as an addend and will cause crashes at runtime | 
|  | if (!Config->Pic) | 
|  | Write(P.second, nullptr, 1); | 
|  | Write(P.second + 1, P.first, -0x8000); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // On PowerPC the .plt section is used to hold the table of function addresses | 
|  | // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss | 
|  | // section. I don't know why we have a BSS style type for the section but it is | 
|  | // consitent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. | 
|  | GotPltSection::GotPltSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, | 
|  | Config->EMachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, | 
|  | Target->GotPltEntrySize, | 
|  | Config->EMachine == EM_PPC64 ? ".plt" : ".got.plt") {} | 
|  |  | 
|  | void GotPltSection::addEntry(Symbol &Sym) { | 
|  | assert(Sym.PltIndex == Entries.size()); | 
|  | Entries.push_back(&Sym); | 
|  | } | 
|  |  | 
|  | size_t GotPltSection::getSize() const { | 
|  | return (Target->GotPltHeaderEntriesNum + Entries.size()) * | 
|  | Target->GotPltEntrySize; | 
|  | } | 
|  |  | 
|  | void GotPltSection::writeTo(uint8_t *Buf) { | 
|  | Target->writeGotPltHeader(Buf); | 
|  | Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; | 
|  | for (const Symbol *B : Entries) { | 
|  | Target->writeGotPlt(Buf, *B); | 
|  | Buf += Config->Wordsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GotPltSection::empty() const { | 
|  | // We need to emit a GOT.PLT even if it's empty if there's a symbol that | 
|  | // references the _GLOBAL_OFFSET_TABLE_ and the Target defines the symbol | 
|  | // relative to the .got.plt section. | 
|  | return Entries.empty() && | 
|  | !(ElfSym::GlobalOffsetTable && Target->GotBaseSymInGotPlt); | 
|  | } | 
|  |  | 
|  | static StringRef getIgotPltName() { | 
|  | // On ARM the IgotPltSection is part of the GotSection. | 
|  | if (Config->EMachine == EM_ARM) | 
|  | return ".got"; | 
|  |  | 
|  | // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection | 
|  | // needs to be named the same. | 
|  | if (Config->EMachine == EM_PPC64) | 
|  | return ".plt"; | 
|  |  | 
|  | return ".got.plt"; | 
|  | } | 
|  |  | 
|  | // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit | 
|  | // with the IgotPltSection. | 
|  | IgotPltSection::IgotPltSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, | 
|  | Config->EMachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, | 
|  | Target->GotPltEntrySize, getIgotPltName()) {} | 
|  |  | 
|  | void IgotPltSection::addEntry(Symbol &Sym) { | 
|  | Sym.IsInIgot = true; | 
|  | assert(Sym.PltIndex == Entries.size()); | 
|  | Entries.push_back(&Sym); | 
|  | } | 
|  |  | 
|  | size_t IgotPltSection::getSize() const { | 
|  | return Entries.size() * Target->GotPltEntrySize; | 
|  | } | 
|  |  | 
|  | void IgotPltSection::writeTo(uint8_t *Buf) { | 
|  | for (const Symbol *B : Entries) { | 
|  | Target->writeIgotPlt(Buf, *B); | 
|  | Buf += Config->Wordsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | StringTableSection::StringTableSection(StringRef Name, bool Dynamic) | 
|  | : SyntheticSection(Dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, Name), | 
|  | Dynamic(Dynamic) { | 
|  | // ELF string tables start with a NUL byte. | 
|  | addString(""); | 
|  | } | 
|  |  | 
|  | // Adds a string to the string table. If HashIt is true we hash and check for | 
|  | // duplicates. It is optional because the name of global symbols are already | 
|  | // uniqued and hashing them again has a big cost for a small value: uniquing | 
|  | // them with some other string that happens to be the same. | 
|  | unsigned StringTableSection::addString(StringRef S, bool HashIt) { | 
|  | if (HashIt) { | 
|  | auto R = StringMap.insert(std::make_pair(S, this->Size)); | 
|  | if (!R.second) | 
|  | return R.first->second; | 
|  | } | 
|  | unsigned Ret = this->Size; | 
|  | this->Size = this->Size + S.size() + 1; | 
|  | Strings.push_back(S); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | void StringTableSection::writeTo(uint8_t *Buf) { | 
|  | for (StringRef S : Strings) { | 
|  | memcpy(Buf, S.data(), S.size()); | 
|  | Buf[S.size()] = '\0'; | 
|  | Buf += S.size() + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the number of version definition entries. Because the first entry | 
|  | // is for the version definition itself, it is the number of versioned symbols | 
|  | // plus one. Note that we don't support multiple versions yet. | 
|  | static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } | 
|  |  | 
|  | template <class ELFT> | 
|  | DynamicSection<ELFT>::DynamicSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, Config->Wordsize, | 
|  | ".dynamic") { | 
|  | this->Entsize = ELFT::Is64Bits ? 16 : 8; | 
|  |  | 
|  | // .dynamic section is not writable on MIPS and on Fuchsia OS | 
|  | // which passes -z rodynamic. | 
|  | // See "Special Section" in Chapter 4 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (Config->EMachine == EM_MIPS || Config->ZRodynamic) | 
|  | this->Flags = SHF_ALLOC; | 
|  |  | 
|  | // Add strings to .dynstr early so that .dynstr's size will be | 
|  | // fixed early. | 
|  | for (StringRef S : Config->FilterList) | 
|  | addInt(DT_FILTER, InX::DynStrTab->addString(S)); | 
|  | for (StringRef S : Config->AuxiliaryList) | 
|  | addInt(DT_AUXILIARY, InX::DynStrTab->addString(S)); | 
|  |  | 
|  | if (!Config->Rpath.empty()) | 
|  | addInt(Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, | 
|  | InX::DynStrTab->addString(Config->Rpath)); | 
|  |  | 
|  | for (InputFile *File : SharedFiles) { | 
|  | SharedFile<ELFT> *F = cast<SharedFile<ELFT>>(File); | 
|  | if (F->IsNeeded) | 
|  | addInt(DT_NEEDED, InX::DynStrTab->addString(F->SoName)); | 
|  | } | 
|  | if (!Config->SoName.empty()) | 
|  | addInt(DT_SONAME, InX::DynStrTab->addString(Config->SoName)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void DynamicSection<ELFT>::add(int32_t Tag, std::function<uint64_t()> Fn) { | 
|  | Entries.push_back({Tag, Fn}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void DynamicSection<ELFT>::addInt(int32_t Tag, uint64_t Val) { | 
|  | Entries.push_back({Tag, [=] { return Val; }}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void DynamicSection<ELFT>::addInSec(int32_t Tag, InputSection *Sec) { | 
|  | Entries.push_back({Tag, [=] { return Sec->getVA(0); }}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void DynamicSection<ELFT>::addInSecRelative(int32_t Tag, InputSection *Sec) { | 
|  | size_t TagOffset = Entries.size() * Entsize; | 
|  | Entries.push_back( | 
|  | {Tag, [=] { return Sec->getVA(0) - (getVA() + TagOffset); }}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void DynamicSection<ELFT>::addOutSec(int32_t Tag, OutputSection *Sec) { | 
|  | Entries.push_back({Tag, [=] { return Sec->Addr; }}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void DynamicSection<ELFT>::addSize(int32_t Tag, OutputSection *Sec) { | 
|  | Entries.push_back({Tag, [=] { return Sec->Size; }}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void DynamicSection<ELFT>::addSym(int32_t Tag, Symbol *Sym) { | 
|  | Entries.push_back({Tag, [=] { return Sym->getVA(); }}); | 
|  | } | 
|  |  | 
|  | // Add remaining entries to complete .dynamic contents. | 
|  | template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { | 
|  | if (this->Size) | 
|  | return; // Already finalized. | 
|  |  | 
|  | // Set DT_FLAGS and DT_FLAGS_1. | 
|  | uint32_t DtFlags = 0; | 
|  | uint32_t DtFlags1 = 0; | 
|  | if (Config->Bsymbolic) | 
|  | DtFlags |= DF_SYMBOLIC; | 
|  | if (Config->ZInitfirst) | 
|  | DtFlags1 |= DF_1_INITFIRST; | 
|  | if (Config->ZNodelete) | 
|  | DtFlags1 |= DF_1_NODELETE; | 
|  | if (Config->ZNodlopen) | 
|  | DtFlags1 |= DF_1_NOOPEN; | 
|  | if (Config->ZNow) { | 
|  | DtFlags |= DF_BIND_NOW; | 
|  | DtFlags1 |= DF_1_NOW; | 
|  | } | 
|  | if (Config->ZOrigin) { | 
|  | DtFlags |= DF_ORIGIN; | 
|  | DtFlags1 |= DF_1_ORIGIN; | 
|  | } | 
|  | if (!Config->ZText) | 
|  | DtFlags |= DF_TEXTREL; | 
|  |  | 
|  | if (DtFlags) | 
|  | addInt(DT_FLAGS, DtFlags); | 
|  | if (DtFlags1) | 
|  | addInt(DT_FLAGS_1, DtFlags1); | 
|  |  | 
|  | // DT_DEBUG is a pointer to debug informaion used by debuggers at runtime. We | 
|  | // need it for each process, so we don't write it for DSOs. The loader writes | 
|  | // the pointer into this entry. | 
|  | // | 
|  | // DT_DEBUG is the only .dynamic entry that needs to be written to. Some | 
|  | // systems (currently only Fuchsia OS) provide other means to give the | 
|  | // debugger this information. Such systems may choose make .dynamic read-only. | 
|  | // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. | 
|  | if (!Config->Shared && !Config->Relocatable && !Config->ZRodynamic) | 
|  | addInt(DT_DEBUG, 0); | 
|  |  | 
|  | this->Link = InX::DynStrTab->getParent()->SectionIndex; | 
|  | if (!InX::RelaDyn->empty()) { | 
|  | addInSec(InX::RelaDyn->DynamicTag, InX::RelaDyn); | 
|  | addSize(InX::RelaDyn->SizeDynamicTag, InX::RelaDyn->getParent()); | 
|  |  | 
|  | bool IsRela = Config->IsRela; | 
|  | addInt(IsRela ? DT_RELAENT : DT_RELENT, | 
|  | IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); | 
|  |  | 
|  | // MIPS dynamic loader does not support RELCOUNT tag. | 
|  | // The problem is in the tight relation between dynamic | 
|  | // relocations and GOT. So do not emit this tag on MIPS. | 
|  | if (Config->EMachine != EM_MIPS) { | 
|  | size_t NumRelativeRels = InX::RelaDyn->getRelativeRelocCount(); | 
|  | if (Config->ZCombreloc && NumRelativeRels) | 
|  | addInt(IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels); | 
|  | } | 
|  | } | 
|  | if (InX::RelrDyn && !InX::RelrDyn->Relocs.empty()) { | 
|  | addInSec(Config->UseAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, | 
|  | InX::RelrDyn); | 
|  | addSize(Config->UseAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, | 
|  | InX::RelrDyn->getParent()); | 
|  | addInt(Config->UseAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, | 
|  | sizeof(Elf_Relr)); | 
|  | } | 
|  | // .rel[a].plt section usually consists of two parts, containing plt and | 
|  | // iplt relocations. It is possible to have only iplt relocations in the | 
|  | // output. In that case RelaPlt is empty and have zero offset, the same offset | 
|  | // as RelaIplt have. And we still want to emit proper dynamic tags for that | 
|  | // case, so here we always use RelaPlt as marker for the begining of | 
