| //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the BasicBlock class for the IR library. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "SymbolTableListTraitsImpl.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/IR/CFG.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/LLVMContext.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include <algorithm> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | ValueSymbolTable *BasicBlock::getValueSymbolTable() { | 
 |   if (Function *F = getParent()) | 
 |     return F->getValueSymbolTable(); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | LLVMContext &BasicBlock::getContext() const { | 
 |   return getType()->getContext(); | 
 | } | 
 |  | 
 | // Explicit instantiation of SymbolTableListTraits since some of the methods | 
 | // are not in the public header file... | 
 | template class llvm::SymbolTableListTraits<Instruction>; | 
 |  | 
 | BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, | 
 |                        BasicBlock *InsertBefore) | 
 |   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { | 
 |  | 
 |   if (NewParent) | 
 |     insertInto(NewParent, InsertBefore); | 
 |   else | 
 |     assert(!InsertBefore && | 
 |            "Cannot insert block before another block with no function!"); | 
 |  | 
 |   setName(Name); | 
 | } | 
 |  | 
 | void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { | 
 |   assert(NewParent && "Expected a parent"); | 
 |   assert(!Parent && "Already has a parent"); | 
 |  | 
 |   if (InsertBefore) | 
 |     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this); | 
 |   else | 
 |     NewParent->getBasicBlockList().push_back(this); | 
 | } | 
 |  | 
 | BasicBlock::~BasicBlock() { | 
 |   // If the address of the block is taken and it is being deleted (e.g. because | 
 |   // it is dead), this means that there is either a dangling constant expr | 
 |   // hanging off the block, or an undefined use of the block (source code | 
 |   // expecting the address of a label to keep the block alive even though there | 
 |   // is no indirect branch).  Handle these cases by zapping the BlockAddress | 
 |   // nodes.  There are no other possible uses at this point. | 
 |   if (hasAddressTaken()) { | 
 |     assert(!use_empty() && "There should be at least one blockaddress!"); | 
 |     Constant *Replacement = | 
 |       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); | 
 |     while (!use_empty()) { | 
 |       BlockAddress *BA = cast<BlockAddress>(user_back()); | 
 |       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, | 
 |                                                        BA->getType())); | 
 |       BA->destroyConstant(); | 
 |     } | 
 |   } | 
 |  | 
 |   assert(getParent() == nullptr && "BasicBlock still linked into the program!"); | 
 |   dropAllReferences(); | 
 |   InstList.clear(); | 
 | } | 
 |  | 
 | void BasicBlock::setParent(Function *parent) { | 
 |   // Set Parent=parent, updating instruction symtab entries as appropriate. | 
 |   InstList.setSymTabObject(&Parent, parent); | 
 | } | 
 |  | 
 | iterator_range<filter_iterator<BasicBlock::const_iterator, | 
 |                                std::function<bool(const Instruction &)>>> | 
 | BasicBlock::instructionsWithoutDebug() const { | 
 |   std::function<bool(const Instruction &)> Fn = [](const Instruction &I) { | 
 |     return !isa<DbgInfoIntrinsic>(I); | 
 |   }; | 
 |   return make_filter_range(*this, Fn); | 
 | } | 
 |  | 
 | iterator_range<filter_iterator<BasicBlock::iterator, | 
 |                                std::function<bool(Instruction &)>>> | 
 | BasicBlock::instructionsWithoutDebug() { | 
 |   std::function<bool(Instruction &)> Fn = [](Instruction &I) { | 
 |     return !isa<DbgInfoIntrinsic>(I); | 
 |   }; | 
 |   return make_filter_range(*this, Fn); | 
 | } | 
 |  | 
 | void BasicBlock::removeFromParent() { | 
 |   getParent()->getBasicBlockList().remove(getIterator()); | 
 | } | 
 |  | 
 | iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { | 
 |   return getParent()->getBasicBlockList().erase(getIterator()); | 
 | } | 
 |  | 
 | /// Unlink this basic block from its current function and | 
 | /// insert it into the function that MovePos lives in, right before MovePos. | 
 | void BasicBlock::moveBefore(BasicBlock *MovePos) { | 
 |   MovePos->getParent()->getBasicBlockList().splice( | 
 |       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); | 
 | } | 
 |  | 
 | /// Unlink this basic block from its current function and | 
 | /// insert it into the function that MovePos lives in, right after MovePos. | 
 | void BasicBlock::moveAfter(BasicBlock *MovePos) { | 
 |   MovePos->getParent()->getBasicBlockList().splice( | 
