blob: c96a0199bbad23b7d2607d46d5f4feeae8f95ad9 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <iostream> // NOLINT(readability/streams)
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/diagnostics/disassembler.h"
#include "src/execution/simulator.h"
#include "src/heap/factory.h"
#include "src/init/v8.h"
#include "src/numbers/double.h"
#include "src/utils/ostreams.h"
#include "test/cctest/assembler-helper-arm.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
namespace v8 {
namespace internal {
namespace test_assembler_arm {
using base::RandomNumberGenerator;
#define __ assm.
TEST(0) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
__ add(r0, r0, Operand(r1));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(3, 4, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(7, res);
}
TEST(1) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label L, C;
__ mov(r1, Operand(r0));
__ mov(r0, Operand::Zero());
__ b(&C);
__ bind(&L);
__ add(r0, r0, Operand(r1));
__ sub(r1, r1, Operand(1));
__ bind(&C);
__ teq(r1, Operand::Zero());
__ b(ne, &L);
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(100, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(5050, res);
}
TEST(2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label L, C;
__ mov(r1, Operand(r0));
__ mov(r0, Operand(1));
__ b(&C);
__ bind(&L);
__ mul(r0, r1, r0);
__ sub(r1, r1, Operand(1));
__ bind(&C);
__ teq(r1, Operand::Zero());
__ b(ne, &L);
__ mov(pc, Operand(lr));
// some relocated stuff here, not executed
__ RecordComment("dead code, just testing relocations");
__ mov(r0, Operand(isolate->factory()->true_value()));
__ RecordComment("dead code, just testing immediate operands");
__ mov(r0, Operand(-1));
__ mov(r0, Operand(0xFF000000));
__ mov(r0, Operand(0xF0F0F0F0));
__ mov(r0, Operand(0xFFF0FFFF));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(10, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(3628800, res);
}
TEST(3) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
int i;
char c;
int16_t s;
};
T t;
Assembler assm(AssemblerOptions{});
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ mov(r4, Operand(r0));
__ ldr(r0, MemOperand(r4, offsetof(T, i)));
__ mov(r2, Operand(r0, ASR, 1));
__ str(r2, MemOperand(r4, offsetof(T, i)));
__ ldrsb(r2, MemOperand(r4, offsetof(T, c)));
__ add(r0, r2, Operand(r0));
__ mov(r2, Operand(r2, LSL, 2));
__ strb(r2, MemOperand(r4, offsetof(T, c)));
__ ldrsh(r2, MemOperand(r4, offsetof(T, s)));
__ add(r0, r2, Operand(r0));
__ mov(r2, Operand(r2, ASR, 3));
__ strh(r2, MemOperand(r4, offsetof(T, s)));
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
t.i = 100000;
t.c = 10;
t.s = 1000;
int res = reinterpret_cast<int>(f.Call(&t, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(101010, res);
CHECK_EQ(100000/2, t.i);
CHECK_EQ(10*4, t.c);
CHECK_EQ(1000/8, t.s);
}
TEST(4) {
// Test the VFP floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
int i;
double j;
double m;
double n;
float o;
float p;
float x;
float y;
};
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles and floats.
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(VFPv3)) {
CpuFeatureScope scope(&assm, VFPv3);
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ mov(r4, Operand(r0));
__ vldr(d6, r4, offsetof(T, a));
__ vldr(d7, r4, offsetof(T, b));
__ vadd(d5, d6, d7);
__ vstr(d5, r4, offsetof(T, c));
__ vmla(d5, d6, d7);
__ vmls(d5, d5, d6);
__ vmov(r2, r3, d5);
__ vmov(d4, r2, r3);
__ vstr(d4, r4, offsetof(T, b));
// Load t.x and t.y, switch values, and store back to the struct.
__ vldr(s0, r4, offsetof(T, x));
__ vldr(s1, r4, offsetof(T, y));
__ vmov(s2, s0);
__ vmov(s0, s1);
__ vmov(s1, s2);
__ vstr(s0, r4, offsetof(T, x));
__ vstr(s1, r4, offsetof(T, y));
// Move a literal into a register that can be encoded in the instruction.
__ vmov(d4, Double(1.0));
__ vstr(d4, r4, offsetof(T, e));
// Move a literal into a register that requires 64 bits to encode.
// 0x3FF0000010000000 = 1.000000059604644775390625
__ vmov(d4, Double(1.000000059604644775390625));
__ vstr(d4, r4, offsetof(T, d));
// Convert from floating point to integer.
__ vmov(d4, Double(2.0));
__ vcvt_s32_f64(s1, d4);
__ vstr(s1, r4, offsetof(T, i));
// Convert from integer to floating point.
__ mov(lr, Operand(42));
__ vmov(s1, lr);
__ vcvt_f64_s32(d4, s1);
__ vstr(d4, r4, offsetof(T, f));
// Convert from fixed point to floating point.
__ mov(lr, Operand(2468));
__ vmov(s8, lr);
__ vcvt_f64_s32(d4, 2);
__ vstr(d4, r4, offsetof(T, j));
// Test vabs.
__ vldr(d1, r4, offsetof(T, g));
__ vabs(d0, d1);
__ vstr(d0, r4, offsetof(T, g));
__ vldr(d2, r4, offsetof(T, h));
__ vabs(d0, d2);
__ vstr(d0, r4, offsetof(T, h));
// Test vneg.
__ vldr(d1, r4, offsetof(T, m));
__ vneg(d0, d1);
__ vstr(d0, r4, offsetof(T, m));
__ vldr(d1, r4, offsetof(T, n));
__ vneg(d0, d1);
__ vstr(d0, r4, offsetof(T, n));
// Test vmov for single-precision immediates.
__ vmov(s0, Float32(0.25f));
__ vstr(s0, r4, offsetof(T, o));
__ vmov(s0, Float32(-16.0f));
__ vstr(s0, r4, offsetof(T, p));
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
t.a = 1.5;
t.b = 2.75;
t.c = 17.17;
t.d = 0.0;
t.e = 0.0;
t.f = 0.0;
t.g = -2718.2818;
t.h = 31415926.5;
t.i = 0;
t.j = 0;
t.m = -2718.2818;
t.n = 123.456;
t.x = 4.5;
t.y = 9.0;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(-16.0f, t.p);
CHECK_EQ(0.25f, t.o);
CHECK_EQ(-123.456, t.n);
CHECK_EQ(2718.2818, t.m);
CHECK_EQ(2, t.i);
CHECK_EQ(2718.2818, t.g);
CHECK_EQ(31415926.5, t.h);
CHECK_EQ(617.0, t.j);
CHECK_EQ(42.0, t.f);
CHECK_EQ(1.0, t.e);
CHECK_EQ(1.000000059604644775390625, t.d);
CHECK_EQ(4.25, t.c);
CHECK_EQ(-4.1875, t.b);
CHECK_EQ(1.5, t.a);
CHECK_EQ(4.5f, t.y);
CHECK_EQ(9.0f, t.x);
}
}
TEST(5) {
// Test the ARMv7 bitfield instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(ARMv7)) {
CpuFeatureScope scope(&assm, ARMv7);
// On entry, r0 = 0xAAAAAAAA = 0b10..10101010.
__ ubfx(r0, r0, 1, 12); // 0b00..010101010101 = 0x555
__ sbfx(r0, r0, 0, 5); // 0b11..111111110101 = -11
__ bfc(r0, 1, 3); // 0b11..111111110001 = -15
__ mov(r1, Operand(7));
__ bfi(r0, r1, 3, 3); // 0b11..111111111001 = -7
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(0xAAAAAAAA, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(-7, res);
}
}
TEST(6) {
// Test saturating instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
__ usat(r1, 8, Operand(r0)); // Sat 0xFFFF to 0-255 = 0xFF.
__ usat(r2, 12, Operand(r0, ASR, 9)); // Sat (0xFFFF>>9) to 0-4095 = 0x7F.
__ usat(r3, 1, Operand(r0, LSL, 16)); // Sat (0xFFFF<<16) to 0-1 = 0x0.
__ add(r0, r1, Operand(r2));
__ add(r0, r0, Operand(r3));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(0xFFFF, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(382, res);
}
enum VCVTTypes {
s32_f64,
u32_f64
};
static void TestRoundingMode(VCVTTypes types,
VFPRoundingMode mode,
double value,
int expected,
bool expected_exception = false) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label wrong_exception;
__ vmrs(r1);
// Set custom FPSCR.
__ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask));
__ orr(r2, r2, Operand(mode));
__ vmsr(r2);
// Load value, convert, and move back result to r0 if everything went well.
__ vmov(d1, Double(value));
switch (types) {
case s32_f64:
__ vcvt_s32_f64(s0, d1, kFPSCRRounding);
break;
case u32_f64:
__ vcvt_u32_f64(s0, d1, kFPSCRRounding);
break;
default:
UNREACHABLE();
}
// Check for vfp exceptions
__ vmrs(r2);
__ tst(r2, Operand(kVFPExceptionMask));
// Check that we behaved as expected.
__ b(&wrong_exception, expected_exception ? eq : ne);
// There was no exception. Retrieve the result and return.
