| /* Copyright (c) 2007-2008 CSIRO |
| Copyright (c) 2007-2009 Xiph.Org Foundation |
| Copyright (c) 2007-2016 Jean-Marc Valin */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include <xmmintrin.h> |
| #include <emmintrin.h> |
| #include "celt_lpc.h" |
| #include "stack_alloc.h" |
| #include "mathops.h" |
| #include "vq.h" |
| #include "x86cpu.h" |
| |
| |
| #ifndef FIXED_POINT |
| |
| opus_val16 op_pvq_search_sse2(celt_norm *_X, int *iy, int K, int N, int arch) |
| { |
| int i, j; |
| int pulsesLeft; |
| float xy, yy; |
| VARDECL(celt_norm, y); |
| VARDECL(celt_norm, X); |
| VARDECL(float, signy); |
| __m128 signmask; |
| __m128 sums; |
| __m128i fours; |
| SAVE_STACK; |
| |
| (void)arch; |
| /* All bits set to zero, except for the sign bit. */ |
| signmask = _mm_set_ps1(-0.f); |
| fours = _mm_set_epi32(4, 4, 4, 4); |
| ALLOC(y, N+3, celt_norm); |
| ALLOC(X, N+3, celt_norm); |
| ALLOC(signy, N+3, float); |
| |
| OPUS_COPY(X, _X, N); |
| X[N] = X[N+1] = X[N+2] = 0; |
| sums = _mm_setzero_ps(); |
| for (j=0;j<N;j+=4) |
| { |
| __m128 x4, s4; |
| x4 = _mm_loadu_ps(&X[j]); |
| s4 = _mm_cmplt_ps(x4, _mm_setzero_ps()); |
| /* Get rid of the sign */ |
| x4 = _mm_andnot_ps(signmask, x4); |
| sums = _mm_add_ps(sums, x4); |
| /* Clear y and iy in case we don't do the projection. */ |
| _mm_storeu_ps(&y[j], _mm_setzero_ps()); |
| _mm_storeu_si128((__m128i*)&iy[j], _mm_setzero_si128()); |
| _mm_storeu_ps(&X[j], x4); |
| _mm_storeu_ps(&signy[j], s4); |
| } |
| sums = _mm_add_ps(sums, _mm_shuffle_ps(sums, sums, _MM_SHUFFLE(1, 0, 3, 2))); |
| sums = _mm_add_ps(sums, _mm_shuffle_ps(sums, sums, _MM_SHUFFLE(2, 3, 0, 1))); |
| |
| xy = yy = 0; |
| |
| pulsesLeft = K; |
| |
| /* Do a pre-search by projecting on the pyramid */ |
| if (K > (N>>1)) |
| { |
| __m128i pulses_sum; |
| __m128 yy4, xy4; |
| __m128 rcp4; |
| opus_val32 sum = _mm_cvtss_f32(sums); |
| /* If X is too small, just replace it with a pulse at 0 */ |
| /* Prevents infinities and NaNs from causing too many pulses |
| to be allocated. 64 is an approximation of infinity here. */ |
| if (!(sum > EPSILON && sum < 64)) |
| { |
| X[0] = QCONST16(1.f,14); |
| j=1; do |
| X[j]=0; |
| while (++j<N); |
| sums = _mm_set_ps1(1.f); |
| } |
| /* Using K+e with e < 1 guarantees we cannot get more than K pulses. */ |
| rcp4 = _mm_mul_ps(_mm_set_ps1((float)(K+.8)), _mm_rcp_ps(sums)); |
| xy4 = yy4 = _mm_setzero_ps(); |
| pulses_sum = _mm_setzero_si128(); |
| for (j=0;j<N;j+=4) |
| { |
| __m128 rx4, x4, y4; |
| __m128i iy4; |
| x4 = _mm_loadu_ps(&X[j]); |
| rx4 = _mm_mul_ps(x4, rcp4); |
| iy4 = _mm_cvttps_epi32(rx4); |
| pulses_sum = _mm_add_epi32(pulses_sum, iy4); |
| _mm_storeu_si128((__m128i*)&iy[j], iy4); |
| y4 = _mm_cvtepi32_ps(iy4); |
| xy4 = _mm_add_ps(xy4, _mm_mul_ps(x4, y4)); |
| yy4 = _mm_add_ps(yy4, _mm_mul_ps(y4, y4)); |
| /* double the y[] vector so we don't have to do it in the search loop. */ |
| _mm_storeu_ps(&y[j], _mm_add_ps(y4, y4)); |
| } |
| pulses_sum = _mm_add_epi32(pulses_sum, _mm_shuffle_epi32(pulses_sum, _MM_SHUFFLE(1, 0, 3, 2))); |
| pulses_sum = _mm_add_epi32(pulses_sum, _mm_shuffle_epi32(pulses_sum, _MM_SHUFFLE(2, 3, 0, 1))); |