|  | // .rel[a].plt section. | 
|  | if (InX::RelaPlt->getParent()->Live) { | 
|  | addInSec(DT_JMPREL, InX::RelaPlt); | 
|  | addSize(DT_PLTRELSZ, InX::RelaPlt->getParent()); | 
|  | switch (Config->EMachine) { | 
|  | case EM_MIPS: | 
|  | addInSec(DT_MIPS_PLTGOT, InX::GotPlt); | 
|  | break; | 
|  | case EM_SPARCV9: | 
|  | addInSec(DT_PLTGOT, InX::Plt); | 
|  | break; | 
|  | default: | 
|  | addInSec(DT_PLTGOT, InX::GotPlt); | 
|  | break; | 
|  | } | 
|  | addInt(DT_PLTREL, Config->IsRela ? DT_RELA : DT_REL); | 
|  | } | 
|  |  | 
|  | addInSec(DT_SYMTAB, InX::DynSymTab); | 
|  | addInt(DT_SYMENT, sizeof(Elf_Sym)); | 
|  | addInSec(DT_STRTAB, InX::DynStrTab); | 
|  | addInt(DT_STRSZ, InX::DynStrTab->getSize()); | 
|  | if (!Config->ZText) | 
|  | addInt(DT_TEXTREL, 0); | 
|  | if (InX::GnuHashTab) | 
|  | addInSec(DT_GNU_HASH, InX::GnuHashTab); | 
|  | if (InX::HashTab) | 
|  | addInSec(DT_HASH, InX::HashTab); | 
|  |  | 
|  | if (Out::PreinitArray) { | 
|  | addOutSec(DT_PREINIT_ARRAY, Out::PreinitArray); | 
|  | addSize(DT_PREINIT_ARRAYSZ, Out::PreinitArray); | 
|  | } | 
|  | if (Out::InitArray) { | 
|  | addOutSec(DT_INIT_ARRAY, Out::InitArray); | 
|  | addSize(DT_INIT_ARRAYSZ, Out::InitArray); | 
|  | } | 
|  | if (Out::FiniArray) { | 
|  | addOutSec(DT_FINI_ARRAY, Out::FiniArray); | 
|  | addSize(DT_FINI_ARRAYSZ, Out::FiniArray); | 
|  | } | 
|  |  | 
|  | if (Symbol *B = Symtab->find(Config->Init)) | 
|  | if (B->isDefined()) | 
|  | addSym(DT_INIT, B); | 
|  | if (Symbol *B = Symtab->find(Config->Fini)) | 
|  | if (B->isDefined()) | 
|  | addSym(DT_FINI, B); | 
|  |  | 
|  | bool HasVerNeed = In<ELFT>::VerNeed->getNeedNum() != 0; | 
|  | if (HasVerNeed || In<ELFT>::VerDef) | 
|  | addInSec(DT_VERSYM, In<ELFT>::VerSym); | 
|  | if (In<ELFT>::VerDef) { | 
|  | addInSec(DT_VERDEF, In<ELFT>::VerDef); | 
|  | addInt(DT_VERDEFNUM, getVerDefNum()); | 
|  | } | 
|  | if (HasVerNeed) { | 
|  | addInSec(DT_VERNEED, In<ELFT>::VerNeed); | 
|  | addInt(DT_VERNEEDNUM, In<ELFT>::VerNeed->getNeedNum()); | 
|  | } | 
|  |  | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | addInt(DT_MIPS_RLD_VERSION, 1); | 
|  | addInt(DT_MIPS_FLAGS, RHF_NOTPOT); | 
|  | addInt(DT_MIPS_BASE_ADDRESS, Target->getImageBase()); | 
|  | addInt(DT_MIPS_SYMTABNO, InX::DynSymTab->getNumSymbols()); | 
|  |  | 
|  | add(DT_MIPS_LOCAL_GOTNO, [] { return InX::MipsGot->getLocalEntriesNum(); }); | 
|  |  | 
|  | if (const Symbol *B = InX::MipsGot->getFirstGlobalEntry()) | 
|  | addInt(DT_MIPS_GOTSYM, B->DynsymIndex); | 
|  | else | 
|  | addInt(DT_MIPS_GOTSYM, InX::DynSymTab->getNumSymbols()); | 
|  | addInSec(DT_PLTGOT, InX::MipsGot); | 
|  | if (InX::MipsRldMap) { | 
|  | if (!Config->Pie) | 
|  | addInSec(DT_MIPS_RLD_MAP, InX::MipsRldMap); | 
|  | // Store the offset to the .rld_map section | 
|  | // relative to the address of the tag. | 
|  | addInSecRelative(DT_MIPS_RLD_MAP_REL, InX::MipsRldMap); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. | 
|  | if (Config->EMachine == EM_PPC64 && !InX::Plt->empty()) { | 
|  | // The Glink tag points to 32 bytes before the first lazy symbol resolution | 
|  | // stub, which starts directly after the header. | 
|  | Entries.push_back({DT_PPC64_GLINK, [=] { | 
|  | unsigned Offset = Target->PltHeaderSize - 32; | 
|  | return InX::Plt->getVA(0) + Offset; | 
|  | }}); | 
|  | } | 
|  |  | 
|  | addInt(DT_NULL, 0); | 
|  |  | 
|  | getParent()->Link = this->Link; | 
|  | this->Size = Entries.size() * this->Entsize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *P = reinterpret_cast<Elf_Dyn *>(Buf); | 
|  |  | 
|  | for (std::pair<int32_t, std::function<uint64_t()>> &KV : Entries) { | 
|  | P->d_tag = KV.first; | 
|  | P->d_un.d_val = KV.second(); | 
|  | ++P; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t DynamicReloc::getOffset() const { | 
|  | return InputSec->getVA(OffsetInSec); | 
|  | } | 
|  |  | 
|  | int64_t DynamicReloc::computeAddend() const { | 
|  | if (UseSymVA) | 
|  | return Sym->getVA(Addend); | 
|  | if (!OutputSec) | 
|  | return Addend; | 
|  | // See the comment in the DynamicReloc ctor. | 
|  | return getMipsPageAddr(OutputSec->Addr) + Addend; | 
|  | } | 
|  |  | 
|  | uint32_t DynamicReloc::getSymIndex() const { | 
|  | if (Sym && !UseSymVA) | 
|  | return Sym->DynsymIndex; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | RelocationBaseSection::RelocationBaseSection(StringRef Name, uint32_t Type, | 
|  | int32_t DynamicTag, | 
|  | int32_t SizeDynamicTag) | 
|  | : SyntheticSection(SHF_ALLOC, Type, Config->Wordsize, Name), | 
|  | DynamicTag(DynamicTag), SizeDynamicTag(SizeDynamicTag) {} | 
|  |  | 
|  | void RelocationBaseSection::addReloc(RelType DynType, InputSectionBase *IS, | 
|  | uint64_t OffsetInSec, Symbol *Sym) { | 
|  | addReloc({DynType, IS, OffsetInSec, false, Sym, 0}); | 
|  | } | 
|  |  | 
|  | void RelocationBaseSection::addReloc(RelType DynType, | 
|  | InputSectionBase *InputSec, | 
|  | uint64_t OffsetInSec, Symbol *Sym, | 
|  | int64_t Addend, RelExpr Expr, | 
|  | RelType Type) { | 
|  | // Write the addends to the relocated address if required. We skip | 
|  | // it if the written value would be zero. | 
|  | if (Config->WriteAddends && (Expr != R_ADDEND || Addend != 0)) | 
|  | InputSec->Relocations.push_back({Expr, Type, OffsetInSec, Addend, Sym}); | 
|  | addReloc({DynType, InputSec, OffsetInSec, Expr != R_ADDEND, Sym, Addend}); | 
|  | } | 
|  |  | 
|  | void RelocationBaseSection::addReloc(const DynamicReloc &Reloc) { | 
|  | if (Reloc.Type == Target->RelativeRel) | 
|  | ++NumRelativeRelocs; | 
|  | Relocs.push_back(Reloc); | 
|  | } | 
|  |  | 
|  | void RelocationBaseSection::finalizeContents() { | 
|  | // If all relocations are R_*_RELATIVE they don't refer to any | 
|  | // dynamic symbol and we don't need a dynamic symbol table. If that | 
|  | // is the case, just use 0 as the link. | 
|  | Link = InX::DynSymTab ? InX::DynSymTab->getParent()->SectionIndex : 0; | 
|  |  | 
|  | // Set required output section properties. | 
|  | getParent()->Link = Link; | 
|  | } | 
|  |  | 
|  | RelrBaseSection::RelrBaseSection() | 
|  | : SyntheticSection(SHF_ALLOC, | 
|  | Config->UseAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, | 
|  | Config->Wordsize, ".relr.dyn") {} | 
|  |  | 
|  | template <class ELFT> | 
|  | static void encodeDynamicReloc(typename ELFT::Rela *P, | 
|  | const DynamicReloc &Rel) { | 
|  | if (Config->IsRela) | 
|  | P->r_addend = Rel.computeAddend(); | 
|  | P->r_offset = Rel.getOffset(); | 
|  | P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->IsMips64EL); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort) | 
|  | : RelocationBaseSection(Name, Config->IsRela ? SHT_RELA : SHT_REL, | 
|  | Config->IsRela ? DT_RELA : DT_REL, | 
|  | Config->IsRela ? DT_RELASZ : DT_RELSZ), | 
|  | Sort(Sort) { | 
|  | this->Entsize = Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); | 
|  | } | 
|  |  | 
|  | static bool compRelocations(const DynamicReloc &A, const DynamicReloc &B) { | 
|  | bool AIsRel = A.Type == Target->RelativeRel; | 
|  | bool BIsRel = B.Type == Target->RelativeRel; | 
|  | if (AIsRel != BIsRel) | 
|  | return AIsRel; | 
|  | return A.getSymIndex() < B.getSymIndex(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | if (Sort) | 
|  | std::stable_sort(Relocs.begin(), Relocs.end(), compRelocations); | 
|  |  | 
|  | for (const DynamicReloc &Rel : Relocs) { | 
|  | encodeDynamicReloc<ELFT>(reinterpret_cast<Elf_Rela *>(Buf), Rel); | 
|  | Buf += Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() { | 
|  | return this->Entsize * Relocs.size(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( | 
|  | StringRef Name) | 
|  | : RelocationBaseSection( | 
|  | Name, Config->IsRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, | 
|  | Config->IsRela ? DT_ANDROID_RELA : DT_ANDROID_REL, | 
|  | Config->IsRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) { | 
|  | this->Entsize = 1; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { | 
|  | // This function computes the contents of an Android-format packed relocation | 
|  | // section. | 
|  | // | 
|  | // This format compresses relocations by using relocation groups to factor out | 
|  | // fields that are common between relocations and storing deltas from previous | 
|  | // relocations in SLEB128 format (which has a short representation for small | 
|  | // numbers). A good example of a relocation type with common fields is | 
|  | // R_*_RELATIVE, which is normally used to represent function pointers in | 
|  | // vtables. In the REL format, each relative relocation has the same r_info | 
|  | // field, and is only different from other relative relocations in terms of | 
|  | // the r_offset field. By sorting relocations by offset, grouping them by | 
|  | // r_info and representing each relocation with only the delta from the | 
|  | // previous offset, each 8-byte relocation can be compressed to as little as 1 | 
|  | // byte (or less with run-length encoding). This relocation packer was able to | 
|  | // reduce the size of the relocation section in an Android Chromium DSO from | 
|  | // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. | 
|  | // | 
|  | // A relocation section consists of a header containing the literal bytes | 
|  | // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two | 
|  | // elements are the total number of relocations in the section and an initial | 
|  | // r_offset value. The remaining elements define a sequence of relocation | 
|  | // groups. Each relocation group starts with a header consisting of the | 
|  | // following elements: | 
|  | // | 
|  | // - the number of relocations in the relocation group | 
|  | // - flags for the relocation group | 
|  | // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta | 
|  | //   for each relocation in the group. | 
|  | // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info | 
|  | //   field for each relocation in the group. | 
|  | // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and | 
|  | //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for | 
|  | //   each relocation in the group. | 
|  | // | 
|  | // Following the relocation group header are descriptions of each of the | 
|  | // relocations in the group. They consist of the following elements: | 
|  | // | 
|  | // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset | 
|  | //   delta for this relocation. | 
|  | // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info | 
|  | //   field for this relocation. | 