__ vmov(r0, s0);
__ mov(pc, Operand(lr));
// The exception behaviour is not what we expected.
// Load a special value and return.
__ bind(&wrong_exception);
__ mov(r0, Operand(11223344));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(0, 0, 0, 0, 0));
::printf("res = %d\n", res);
CHECK_EQ(expected, res);
}
TEST(7) {
CcTest::InitializeVM();
// Test vfp rounding modes.
// s32_f64 (double to integer).
TestRoundingMode(s32_f64, RN, 0, 0);
TestRoundingMode(s32_f64, RN, 0.5, 0);
TestRoundingMode(s32_f64, RN, -0.5, 0);
TestRoundingMode(s32_f64, RN, 1.5, 2);
TestRoundingMode(s32_f64, RN, -1.5, -2);
TestRoundingMode(s32_f64, RN, 123.7, 124);
TestRoundingMode(s32_f64, RN, -123.7, -124);
TestRoundingMode(s32_f64, RN, 123456.2, 123456);
TestRoundingMode(s32_f64, RN, -123456.2, -123456);
TestRoundingMode(s32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt);
TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true);
TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true);
TestRoundingMode(s32_f64, RN, static_cast<double>(kMinInt), kMinInt);
TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt);
TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true);
TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true);
TestRoundingMode(s32_f64, RM, 0, 0);
TestRoundingMode(s32_f64, RM, 0.5, 0);
TestRoundingMode(s32_f64, RM, -0.5, -1);
TestRoundingMode(s32_f64, RM, 123.7, 123);
TestRoundingMode(s32_f64, RM, -123.7, -124);
TestRoundingMode(s32_f64, RM, 123456.2, 123456);
TestRoundingMode(s32_f64, RM, -123456.2, -123457);
TestRoundingMode(s32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt);
TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true);
TestRoundingMode(s32_f64, RM, static_cast<double>(kMinInt), kMinInt);
TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true);
TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt);
TestRoundingMode(s32_f64, RZ, 0, 0);
TestRoundingMode(s32_f64, RZ, 0.5, 0);
TestRoundingMode(s32_f64, RZ, -0.5, 0);
TestRoundingMode(s32_f64, RZ, 123.7, 123);
TestRoundingMode(s32_f64, RZ, -123.7, -123);
TestRoundingMode(s32_f64, RZ, 123456.2, 123456);
TestRoundingMode(s32_f64, RZ, -123456.2, -123456);
TestRoundingMode(s32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true);
TestRoundingMode(s32_f64, RZ, static_cast<double>(kMinInt), kMinInt);
TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt);
TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true);
// u32_f64 (double to integer).
// Negative values.
TestRoundingMode(u32_f64, RN, -0.5, 0);
TestRoundingMode(u32_f64, RN, -123456.7, 0, true);
TestRoundingMode(u32_f64, RN, static_cast<double>(kMinInt), 0, true);
TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true);
TestRoundingMode(u32_f64, RM, -0.5, 0, true);
TestRoundingMode(u32_f64, RM, -123456.7, 0, true);
TestRoundingMode(u32_f64, RM, static_cast<double>(kMinInt), 0, true);
TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true);
TestRoundingMode(u32_f64, RZ, -0.5, 0);
TestRoundingMode(u32_f64, RZ, -123456.7, 0, true);
TestRoundingMode(u32_f64, RZ, static_cast<double>(kMinInt), 0, true);
TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true);
// Positive values.
// kMaxInt is the maximum *signed* integer: 0x7FFFFFFF.
static const uint32_t kMaxUInt = 0xFFFFFFFFu;
TestRoundingMode(u32_f64, RZ, 0, 0);
TestRoundingMode(u32_f64, RZ, 0.5, 0);
TestRoundingMode(u32_f64, RZ, 123.7, 123);
TestRoundingMode(u32_f64, RZ, 123456.2, 123456);
TestRoundingMode(u32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0),
static_cast<uint32_t>(kMaxInt) + 1);
TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt);
TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true);
TestRoundingMode(u32_f64, RM, 0, 0);
TestRoundingMode(u32_f64, RM, 0.5, 0);
TestRoundingMode(u32_f64, RM, 123.7, 123);
TestRoundingMode(u32_f64, RM, 123456.2, 123456);
TestRoundingMode(u32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt);
TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0),
static_cast<uint32_t>(kMaxInt) + 1);
TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt);
TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true);
TestRoundingMode(u32_f64, RN, 0, 0);
TestRoundingMode(u32_f64, RN, 0.5, 0);
TestRoundingMode(u32_f64, RN, 1.5, 2);
TestRoundingMode(u32_f64, RN, 123.7, 124);
TestRoundingMode(u32_f64, RN, 123456.2, 123456);
TestRoundingMode(u32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt);
TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5),
static_cast<uint32_t>(kMaxInt) + 1);
TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt);
TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true);
TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true);
}
TEST(8) {
// Test VFP multi load/store with ia_w.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct D {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
};
D d;
struct F {
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
};
F f;
// Create a function that uses vldm/vstm to move some double and
// single precision values around in memory.
Assembler assm(AssemblerOptions{});
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, a))));
__ vldm(ia_w, r4, d0, d3);
__ vldm(ia_w, r4, d4, d7);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, a))));
__ vstm(ia_w, r4, d6, d7);
__ vstm(ia_w, r4, d0, d5);
__ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, a))));
__ vldm(ia_w, r4, s0, s3);
__ vldm(ia_w, r4, s4, s7);
__ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, a))));
__ vstm(ia_w, r4, s6, s7);
__ vstm(ia_w, r4, s0, s5);
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto fn = GeneratedCode<F_ppiii>::FromCode(*code);
d.a = 1.1;
d.b = 2.2;
d.c = 3.3;
d.d = 4.4;
d.e = 5.5;
d.f = 6.6;
d.g = 7.7;
d.h = 8.8;
f.a = 1.0;
f.b = 2.0;
f.c = 3.0;
f.d = 4.0;
f.e = 5.0;
f.f = 6.0;
f.g = 7.0;
f.h = 8.0;
fn.Call(&d, &f, 0, 0, 0);
CHECK_EQ(7.7, d.a);
CHECK_EQ(8.8, d.b);
CHECK_EQ(1.1, d.c);
CHECK_EQ(2.2, d.d);
CHECK_EQ(3.3, d.e);
CHECK_EQ(4.4, d.f);
CHECK_EQ(5.5, d.g);
CHECK_EQ(6.6, d.h);
CHECK_EQ(7.0f, f.a);
CHECK_EQ(8.0f, f.b);
CHECK_EQ(1.0f, f.c);
CHECK_EQ(2.0f, f.d);
CHECK_EQ(3.0f, f.e);
CHECK_EQ(4.0f, f.f);
CHECK_EQ(5.0f, f.g);
CHECK_EQ(6.0f, f.h);
}
TEST(9) {
// Test VFP multi load/store with ia.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct D {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
};
D d;
struct F {
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
};
F f;
// Create a function that uses vldm/vstm to move some double and
// single precision values around in memory.
Assembler assm(AssemblerOptions{});
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, a))));
__ vldm(ia, r4, d0, d3);
__ add(r4, r4, Operand(4 * 8));
__ vldm(ia, r4, d4, d7);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, a))));
__ vstm(ia, r4, d6, d7);
__ add(r4, r4, Operand(2 * 8));
__ vstm(ia, r4, d0, d5);
__ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, a))));
__ vldm(ia, r4, s0, s3);
__ add(r4, r4, Operand(4 * 4));
__ vldm(ia, r4, s4, s7);
__ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, a))));
__ vstm(ia, r4, s6, s7);
__ add(r4, r4, Operand(2 * 4));
__ vstm(ia, r4, s0, s5);
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto fn = GeneratedCode<F_ppiii>::FromCode(*code);
d.a = 1.1;
d.b = 2.2;
d.c = 3.3;
d.d = 4.4;
d.e = 5.5;
d.f = 6.6;
d.g = 7.7;
d.h = 8.8;
f.a = 1.0;
f.b = 2.0;
f.c = 3.0;
f.d = 4.0;
f.e = 5.0;
f.f = 6.0;
f.g = 7.0;
f.h = 8.0;
fn.Call(&d, &f, 0, 0, 0);
CHECK_EQ(7.7, d.a);
CHECK_EQ(8.8, d.b);
CHECK_EQ(1.1, d.c);
CHECK_EQ(2.2, d.d);
CHECK_EQ(3.3, d.e);
CHECK_EQ(4.4, d.f);
CHECK_EQ(5.5, d.g);
CHECK_EQ(6.6, d.h);
CHECK_EQ(7.0f, f.a);
CHECK_EQ(8.0f, f.b);
CHECK_EQ(1.0f, f.c);
CHECK_EQ(2.0f, f.d);
CHECK_EQ(3.0f, f.e);
CHECK_EQ(4.0f, f.f);
CHECK_EQ(5.0f, f.g);
CHECK_EQ(6.0f, f.h);
}
TEST(10) {
// Test VFP multi load/store with db_w.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct D {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
};
D d;
struct F {
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
};
F f;
// Create a function that uses vldm/vstm to move some double and
// single precision values around in memory.