 |       ++MovePos->getIterator(), getParent()->getBasicBlockList(), | 
 |       getIterator()); | 
 | } | 
 |  | 
 | const Module *BasicBlock::getModule() const { | 
 |   return getParent()->getParent(); | 
 | } | 
 |  | 
 | const TerminatorInst *BasicBlock::getTerminator() const { | 
 |   if (InstList.empty()) return nullptr; | 
 |   return dyn_cast<TerminatorInst>(&InstList.back()); | 
 | } | 
 |  | 
 | const CallInst *BasicBlock::getTerminatingMustTailCall() const { | 
 |   if (InstList.empty()) | 
 |     return nullptr; | 
 |   const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); | 
 |   if (!RI || RI == &InstList.front()) | 
 |     return nullptr; | 
 |  | 
 |   const Instruction *Prev = RI->getPrevNode(); | 
 |   if (!Prev) | 
 |     return nullptr; | 
 |  | 
 |   if (Value *RV = RI->getReturnValue()) { | 
 |     if (RV != Prev) | 
 |       return nullptr; | 
 |  | 
 |     // Look through the optional bitcast. | 
 |     if (auto *BI = dyn_cast<BitCastInst>(Prev)) { | 
 |       RV = BI->getOperand(0); | 
 |       Prev = BI->getPrevNode(); | 
 |       if (!Prev || RV != Prev) | 
 |         return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   if (auto *CI = dyn_cast<CallInst>(Prev)) { | 
 |     if (CI->isMustTailCall()) | 
 |       return CI; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const { | 
 |   if (InstList.empty()) | 
 |     return nullptr; | 
 |   auto *RI = dyn_cast<ReturnInst>(&InstList.back()); | 
 |   if (!RI || RI == &InstList.front()) | 
 |     return nullptr; | 
 |  | 
 |   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode())) | 
 |     if (Function *F = CI->getCalledFunction()) | 
 |       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) | 
 |         return CI; | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | const Instruction* BasicBlock::getFirstNonPHI() const { | 
 |   for (const Instruction &I : *this) | 
 |     if (!isa<PHINode>(I)) | 
 |       return &I; | 
 |   return nullptr; | 
 | } | 
 |  | 
 | const Instruction* BasicBlock::getFirstNonPHIOrDbg() const { | 
 |   for (const Instruction &I : *this) | 
 |     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I)) | 
 |       return &I; | 
 |   return nullptr; | 
 | } | 
 |  | 
 | const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const { | 
 |   for (const Instruction &I : *this) { | 
 |     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) | 
 |       continue; | 
 |  | 
 |     if (auto *II = dyn_cast<IntrinsicInst>(&I)) | 
 |       if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
 |           II->getIntrinsicID() == Intrinsic::lifetime_end) | 
 |         continue; | 
 |  | 
 |     return &I; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const { | 
 |   const Instruction *FirstNonPHI = getFirstNonPHI(); | 
 |   if (!FirstNonPHI) | 
 |     return end(); | 
 |  | 
 |   const_iterator InsertPt = FirstNonPHI->getIterator(); | 
 |   if (InsertPt->isEHPad()) ++InsertPt; | 
 |   return InsertPt; | 
 | } | 
 |  | 
 | void BasicBlock::dropAllReferences() { | 
 |   for (Instruction &I : *this) | 
 |     I.dropAllReferences(); | 
 | } | 
 |  | 
 | /// If this basic block has a single predecessor block, | 
 | /// return the block, otherwise return a null pointer. | 
 | const BasicBlock *BasicBlock::getSinglePredecessor() const { | 
 |   const_pred_iterator PI = pred_begin(this), E = pred_end(this); | 
 |   if (PI == E) return nullptr;         // No preds. | 
 |   const BasicBlock *ThePred = *PI; | 
 |   ++PI; | 
 |   return (PI == E) ? ThePred : nullptr /*multiple preds*/; | 
 | } | 
 |  | 
 | /// If this basic block has a unique predecessor block, | 
 | /// return the block, otherwise return a null pointer. | 
 | /// Note that unique predecessor doesn't mean single edge, there can be | 
 | /// multiple edges from the unique predecessor to this block (for example | 
 | /// a switch statement with multiple cases having the same destination). | 
 | const BasicBlock *BasicBlock::getUniquePredecessor() const { | 
 |   const_pred_iterator PI = pred_begin(this), E = pred_end(this); | 
 |   if (PI == E) return nullptr; // No preds. | 
 |   const BasicBlock *PredBB = *PI; | 
 |   ++PI; | 
 |   for (;PI != E; ++PI) { | 
 |     if (*PI != PredBB) | 
 |       return nullptr; | 
 |     // The same predecessor appears multiple times in the predecessor list. | 
 |     // This is OK. | 
 |   } | 
 |   return PredBB; | 
 | } | 
 |  | 
 | const BasicBlock *BasicBlock::getSingleSuccessor() const { | 
 |   succ_const_iterator SI = succ_begin(this), E = succ_end(this); | 
 |   if (SI == E) return nullptr; // no successors | 
 |   const BasicBlock *TheSucc = *SI; | 
 |   ++SI; | 
 |   return (SI == E) ? TheSucc : nullptr /* multiple successors */; | 