|  | // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and | 
|  | //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for | 
|  | //   this relocation. | 
|  |  | 
|  | size_t OldSize = RelocData.size(); | 
|  |  | 
|  | RelocData = {'A', 'P', 'S', '2'}; | 
|  | raw_svector_ostream OS(RelocData); | 
|  | auto Add = [&](int64_t V) { encodeSLEB128(V, OS); }; | 
|  |  | 
|  | // The format header includes the number of relocations and the initial | 
|  | // offset (we set this to zero because the first relocation group will | 
|  | // perform the initial adjustment). | 
|  | Add(Relocs.size()); | 
|  | Add(0); | 
|  |  | 
|  | std::vector<Elf_Rela> Relatives, NonRelatives; | 
|  |  | 
|  | for (const DynamicReloc &Rel : Relocs) { | 
|  | Elf_Rela R; | 
|  | encodeDynamicReloc<ELFT>(&R, Rel); | 
|  |  | 
|  | if (R.getType(Config->IsMips64EL) == Target->RelativeRel) | 
|  | Relatives.push_back(R); | 
|  | else | 
|  | NonRelatives.push_back(R); | 
|  | } | 
|  |  | 
|  | llvm::sort(Relatives.begin(), Relatives.end(), | 
|  | [](const Elf_Rel &A, const Elf_Rel &B) { | 
|  | return A.r_offset < B.r_offset; | 
|  | }); | 
|  |  | 
|  | // Try to find groups of relative relocations which are spaced one word | 
|  | // apart from one another. These generally correspond to vtable entries. The | 
|  | // format allows these groups to be encoded using a sort of run-length | 
|  | // encoding, but each group will cost 7 bytes in addition to the offset from | 
|  | // the previous group, so it is only profitable to do this for groups of | 
|  | // size 8 or larger. | 
|  | std::vector<Elf_Rela> UngroupedRelatives; | 
|  | std::vector<std::vector<Elf_Rela>> RelativeGroups; | 
|  | for (auto I = Relatives.begin(), E = Relatives.end(); I != E;) { | 
|  | std::vector<Elf_Rela> Group; | 
|  | do { | 
|  | Group.push_back(*I++); | 
|  | } while (I != E && (I - 1)->r_offset + Config->Wordsize == I->r_offset); | 
|  |  | 
|  | if (Group.size() < 8) | 
|  | UngroupedRelatives.insert(UngroupedRelatives.end(), Group.begin(), | 
|  | Group.end()); | 
|  | else | 
|  | RelativeGroups.emplace_back(std::move(Group)); | 
|  | } | 
|  |  | 
|  | unsigned HasAddendIfRela = | 
|  | Config->IsRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; | 
|  |  | 
|  | uint64_t Offset = 0; | 
|  | uint64_t Addend = 0; | 
|  |  | 
|  | // Emit the run-length encoding for the groups of adjacent relative | 
|  | // relocations. Each group is represented using two groups in the packed | 
|  | // format. The first is used to set the current offset to the start of the | 
|  | // group (and also encodes the first relocation), and the second encodes the | 
|  | // remaining relocations. | 
|  | for (std::vector<Elf_Rela> &G : RelativeGroups) { | 
|  | // The first relocation in the group. | 
|  | Add(1); | 
|  | Add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | | 
|  | RELOCATION_GROUPED_BY_INFO_FLAG | HasAddendIfRela); | 
|  | Add(G[0].r_offset - Offset); | 
|  | Add(Target->RelativeRel); | 
|  | if (Config->IsRela) { | 
|  | Add(G[0].r_addend - Addend); | 
|  | Addend = G[0].r_addend; | 
|  | } | 
|  |  | 
|  | // The remaining relocations. | 
|  | Add(G.size() - 1); | 
|  | Add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | | 
|  | RELOCATION_GROUPED_BY_INFO_FLAG | HasAddendIfRela); | 
|  | Add(Config->Wordsize); | 
|  | Add(Target->RelativeRel); | 
|  | if (Config->IsRela) { | 
|  | for (auto I = G.begin() + 1, E = G.end(); I != E; ++I) { | 
|  | Add(I->r_addend - Addend); | 
|  | Addend = I->r_addend; | 
|  | } | 
|  | } | 
|  |  | 
|  | Offset = G.back().r_offset; | 
|  | } | 
|  |  | 
|  | // Now the ungrouped relatives. | 
|  | if (!UngroupedRelatives.empty()) { | 
|  | Add(UngroupedRelatives.size()); | 
|  | Add(RELOCATION_GROUPED_BY_INFO_FLAG | HasAddendIfRela); | 
|  | Add(Target->RelativeRel); | 
|  | for (Elf_Rela &R : UngroupedRelatives) { | 
|  | Add(R.r_offset - Offset); | 
|  | Offset = R.r_offset; | 
|  | if (Config->IsRela) { | 
|  | Add(R.r_addend - Addend); | 
|  | Addend = R.r_addend; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally the non-relative relocations. | 
|  | llvm::sort(NonRelatives.begin(), NonRelatives.end(), | 
|  | [](const Elf_Rela &A, const Elf_Rela &B) { | 
|  | return A.r_offset < B.r_offset; | 
|  | }); | 
|  | if (!NonRelatives.empty()) { | 
|  | Add(NonRelatives.size()); | 
|  | Add(HasAddendIfRela); | 
|  | for (Elf_Rela &R : NonRelatives) { | 
|  | Add(R.r_offset - Offset); | 
|  | Offset = R.r_offset; | 
|  | Add(R.r_info); | 
|  | if (Config->IsRela) { | 
|  | Add(R.r_addend - Addend); | 
|  | Addend = R.r_addend; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns whether the section size changed. We need to keep recomputing both | 
|  | // section layout and the contents of this section until the size converges | 
|  | // because changing this section's size can affect section layout, which in | 
|  | // turn can affect the sizes of the LEB-encoded integers stored in this | 
|  | // section. | 
|  | return RelocData.size() != OldSize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> RelrSection<ELFT>::RelrSection() { | 
|  | this->Entsize = Config->Wordsize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { | 
|  | // This function computes the contents of an SHT_RELR packed relocation | 
|  | // section. | 
|  | // | 
|  | // Proposal for adding SHT_RELR sections to generic-abi is here: | 
|  | //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg | 
|  | // | 
|  | // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks | 
|  | // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] | 
|  | // | 
|  | // i.e. start with an address, followed by any number of bitmaps. The address | 
|  | // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 | 
|  | // relocations each, at subsequent offsets following the last address entry. | 
|  | // | 
|  | // The bitmap entries must have 1 in the least significant bit. The assumption | 
|  | // here is that an address cannot have 1 in lsb. Odd addresses are not | 
|  | // supported. | 
|  | // | 
|  | // Excluding the least significant bit in the bitmap, each non-zero bit in | 
|  | // the bitmap represents a relocation to be applied to a corresponding machine | 
|  | // word that follows the base address word. The second least significant bit | 
|  | // represents the machine word immediately following the initial address, and | 
|  | // each bit that follows represents the next word, in linear order. As such, | 
|  | // a single bitmap can encode up to 31 relocations in a 32-bit object, and | 
|  | // 63 relocations in a 64-bit object. | 
|  | // | 
|  | // This encoding has a couple of interesting properties: | 
|  | // 1. Looking at any entry, it is clear whether it's an address or a bitmap: | 
|  | //    even means address, odd means bitmap. | 
|  | // 2. Just a simple list of addresses is a valid encoding. | 
|  |  | 
|  | size_t OldSize = RelrRelocs.size(); | 
|  | RelrRelocs.clear(); | 
|  |  | 
|  | // Same as Config->Wordsize but faster because this is a compile-time | 
|  | // constant. | 
|  | const size_t Wordsize = sizeof(typename ELFT::uint); | 
|  |  | 
|  | // Number of bits to use for the relocation offsets bitmap. | 
|  | // Must be either 63 or 31. | 
|  | const size_t NBits = Wordsize * 8 - 1; | 
|  |  | 
|  | // Get offsets for all relative relocations and sort them. | 
|  | std::vector<uint64_t> Offsets; | 
|  | for (const RelativeReloc &Rel : Relocs) | 
|  | Offsets.push_back(Rel.getOffset()); | 
|  | llvm::sort(Offsets.begin(), Offsets.end()); | 
|  |  | 
|  | // For each leading relocation, find following ones that can be folded | 
|  | // as a bitmap and fold them. | 
|  | for (size_t I = 0, E = Offsets.size(); I < E;) { | 
|  | // Add a leading relocation. | 
|  | RelrRelocs.push_back(Elf_Relr(Offsets[I])); | 
|  | uint64_t Base = Offsets[I] + Wordsize; | 
|  | ++I; | 
|  |  | 
|  | // Find foldable relocations to construct bitmaps. | 
|  | while (I < E) { | 
|  | uint64_t Bitmap = 0; | 
|  |  | 
|  | while (I < E) { | 
|  | uint64_t Delta = Offsets[I] - Base; | 
|  |  | 
|  | // If it is too far, it cannot be folded. | 
|  | if (Delta >= NBits * Wordsize) | 
|  | break; | 
|  |  | 
|  | // If it is not a multiple of wordsize away, it cannot be folded. | 
|  | if (Delta % Wordsize) | 
|  | break; | 
|  |  | 
|  | // Fold it. | 
|  | Bitmap |= 1ULL << (Delta / Wordsize); | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | if (!Bitmap) | 
|  | break; | 
|  |  | 
|  | RelrRelocs.push_back(Elf_Relr((Bitmap << 1) | 1)); | 
|  | Base += NBits * Wordsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | return RelrRelocs.size() != OldSize; | 
|  | } | 
|  |  | 
|  | SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &StrTabSec) | 
|  | : SyntheticSection(StrTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, | 
|  | StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, | 
|  | Config->Wordsize, | 
|  | StrTabSec.isDynamic() ? ".dynsym" : ".symtab"), | 
|  | StrTabSec(StrTabSec) {} | 
|  |  | 
|  | // Orders symbols according to their positions in the GOT, | 
|  | // in compliance with MIPS ABI rules. | 
|  | // See "Global Offset Table" in Chapter 5 in the following document | 
|  | // for detailed description: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | static bool sortMipsSymbols(const SymbolTableEntry &L, | 
|  | const SymbolTableEntry &R) { | 
|  | // Sort entries related to non-local preemptible symbols by GOT indexes. | 
|  | // All other entries go to the beginning of a dynsym in arbitrary order. | 
|  | if (L.Sym->isInGot() && R.Sym->isInGot()) | 
|  | return L.Sym->GotIndex < R.Sym->GotIndex; | 
|  | if (!L.Sym->isInGot() && !R.Sym->isInGot()) | 
|  | return false; | 
|  | return !L.Sym->isInGot(); | 
|  | } | 
|  |  | 
|  | void SymbolTableBaseSection::finalizeContents() { | 
|  | getParent()->Link = StrTabSec.getParent()->SectionIndex; | 
|  |  | 
|  | if (this->Type != SHT_DYNSYM) | 
|  | return; | 
|  |  | 
|  | // If it is a .dynsym, there should be no local symbols, but we need | 
|  | // to do a few things for the dynamic linker. | 
|  |  | 
|  | // Section's Info field has the index of the first non-local symbol. | 
|  | // Because the first symbol entry is a null entry, 1 is the first. | 
|  | getParent()->Info = 1; | 
|  |  | 
|  | if (InX::GnuHashTab) { | 
|  | // NB: It also sorts Symbols to meet the GNU hash table requirements. | 
|  | InX::GnuHashTab->addSymbols(Symbols); | 