Assembler assm(AssemblerOptions{});
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, h)) + 8));
__ vldm(db_w, r4, d4, d7);
__ vldm(db_w, r4, d0, d3);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, h)) + 8));
__ vstm(db_w, r4, d0, d5);
__ vstm(db_w, r4, d6, d7);
__ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, h)) + 4));
__ vldm(db_w, r4, s4, s7);
__ vldm(db_w, r4, s0, s3);
__ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, h)) + 4));
__ vstm(db_w, r4, s0, s5);
__ vstm(db_w, r4, s6, s7);
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto fn = GeneratedCode<F_ppiii>::FromCode(*code);
d.a = 1.1;
d.b = 2.2;
d.c = 3.3;
d.d = 4.4;
d.e = 5.5;
d.f = 6.6;
d.g = 7.7;
d.h = 8.8;
f.a = 1.0;
f.b = 2.0;
f.c = 3.0;
f.d = 4.0;
f.e = 5.0;
f.f = 6.0;
f.g = 7.0;
f.h = 8.0;
fn.Call(&d, &f, 0, 0, 0);
CHECK_EQ(7.7, d.a);
CHECK_EQ(8.8, d.b);
CHECK_EQ(1.1, d.c);
CHECK_EQ(2.2, d.d);
CHECK_EQ(3.3, d.e);
CHECK_EQ(4.4, d.f);
CHECK_EQ(5.5, d.g);
CHECK_EQ(6.6, d.h);
CHECK_EQ(7.0f, f.a);
CHECK_EQ(8.0f, f.b);
CHECK_EQ(1.0f, f.c);
CHECK_EQ(2.0f, f.d);
CHECK_EQ(3.0f, f.e);
CHECK_EQ(4.0f, f.f);
CHECK_EQ(5.0f, f.g);
CHECK_EQ(6.0f, f.h);
}
TEST(11) {
// Test instructions using the carry flag.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct I {
int32_t a;
int32_t b;
int32_t c;
int32_t d;
};
I i;
i.a = 0xABCD0001;
i.b = 0xABCD0000;
Assembler assm(AssemblerOptions{});
// Test HeapObject untagging.
__ ldr(r1, MemOperand(r0, offsetof(I, a)));
__ mov(r1, Operand(r1, ASR, 1), SetCC);
__ adc(r1, r1, Operand(r1), LeaveCC, cs);
__ str(r1, MemOperand(r0, offsetof(I, a)));
__ ldr(r2, MemOperand(r0, offsetof(I, b)));
__ mov(r2, Operand(r2, ASR, 1), SetCC);
__ adc(r2, r2, Operand(r2), LeaveCC, cs);
__ str(r2, MemOperand(r0, offsetof(I, b)));
// Test corner cases.
__ mov(r1, Operand(0xFFFFFFFF));
__ mov(r2, Operand::Zero());
__ mov(r3, Operand(r1, ASR, 1), SetCC); // Set the carry.
__ adc(r3, r1, Operand(r2));
__ str(r3, MemOperand(r0, offsetof(I, c)));
__ mov(r1, Operand(0xFFFFFFFF));
__ mov(r2, Operand::Zero());
__ mov(r3, Operand(r2, ASR, 1), SetCC); // Unset the carry.
__ adc(r3, r1, Operand(r2));
__ str(r3, MemOperand(r0, offsetof(I, d)));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
f.Call(&i, 0, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(0xABCD0001), i.a);
CHECK_EQ(static_cast<int32_t>(0xABCD0000) >> 1, i.b);
CHECK_EQ(0x00000000, i.c);
CHECK_EQ(static_cast<int32_t>(0xFFFFFFFF), i.d);
}
TEST(12) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label target;
__ b(eq, &target);
__ b(ne, &target);
__ bind(&target);
__ nop();
}
TEST(13) {
// Test VFP instructions using registers d16-d31.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
if (!CpuFeatures::IsSupported(VFP32DREGS)) {
return;
}
struct T {
double a;
double b;
double c;
double x;
double y;
double z;
double i;
double j;
double k;
uint32_t low;
uint32_t high;
};
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles and floats.
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(VFPv3)) {
CpuFeatureScope scope(&assm, VFPv3);
__ stm(db_w, sp, r4.bit() | lr.bit());
// Load a, b, c into d16, d17, d18.
__ mov(r4, Operand(r0));
__ vldr(d16, r4, offsetof(T, a));
__ vldr(d17, r4, offsetof(T, b));
__ vldr(d18, r4, offsetof(T, c));
__ vneg(d25, d16);
__ vadd(d25, d25, d17);
__ vsub(d25, d25, d18);
__ vmul(d25, d25, d25);
__ vdiv(d25, d25, d18);
__ vmov(d16, d25);
__ vsqrt(d17, d25);
__ vneg(d17, d17);
__ vabs(d17, d17);
__ vmla(d18, d16, d17);
// Store d16, d17, d18 into a, b, c.
__ mov(r4, Operand(r0));
__ vstr(d16, r4, offsetof(T, a));
__ vstr(d17, r4, offsetof(T, b));
__ vstr(d18, r4, offsetof(T, c));
// Load x, y, z into d29-d31.
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, x))));
__ vldm(ia_w, r4, d29, d31);
// Swap d29 and d30 via r registers.
__ vmov(r1, r2, d29);
__ vmov(d29, d30);
__ vmov(d30, r1, r2);
// Convert to and from integer.
__ vcvt_s32_f64(s1, d31);
__ vcvt_f64_u32(d31, s1);
// Store d29-d31 into x, y, z.
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, x))));
__ vstm(ia_w, r4, d29, d31);
// Move constants into d20, d21, d22 and store into i, j, k.
__ vmov(d20, Double(14.7610017472335499));
__ vmov(d21, Double(16.0));
__ mov(r1, Operand(372106121));
__ mov(r2, Operand(1079146608));
__ vmov(NeonS32, d22, 0, r1);
__ vmov(NeonS32, d22, 1, r2);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, i))));
__ vstm(ia_w, r4, d20, d22);
// Move d22 into low and high.
__ vmov(NeonS32, r4, d22, 0);
__ str(r4, MemOperand(r0, offsetof(T, low)));
__ vmov(NeonS32, r4, d22, 1);
__ str(r4, MemOperand(r0, offsetof(T, high)));
__ ldm(ia_w, sp, r4.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
t.a = 1.5;
t.b = 2.75;
t.c = 17.17;
t.x = 1.5;
t.y = 2.75;
t.z = 17.17;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(14.7610017472335499, t.a);
CHECK_EQ(3.84200491244266251, t.b);
CHECK_EQ(73.8818412254460241, t.c);
CHECK_EQ(2.75, t.x);
CHECK_EQ(1.5, t.y);
CHECK_EQ(17.0, t.z);
CHECK_EQ(14.7610017472335499, t.i);
CHECK_EQ(16.0, t.j);
CHECK_EQ(73.8818412254460241, t.k);
CHECK_EQ(372106121u, t.low);
CHECK_EQ(1079146608u, t.high);
}
}
TEST(14) {
// Test the VFP Canonicalized Nan mode.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
double left;
double right;
double add_result;
double sub_result;
double mul_result;
double div_result;
};
T t;
// Create a function that makes the four basic operations.
Assembler assm(AssemblerOptions{});
// Ensure FPSCR state (as JSEntry does).
Label fpscr_done;
__ vmrs(r1);
__ tst(r1, Operand(kVFPDefaultNaNModeControlBit));
__ b(ne, &fpscr_done);
__ orr(r1, r1, Operand(kVFPDefaultNaNModeControlBit));
__ vmsr(r1);
__ bind(&fpscr_done);
__ vldr(d0, r0, offsetof(T, left));
__ vldr(d1, r0, offsetof(T, right));
__ vadd(d2, d0, d1);
__ vstr(d2, r0, offsetof(T, add_result));
__ vsub(d2, d0, d1);
__ vstr(d2, r0, offsetof(T, sub_result));
__ vmul(d2, d0, d1);
__ vstr(d2, r0, offsetof(T, mul_result));
__ vdiv(d2, d0, d1);
__ vstr(d2, r0, offsetof(T, div_result));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
t.left = bit_cast<double>(kHoleNanInt64);
t.right = 1;
t.add_result = 0;
t.sub_result = 0;
t.mul_result = 0;
t.div_result = 0;
f.Call(&t, 0, 0, 0, 0);
const uint32_t kArmNanUpper32 = 0x7FF80000;
const uint32_t kArmNanLower32 = 0x00000000;
#ifdef DEBUG
const uint64_t kArmNanInt64 =
(static_cast<uint64_t>(kArmNanUpper32) << 32) | kArmNanLower32;
CHECK_NE(kArmNanInt64, kHoleNanInt64);
#endif
// With VFP2 the sign of the canonicalized Nan is undefined. So
// we remove the sign bit for the upper tests.