| pulsesLeft -= _mm_cvtsi128_si32(pulses_sum); |
| xy4 = _mm_add_ps(xy4, _mm_shuffle_ps(xy4, xy4, _MM_SHUFFLE(1, 0, 3, 2))); |
| xy4 = _mm_add_ps(xy4, _mm_shuffle_ps(xy4, xy4, _MM_SHUFFLE(2, 3, 0, 1))); |
| xy = _mm_cvtss_f32(xy4); |
| yy4 = _mm_add_ps(yy4, _mm_shuffle_ps(yy4, yy4, _MM_SHUFFLE(1, 0, 3, 2))); |
| yy4 = _mm_add_ps(yy4, _mm_shuffle_ps(yy4, yy4, _MM_SHUFFLE(2, 3, 0, 1))); |
| yy = _mm_cvtss_f32(yy4); |
| } |
| X[N] = X[N+1] = X[N+2] = -100; |
| y[N] = y[N+1] = y[N+2] = 100; |
| celt_sig_assert(pulsesLeft>=0); |
| |
| /* This should never happen, but just in case it does (e.g. on silence) |
| we fill the first bin with pulses. */ |
| if (pulsesLeft > N+3) |
| { |
| opus_val16 tmp = (opus_val16)pulsesLeft; |
| yy = MAC16_16(yy, tmp, tmp); |
| yy = MAC16_16(yy, tmp, y[0]); |
| iy[0] += pulsesLeft; |
| pulsesLeft=0; |
| } |
| |
| for (i=0;i<pulsesLeft;i++) |
| { |
| int best_id; |
| __m128 xy4, yy4; |
| __m128 max, max2; |
| __m128i count; |
| __m128i pos; |
| /* The squared magnitude term gets added anyway, so we might as well |
| add it outside the loop */ |
| yy = ADD16(yy, 1); |
| xy4 = _mm_load1_ps(&xy); |
| yy4 = _mm_load1_ps(&yy); |
| max = _mm_setzero_ps(); |
| pos = _mm_setzero_si128(); |
| count = _mm_set_epi32(3, 2, 1, 0); |
| for (j=0;j<N;j+=4) |
| { |
| __m128 x4, y4, r4; |
| x4 = _mm_loadu_ps(&X[j]); |
| y4 = _mm_loadu_ps(&y[j]); |
| x4 = _mm_add_ps(x4, xy4); |
| y4 = _mm_add_ps(y4, yy4); |
| y4 = _mm_rsqrt_ps(y4); |
| r4 = _mm_mul_ps(x4, y4); |
| /* Update the index of the max. */ |
| pos = _mm_max_epi16(pos, _mm_and_si128(count, _mm_castps_si128(_mm_cmpgt_ps(r4, max)))); |
| /* Update the max. */ |
| max = _mm_max_ps(max, r4); |
| /* Update the indices (+4) */ |
| count = _mm_add_epi32(count, fours); |
| } |
| /* Horizontal max */ |
| max2 = _mm_max_ps(max, _mm_shuffle_ps(max, max, _MM_SHUFFLE(1, 0, 3, 2))); |
| max2 = _mm_max_ps(max2, _mm_shuffle_ps(max2, max2, _MM_SHUFFLE(2, 3, 0, 1))); |
| /* Now that max2 contains the max at all positions, look at which value(s) of the |
| partial max is equal to the global max. */ |
| pos = _mm_and_si128(pos, _mm_castps_si128(_mm_cmpeq_ps(max, max2))); |
| pos = _mm_max_epi16(pos, _mm_unpackhi_epi64(pos, pos)); |
| pos = _mm_max_epi16(pos, _mm_shufflelo_epi16(pos, _MM_SHUFFLE(1, 0, 3, 2))); |
| best_id = _mm_cvtsi128_si32(pos); |
| |
| /* Updating the sums of the new pulse(s) */ |
| xy = ADD32(xy, EXTEND32(X[best_id])); |
| /* We're multiplying y[j] by two so we don't have to do it here */ |
| yy = ADD16(yy, y[best_id]); |
| |
| /* Only now that we've made the final choice, update y/iy */ |
| /* Multiplying y[j] by 2 so we don't have to do it everywhere else */ |
| y[best_id] += 2; |
| iy[best_id]++; |
| } |
| |
| /* Put the original sign back */ |
| for (j=0;j<N;j+=4) |
| { |
| __m128i y4; |
| __m128i s4; |
| y4 = _mm_loadu_si128((__m128i*)&iy[j]); |
| s4 = _mm_castps_si128(_mm_loadu_ps(&signy[j])); |
| y4 = _mm_xor_si128(_mm_add_epi32(y4, s4), s4); |
| _mm_storeu_si128((__m128i*)&iy[j], y4); |
| } |
| RESTORE_STACK; |
| return yy; |
| } |
| |
| #endif |