|  | } else if (Config->EMachine == EM_MIPS) { | 
|  | std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); | 
|  | } | 
|  |  | 
|  | size_t I = 0; | 
|  | for (const SymbolTableEntry &S : Symbols) | 
|  | S.Sym->DynsymIndex = ++I; | 
|  | } | 
|  |  | 
|  | // The ELF spec requires that all local symbols precede global symbols, so we | 
|  | // sort symbol entries in this function. (For .dynsym, we don't do that because | 
|  | // symbols for dynamic linking are inherently all globals.) | 
|  | // | 
|  | // Aside from above, we put local symbols in groups starting with the STT_FILE | 
|  | // symbol. That is convenient for purpose of identifying where are local symbols | 
|  | // coming from. | 
|  | void SymbolTableBaseSection::postThunkContents() { | 
|  | assert(this->Type == SHT_SYMTAB); | 
|  |  | 
|  | // Move all local symbols before global symbols. | 
|  | auto E = std::stable_partition( | 
|  | Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &S) { | 
|  | return S.Sym->isLocal() || S.Sym->computeBinding() == STB_LOCAL; | 
|  | }); | 
|  | size_t NumLocals = E - Symbols.begin(); | 
|  | getParent()->Info = NumLocals + 1; | 
|  |  | 
|  | // We want to group the local symbols by file. For that we rebuild the local | 
|  | // part of the symbols vector. We do not need to care about the STT_FILE | 
|  | // symbols, they are already naturally placed first in each group. That | 
|  | // happens because STT_FILE is always the first symbol in the object and hence | 
|  | // precede all other local symbols we add for a file. | 
|  | MapVector<InputFile *, std::vector<SymbolTableEntry>> Arr; | 
|  | for (const SymbolTableEntry &S : llvm::make_range(Symbols.begin(), E)) | 
|  | Arr[S.Sym->File].push_back(S); | 
|  |  | 
|  | auto I = Symbols.begin(); | 
|  | for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &P : Arr) | 
|  | for (SymbolTableEntry &Entry : P.second) | 
|  | *I++ = Entry; | 
|  | } | 
|  |  | 
|  | void SymbolTableBaseSection::addSymbol(Symbol *B) { | 
|  | // Adding a local symbol to a .dynsym is a bug. | 
|  | assert(this->Type != SHT_DYNSYM || !B->isLocal()); | 
|  |  | 
|  | bool HashIt = B->isLocal(); | 
|  | Symbols.push_back({B, StrTabSec.addString(B->getName(), HashIt)}); | 
|  | } | 
|  |  | 
|  | size_t SymbolTableBaseSection::getSymbolIndex(Symbol *Sym) { | 
|  | // Initializes symbol lookup tables lazily. This is used only | 
|  | // for -r or -emit-relocs. | 
|  | llvm::call_once(OnceFlag, [&] { | 
|  | SymbolIndexMap.reserve(Symbols.size()); | 
|  | size_t I = 0; | 
|  | for (const SymbolTableEntry &E : Symbols) { | 
|  | if (E.Sym->Type == STT_SECTION) | 
|  | SectionIndexMap[E.Sym->getOutputSection()] = ++I; | 
|  | else | 
|  | SymbolIndexMap[E.Sym] = ++I; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Section symbols are mapped based on their output sections | 
|  | // to maintain their semantics. | 
|  | if (Sym->Type == STT_SECTION) | 
|  | return SectionIndexMap.lookup(Sym->getOutputSection()); | 
|  | return SymbolIndexMap.lookup(Sym); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &StrTabSec) | 
|  | : SymbolTableBaseSection(StrTabSec) { | 
|  | this->Entsize = sizeof(Elf_Sym); | 
|  | } | 
|  |  | 
|  | static BssSection *getCommonSec(Symbol *Sym) { | 
|  | if (!Config->DefineCommon) | 
|  | if (auto *D = dyn_cast<Defined>(Sym)) | 
|  | return dyn_cast_or_null<BssSection>(D->Section); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static uint32_t getSymSectionIndex(Symbol *Sym) { | 
|  | if (getCommonSec(Sym)) | 
|  | return SHN_COMMON; | 
|  | if (!isa<Defined>(Sym) || Sym->NeedsPltAddr) | 
|  | return SHN_UNDEF; | 
|  | if (const OutputSection *OS = Sym->getOutputSection()) | 
|  | return OS->SectionIndex >= SHN_LORESERVE ? SHN_XINDEX : OS->SectionIndex; | 
|  | return SHN_ABS; | 
|  | } | 
|  |  | 
|  | // Write the internal symbol table contents to the output symbol table. | 
|  | template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | // The first entry is a null entry as per the ELF spec. | 
|  | memset(Buf, 0, sizeof(Elf_Sym)); | 
|  | Buf += sizeof(Elf_Sym); | 
|  |  | 
|  | auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); | 
|  |  | 
|  | for (SymbolTableEntry &Ent : Symbols) { | 
|  | Symbol *Sym = Ent.Sym; | 
|  |  | 
|  | // Set st_info and st_other. | 
|  | ESym->st_other = 0; | 
|  | if (Sym->isLocal()) { | 
|  | ESym->setBindingAndType(STB_LOCAL, Sym->Type); | 
|  | } else { | 
|  | ESym->setBindingAndType(Sym->computeBinding(), Sym->Type); | 
|  | ESym->setVisibility(Sym->Visibility); | 
|  | } | 
|  |  | 
|  | ESym->st_name = Ent.StrTabOffset; | 
|  | ESym->st_shndx = getSymSectionIndex(Ent.Sym); | 
|  |  | 
|  | // Copy symbol size if it is a defined symbol. st_size is not significant | 
|  | // for undefined symbols, so whether copying it or not is up to us if that's | 
|  | // the case. We'll leave it as zero because by not setting a value, we can | 
|  | // get the exact same outputs for two sets of input files that differ only | 
|  | // in undefined symbol size in DSOs. | 
|  | if (ESym->st_shndx == SHN_UNDEF) | 
|  | ESym->st_size = 0; | 
|  | else | 
|  | ESym->st_size = Sym->getSize(); | 
|  |  | 
|  | // st_value is usually an address of a symbol, but that has a | 
|  | // special meaining for uninstantiated common symbols (this can | 
|  | // occur if -r is given). | 
|  | if (BssSection *CommonSec = getCommonSec(Ent.Sym)) | 
|  | ESym->st_value = CommonSec->Alignment; | 
|  | else | 
|  | ESym->st_value = Sym->getVA(); | 
|  |  | 
|  | ++ESym; | 
|  | } | 
|  |  | 
|  | // On MIPS we need to mark symbol which has a PLT entry and requires | 
|  | // pointer equality by STO_MIPS_PLT flag. That is necessary to help | 
|  | // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. | 
|  | // https://sourceware.org/ml/binutils/2008-07/txt00000.txt | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); | 
|  |  | 
|  | for (SymbolTableEntry &Ent : Symbols) { | 
|  | Symbol *Sym = Ent.Sym; | 
|  | if (Sym->isInPlt() && Sym->NeedsPltAddr) | 
|  | ESym->st_other |= STO_MIPS_PLT; | 
|  | if (isMicroMips()) { | 
|  | // Set STO_MIPS_MICROMIPS flag and less-significant bit for | 
|  | // a defined microMIPS symbol and symbol should point to its | 
|  | // PLT entry (in case of microMIPS, PLT entries always contain | 
|  | // microMIPS code). | 
|  | if (Sym->isDefined() && | 
|  | ((Sym->StOther & STO_MIPS_MICROMIPS) || Sym->NeedsPltAddr)) { | 
|  | if (StrTabSec.isDynamic()) | 
|  | ESym->st_value |= 1; | 
|  | ESym->st_other |= STO_MIPS_MICROMIPS; | 
|  | } | 
|  | } | 
|  | if (Config->Relocatable) | 
|  | if (auto *D = dyn_cast<Defined>(Sym)) | 
|  | if (isMipsPIC<ELFT>(D)) | 
|  | ESym->st_other |= STO_MIPS_PIC; | 
|  | ++ESym; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SymtabShndxSection::SymtabShndxSection() | 
|  | : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndxr") { | 
|  | this->Entsize = 4; | 
|  | } | 
|  |  | 
|  | void SymtabShndxSection::writeTo(uint8_t *Buf) { | 
|  | // We write an array of 32 bit values, where each value has 1:1 association | 
|  | // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, | 
|  | // we need to write actual index, otherwise, we must write SHN_UNDEF(0). | 
|  | Buf += 4; // Ignore .symtab[0] entry. | 
|  | for (const SymbolTableEntry &Entry : InX::SymTab->getSymbols()) { | 
|  | if (getSymSectionIndex(Entry.Sym) == SHN_XINDEX) | 
|  | write32(Buf, Entry.Sym->getOutputSection()->SectionIndex); | 
|  | Buf += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SymtabShndxSection::empty() const { | 
|  | // SHT_SYMTAB can hold symbols with section indices values up to | 
|  | // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX | 
|  | // section. Problem is that we reveal the final section indices a bit too | 
|  | // late, and we do not know them here. For simplicity, we just always create | 
|  | // a .symtab_shndxr section when the amount of output sections is huge. | 
|  | size_t Size = 0; | 
|  | for (BaseCommand *Base : Script->SectionCommands) | 
|  | if (isa<OutputSection>(Base)) | 
|  | ++Size; | 
|  | return Size < SHN_LORESERVE; | 
|  | } | 
|  |  | 
|  | void SymtabShndxSection::finalizeContents() { | 
|  | getParent()->Link = InX::SymTab->getParent()->SectionIndex; | 
|  | } | 
|  |  | 
|  | size_t SymtabShndxSection::getSize() const { | 
|  | return InX::SymTab->getNumSymbols() * 4; | 
|  | } | 
|  |  | 
|  | // .hash and .gnu.hash sections contain on-disk hash tables that map | 
|  | // symbol names to their dynamic symbol table indices. Their purpose | 
|  | // is to help the dynamic linker resolve symbols quickly. If ELF files | 
|  | // don't have them, the dynamic linker has to do linear search on all | 
|  | // dynamic symbols, which makes programs slower. Therefore, a .hash | 
|  | // section is added to a DSO by default. A .gnu.hash is added if you | 
|  | // give the -hash-style=gnu or -hash-style=both option. | 
|  | // | 
|  | // The Unix semantics of resolving dynamic symbols is somewhat expensive. | 
|  | // Each ELF file has a list of DSOs that the ELF file depends on and a | 
|  | // list of dynamic symbols that need to be resolved from any of the | 
|  | // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) | 
|  | // where m is the number of DSOs and n is the number of dynamic | 
|  | // symbols. For modern large programs, both m and n are large.  So | 
|  | // making each step faster by using hash tables substiantially | 
|  | // improves time to load programs. | 
|  | // | 
|  | // (Note that this is not the only way to design the shared library. | 
|  | // For instance, the Windows DLL takes a different approach. On | 
|  | // Windows, each dynamic symbol has a name of DLL from which the symbol | 
|  | // has to be resolved. That makes the cost of symbol resolution O(n). | 
|  | // This disables some hacky techniques you can use on Unix such as | 
|  | // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) | 
|  | // | 
|  | // Due to historical reasons, we have two different hash tables, .hash | 
|  | // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new | 
|  | // and better version of .hash. .hash is just an on-disk hash table, but | 
|  | // .gnu.hash has a bloom filter in addition to a hash table to skip | 
|  | // DSOs very quickly. If you are sure that your dynamic linker knows | 
|  | // about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a | 
|  | // safe bet is to specify -hash-style=both for backward compatibilty. | 