CHECK_EQ(kArmNanUpper32,
(bit_cast<int64_t>(t.add_result) >> 32) & 0x7FFFFFFF);
CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.add_result) & 0xFFFFFFFFu);
CHECK_EQ(kArmNanUpper32,
(bit_cast<int64_t>(t.sub_result) >> 32) & 0x7FFFFFFF);
CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.sub_result) & 0xFFFFFFFFu);
CHECK_EQ(kArmNanUpper32,
(bit_cast<int64_t>(t.mul_result) >> 32) & 0x7FFFFFFF);
CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.mul_result) & 0xFFFFFFFFu);
CHECK_EQ(kArmNanUpper32,
(bit_cast<int64_t>(t.div_result) >> 32) & 0x7FFFFFFF);
CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.div_result) & 0xFFFFFFFFu);
}
#define CHECK_EQ_SPLAT(field, ex) \
CHECK_EQ(ex, t.field[0]); \
CHECK_EQ(ex, t.field[1]); \
CHECK_EQ(ex, t.field[2]); \
CHECK_EQ(ex, t.field[3]);
#define CHECK_EQ_32X2(field, ex0, ex1) \
CHECK_EQ(ex0, t.field[0]); \
CHECK_EQ(ex1, t.field[1]);
#define CHECK_EQ_32X4(field, ex0, ex1, ex2, ex3) \
CHECK_EQ(ex0, t.field[0]); \
CHECK_EQ(ex1, t.field[1]); \
CHECK_EQ(ex2, t.field[2]); \
CHECK_EQ(ex3, t.field[3]);
#define CHECK_ESTIMATE(expected, tolerance, value) \
CHECK_LT((expected) - (tolerance), value); \
CHECK_GT((expected) + (tolerance), value);
#define CHECK_ESTIMATE_SPLAT(field, ex, tol) \
CHECK_ESTIMATE(ex, tol, t.field[0]); \
CHECK_ESTIMATE(ex, tol, t.field[1]); \
CHECK_ESTIMATE(ex, tol, t.field[2]); \
CHECK_ESTIMATE(ex, tol, t.field[3]);
#define INT32_TO_FLOAT(val) \
std::round(static_cast<float>(bit_cast<int32_t>(val)))
#define UINT32_TO_FLOAT(val) \
std::round(static_cast<float>(bit_cast<uint32_t>(val)))
TEST(15) {
// Test the Neon instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
uint32_t src0;
uint32_t src1;
uint32_t src2;
uint32_t src3;
uint32_t src4;
uint32_t src5;
uint32_t src6;
uint32_t src7;
uint32_t dst0;
uint32_t dst1;
uint32_t dst2;
uint32_t dst3;
uint32_t dst4;
uint32_t dst5;
uint32_t dst6;
uint32_t dst7;
uint32_t srcA0;
uint32_t srcA1;
uint32_t dstA0;
uint32_t dstA1;
uint32_t dstA2;
uint32_t dstA3;
uint32_t lane_test[4];
uint64_t vmov_to_scalar1, vmov_to_scalar2;
uint32_t vmov_from_scalar_s8, vmov_from_scalar_u8;
uint32_t vmov_from_scalar_s16, vmov_from_scalar_u16;
uint32_t vmov_from_scalar_32;
uint32_t vmov[4], vmvn[4];
uint32_t vmovl_s8[4], vmovl_u16[4], vmovl_s32[4];
uint32_t vqmovn_s8[2], vqmovn_u16[2], vqmovn_s32[2];
int32_t vcvt_s32_f32[4];
uint32_t vcvt_u32_f32[4];
float vcvt_f32_s32[4], vcvt_f32_u32[4];
uint32_t vdup8[4], vdup16[4], vdup32[4];
float vabsf[4], vnegf[4];
uint32_t vabs_s8[4], vabs_s16[4], vabs_s32[4];
uint32_t vneg_s8[4], vneg_s16[4], vneg_s32[4];
uint32_t veor[4], vand[4], vorr[4];
float vdupf[4], vaddf[4], vpaddf[2], vsubf[4], vmulf[4];
uint32_t vdupf_16[2], vdupf_8[4];
uint32_t vmin_s8[4], vmin_u16[4], vmin_s32[4];
uint32_t vmax_s8[4], vmax_u16[4], vmax_s32[4];
uint32_t vpadd_i8[2], vpadd_i16[2], vpadd_i32[2];
uint32_t vpmin_s8[2], vpmin_u16[2], vpmin_s32[2];
uint32_t vpmax_s8[2], vpmax_u16[2], vpmax_s32[2];
uint32_t vadd8[4], vadd16[4], vadd32[4];
uint32_t vqadd_s8[4], vqadd_u16[4], vqadd_s32[4];
uint32_t vsub8[4], vsub16[4], vsub32[4];
uint32_t vqsub_u8[4], vqsub_s16[4], vqsub_u32[4];
uint32_t vmul8[4], vmul16[4], vmul32[4];
uint32_t vshl8[4], vshl16[4], vshl32[5];
uint32_t vshr_s8[4], vshr_u16[4], vshr_s32[5];
uint32_t vsli_64[2], vsri_64[2], vsli_32[2], vsri_32[2];
uint32_t vceq[4], vceqf[4], vcgef[4], vcgtf[4];
uint32_t vcge_s8[4], vcge_u16[4], vcge_s32[4];
uint32_t vcgt_s8[4], vcgt_u16[4], vcgt_s32[4];
float vrecpe[4], vrecps[4], vrsqrte[4], vrsqrts[4];
float vminf[4], vmaxf[4];
uint32_t vtst[4], vbsl[4];
uint32_t vext[4];
uint32_t vzip8a[4], vzip8b[4], vzip16a[4], vzip16b[4], vzip32a[4],
vzip32b[4];
uint32_t vzipd8a[2], vzipd8b[2], vzipd16a[2], vzipd16b[2];
uint32_t vuzp8a[4], vuzp8b[4], vuzp16a[4], vuzp16b[4], vuzp32a[4],
vuzp32b[4];
uint32_t vuzpd8a[2], vuzpd8b[2], vuzpd16a[2], vuzpd16b[2];
uint32_t vrev64_32[4], vrev64_16[4], vrev64_8[4];
uint32_t vrev32_16[4], vrev32_8[4], vrev16_8[4];
uint32_t vtrn8a[4], vtrn8b[4], vtrn16a[4], vtrn16b[4], vtrn32a[4],
vtrn32b[4];
uint32_t vtrnd8a[2], vtrnd8b[2], vtrnd16a[2], vtrnd16b[2], vtrnd32a[2],
vtrnd32b[2];
uint32_t vtbl[2], vtbx[2];
};
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles, floats, and SIMD values.
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(NEON)) {
CpuFeatureScope scope(&assm, NEON);
__ stm(db_w, sp, r4.bit() | r5.bit() | lr.bit());
// Move 32 bytes with neon.
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, src0))));
__ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, dst0))));
__ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4));
// Expand 8 bytes into 8 words(16 bits).
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, srcA0))));
__ vld1(Neon8, NeonListOperand(d0), NeonMemOperand(r4));
__ vmovl(NeonU8, q0, d0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, dstA0))));
__ vst1(Neon8, NeonListOperand(d0, 2), NeonMemOperand(r4));
// The same expansion, but with different source and destination registers.
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, srcA0))));
__ vld1(Neon8, NeonListOperand(d1), NeonMemOperand(r4));
__ vmovl(NeonS8, q1, d1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmovl_s8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vmovl(NeonU16, q2, d3);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmovl_u16))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ vmovl(NeonS32, q3, d4);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmovl_s32))));
__ vst1(Neon8, NeonListOperand(q3), NeonMemOperand(r4));
// Narrow what we widened.
__ vqmovn(NeonU16, d0, q2);
__ vstr(d0, r0, offsetof(T, vqmovn_u16));
__ vmov(d1, d0);
__ vqmovn(NeonS8, d2, q0);
__ vstr(d2, r0, offsetof(T, vqmovn_s8));
__ vqmovn(NeonS32, d4, q3);
__ vstr(d4, r0, offsetof(T, vqmovn_s32));
// ARM core register to scalar.
__ mov(r4, Operand(0xFFFFFFF8));
__ vmov(d0, Double(0.0));
__ vmov(NeonS8, d0, 1, r4);
__ vmov(NeonS16, d0, 1, r4);
__ vmov(NeonS32, d0, 1, r4);
__ vstr(d0, r0, offsetof(T, vmov_to_scalar1));
__ vmov(d0, Double(0.0));
__ vmov(NeonS8, d0, 3, r4);
__ vmov(NeonS16, d0, 3, r4);
__ vstr(d0, r0, offsetof(T, vmov_to_scalar2));
// Scalar to ARM core register.
__ mov(r4, Operand(0xFFFFFF00));
__ mov(r5, Operand(0xFFFFFFFF));
__ vmov(d0, r4, r5);
__ vmov(NeonS8, r4, d0, 1);
__ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_s8)));
__ vmov(NeonU8, r4, d0, 1);
__ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_u8)));
__ vmov(NeonS16, r4, d0, 1);
__ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_s16)));
__ vmov(NeonU16, r4, d0, 1);
__ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_u16)));
__ vmov(NeonS32, r4, d0, 1);
__ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_32)));
// vmov for q-registers.
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmov))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vmvn.
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmvn(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmvn))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vcvt for q-registers.