 | } | 
 |  | 
 | const BasicBlock *BasicBlock::getUniqueSuccessor() const { | 
 |   succ_const_iterator SI = succ_begin(this), E = succ_end(this); | 
 |   if (SI == E) return nullptr; // No successors | 
 |   const BasicBlock *SuccBB = *SI; | 
 |   ++SI; | 
 |   for (;SI != E; ++SI) { | 
 |     if (*SI != SuccBB) | 
 |       return nullptr; | 
 |     // The same successor appears multiple times in the successor list. | 
 |     // This is OK. | 
 |   } | 
 |   return SuccBB; | 
 | } | 
 |  | 
 | iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() { | 
 |   PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin()); | 
 |   return make_range<phi_iterator>(P, nullptr); | 
 | } | 
 |  | 
 | /// This method is used to notify a BasicBlock that the | 
 | /// specified Predecessor of the block is no longer able to reach it.  This is | 
 | /// actually not used to update the Predecessor list, but is actually used to | 
 | /// update the PHI nodes that reside in the block.  Note that this should be | 
 | /// called while the predecessor still refers to this block. | 
 | /// | 
 | void BasicBlock::removePredecessor(BasicBlock *Pred, | 
 |                                    bool DontDeleteUselessPHIs) { | 
 |   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. | 
 |           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && | 
 |          "removePredecessor: BB is not a predecessor!"); | 
 |  | 
 |   if (InstList.empty()) return; | 
 |   PHINode *APN = dyn_cast<PHINode>(&front()); | 
 |   if (!APN) return;   // Quick exit. | 
 |  | 
 |   // If there are exactly two predecessors, then we want to nuke the PHI nodes | 
 |   // altogether.  However, we cannot do this, if this in this case: | 
 |   // | 
 |   //  Loop: | 
 |   //    %x = phi [X, Loop] | 
 |   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1 | 
 |   //    br Loop                 ;; %x2 does not dominate all uses | 
 |   // | 
 |   // This is because the PHI node input is actually taken from the predecessor | 
 |   // basic block.  The only case this can happen is with a self loop, so we | 
 |   // check for this case explicitly now. | 
 |   // | 
 |   unsigned max_idx = APN->getNumIncomingValues(); | 
 |   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); | 
 |   if (max_idx == 2) { | 
 |     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); | 
 |  | 
 |     // Disable PHI elimination! | 
 |     if (this == Other) max_idx = 3; | 
 |   } | 
 |  | 
 |   // <= Two predecessors BEFORE I remove one? | 
 |   if (max_idx <= 2 && !DontDeleteUselessPHIs) { | 
 |     // Yup, loop through and nuke the PHI nodes | 
 |     while (PHINode *PN = dyn_cast<PHINode>(&front())) { | 
 |       // Remove the predecessor first. | 
 |       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); | 
 |  | 
 |       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value | 
 |       if (max_idx == 2) { | 
 |         if (PN->getIncomingValue(0) != PN) | 
 |           PN->replaceAllUsesWith(PN->getIncomingValue(0)); | 
 |         else | 
 |           // We are left with an infinite loop with no entries: kill the PHI. | 
 |           PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | 
 |         getInstList().pop_front();    // Remove the PHI node | 
 |       } | 
 |  | 
 |       // If the PHI node already only had one entry, it got deleted by | 
 |       // removeIncomingValue. | 
 |     } | 
 |   } else { | 
 |     // Okay, now we know that we need to remove predecessor #pred_idx from all | 
 |     // PHI nodes.  Iterate over each PHI node fixing them up | 
 |     PHINode *PN; | 
 |     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { | 
 |       ++II; | 
 |       PN->removeIncomingValue(Pred, false); | 
 |       // If all incoming values to the Phi are the same, we can replace the Phi | 
 |       // with that value. | 
 |       Value* PNV = nullptr; | 
 |       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) | 
 |         if (PNV != PN) { | 
 |           PN->replaceAllUsesWith(PNV); | 
 |           PN->eraseFromParent(); | 
 |         } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool BasicBlock::canSplitPredecessors() const { | 
 |   const Instruction *FirstNonPHI = getFirstNonPHI(); | 
 |   if (isa<LandingPadInst>(FirstNonPHI)) | 
 |     return true; | 
 |   // This is perhaps a little conservative because constructs like | 
 |   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors | 
 |   // cannot handle such things just yet. | 
 |   if (FirstNonPHI->isEHPad()) | 
 |     return false; | 
 |   return true; | 
 | } | 
 |  | 
 | bool BasicBlock::isLegalToHoistInto() const { | 
 |   auto *Term = getTerminator(); | 