|  | GnuHashTableSection::GnuHashTableSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, Config->Wordsize, ".gnu.hash") { | 
|  | } | 
|  |  | 
|  | void GnuHashTableSection::finalizeContents() { | 
|  | getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; | 
|  |  | 
|  | // Computes bloom filter size in word size. We want to allocate 12 | 
|  | // bits for each symbol. It must be a power of two. | 
|  | if (Symbols.empty()) { | 
|  | MaskWords = 1; | 
|  | } else { | 
|  | uint64_t NumBits = Symbols.size() * 12; | 
|  | MaskWords = NextPowerOf2(NumBits / (Config->Wordsize * 8)); | 
|  | } | 
|  |  | 
|  | Size = 16;                            // Header | 
|  | Size += Config->Wordsize * MaskWords; // Bloom filter | 
|  | Size += NBuckets * 4;                 // Hash buckets | 
|  | Size += Symbols.size() * 4;           // Hash values | 
|  | } | 
|  |  | 
|  | void GnuHashTableSection::writeTo(uint8_t *Buf) { | 
|  | // The output buffer is not guaranteed to be zero-cleared because we pre- | 
|  | // fill executable sections with trap instructions. This is a precaution | 
|  | // for that case, which happens only when -no-rosegment is given. | 
|  | memset(Buf, 0, Size); | 
|  |  | 
|  | // Write a header. | 
|  | write32(Buf, NBuckets); | 
|  | write32(Buf + 4, InX::DynSymTab->getNumSymbols() - Symbols.size()); | 
|  | write32(Buf + 8, MaskWords); | 
|  | write32(Buf + 12, Shift2); | 
|  | Buf += 16; | 
|  |  | 
|  | // Write a bloom filter and a hash table. | 
|  | writeBloomFilter(Buf); | 
|  | Buf += Config->Wordsize * MaskWords; | 
|  | writeHashTable(Buf); | 
|  | } | 
|  |  | 
|  | // This function writes a 2-bit bloom filter. This bloom filter alone | 
|  | // usually filters out 80% or more of all symbol lookups [1]. | 
|  | // The dynamic linker uses the hash table only when a symbol is not | 
|  | // filtered out by a bloom filter. | 
|  | // | 
|  | // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2), | 
|  | //     p.9, https://www.akkadia.org/drepper/dsohowto.pdf | 
|  | void GnuHashTableSection::writeBloomFilter(uint8_t *Buf) { | 
|  | unsigned C = Config->Is64 ? 64 : 32; | 
|  | for (const Entry &Sym : Symbols) { | 
|  | size_t I = (Sym.Hash / C) & (MaskWords - 1); | 
|  | uint64_t Val = readUint(Buf + I * Config->Wordsize); | 
|  | Val |= uint64_t(1) << (Sym.Hash % C); | 
|  | Val |= uint64_t(1) << ((Sym.Hash >> Shift2) % C); | 
|  | writeUint(Buf + I * Config->Wordsize, Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GnuHashTableSection::writeHashTable(uint8_t *Buf) { | 
|  | uint32_t *Buckets = reinterpret_cast<uint32_t *>(Buf); | 
|  | uint32_t OldBucket = -1; | 
|  | uint32_t *Values = Buckets + NBuckets; | 
|  | for (auto I = Symbols.begin(), E = Symbols.end(); I != E; ++I) { | 
|  | // Write a hash value. It represents a sequence of chains that share the | 
|  | // same hash modulo value. The last element of each chain is terminated by | 
|  | // LSB 1. | 
|  | uint32_t Hash = I->Hash; | 
|  | bool IsLastInChain = (I + 1) == E || I->BucketIdx != (I + 1)->BucketIdx; | 
|  | Hash = IsLastInChain ? Hash | 1 : Hash & ~1; | 
|  | write32(Values++, Hash); | 
|  |  | 
|  | if (I->BucketIdx == OldBucket) | 
|  | continue; | 
|  | // Write a hash bucket. Hash buckets contain indices in the following hash | 
|  | // value table. | 
|  | write32(Buckets + I->BucketIdx, I->Sym->DynsymIndex); | 
|  | OldBucket = I->BucketIdx; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t hashGnu(StringRef Name) { | 
|  | uint32_t H = 5381; | 
|  | for (uint8_t C : Name) | 
|  | H = (H << 5) + H + C; | 
|  | return H; | 
|  | } | 
|  |  | 
|  | // Add symbols to this symbol hash table. Note that this function | 
|  | // destructively sort a given vector -- which is needed because | 
|  | // GNU-style hash table places some sorting requirements. | 
|  | void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &V) { | 
|  | // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce | 
|  | // its type correctly. | 
|  | std::vector<SymbolTableEntry>::iterator Mid = | 
|  | std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) { | 
|  | return !S.Sym->isDefined(); | 
|  | }); | 
|  |  | 
|  | // We chose load factor 4 for the on-disk hash table. For each hash | 
|  | // collision, the dynamic linker will compare a uint32_t hash value. | 
|  | // Since the integer comparison is quite fast, we believe we can | 
|  | // make the load factor even larger. 4 is just a conservative choice. | 
|  | // | 
|  | // Note that we don't want to create a zero-sized hash table because | 
|  | // Android loader as of 2018 doesn't like a .gnu.hash containing such | 
|  | // table. If that's the case, we create a hash table with one unused | 
|  | // dummy slot. | 
|  | NBuckets = std::max<size_t>((V.end() - Mid) / 4, 1); | 
|  |  | 
|  | if (Mid == V.end()) | 
|  | return; | 
|  |  | 
|  | for (SymbolTableEntry &Ent : llvm::make_range(Mid, V.end())) { | 
|  | Symbol *B = Ent.Sym; | 
|  | uint32_t Hash = hashGnu(B->getName()); | 
|  | uint32_t BucketIdx = Hash % NBuckets; | 
|  | Symbols.push_back({B, Ent.StrTabOffset, Hash, BucketIdx}); | 
|  | } | 
|  |  | 
|  | std::stable_sort( | 
|  | Symbols.begin(), Symbols.end(), | 
|  | [](const Entry &L, const Entry &R) { return L.BucketIdx < R.BucketIdx; }); | 
|  |  | 
|  | V.erase(Mid, V.end()); | 
|  | for (const Entry &Ent : Symbols) | 
|  | V.push_back({Ent.Sym, Ent.StrTabOffset}); | 
|  | } | 
|  |  | 
|  | HashTableSection::HashTableSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { | 
|  | this->Entsize = 4; | 
|  | } | 
|  |  | 
|  | void HashTableSection::finalizeContents() { | 
|  | getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; | 
|  |  | 
|  | unsigned NumEntries = 2;                       // nbucket and nchain. | 
|  | NumEntries += InX::DynSymTab->getNumSymbols(); // The chain entries. | 
|  |  | 
|  | // Create as many buckets as there are symbols. | 
|  | NumEntries += InX::DynSymTab->getNumSymbols(); | 
|  | this->Size = NumEntries * 4; | 
|  | } | 
|  |  | 
|  | void HashTableSection::writeTo(uint8_t *Buf) { | 
|  | // See comment in GnuHashTableSection::writeTo. | 
|  | memset(Buf, 0, Size); | 
|  |  | 
|  | unsigned NumSymbols = InX::DynSymTab->getNumSymbols(); | 
|  |  | 
|  | uint32_t *P = reinterpret_cast<uint32_t *>(Buf); | 
|  | write32(P++, NumSymbols); // nbucket | 
|  | write32(P++, NumSymbols); // nchain | 
|  |  | 
|  | uint32_t *Buckets = P; | 
|  | uint32_t *Chains = P + NumSymbols; | 
|  |  | 
|  | for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) { | 
|  | Symbol *Sym = S.Sym; | 
|  | StringRef Name = Sym->getName(); | 
|  | unsigned I = Sym->DynsymIndex; | 
|  | uint32_t Hash = hashSysV(Name) % NumSymbols; | 
|  | Chains[I] = Buckets[Hash]; | 
|  | write32(Buckets + Hash, I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // On PowerPC64 the lazy symbol resolvers go into the `global linkage table` | 
|  | // in the .glink section, rather then the typical .plt section. | 
|  | PltSection::PltSection(bool IsIplt) | 
|  | : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, | 
|  | Config->EMachine == EM_PPC64 ? ".glink" : ".plt"), | 
|  | HeaderSize(IsIplt ? 0 : Target->PltHeaderSize), IsIplt(IsIplt) { | 
|  | // The PLT needs to be writable on SPARC as the dynamic linker will | 
|  | // modify the instructions in the PLT entries. | 
|  | if (Config->EMachine == EM_SPARCV9) | 
|  | this->Flags |= SHF_WRITE; | 
|  | } | 
|  |  | 
|  | void PltSection::writeTo(uint8_t *Buf) { | 
|  | // At beginning of PLT but not the IPLT, we have code to call the dynamic | 
|  | // linker to resolve dynsyms at runtime. Write such code. | 
|  | if (!IsIplt) | 
|  | Target->writePltHeader(Buf); | 
|  | size_t Off = HeaderSize; | 
|  | // The IPlt is immediately after the Plt, account for this in RelOff | 
|  | unsigned PltOff = getPltRelocOff(); | 
|  |  | 
|  | for (auto &I : Entries) { | 
|  | const Symbol *B = I.first; | 
|  | unsigned RelOff = I.second + PltOff; | 
|  | uint64_t Got = B->getGotPltVA(); | 
|  | uint64_t Plt = this->getVA() + Off; | 
|  | Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); | 
|  | Off += Target->PltEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void PltSection::addEntry(Symbol &Sym) { | 
|  | Sym.PltIndex = Entries.size(); | 
|  | RelocationBaseSection *PltRelocSection = InX::RelaPlt; | 
|  | if (IsIplt) { | 
|  | PltRelocSection = InX::RelaIplt; | 
|  | Sym.IsInIplt = true; | 
|  | } | 
|  | unsigned RelOff = | 
|  | static_cast<RelocationSection<ELFT> *>(PltRelocSection)->getRelocOffset(); | 
|  | Entries.push_back(std::make_pair(&Sym, RelOff)); | 
|  | } | 
|  |  | 
|  | size_t PltSection::getSize() const { | 
|  | return HeaderSize + Entries.size() * Target->PltEntrySize; | 
|  | } | 
|  |  | 
|  | // Some architectures such as additional symbols in the PLT section. For | 
|  | // example ARM uses mapping symbols to aid disassembly | 
|  | void PltSection::addSymbols() { | 
|  | // The PLT may have symbols defined for the Header, the IPLT has no header | 
|  | if (!IsIplt) | 
|  | Target->addPltHeaderSymbols(*this); | 
|  | size_t Off = HeaderSize; | 
|  | for (size_t I = 0; I < Entries.size(); ++I) { | 
|  | Target->addPltSymbols(*this, Off); | 
|  | Off += Target->PltEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned PltSection::getPltRelocOff() const { | 
|  | return IsIplt ? InX::Plt->getSize() : 0; | 
|  | } | 
|  |  | 
|  | // The string hash function for .gdb_index. | 
|  | static uint32_t computeGdbHash(StringRef S) { | 
|  | uint32_t H = 0; | 
|  | for (uint8_t C : S) | 
|  | H = H * 67 + tolower(C) - 113; | 
|  | return H; | 
|  | } | 
|  |  | 
|  | GdbIndexSection::GdbIndexSection() | 
|  | : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} | 
|  |  | 
|  | // Returns the desired size of an on-disk hash table for a .gdb_index section. | 
|  | // There's a tradeoff between size and collision rate. We aim 75% utilization. | 
|  | size_t GdbIndexSection::computeSymtabSize() const { | 
|  | return std::max<size_t>(NextPowerOf2(Symbols.size() * 4 / 3), 1024); | 
|  | } | 
|  |  | 
|  | // Compute the output section size. | 
|  | void GdbIndexSection::initOutputSize() { | 
|  | Size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; | 
|  |  | 
|  | for (GdbChunk &Chunk : Chunks) | 
|  | Size += Chunk.CompilationUnits.size() * 16 + Chunk.AddressAreas.size() * 20; | 
|  |  | 
|  | // Add the constant pool size if exists. | 
|  | if (!Symbols.empty()) { | 
|  | GdbSymbol &Sym = Symbols.back(); | 