__ vmov(s0, Float32(-1.5f));
__ vmov(s1, Float32(-1.0f));
__ vmov(s2, Float32(1.0f));
__ vmov(s3, Float32(1.5f));
__ vcvt_s32_f32(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcvt_s32_f32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vcvt_u32_f32(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcvt_u32_f32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(kMinInt));
__ mov(r5, Operand(kMaxInt));
__ vmov(d0, r4, r5);
__ mov(r4, Operand(kMaxUInt32));
__ mov(r5, Operand(kMinInt + 1));
__ vmov(d1, r4, r5); // q0 = [kMinInt, kMaxInt, kMaxUInt32, kMinInt + 1]
__ vcvt_f32_s32(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcvt_f32_s32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vcvt_f32_u32(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcvt_f32_u32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vdup (from register).
__ mov(r4, Operand(0xA));
__ vdup(Neon8, q0, r4);
__ vdup(Neon16, q1, r4);
__ vdup(Neon32, q2, r4);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdup8))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdup16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdup32))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
// vdup (from scalar).
__ vmov(s0, Float32(-1.0f));
__ vdup(Neon32, q1, d0, 0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdupf))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vdup(Neon16, d2, d0, 1);
__ vstr(d2, r0, offsetof(T, vdupf_16));
__ vdup(Neon8, q1, d0, 3);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdupf_8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vabs (float).
__ vmov(s0, Float32(-1.0f));
__ vmov(s1, Float32(-0.0f));
__ vmov(s2, Float32(0.0f));
__ vmov(s3, Float32(1.0f));
__ vabs(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vabsf))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vneg (float).
__ vneg(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vnegf))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vabs (integer).
__ mov(r4, Operand(0x7F7F7F7F));
__ mov(r5, Operand(0x01010101));
__ vmov(d0, r4, r5);
__ mov(r4, Operand(0xFFFFFFFF));
__ mov(r5, Operand(0x80808080));
__ vmov(d1, r4, r5);
__ vabs(Neon8, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vabs_s8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vabs(Neon16, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vabs_s16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vabs(Neon32, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vabs_s32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vneg (integer).
__ vneg(Neon8, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vneg_s8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vneg(Neon16, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vneg_s16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vneg(Neon32, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vneg_s32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// veor.
__ mov(r4, Operand(0xAA));
__ vdup(Neon16, q0, r4);
__ mov(r4, Operand(0x55));
__ vdup(Neon16, q1, r4);
__ veor(q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, veor))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vand.
__ mov(r4, Operand(0xFF));
__ vdup(Neon16, q0, r4);
__ mov(r4, Operand(0xFE));
__ vdup(Neon16, q1, r4);
__ vand(q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vand))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vorr.
__ mov(r4, Operand(0xAA));
__ vdup(Neon16, q0, r4);
__ mov(r4, Operand(0x55));
__ vdup(Neon16, q1, r4);
__ vorr(q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vorr))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vmin (float).
__ vmov(s4, Float32(2.0f));
__ vdup(Neon32, q0, d2, 0);
__ vmov(s4, Float32(1.0f));
__ vdup(Neon32, q1, d2, 0);
__ vmin(q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vminf))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vmax (float).
__ vmov(s4, Float32(2.0f));
__ vdup(Neon32, q0, d2, 0);
__ vmov(s4, Float32(1.0f));
__ vdup(Neon32, q1, d2, 0);
__ vmax(q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmaxf))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vadd (float).
__ vmov(s4, Float32(1.0f));
__ vdup(Neon32, q0, d2, 0);
__ vdup(Neon32, q1, d2, 0);
__ vadd(q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vaddf))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vpadd (float).
__ vmov(s0, Float32(1.0f));
__ vmov(s1, Float32(2.0f));
__ vmov(s2, Float32(3.0f));
__ vmov(s3, Float32(4.0f));
__ vpadd(d2, d0, d1);
__ vstr(d2, r0, offsetof(T, vpaddf));
// vsub (float).
__ vmov(s4, Float32(2.0f));
__ vdup(Neon32, q0, d2, 0);
__ vmov(s4, Float32(1.0f));
__ vdup(Neon32, q1, d2, 0);
__ vsub(q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vsubf))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vmul (float).
__ vmov(s4, Float32(2.0f));
__ vdup(Neon32, q0, d2, 0);
__ vdup(Neon32, q1, d2, 0);
__ vmul(q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmulf))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vrecpe.
__ vmov(s4, Float32(2.0f));
__ vdup(Neon32, q0, d2, 0);
__ vrecpe(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrecpe))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vrecps.
__ vmov(s4, Float32(2.0f));
__ vdup(Neon32, q0, d2, 0);
__ vmov(s4, Float32(1.5f));
__ vdup(Neon32, q1, d2, 0);
__ vrecps(q1, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrecps))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vrsqrte.
__ vmov(s4, Float32(4.0f));
__ vdup(Neon32, q0, d2, 0);
__ vrsqrte(q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrsqrte))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vrsqrts.
__ vmov(s4, Float32(2.0f));
__ vdup(Neon32, q0, d2, 0);
__ vmov(s4, Float32(2.5f));
__ vdup(Neon32, q1, d2, 0);
__ vrsqrts(q1, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrsqrts))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vceq (float).
__ vmov(s4, Float32(1.0f));
__ vdup(Neon32, q0, d2, 0);
__ vdup(Neon32, q1, d2, 0);
__ vceq(q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vceqf))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vcge (float).
__ vmov(s0, Float32(1.0f));
__ vmov(s1, Float32(-1.0f));
__ vmov(s2, Float32(-0.0f));
__ vmov(s3, Float32(0.0f));
__ vdup(Neon32, q1, d1, 1);
__ vcge(q2, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgef))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ vcgt(q2, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgtf))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
// vmin/vmax integer.
__ mov(r4, Operand(0x03));
__ vdup(Neon16, q0, r4);
__ vdup(Neon8, q1, r4);
__ vmin(NeonS8, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmin_s8))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ vmax(NeonS8, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmax_s8))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ mov(r4, Operand(0xFF));
__ vdup(Neon16, q0, r4);
__ vdup(Neon8, q1, r4);
__ vmin(NeonU16, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmin_u16))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ vmax(NeonU16, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmax_u16))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ mov(r4, Operand(0xFF));
__ vdup(Neon32, q0, r4);
__ vdup(Neon8, q1, r4);
__ vmin(NeonS32, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmin_s32))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ vmax(NeonS32, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmax_s32))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
// vpadd integer.
__ mov(r4, Operand(0x03));
__ vdup(Neon16, q0, r4);
__ vdup(Neon8, q1, r4);
__ vpadd(Neon8, d0, d0, d2);
__ vstr(d0, r0, offsetof(T, vpadd_i8));
__ vpadd(Neon16, d0, d0, d2);
__ vstr(d0, r0, offsetof(T, vpadd_i16));
__ vpadd(Neon32, d0, d0, d2);
__ vstr(d0, r0, offsetof(T, vpadd_i32));
// vpmin/vpmax integer.
__ mov(r4, Operand(0x03));
__ vdup(Neon16, q0, r4);
__ vdup(Neon8, q1, r4);
__ vpmin(NeonS8, d4, d0, d2);
__ vstr(d4, r0, offsetof(T, vpmin_s8));
__ vpmax(NeonS8, d4, d0, d2);
__ vstr(d4, r0, offsetof(T, vpmax_s8));
__ mov(r4, Operand(0xFFFF));
__ vdup(Neon32, q0, r4);
__ vdup(Neon16, q1, r4);
__ vpmin(NeonU16, d4, d0, d2);
__ vstr(d4, r0, offsetof(T, vpmin_u16));
__ vpmax(NeonU16, d4, d0, d2);
__ vstr(d4, r0, offsetof(T, vpmax_u16));
__ mov(r4, Operand(0xFF));
__ veor(q0, q0, q0);
__ vmov(s0, r4);
__ vdup(Neon8, q1, r4);
__ vpmin(NeonS32, d4, d0, d2);
__ vstr(d4, r0, offsetof(T, vpmin_s32));
__ vpmax(NeonS32, d4, d0, d2);
__ vstr(d4, r0, offsetof(T, vpmax_s32));
// vadd (integer).
__ mov(r4, Operand(0x81));
__ vdup(Neon8, q0, r4);
__ mov(r4, Operand(0x82));
__ vdup(Neon8, q1, r4);
__ vadd(Neon8, q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vadd8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x8001));
__ vdup(Neon16, q0, r4);
__ mov(r4, Operand(0x8002));
__ vdup(Neon16, q1, r4);
__ vadd(Neon16, q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vadd16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x80000001));
__ vdup(Neon32, q0, r4);
__ mov(r4, Operand(0x80000002));
__ vdup(Neon32, q1, r4);
__ vadd(Neon32, q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vadd32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vqadd.
__ mov(r4, Operand(0x81));
__ vdup(Neon8, q0, r4);
__ mov(r4, Operand(0x82));
__ vdup(Neon8, q1, r4);
__ vqadd(NeonS8, q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqadd_s8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x8000));
__ vdup(Neon16, q0, r4);
__ vdup(Neon16, q1, r4);
__ vqadd(NeonU16, q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqadd_u16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x80000001));
__ vdup(Neon32, q0, r4);
__ mov(r4, Operand(0x80000002));
__ vdup(Neon32, q1, r4);
__ vqadd(NeonS32, q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqadd_s32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vsub (integer).