 |   // No terminator means the block is under construction. | 
 |   if (!Term) | 
 |     return true; | 
 |  | 
 |   // If the block has no successors, there can be no instructions to hoist. | 
 |   assert(Term->getNumSuccessors() > 0); | 
 |  | 
 |   // Instructions should not be hoisted across exception handling boundaries. | 
 |   return !Term->isExceptional(); | 
 | } | 
 |  | 
 | /// This splits a basic block into two at the specified | 
 | /// instruction.  Note that all instructions BEFORE the specified iterator stay | 
 | /// as part of the original basic block, an unconditional branch is added to | 
 | /// the new BB, and the rest of the instructions in the BB are moved to the new | 
 | /// BB, including the old terminator.  This invalidates the iterator. | 
 | /// | 
 | /// Note that this only works on well formed basic blocks (must have a | 
 | /// terminator), and 'I' must not be the end of instruction list (which would | 
 | /// cause a degenerate basic block to be formed, having a terminator inside of | 
 | /// the basic block). | 
 | /// | 
 | BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { | 
 |   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); | 
 |   assert(I != InstList.end() && | 
 |          "Trying to get me to create degenerate basic block!"); | 
 |  | 
 |   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), | 
 |                                        this->getNextNode()); | 
 |  | 
 |   // Save DebugLoc of split point before invalidating iterator. | 
 |   DebugLoc Loc = I->getDebugLoc(); | 
 |   // Move all of the specified instructions from the original basic block into | 
 |   // the new basic block. | 
 |   New->getInstList().splice(New->end(), this->getInstList(), I, end()); | 
 |  | 
 |   // Add a branch instruction to the newly formed basic block. | 
 |   BranchInst *BI = BranchInst::Create(New, this); | 
 |   BI->setDebugLoc(Loc); | 
 |  | 
 |   // Now we must loop through all of the successors of the New block (which | 
 |   // _were_ the successors of the 'this' block), and update any PHI nodes in | 
 |   // successors.  If there were PHI nodes in the successors, then they need to | 
 |   // know that incoming branches will be from New, not from Old. | 
 |   // | 
 |   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { | 
 |     // Loop over any phi nodes in the basic block, updating the BB field of | 
 |     // incoming values... | 
 |     BasicBlock *Successor = *I; | 
 |     for (auto &PN : Successor->phis()) { | 
 |       int Idx = PN.getBasicBlockIndex(this); | 
 |       while (Idx != -1) { | 
 |         PN.setIncomingBlock((unsigned)Idx, New); | 
 |         Idx = PN.getBasicBlockIndex(this); | 
 |       } | 
 |     } | 
 |   } | 
 |   return New; | 
 | } | 
 |  | 
 | void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { | 
 |   TerminatorInst *TI = getTerminator(); | 
 |   if (!TI) | 
 |     // Cope with being called on a BasicBlock that doesn't have a terminator | 
 |     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. | 
 |     return; | 
 |   for (BasicBlock *Succ : TI->successors()) { | 
 |     // N.B. Succ might not be a complete BasicBlock, so don't assume | 
 |     // that it ends with a non-phi instruction. | 
 |     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { | 
 |       PHINode *PN = dyn_cast<PHINode>(II); | 
 |       if (!PN) | 
 |         break; | 
 |       int i; | 
 |       while ((i = PN->getBasicBlockIndex(this)) >= 0) | 
 |         PN->setIncomingBlock(i, New); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// Return true if this basic block is a landing pad. I.e., it's | 
 | /// the destination of the 'unwind' edge of an invoke instruction. | 
 | bool BasicBlock::isLandingPad() const { | 
 |   return isa<LandingPadInst>(getFirstNonPHI()); | 
 | } | 
 |  | 
 | /// Return the landingpad instruction associated with the landing pad. | 
 | const LandingPadInst *BasicBlock::getLandingPadInst() const { | 
 |   return dyn_cast<LandingPadInst>(getFirstNonPHI()); | 
 | } | 
 |  | 
 | Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const { | 
 |   const TerminatorInst *TI = getTerminator(); | 
 |   if (MDNode *MDIrrLoopHeader = | 
 |       TI->getMetadata(LLVMContext::MD_irr_loop)) { | 
 |     MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0)); | 
 |     if (MDName->getString().equals("loop_header_weight")) { | 
 |       auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1)); | 
 |       return Optional<uint64_t>(CI->getValue().getZExtValue()); | 
 |     } | 
 |   } | 
 |   return Optional<uint64_t>(); | 
 | } | 
 |  | 
 | BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) { | 
 |   while (isa<DbgInfoIntrinsic>(It)) | 
 |     ++It; | 
 |   return It; | 
 | } |