|  | Size += Sym.NameOff + Sym.Name.size() + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static std::vector<InputSection *> getDebugInfoSections() { | 
|  | std::vector<InputSection *> Ret; | 
|  | for (InputSectionBase *S : InputSections) | 
|  | if (InputSection *IS = dyn_cast<InputSection>(S)) | 
|  | if (IS->Name == ".debug_info") | 
|  | Ret.push_back(IS); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &Dwarf) { | 
|  | std::vector<GdbIndexSection::CuEntry> Ret; | 
|  | for (std::unique_ptr<DWARFCompileUnit> &Cu : Dwarf.compile_units()) | 
|  | Ret.push_back({Cu->getOffset(), Cu->getLength() + 4}); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static std::vector<GdbIndexSection::AddressEntry> | 
|  | readAddressAreas(DWARFContext &Dwarf, InputSection *Sec) { | 
|  | std::vector<GdbIndexSection::AddressEntry> Ret; | 
|  |  | 
|  | uint32_t CuIdx = 0; | 
|  | for (std::unique_ptr<DWARFCompileUnit> &Cu : Dwarf.compile_units()) { | 
|  | DWARFAddressRangesVector Ranges; | 
|  | Cu->collectAddressRanges(Ranges); | 
|  |  | 
|  | ArrayRef<InputSectionBase *> Sections = Sec->File->getSections(); | 
|  | for (DWARFAddressRange &R : Ranges) { | 
|  | InputSectionBase *S = Sections[R.SectionIndex]; | 
|  | if (!S || S == &InputSection::Discarded || !S->Live) | 
|  | continue; | 
|  | // Range list with zero size has no effect. | 
|  | if (R.LowPC == R.HighPC) | 
|  | continue; | 
|  | auto *IS = cast<InputSection>(S); | 
|  | uint64_t Offset = IS->getOffsetInFile(); | 
|  | Ret.push_back({IS, R.LowPC - Offset, R.HighPC - Offset, CuIdx}); | 
|  | } | 
|  | ++CuIdx; | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static std::vector<GdbIndexSection::NameTypeEntry> | 
|  | readPubNamesAndTypes(DWARFContext &Dwarf, uint32_t Idx) { | 
|  | StringRef Sec1 = Dwarf.getDWARFObj().getGnuPubNamesSection(); | 
|  | StringRef Sec2 = Dwarf.getDWARFObj().getGnuPubTypesSection(); | 
|  |  | 
|  | std::vector<GdbIndexSection::NameTypeEntry> Ret; | 
|  | for (StringRef Sec : {Sec1, Sec2}) { | 
|  | DWARFDebugPubTable Table(Sec, Config->IsLE, true); | 
|  | for (const DWARFDebugPubTable::Set &Set : Table.getData()) | 
|  | for (const DWARFDebugPubTable::Entry &Ent : Set.Entries) | 
|  | Ret.push_back({{Ent.Name, computeGdbHash(Ent.Name)}, | 
|  | (Ent.Descriptor.toBits() << 24) | Idx}); | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | // Create a list of symbols from a given list of symbol names and types | 
|  | // by uniquifying them by name. | 
|  | static std::vector<GdbIndexSection::GdbSymbol> | 
|  | createSymbols(ArrayRef<std::vector<GdbIndexSection::NameTypeEntry>> NameTypes) { | 
|  | typedef GdbIndexSection::GdbSymbol GdbSymbol; | 
|  | typedef GdbIndexSection::NameTypeEntry NameTypeEntry; | 
|  |  | 
|  | // The number of symbols we will handle in this function is of the order | 
|  | // of millions for very large executables, so we use multi-threading to | 
|  | // speed it up. | 
|  | size_t NumShards = 32; | 
|  | size_t Concurrency = 1; | 
|  | if (ThreadsEnabled) | 
|  | Concurrency = | 
|  | std::min<size_t>(PowerOf2Floor(hardware_concurrency()), NumShards); | 
|  |  | 
|  | // A sharded map to uniquify symbols by name. | 
|  | std::vector<DenseMap<CachedHashStringRef, size_t>> Map(NumShards); | 
|  | size_t Shift = 32 - countTrailingZeros(NumShards); | 
|  |  | 
|  | // Instantiate GdbSymbols while uniqufying them by name. | 
|  | std::vector<std::vector<GdbSymbol>> Symbols(NumShards); | 
|  | parallelForEachN(0, Concurrency, [&](size_t ThreadId) { | 
|  | for (ArrayRef<NameTypeEntry> Entries : NameTypes) { | 
|  | for (const NameTypeEntry &Ent : Entries) { | 
|  | size_t ShardId = Ent.Name.hash() >> Shift; | 
|  | if ((ShardId & (Concurrency - 1)) != ThreadId) | 
|  | continue; | 
|  |  | 
|  | size_t &Idx = Map[ShardId][Ent.Name]; | 
|  | if (Idx) { | 
|  | Symbols[ShardId][Idx - 1].CuVector.push_back(Ent.Type); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Idx = Symbols[ShardId].size() + 1; | 
|  | Symbols[ShardId].push_back({Ent.Name, {Ent.Type}, 0, 0}); | 
|  | } | 
|  | } | 
|  | }); | 
|  |  | 
|  | size_t NumSymbols = 0; | 
|  | for (ArrayRef<GdbSymbol> V : Symbols) | 
|  | NumSymbols += V.size(); | 
|  |  | 
|  | // The return type is a flattened vector, so we'll copy each vector | 
|  | // contents to Ret. | 
|  | std::vector<GdbSymbol> Ret; | 
|  | Ret.reserve(NumSymbols); | 
|  | for (std::vector<GdbSymbol> &Vec : Symbols) | 
|  | for (GdbSymbol &Sym : Vec) | 
|  | Ret.push_back(std::move(Sym)); | 
|  |  | 
|  | // CU vectors and symbol names are adjacent in the output file. | 
|  | // We can compute their offsets in the output file now. | 
|  | size_t Off = 0; | 
|  | for (GdbSymbol &Sym : Ret) { | 
|  | Sym.CuVectorOff = Off; | 
|  | Off += (Sym.CuVector.size() + 1) * 4; | 
|  | } | 
|  | for (GdbSymbol &Sym : Ret) { | 
|  | Sym.NameOff = Off; | 
|  | Off += Sym.Name.size() + 1; | 
|  | } | 
|  |  | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | // Returns a newly-created .gdb_index section. | 
|  | template <class ELFT> GdbIndexSection *GdbIndexSection::create() { | 
|  | std::vector<InputSection *> Sections = getDebugInfoSections(); | 
|  |  | 
|  | // .debug_gnu_pub{names,types} are useless in executables. | 
|  | // They are present in input object files solely for creating | 
|  | // a .gdb_index. So we can remove them from the output. | 
|  | for (InputSectionBase *S : InputSections) | 
|  | if (S->Name == ".debug_gnu_pubnames" || S->Name == ".debug_gnu_pubtypes") | 
|  | S->Live = false; | 
|  |  | 
|  | std::vector<GdbChunk> Chunks(Sections.size()); | 
|  | std::vector<std::vector<NameTypeEntry>> NameTypes(Sections.size()); | 
|  |  | 
|  | parallelForEachN(0, Sections.size(), [&](size_t I) { | 
|  | ObjFile<ELFT> *File = Sections[I]->getFile<ELFT>(); | 
|  | DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(File)); | 
|  |  | 
|  | Chunks[I].Sec = Sections[I]; | 
|  | Chunks[I].CompilationUnits = readCuList(Dwarf); | 
|  | Chunks[I].AddressAreas = readAddressAreas(Dwarf, Sections[I]); | 
|  | NameTypes[I] = readPubNamesAndTypes(Dwarf, I); | 
|  | }); | 
|  |  | 
|  | auto *Ret = make<GdbIndexSection>(); | 
|  | Ret->Chunks = std::move(Chunks); | 
|  | Ret->Symbols = createSymbols(NameTypes); | 
|  | Ret->initOutputSize(); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | void GdbIndexSection::writeTo(uint8_t *Buf) { | 
|  | // Write the header. | 
|  | auto *Hdr = reinterpret_cast<GdbIndexHeader *>(Buf); | 
|  | uint8_t *Start = Buf; | 
|  | Hdr->Version = 7; | 
|  | Buf += sizeof(*Hdr); | 
|  |  | 
|  | // Write the CU list. | 
|  | Hdr->CuListOff = Buf - Start; | 
|  | for (GdbChunk &Chunk : Chunks) { | 
|  | for (CuEntry &Cu : Chunk.CompilationUnits) { | 
|  | write64le(Buf, Chunk.Sec->OutSecOff + Cu.CuOffset); | 
|  | write64le(Buf + 8, Cu.CuLength); | 
|  | Buf += 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write the address area. | 
|  | Hdr->CuTypesOff = Buf - Start; | 
|  | Hdr->AddressAreaOff = Buf - Start; | 
|  | uint32_t CuOff = 0; | 
|  | for (GdbChunk &Chunk : Chunks) { | 
|  | for (AddressEntry &E : Chunk.AddressAreas) { | 
|  | uint64_t BaseAddr = E.Section->getVA(0); | 
|  | write64le(Buf, BaseAddr + E.LowAddress); | 
|  | write64le(Buf + 8, BaseAddr + E.HighAddress); | 
|  | write32le(Buf + 16, E.CuIndex + CuOff); | 
|  | Buf += 20; | 
|  | } | 
|  | CuOff += Chunk.CompilationUnits.size(); | 
|  | } | 
|  |  | 
|  | // Write the on-disk open-addressing hash table containing symbols. | 
|  | Hdr->SymtabOff = Buf - Start; | 
|  | size_t SymtabSize = computeSymtabSize(); | 
|  | uint32_t Mask = SymtabSize - 1; | 
|  |  | 
|  | for (GdbSymbol &Sym : Symbols) { | 
|  | uint32_t H = Sym.Name.hash(); | 
|  | uint32_t I = H & Mask; | 
|  | uint32_t Step = ((H * 17) & Mask) | 1; | 
|  |  | 
|  | while (read32le(Buf + I * 8)) | 
|  | I = (I + Step) & Mask; | 
|  |  | 
|  | write32le(Buf + I * 8, Sym.NameOff); | 
|  | write32le(Buf + I * 8 + 4, Sym.CuVectorOff); | 
|  | } | 
|  |  | 
|  | Buf += SymtabSize * 8; | 
|  |  | 
|  | // Write the string pool. | 
|  | Hdr->ConstantPoolOff = Buf - Start; | 
|  | for (GdbSymbol &Sym : Symbols) | 
|  | memcpy(Buf + Sym.NameOff, Sym.Name.data(), Sym.Name.size()); | 
|  |  | 
|  | // Write the CU vectors. | 
|  | for (GdbSymbol &Sym : Symbols) { | 
|  | write32le(Buf, Sym.CuVector.size()); | 
|  | Buf += 4; | 
|  | for (uint32_t Val : Sym.CuVector) { | 
|  | write32le(Buf, Val); | 
|  | Buf += 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GdbIndexSection::empty() const { return !Out::DebugInfo; } | 
|  |  | 
|  | EhFrameHeader::EhFrameHeader() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} | 
|  |  | 
|  | // .eh_frame_hdr contains a binary search table of pointers to FDEs. | 
|  | // Each entry of the search table consists of two values, | 
|  | // the starting PC from where FDEs covers, and the FDE's address. | 
|  | // It is sorted by PC. | 
|  | void EhFrameHeader::writeTo(uint8_t *Buf) { | 
|  | typedef EhFrameSection::FdeData FdeData; | 
|  |  | 
|  | std::vector<FdeData> Fdes = InX::EhFrame->getFdeData(); | 
|  |  | 
|  | Buf[0] = 1; | 
|  | Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; | 
|  | Buf[2] = DW_EH_PE_udata4; | 
|  | Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; | 
|  | write32(Buf + 4, InX::EhFrame->getParent()->Addr - this->getVA() - 4); | 
|  | write32(Buf + 8, Fdes.size()); | 
|  | Buf += 12; | 
|  |  | 
|  | for (FdeData &Fde : Fdes) { | 
|  | write32(Buf, Fde.PcRel); | 
|  | write32(Buf + 4, Fde.FdeVARel); | 
|  | Buf += 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t EhFrameHeader::getSize() const { | 
|  | // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. | 
|  | return 12 + InX::EhFrame->NumFdes * 8; | 
|  | } | 
|  |  | 
|  | bool EhFrameHeader::empty() const { return InX::EhFrame->empty(); } | 
|  |  | 
|  | template <class ELFT> | 
|  | VersionDefinitionSection<ELFT>::VersionDefinitionSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), | 
|  | ".gnu.version_d") {} | 
|  |  | 
|  | static StringRef getFileDefName() { | 
|  | if (!Config->SoName.empty()) | 
|  | return Config->SoName; | 
|  | return Config->OutputFile; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionDefinitionSection<ELFT>::finalizeContents() { | 
|  | FileDefNameOff = InX::DynStrTab->addString(getFileDefName()); | 
|  | for (VersionDefinition &V : Config->VersionDefinitions) | 
|  | V.NameOff = InX::DynStrTab->addString(V.Name); | 
|  |  | 
|  | getParent()->Link = InX::DynStrTab->getParent()->SectionIndex; | 