__ mov(r4, Operand(0x01));
__ vdup(Neon8, q0, r4);
__ mov(r4, Operand(0x03));
__ vdup(Neon8, q1, r4);
__ vsub(Neon8, q1, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vsub8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x0001));
__ vdup(Neon16, q0, r4);
__ mov(r4, Operand(0x0003));
__ vdup(Neon16, q1, r4);
__ vsub(Neon16, q1, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vsub16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x00000001));
__ vdup(Neon32, q0, r4);
__ mov(r4, Operand(0x00000003));
__ vdup(Neon32, q1, r4);
__ vsub(Neon32, q1, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vsub32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vqsub.
__ mov(r4, Operand(0x7F));
__ vdup(Neon8, q0, r4);
__ mov(r4, Operand(0x3F));
__ vdup(Neon8, q1, r4);
__ vqsub(NeonU8, q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqsub_u8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x8000));
__ vdup(Neon16, q0, r4);
__ mov(r4, Operand(0x7FFF));
__ vdup(Neon16, q1, r4);
__ vqsub(NeonS16, q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqsub_s16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x80000001));
__ vdup(Neon32, q0, r4);
__ mov(r4, Operand(0x80000000));
__ vdup(Neon32, q1, r4);
__ vqsub(NeonU32, q1, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqsub_u32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vmul (integer).
__ mov(r4, Operand(0x02));
__ vdup(Neon8, q0, r4);
__ vmul(Neon8, q1, q0, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmul8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x0002));
__ vdup(Neon16, q0, r4);
__ vmul(Neon16, q1, q0, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmul16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ mov(r4, Operand(0x00000002));
__ vdup(Neon32, q0, r4);
__ vmul(Neon32, q1, q0, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmul32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vshl.
__ mov(r4, Operand(0x55));
__ vdup(Neon8, q0, r4);
__ vshl(NeonS8, q1, q0, 1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshl8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vshl(NeonU16, q1, q0, 9);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshl16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vshl(NeonS32, q1, q0, 17);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshl32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vshr.s, vshr.u.
__ mov(r4, Operand(0x80));
__ vdup(Neon8, q0, r4);
__ vshr(NeonS8, q1, q0, 1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshr_s8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vshr(NeonU16, q1, q0, 9);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshr_u16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vshr(NeonS32, q1, q0, 17);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshr_s32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vsli, vsri.
__ mov(r4, Operand(0xFFFFFFFF));
__ mov(r5, Operand(0x1));
__ vmov(d0, r4, r5);
__ vmov(d1, r5, r5);
__ vsli(Neon64, d1, d0, 32);
__ vstr(d1, r0, offsetof(T, vsli_64));
__ vmov(d0, r5, r4);
__ vmov(d1, r5, r5);
__ vsri(Neon64, d1, d0, 32);
__ vstr(d1, r0, offsetof(T, vsri_64));
__ vmov(d0, r4, r5);
__ vmov(d1, r5, r5);
__ vsli(Neon32, d1, d0, 16);
__ vstr(d1, r0, offsetof(T, vsli_32));
__ vmov(d0, r5, r4);
__ vmov(d1, r5, r5);
__ vsri(Neon32, d1, d0, 16);
__ vstr(d1, r0, offsetof(T, vsri_32));
// vceq.
__ mov(r4, Operand(0x03));
__ vdup(Neon8, q0, r4);
__ vdup(Neon16, q1, r4);
__ vceq(Neon8, q1, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vceq))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vcge/vcgt (integer).
__ mov(r4, Operand(0x03));
__ vdup(Neon16, q0, r4);
__ vdup(Neon8, q1, r4);
__ vcge(NeonS8, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcge_s8))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ vcgt(NeonS8, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgt_s8))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ mov(r4, Operand(0xFF));
__ vdup(Neon16, q0, r4);
__ vdup(Neon8, q1, r4);
__ vcge(NeonU16, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcge_u16))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ vcgt(NeonU16, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgt_u16))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ mov(r4, Operand(0xFF));
__ vdup(Neon32, q0, r4);
__ vdup(Neon8, q1, r4);
__ vcge(NeonS32, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcge_s32))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
__ vcgt(NeonS32, q2, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgt_s32))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
// vtst.
__ mov(r4, Operand(0x03));
__ vdup(Neon8, q0, r4);
__ mov(r4, Operand(0x02));
__ vdup(Neon16, q1, r4);
__ vtst(Neon8, q1, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtst))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vbsl.
__ mov(r4, Operand(0x00FF));
__ vdup(Neon16, q0, r4);
__ mov(r4, Operand(0x01));
__ vdup(Neon8, q1, r4);
__ mov(r4, Operand(0x02));
__ vdup(Neon8, q2, r4);
__ vbsl(q0, q1, q2);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vbsl))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
// vext.
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vext(q2, q0, q1, 3);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vext))));
__ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4));
// vzip (q-register).
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vzip(Neon8, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip8a))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip8b))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vzip(Neon16, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip16a))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip16b))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vzip(Neon32, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip32a))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip32b))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vzip (d-register).
__ vldr(d2, r0, offsetof(T, lane_test));
__ vmov(d0, d2);
__ vmov(d1, d2);
__ vzip(Neon8, d0, d1);
__ vstr(d0, r0, offsetof(T, vzipd8a));
__ vstr(d1, r0, offsetof(T, vzipd8b));
__ vmov(d0, d2);
__ vmov(d1, d2);
__ vzip(Neon16, d0, d1);
__ vstr(d0, r0, offsetof(T, vzipd16a));
__ vstr(d1, r0, offsetof(T, vzipd16b));
// vuzp (q-register).
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vuzp(Neon8, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp8a))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp8b))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vuzp(Neon16, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp16a))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp16b))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vuzp(Neon32, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp32a))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp32b))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vuzp (d-register).
__ vldr(d2, r0, offsetof(T, lane_test));
__ vmov(d0, d2);
__ vmov(d1, d2);
__ vuzp(Neon8, d0, d1);
__ vstr(d0, r0, offsetof(T, vuzpd8a));
__ vstr(d1, r0, offsetof(T, vuzpd8b));
__ vmov(d0, d2);
__ vmov(d1, d2);
__ vuzp(Neon16, d0, d1);
__ vstr(d0, r0, offsetof(T, vuzpd16a));
__ vstr(d1, r0, offsetof(T, vuzpd16b));
// vtrn (q-register).
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vtrn(Neon8, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn8a))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn8b))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vtrn(Neon16, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn16a))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn16b))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vmov(q1, q0);
__ vtrn(Neon32, q0, q1);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn32a))));
__ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn32b))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vtrn (d-register).
__ vldr(d2, r0, offsetof(T, lane_test));
__ vmov(d0, d2);
__ vmov(d1, d2);
__ vtrn(Neon8, d0, d1);
__ vstr(d0, r0, offsetof(T, vtrnd8a));
__ vstr(d1, r0, offsetof(T, vtrnd8b));
__ vmov(d0, d2);
__ vmov(d1, d2);
__ vtrn(Neon16, d0, d1);
__ vstr(d0, r0, offsetof(T, vtrnd16a));
__ vstr(d1, r0, offsetof(T, vtrnd16b));
__ vmov(d0, d2);
__ vmov(d1, d2);
__ vtrn(Neon32, d0, d1);
__ vstr(d0, r0, offsetof(T, vtrnd32a));
__ vstr(d1, r0, offsetof(T, vtrnd32b));
// vrev64/32/16
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test))));
__ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4));
__ vrev64(Neon32, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev64_32))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vrev64(Neon16, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev64_16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vrev64(Neon8, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev64_8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vrev32(Neon16, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev32_16))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vrev32(Neon8, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev32_8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
__ vrev16(Neon8, q1, q0);
__ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev16_8))));
__ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4));
// vtb[l/x].
__ mov(r4, Operand(0x06040200));
__ mov(r5, Operand(0xFF050301));
__ vmov(d2, r4, r5); // d2 = ff05030106040200
__ vtbl(d0, NeonListOperand(d2, 1), d2);
__ vstr(d0, r0, offsetof(T, vtbl));
__ vtbx(d2, NeonListOperand(d2, 1), d2);
__ vstr(d2, r0, offsetof(T, vtbx));
// Restore and return.
__ ldm(ia_w, sp, r4.bit() | r5.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
t.src0 = 0x01020304;
t.src1 = 0x11121314;
t.src2 = 0x21222324;
t.src3 = 0x31323334;
t.src4 = 0x41424344;
t.src5 = 0x51525354;
t.src6 = 0x61626364;
t.src7 = 0x71727374;
t.dst0 = 0;
t.dst1 = 0;
t.dst2 = 0;
t.dst3 = 0;
t.dst4 = 0;
t.dst5 = 0;
t.dst6 = 0;
t.dst7 = 0;
t.srcA0 = 0x41424344;
t.srcA1 = 0x81828384;
t.dstA0 = 0;
t.dstA1 = 0;
t.dstA2 = 0;
t.dstA3 = 0;
t.lane_test[0] = 0x03020100;
t.lane_test[1] = 0x07060504;
t.lane_test[2] = 0x0B0A0908;
t.lane_test[3] = 0x0F0E0D0C;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(0x01020304u, t.dst0);
CHECK_EQ(0x11121314u, t.dst1);
CHECK_EQ(0x21222324u, t.dst2);
CHECK_EQ(0x31323334u, t.dst3);
CHECK_EQ(0x41424344u, t.dst4);
CHECK_EQ(0x51525354u, t.dst5);
CHECK_EQ(0x61626364u, t.dst6);
CHECK_EQ(0x71727374u, t.dst7);
CHECK_EQ(0x00430044u, t.dstA0);
CHECK_EQ(0x00410042u, t.dstA1);
CHECK_EQ(0x00830084u, t.dstA2);
CHECK_EQ(0x00810082u, t.dstA3);
CHECK_EQ_32X4(vmovl_s8, 0x00430044u, 0x00410042u, 0xFF83FF84u, 0xFF81FF82u);
CHECK_EQ_32X4(vmovl_u16, 0xFF84u, 0xFF83u, 0xFF82u, 0xFF81u);
CHECK_EQ_32X4(vmovl_s32, 0xFF84u, 0x0u, 0xFF83u, 0x0u);
CHECK_EQ_32X2(vqmovn_u16, 0xFF83FF84u, 0xFF81FF82u);
CHECK_EQ_32X2(vqmovn_s8, 0x81828384u, 0x81828384u);
CHECK_EQ_32X2(vqmovn_s32, 0xFF84u, 0xFF83u);
CHECK_EQ(0xFFFFFFF8FFF8F800u, t.vmov_to_scalar1);
CHECK_EQ(0xFFF80000F8000000u, t.vmov_to_scalar2);
CHECK_EQ(0xFFFFFFFFu, t.vmov_from_scalar_s8);
CHECK_EQ(0xFFu, t.vmov_from_scalar_u8);
CHECK_EQ(0xFFFFFFFFu, t.vmov_from_scalar_s16);
CHECK_EQ(0xFFFFu, t.vmov_from_scalar_u16);
CHECK_EQ(0xFFFFFFFFu, t.vmov_from_scalar_32);
CHECK_EQ_32X4(vmov, 0x03020100u, 0x07060504u, 0x0B0A0908u, 0x0F0E0D0Cu);
CHECK_EQ_32X4(vmvn, 0xFCFDFEFFu, 0xF8F9FAFBu, 0xF4F5F6F7u, 0xF0F1F2F3u);
CHECK_EQ_SPLAT(vdup8, 0x0A0A0A0Au);
CHECK_EQ_SPLAT(vdup16, 0x000A000Au);
CHECK_EQ_SPLAT(vdup32, 0x0000000Au);
CHECK_EQ_SPLAT(vdupf, -1.0); // bit pattern is 0xBF800000.
CHECK_EQ_32X2(vdupf_16, 0xBF80BF80u, 0xBF80BF80u);
CHECK_EQ_SPLAT(vdupf_8, 0xBFBFBFBFu);
// src: [-1, -1, 1, 1]
CHECK_EQ_32X4(vcvt_s32_f32, -1, -1, 1, 1);
CHECK_EQ_32X4(vcvt_u32_f32, 0u, 0u, 1u, 1u);
// src: [kMinInt, kMaxInt, kMaxUInt32, kMinInt + 1]
CHECK_EQ_32X4(vcvt_f32_s32, INT32_TO_FLOAT(kMinInt),
INT32_TO_FLOAT(kMaxInt), INT32_TO_FLOAT(kMaxUInt32),
INT32_TO_FLOAT(kMinInt + 1));
CHECK_EQ_32X4(vcvt_f32_u32, UINT32_TO_FLOAT(kMinInt),
UINT32_TO_FLOAT(kMaxInt), UINT32_TO_FLOAT(kMaxUInt32),
UINT32_TO_FLOAT(kMinInt + 1));
CHECK_EQ_32X4(vabsf, 1.0, 0.0, 0.0, 1.0);
CHECK_EQ_32X4(vnegf, 1.0, 0.0, -0.0, -1.0);
// src: [0x7F7F7F7F, 0x01010101, 0xFFFFFFFF, 0x80808080]
CHECK_EQ_32X4(vabs_s8, 0x7F7F7F7Fu, 0x01010101u, 0x01010101u, 0x80808080u);
CHECK_EQ_32X4(vabs_s16, 0x7F7F7F7Fu, 0x01010101u, 0x00010001u, 0x7F807F80u);
CHECK_EQ_32X4(vabs_s32, 0x7F7F7F7Fu, 0x01010101u, 0x00000001u, 0x7F7F7F80u);
CHECK_EQ_32X4(vneg_s8, 0x81818181u, 0xFFFFFFFFu, 0x01010101u, 0x80808080u);
CHECK_EQ_32X4(vneg_s16, 0x80818081u, 0xFEFFFEFFu, 0x00010001u, 0x7F807F80u);
CHECK_EQ_32X4(vneg_s32, 0x80808081u, 0xFEFEFEFFu, 0x00000001u, 0x7F7F7F80u);
CHECK_EQ_SPLAT(veor, 0x00FF00FFu);
CHECK_EQ_SPLAT(vand, 0x00FE00FEu);
CHECK_EQ_SPLAT(vorr, 0x00FF00FFu);
CHECK_EQ_SPLAT(vaddf, 2.0);
CHECK_EQ_32X2(vpaddf, 3.0, 7.0);
CHECK_EQ_SPLAT(vminf, 1.0);
CHECK_EQ_SPLAT(vmaxf, 2.0);
CHECK_EQ_SPLAT(vsubf, -1.0);
CHECK_EQ_SPLAT(vmulf, 4.0);
CHECK_ESTIMATE_SPLAT(vrecpe, 0.5f, 0.1f); // 1 / 2
CHECK_EQ_SPLAT(vrecps, -1.0f); // 2 - (2 * 1.5)
CHECK_ESTIMATE_SPLAT(vrsqrte, 0.5f, 0.1f); // 1 / sqrt(4)
CHECK_EQ_SPLAT(vrsqrts, -1.0f); // (3 - (2 * 2.5)) / 2
CHECK_EQ_SPLAT(vceqf, 0xFFFFFFFFu);
// [0] >= [-1, 1, -0, 0]
CHECK_EQ_32X4(vcgef, 0u, 0xFFFFFFFFu, 0xFFFFFFFFu, 0xFFFFFFFFu);
CHECK_EQ_32X4(vcgtf, 0u, 0xFFFFFFFFu, 0u, 0u);
// [0, 3, 0, 3, ...] and [3, 3, 3, 3, ...]
CHECK_EQ_SPLAT(vmin_s8, 0x00030003u);
CHECK_EQ_SPLAT(vmax_s8, 0x03030303u);
// [0x00FF, 0x00FF, ...] and [0xFFFF, 0xFFFF, ...]
CHECK_EQ_SPLAT(vmin_u16, 0x00FF00FFu);
CHECK_EQ_SPLAT(vmax_u16, 0xFFFFFFFFu);
// [0x000000FF, 0x000000FF, ...] and [0xFFFFFFFF, 0xFFFFFFFF, ...]
CHECK_EQ_SPLAT(vmin_s32, 0xFFFFFFFFu);
CHECK_EQ_SPLAT(vmax_s32, 0xFFu);
// [0, 3, 0, 3, ...] and [3, 3, 3, 3, ...]
CHECK_EQ_32X2(vpadd_i8, 0x03030303u, 0x06060606u);
CHECK_EQ_32X2(vpadd_i16, 0x0C0C0606u, 0x06060606u);
CHECK_EQ_32X2(vpadd_i32, 0x12120C0Cu, 0x06060606u);
CHECK_EQ_32X2(vpmin_s8, 0x00000000u, 0x03030303u);
CHECK_EQ_32X2(vpmax_s8, 0x03030303u, 0x03030303u);
// [0, ffff, 0, ffff] and [ffff, ffff]
CHECK_EQ_32X2(vpmin_u16, 0x00000000u, 0xFFFFFFFFu);
CHECK_EQ_32X2(vpmax_u16, 0xFFFFFFFFu, 0xFFFFFFFFu);
// [0x000000FF, 0x00000000u] and [0xFFFFFFFF, 0xFFFFFFFF, ...]