|  |  | 
|  | // sh_info should be set to the number of definitions. This fact is missed in | 
|  | // documentation, but confirmed by binutils community: | 
|  | // https://sourceware.org/ml/binutils/2014-11/msg00355.html | 
|  | getParent()->Info = getVerDefNum(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index, | 
|  | StringRef Name, size_t NameOff) { | 
|  | auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); | 
|  | Verdef->vd_version = 1; | 
|  | Verdef->vd_cnt = 1; | 
|  | Verdef->vd_aux = sizeof(Elf_Verdef); | 
|  | Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); | 
|  | Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); | 
|  | Verdef->vd_ndx = Index; | 
|  | Verdef->vd_hash = hashSysV(Name); | 
|  |  | 
|  | auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef)); | 
|  | Verdaux->vda_name = NameOff; | 
|  | Verdaux->vda_next = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | writeOne(Buf, 1, getFileDefName(), FileDefNameOff); | 
|  |  | 
|  | for (VersionDefinition &V : Config->VersionDefinitions) { | 
|  | Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); | 
|  | writeOne(Buf, V.Id, V.Name, V.NameOff); | 
|  | } | 
|  |  | 
|  | // Need to terminate the last version definition. | 
|  | Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); | 
|  | Verdef->vd_next = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t VersionDefinitionSection<ELFT>::getSize() const { | 
|  | return (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | VersionTableSection<ELFT>::VersionTableSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), | 
|  | ".gnu.version") { | 
|  | this->Entsize = sizeof(Elf_Versym); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionTableSection<ELFT>::finalizeContents() { | 
|  | // At the moment of june 2016 GNU docs does not mention that sh_link field | 
|  | // should be set, but Sun docs do. Also readelf relies on this field. | 
|  | getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t VersionTableSection<ELFT>::getSize() const { | 
|  | return sizeof(Elf_Versym) * (InX::DynSymTab->getSymbols().size() + 1); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1; | 
|  | for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) { | 
|  | OutVersym->vs_index = S.Sym->VersionId; | 
|  | ++OutVersym; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool VersionTableSection<ELFT>::empty() const { | 
|  | return !In<ELFT>::VerDef && In<ELFT>::VerNeed->empty(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | VersionNeedSection<ELFT>::VersionNeedSection() | 
|  | : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), | 
|  | ".gnu.version_r") { | 
|  | // Identifiers in verneed section start at 2 because 0 and 1 are reserved | 
|  | // for VER_NDX_LOCAL and VER_NDX_GLOBAL. | 
|  | // First identifiers are reserved by verdef section if it exist. | 
|  | NextIndex = getVerDefNum() + 1; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionNeedSection<ELFT>::addSymbol(Symbol *SS) { | 
|  | auto &File = cast<SharedFile<ELFT>>(*SS->File); | 
|  | if (SS->VerdefIndex == VER_NDX_GLOBAL) { | 
|  | SS->VersionId = VER_NDX_GLOBAL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we don't already know that we need an Elf_Verneed for this DSO, prepare | 
|  | // to create one by adding it to our needed list and creating a dynstr entry | 
|  | // for the soname. | 
|  | if (File.VerdefMap.empty()) | 
|  | Needed.push_back({&File, InX::DynStrTab->addString(File.SoName)}); | 
|  | const typename ELFT::Verdef *Ver = File.Verdefs[SS->VerdefIndex]; | 
|  | typename SharedFile<ELFT>::NeededVer &NV = File.VerdefMap[Ver]; | 
|  |  | 
|  | // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, | 
|  | // prepare to create one by allocating a version identifier and creating a | 
|  | // dynstr entry for the version name. | 
|  | if (NV.Index == 0) { | 
|  | NV.StrTab = InX::DynStrTab->addString(File.getStringTable().data() + | 
|  | Ver->getAux()->vda_name); | 
|  | NV.Index = NextIndex++; | 
|  | } | 
|  | SS->VersionId = NV.Index; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. | 
|  | auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf); | 
|  | auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size()); | 
|  |  | 
|  | for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) { | 
|  | // Create an Elf_Verneed for this DSO. | 
|  | Verneed->vn_version = 1; | 
|  | Verneed->vn_cnt = P.first->VerdefMap.size(); | 
|  | Verneed->vn_file = P.second; | 
|  | Verneed->vn_aux = | 
|  | reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed); | 
|  | Verneed->vn_next = sizeof(Elf_Verneed); | 
|  | ++Verneed; | 
|  |  | 
|  | // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over | 
|  | // VerdefMap, which will only contain references to needed version | 
|  | // definitions. Each Elf_Vernaux is based on the information contained in | 
|  | // the Elf_Verdef in the source DSO. This loop iterates over a std::map of | 
|  | // pointers, but is deterministic because the pointers refer to Elf_Verdef | 
|  | // data structures within a single input file. | 
|  | for (auto &NV : P.first->VerdefMap) { | 
|  | Vernaux->vna_hash = NV.first->vd_hash; | 
|  | Vernaux->vna_flags = 0; | 
|  | Vernaux->vna_other = NV.second.Index; | 
|  | Vernaux->vna_name = NV.second.StrTab; | 
|  | Vernaux->vna_next = sizeof(Elf_Vernaux); | 
|  | ++Vernaux; | 
|  | } | 
|  |  | 
|  | Vernaux[-1].vna_next = 0; | 
|  | } | 
|  | Verneed[-1].vn_next = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { | 
|  | getParent()->Link = InX::DynStrTab->getParent()->SectionIndex; | 
|  | getParent()->Info = Needed.size(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { | 
|  | unsigned Size = Needed.size() * sizeof(Elf_Verneed); | 
|  | for (const std::pair<SharedFile<ELFT> *, size_t> &P : Needed) | 
|  | Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool VersionNeedSection<ELFT>::empty() const { | 
|  | return getNeedNum() == 0; | 
|  | } | 
|  |  | 
|  | void MergeSyntheticSection::addSection(MergeInputSection *MS) { | 
|  | MS->Parent = this; | 
|  | Sections.push_back(MS); | 
|  | } | 
|  |  | 
|  | MergeTailSection::MergeTailSection(StringRef Name, uint32_t Type, | 
|  | uint64_t Flags, uint32_t Alignment) | 
|  | : MergeSyntheticSection(Name, Type, Flags, Alignment), | 
|  | Builder(StringTableBuilder::RAW, Alignment) {} | 
|  |  | 
|  | size_t MergeTailSection::getSize() const { return Builder.getSize(); } | 
|  |  | 
|  | void MergeTailSection::writeTo(uint8_t *Buf) { Builder.write(Buf); } | 
|  |  | 
|  | void MergeTailSection::finalizeContents() { | 
|  | // Add all string pieces to the string table builder to create section | 
|  | // contents. | 
|  | for (MergeInputSection *Sec : Sections) | 
|  | for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) | 
|  | if (Sec->Pieces[I].Live) | 
|  | Builder.add(Sec->getData(I)); | 
|  |  | 
|  | // Fix the string table content. After this, the contents will never change. | 
|  | Builder.finalize(); | 
|  |  | 
|  | // finalize() fixed tail-optimized strings, so we can now get | 
|  | // offsets of strings. Get an offset for each string and save it | 
|  | // to a corresponding StringPiece for easy access. | 
|  | for (MergeInputSection *Sec : Sections) | 
|  | for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) | 
|  | if (Sec->Pieces[I].Live) | 
|  | Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I)); | 
|  | } | 
|  |  | 
|  | void MergeNoTailSection::writeTo(uint8_t *Buf) { | 
|  | for (size_t I = 0; I < NumShards; ++I) | 
|  | Shards[I].write(Buf + ShardOffsets[I]); | 
|  | } | 
|  |  | 
|  | // This function is very hot (i.e. it can take several seconds to finish) | 
|  | // because sometimes the number of inputs is in an order of magnitude of | 
|  | // millions. So, we use multi-threading. | 
|  | // | 
|  | // For any strings S and T, we know S is not mergeable with T if S's hash | 
|  | // value is different from T's. If that's the case, we can safely put S and | 
|  | // T into different string builders without worrying about merge misses. | 
|  | // We do it in parallel. | 
|  | void MergeNoTailSection::finalizeContents() { | 
|  | // Initializes string table builders. | 
|  | for (size_t I = 0; I < NumShards; ++I) | 
|  | Shards.emplace_back(StringTableBuilder::RAW, Alignment); | 
|  |  | 
|  | // Concurrency level. Must be a power of 2 to avoid expensive modulo | 
|  | // operations in the following tight loop. | 
|  | size_t Concurrency = 1; | 
|  | if (ThreadsEnabled) | 
|  | Concurrency = | 
|  | std::min<size_t>(PowerOf2Floor(hardware_concurrency()), NumShards); | 
|  |  | 
|  | // Add section pieces to the builders. | 
|  | parallelForEachN(0, Concurrency, [&](size_t ThreadId) { | 
|  | for (MergeInputSection *Sec : Sections) { | 
|  | for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) { | 
|  | size_t ShardId = getShardId(Sec->Pieces[I].Hash); | 
|  | if ((ShardId & (Concurrency - 1)) == ThreadId && Sec->Pieces[I].Live) | 
|  | Sec->Pieces[I].OutputOff = Shards[ShardId].add(Sec->getData(I)); | 
|  | } | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Compute an in-section offset for each shard. | 
|  | size_t Off = 0; | 
|  | for (size_t I = 0; I < NumShards; ++I) { | 
|  | Shards[I].finalizeInOrder(); | 
|  | if (Shards[I].getSize() > 0) | 
|  | Off = alignTo(Off, Alignment); | 
|  | ShardOffsets[I] = Off; | 
|  | Off += Shards[I].getSize(); | 
|  | } | 
|  | Size = Off; | 
|  |  | 
|  | // So far, section pieces have offsets from beginning of shards, but | 
|  | // we want offsets from beginning of the whole section. Fix them. | 
|  | parallelForEach(Sections, [&](MergeInputSection *Sec) { | 
|  | for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) | 
|  | if (Sec->Pieces[I].Live) | 
|  | Sec->Pieces[I].OutputOff += | 
|  | ShardOffsets[getShardId(Sec->Pieces[I].Hash)]; | 
|  | }); | 
|  | } | 
|  |  | 
|  | static MergeSyntheticSection *createMergeSynthetic(StringRef Name, | 
|  | uint32_t Type, | 
|  | uint64_t Flags, | 
|  | uint32_t Alignment) { | 
|  | bool ShouldTailMerge = (Flags & SHF_STRINGS) && Config->Optimize >= 2; | 
|  | if (ShouldTailMerge) | 
|  | return make<MergeTailSection>(Name, Type, Flags, Alignment); | 
|  | return make<MergeNoTailSection>(Name, Type, Flags, Alignment); | 
|  | } | 
|  |  | 
|  | // Debug sections may be compressed by zlib. Decompress if exists. | 
|  | void elf::decompressSections() { | 
|  | parallelForEach(InputSections, | 
|  | [](InputSectionBase *Sec) { Sec->maybeDecompress(); }); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void elf::splitSections() { | 
|  | // splitIntoPieces needs to be called on each MergeInputSection | 
|  | // before calling finalizeContents(). | 
|  | parallelForEach(InputSections, [](InputSectionBase *Sec) { | 
|  | if (auto *S = dyn_cast<MergeInputSection>(Sec)) | 
|  | S->splitIntoPieces(); | 
|  | else if (auto *Eh = dyn_cast<EhInputSection>(Sec)) | 
|  | Eh->split<ELFT>(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // This function scans over the inputsections to create mergeable | 
|  | // synthetic sections. | 
|  | // | 
|  | // It removes MergeInputSections from the input section array and adds | 
|  | // new synthetic sections at the location of the first input section | 
|  | // that it replaces. It then finalizes each synthetic section in order | 
|  | // to compute an output offset for each piece of each input section. | 
|  | void elf::mergeSections() { | 
|  | std::vector<MergeSyntheticSection *> MergeSections; | 
|  | for (InputSectionBase *&S : InputSections) { | 
|  | MergeInputSection *MS = dyn_cast<MergeInputSection>(S); | 
|  | if (!MS) | 
|  | continue; | 
|  |  | 
|  | // We do not want to handle sections that are not alive, so just remove | 
|  | // them instead of trying to merge. | 
|  | if (!MS->Live) { | 
|  | S = nullptr; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | StringRef OutsecName = getOutputSectionName(MS); | 
|  | uint32_t Alignment = std::max<uint32_t>(MS->Alignment, MS->Entsize); | 
|  |  | 
|  | auto I = llvm::find_if(MergeSections, [=](MergeSyntheticSection *Sec) { | 
|  | // While we could create a single synthetic section for two different | 
|  | // values of Entsize, it is better to take Entsize into consideration. | 
|  | // | 
|  | // With a single synthetic section no two pieces with different Entsize | 
|  | // could be equal, so we may as well have two sections. | 
|  | // | 
|  | // Using Entsize in here also allows us to propagate it to the synthetic | 
|  | // section. | 
|  | return Sec->Name == OutsecName && Sec->Flags == MS->Flags && | 
|  | Sec->Entsize == MS->Entsize && Sec->Alignment == Alignment; | 
|  | }); | 
|  | if (I == MergeSections.end()) { | 
|  | MergeSyntheticSection *Syn = | 
|  | createMergeSynthetic(OutsecName, MS->Type, MS->Flags, Alignment); | 
|  | MergeSections.push_back(Syn); | 
|  | I = std::prev(MergeSections.end()); | 
|  | S = Syn; | 
|  | Syn->Entsize = MS->Entsize; | 
|  | } else { | 
|  | S = nullptr; | 
|  | } | 
|  | (*I)->addSection(MS); | 
|  | } | 
|  | for (auto *MS : MergeSections) | 
|  | MS->finalizeContents(); | 
|  |  | 
|  | std::vector<InputSectionBase *> &V = InputSections; | 
|  | V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); | 
|  | } | 
|  |  | 
|  | MipsRldMapSection::MipsRldMapSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Config->Wordsize, | 
|  | ".rld_map") {} | 
|  |  | 
|  | ARMExidxSentinelSection::ARMExidxSentinelSection() | 
|  | : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, | 
|  | Config->Wordsize, ".ARM.exidx") {} | 
|  |  | 
|  | // Write a terminating sentinel entry to the end of the .ARM.exidx table. | 
|  | // This section will have been sorted last in the .ARM.exidx table. | 
|  | // This table entry will have the form: | 
|  | // | PREL31 upper bound of code that has exception tables | EXIDX_CANTUNWIND | | 
|  | // The sentinel must have the PREL31 value of an address higher than any | 
|  | // address described by any other table entry. | 
|  | void ARMExidxSentinelSection::writeTo(uint8_t *Buf) { | 
|  | assert(Highest); | 
|  | uint64_t S = Highest->getVA(Highest->getSize()); | 
|  | uint64_t P = getVA(); | 
|  | Target->relocateOne(Buf, R_ARM_PREL31, S - P); | 
|  | write32le(Buf + 4, 1); | 
|  | } | 
|  |  | 
|  | // The sentinel has to be removed if there are no other .ARM.exidx entries. | 
|  | bool ARMExidxSentinelSection::empty() const { | 
|  | for (InputSection *IS : getInputSections(getParent())) | 
|  | if (!isa<ARMExidxSentinelSection>(IS)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMExidxSentinelSection::classof(const SectionBase *D) { | 
|  | return D->kind() == InputSectionBase::Synthetic && D->Type == SHT_ARM_EXIDX; | 
|  | } | 
|  |  | 
|  | ThunkSection::ThunkSection(OutputSection *OS, uint64_t Off) | 
|  | : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, | 
|  | Config->Wordsize, ".text.thunk") { | 
|  | this->Parent = OS; | 
|  | this->OutSecOff = Off; | 
|  | } | 
|  |  | 
|  | void ThunkSection::addThunk(Thunk *T) { | 
|  | Thunks.push_back(T); | 
|  | T->addSymbols(*this); | 
|  | } | 
|  |  | 
|  | void ThunkSection::writeTo(uint8_t *Buf) { | 
|  | for (Thunk *T : Thunks) | 
|  | T->writeTo(Buf + T->Offset); | 
|  | } | 
|  |  | 
|  | InputSection *ThunkSection::getTargetInputSection() const { | 
|  | if (Thunks.empty()) | 
|  | return nullptr; | 
|  | const Thunk *T = Thunks.front(); | 
|  | return T->getTargetInputSection(); | 
|  | } | 
|  |  | 
|  | bool ThunkSection::assignOffsets() { | 
|  | uint64_t Off = 0; | 
|  | for (Thunk *T : Thunks) { | 
|  | Off = alignTo(Off, T->Alignment); | 
|  | T->setOffset(Off); | 
|  | uint32_t Size = T->size(); | 
|  | T->getThunkTargetSym()->Size = Size; | 
|  | Off += Size; | 
|  | } | 
|  | bool Changed = Off != Size; | 
|  | Size = Off; | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | InputSection *InX::ARMAttributes; | 
|  | BssSection *InX::Bss; | 
|  | BssSection *InX::BssRelRo; | 
|  | BuildIdSection *InX::BuildId; | 
|  | EhFrameHeader *InX::EhFrameHdr; | 
|  | EhFrameSection *InX::EhFrame; | 
|  | SyntheticSection *InX::Dynamic; | 
|  | StringTableSection *InX::DynStrTab; | 
|  | SymbolTableBaseSection *InX::DynSymTab; | 
|  | InputSection *InX::Interp; | 
|  | GdbIndexSection *InX::GdbIndex; | 
|  | GotSection *InX::Got; | 
|  | GotPltSection *InX::GotPlt; | 
|  | GnuHashTableSection *InX::GnuHashTab; | 
|  | HashTableSection *InX::HashTab; | 
|  | IgotPltSection *InX::IgotPlt; | 
|  | MipsGotSection *InX::MipsGot; | 
|  | MipsRldMapSection *InX::MipsRldMap; | 
|  | PltSection *InX::Plt; | 
|  | PltSection *InX::Iplt; | 
|  | RelocationBaseSection *InX::RelaDyn; | 
|  | RelrBaseSection *InX::RelrDyn; | 
|  | RelocationBaseSection *InX::RelaPlt; | 
|  | RelocationBaseSection *InX::RelaIplt; | 
|  | StringTableSection *InX::ShStrTab; | 
|  | StringTableSection *InX::StrTab; | 
|  | SymbolTableBaseSection *InX::SymTab; | 
|  | SymtabShndxSection *InX::SymTabShndx; | 
|  |  | 
|  | template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); | 
|  | template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); | 
|  | template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); | 
|  | template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); | 
|  |  | 
|  | template void elf::splitSections<ELF32LE>(); | 
|  | template void elf::splitSections<ELF32BE>(); | 
|  | template void elf::splitSections<ELF64LE>(); | 
|  | template void elf::splitSections<ELF64BE>(); | 
|  |  | 
|  | template void EhFrameSection::addSection<ELF32LE>(InputSectionBase *); | 
|  | template void EhFrameSection::addSection<ELF32BE>(InputSectionBase *); | 
|  | template void EhFrameSection::addSection<ELF64LE>(InputSectionBase *); | 
|  | template void EhFrameSection::addSection<ELF64BE>(InputSectionBase *); | 
|  |  | 
|  | template void PltSection::addEntry<ELF32LE>(Symbol &Sym); | 
|  | template void PltSection::addEntry<ELF32BE>(Symbol &Sym); | 
|  | template void PltSection::addEntry<ELF64LE>(Symbol &Sym); | 
|  | template void PltSection::addEntry<ELF64BE>(Symbol &Sym); | 
|  |  | 
|  | template void MipsGotSection::build<ELF32LE>(); | 
|  | template void MipsGotSection::build<ELF32BE>(); | 
|  | template void MipsGotSection::build<ELF64LE>(); | 
|  | template void MipsGotSection::build<ELF64BE>(); | 
|  |  | 
|  | template class elf::MipsAbiFlagsSection<ELF32LE>; | 
|  | template class elf::MipsAbiFlagsSection<ELF32BE>; | 
|  | template class elf::MipsAbiFlagsSection<ELF64LE>; | 
|  | template class elf::MipsAbiFlagsSection<ELF64BE>; | 
|  |  | 
|  | template class elf::MipsOptionsSection<ELF32LE>; | 
|  | template class elf::MipsOptionsSection<ELF32BE>; | 
|  | template class elf::MipsOptionsSection<ELF64LE>; | 
|  | template class elf::MipsOptionsSection<ELF64BE>; | 
|  |  | 
|  | template class elf::MipsReginfoSection<ELF32LE>; | 
|  | template class elf::MipsReginfoSection<ELF32BE>; | 
|  | template class elf::MipsReginfoSection<ELF64LE>; | 
|  | template class elf::MipsReginfoSection<ELF64BE>; | 
|  |  | 
|  | template class elf::DynamicSection<ELF32LE>; | 
|  | template class elf::DynamicSection<ELF32BE>; | 
|  | template class elf::DynamicSection<ELF64LE>; | 
|  | template class elf::DynamicSection<ELF64BE>; | 
|  |  | 
|  | template class elf::RelocationSection<ELF32LE>; | 
|  | template class elf::RelocationSection<ELF32BE>; | 
|  | template class elf::RelocationSection<ELF64LE>; | 
|  | template class elf::RelocationSection<ELF64BE>; | 
|  |  | 
|  | template class elf::AndroidPackedRelocationSection<ELF32LE>; | 
|  | template class elf::AndroidPackedRelocationSection<ELF32BE>; | 
|  | template class elf::AndroidPackedRelocationSection<ELF64LE>; | 
|  | template class elf::AndroidPackedRelocationSection<ELF64BE>; | 
|  |  | 
|  | template class elf::RelrSection<ELF32LE>; | 
|  | template class elf::RelrSection<ELF32BE>; | 
|  | template class elf::RelrSection<ELF64LE>; | 
|  | template class elf::RelrSection<ELF64BE>; | 
|  |  | 
|  | template class elf::SymbolTableSection<ELF32LE>; | 
|  | template class elf::SymbolTableSection<ELF32BE>; | 
|  | template class elf::SymbolTableSection<ELF64LE>; | 
|  | template class elf::SymbolTableSection<ELF64BE>; | 
|  |  | 
|  | template class elf::VersionTableSection<ELF32LE>; | 
|  | template class elf::VersionTableSection<ELF32BE>; | 
|  | template class elf::VersionTableSection<ELF64LE>; | 
|  | template class elf::VersionTableSection<ELF64BE>; | 
|  |  | 
|  | template class elf::VersionNeedSection<ELF32LE>; | 
|  | template class elf::VersionNeedSection<ELF32BE>; | 
|  | template class elf::VersionNeedSection<ELF64LE>; | 
|  | template class elf::VersionNeedSection<ELF64BE>; | 
|  |  | 
|  | template class elf::VersionDefinitionSection<ELF32LE>; | 
|  | template class elf::VersionDefinitionSection<ELF32BE>; | 
|  | template class elf::VersionDefinitionSection<ELF64LE>; | 
|  | template class elf::VersionDefinitionSection<ELF64BE>; |