CHECK_EQ_32X2(vpmin_s32, 0x00u, 0xFFFFFFFFu);
CHECK_EQ_32X2(vpmax_s32, 0xFFu, 0xFFFFFFFFu);
CHECK_EQ_SPLAT(vadd8, 0x03030303u);
CHECK_EQ_SPLAT(vadd16, 0x00030003u);
CHECK_EQ_SPLAT(vadd32, 0x00000003u);
CHECK_EQ_SPLAT(vqadd_s8, 0x80808080u);
CHECK_EQ_SPLAT(vqadd_u16, 0xFFFFFFFFu);
CHECK_EQ_SPLAT(vqadd_s32, 0x80000000u);
CHECK_EQ_SPLAT(vqsub_u8, 0x00000000u);
CHECK_EQ_SPLAT(vqsub_s16, 0x7FFF7FFFu);
CHECK_EQ_SPLAT(vqsub_u32, 0x00000000u);
CHECK_EQ_SPLAT(vsub8, 0xFEFEFEFEu);
CHECK_EQ_SPLAT(vsub16, 0xFFFEFFFEu);
CHECK_EQ_SPLAT(vsub32, 0xFFFFFFFEu);
CHECK_EQ_SPLAT(vmul8, 0x04040404u);
CHECK_EQ_SPLAT(vmul16, 0x00040004u);
CHECK_EQ_SPLAT(vmul32, 0x00000004u);
CHECK_EQ_SPLAT(vshl8, 0xAAAAAAAAu);
CHECK_EQ_SPLAT(vshl16, 0xAA00AA00u);
CHECK_EQ_SPLAT(vshl32, 0xAAAA0000u);
CHECK_EQ_SPLAT(vshr_s8, 0xC0C0C0C0u);
CHECK_EQ_SPLAT(vshr_u16, 0x00400040u);
CHECK_EQ_SPLAT(vshr_s32, 0xFFFFC040u);
CHECK_EQ_32X2(vsli_64, 0x01u, 0xFFFFFFFFu);
CHECK_EQ_32X2(vsri_64, 0xFFFFFFFFu, 0x01u);
CHECK_EQ_32X2(vsli_32, 0xFFFF0001u, 0x00010001u);
CHECK_EQ_32X2(vsri_32, 0x00000000u, 0x0000FFFFu);
CHECK_EQ_SPLAT(vceq, 0x00FF00FFu);
// [0, 3, 0, 3, ...] >= [3, 3, 3, 3, ...]
CHECK_EQ_SPLAT(vcge_s8, 0x00FF00FFu);
CHECK_EQ_SPLAT(vcgt_s8, 0u);
// [0x00FF, 0x00FF, ...] >= [0xFFFF, 0xFFFF, ...]
CHECK_EQ_SPLAT(vcge_u16, 0u);
CHECK_EQ_SPLAT(vcgt_u16, 0u);
// [0x000000FF, 0x000000FF, ...] >= [0xFFFFFFFF, 0xFFFFFFFF, ...]
CHECK_EQ_SPLAT(vcge_s32, 0xFFFFFFFFu);
CHECK_EQ_SPLAT(vcgt_s32, 0xFFFFFFFFu);
CHECK_EQ_SPLAT(vtst, 0x00FF00FFu);
CHECK_EQ_SPLAT(vbsl, 0x02010201u);
CHECK_EQ_32X4(vext, 0x06050403u, 0x0A090807u, 0x0E0D0C0Bu, 0x0201000Fu);
CHECK_EQ_32X4(vzip8a, 0x01010000u, 0x03030202u, 0x05050404u, 0x07070606u);
CHECK_EQ_32X4(vzip8b, 0x09090808u, 0x0B0B0A0Au, 0x0D0D0C0Cu, 0x0F0F0E0Eu);
CHECK_EQ_32X4(vzip16a, 0x01000100u, 0x03020302u, 0x05040504u, 0x07060706u);
CHECK_EQ_32X4(vzip16b, 0x09080908u, 0x0B0A0B0Au, 0x0D0C0D0Cu, 0x0F0E0F0Eu);
CHECK_EQ_32X4(vzip32a, 0x03020100u, 0x03020100u, 0x07060504u, 0x07060504u);
CHECK_EQ_32X4(vzip32b, 0x0B0A0908u, 0x0B0A0908u, 0x0F0E0D0Cu, 0x0F0E0D0Cu);
CHECK_EQ_32X2(vzipd8a, 0x01010000u, 0x03030202u);
CHECK_EQ_32X2(vzipd8b, 0x05050404u, 0x07070606u);
CHECK_EQ_32X2(vzipd16a, 0x01000100u, 0x03020302u);
CHECK_EQ_32X2(vzipd16b, 0x05040504u, 0x07060706u);
CHECK_EQ_32X4(vuzp8a, 0x06040200u, 0x0E0C0A08u, 0x06040200u, 0x0E0C0A08u);
CHECK_EQ_32X4(vuzp8b, 0x07050301u, 0x0F0D0B09u, 0x07050301u, 0x0F0D0B09u);
CHECK_EQ_32X4(vuzp16a, 0x05040100u, 0x0D0C0908u, 0x05040100u, 0x0D0C0908u);
CHECK_EQ_32X4(vuzp16b, 0x07060302u, 0x0F0E0B0Au, 0x07060302u, 0x0F0E0B0Au);
CHECK_EQ_32X4(vuzp32a, 0x03020100u, 0x0B0A0908u, 0x03020100u, 0x0B0A0908u);
CHECK_EQ_32X4(vuzp32b, 0x07060504u, 0x0F0E0D0Cu, 0x07060504u, 0x0F0E0D0Cu);
CHECK_EQ_32X2(vuzpd8a, 0x06040200u, 0x06040200u);
CHECK_EQ_32X2(vuzpd8b, 0x07050301u, 0x07050301u);
CHECK_EQ_32X2(vuzpd16a, 0x05040100u, 0x05040100u);
CHECK_EQ_32X2(vuzpd16b, 0x07060302u, 0x07060302u);
CHECK_EQ_32X4(vtrn8a, 0x02020000u, 0x06060404u, 0x0A0A0808u, 0x0E0E0C0Cu);
CHECK_EQ_32X4(vtrn8b, 0x03030101u, 0x07070505u, 0x0B0B0909u, 0x0F0F0D0Du);
CHECK_EQ_32X4(vtrn16a, 0x01000100u, 0x05040504u, 0x09080908u, 0x0D0C0D0Cu);
CHECK_EQ_32X4(vtrn16b, 0x03020302u, 0x07060706u, 0x0B0A0B0Au, 0x0F0E0F0Eu);
CHECK_EQ_32X4(vtrn32a, 0x03020100u, 0x03020100u, 0x0B0A0908u, 0x0B0A0908u);
CHECK_EQ_32X4(vtrn32b, 0x07060504u, 0x07060504u, 0x0F0E0D0Cu, 0x0F0E0D0Cu);
CHECK_EQ_32X2(vtrnd8a, 0x02020000u, 0x06060404u);
CHECK_EQ_32X2(vtrnd8b, 0x03030101u, 0x07070505u);
CHECK_EQ_32X2(vtrnd16a, 0x01000100u, 0x05040504u);
CHECK_EQ_32X2(vtrnd16b, 0x03020302u, 0x07060706u);
CHECK_EQ_32X2(vtrnd32a, 0x03020100u, 0x03020100u);
CHECK_EQ_32X2(vtrnd32b, 0x07060504u, 0x07060504u);
// src: 0 1 2 3 4 5 6 7 8 9 a b c d e f (little endian)
CHECK_EQ_32X4(vrev64_32, 0x07060504u, 0x03020100u, 0x0F0E0D0Cu,
0x0B0A0908u);
CHECK_EQ_32X4(vrev64_16, 0x05040706u, 0x01000302u, 0x0D0C0F0Eu,
0x09080B0Au);
CHECK_EQ_32X4(vrev64_8, 0x04050607u, 0x00010203u, 0x0C0D0E0Fu, 0x08090A0Bu);
CHECK_EQ_32X4(vrev32_16, 0x01000302u, 0x05040706u, 0x09080B0Au,
0x0D0C0F0Eu);
CHECK_EQ_32X4(vrev32_8, 0x00010203u, 0x04050607u, 0x08090A0Bu, 0x0C0D0E0Fu);
CHECK_EQ_32X4(vrev16_8, 0x02030001u, 0x06070405u, 0x0A0B0809u, 0x0E0F0C0Du);
CHECK_EQ(0x05010400u, t.vtbl[0]);
CHECK_EQ(0x00030602u, t.vtbl[1]);
CHECK_EQ(0x05010400u, t.vtbx[0]);
CHECK_EQ(0xFF030602u, t.vtbx[1]);
}
}
TEST(16) {
// Test the pkh, uxtb, uxtab and uxtb16 instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
uint32_t src0;
uint32_t src1;
uint32_t src2;
uint32_t dst0;
uint32_t dst1;
uint32_t dst2;
uint32_t dst3;
uint32_t dst4;
};
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles and floats.
Assembler assm(AssemblerOptions{});
__ stm(db_w, sp, r4.bit() | lr.bit());
__ mov(r4, Operand(r0));
__ ldr(r0, MemOperand(r4, offsetof(T, src0)));
__ ldr(r1, MemOperand(r4, offsetof(T, src1)));
__ pkhbt(r2, r0, Operand(r1, LSL, 8));
__ str(r2, MemOperand(r4, offsetof(T, dst0)));
__ pkhtb(r2, r0, Operand(r1, ASR, 8));
__ str(r2, MemOperand(r4, offsetof(T, dst1)));
__ uxtb16(r2, r0, 8);
__ str(r2, MemOperand(r4, offsetof(T, dst2)));
__ uxtb(r2, r0, 8);
__ str(r2, MemOperand(r4, offsetof(T, dst3)));
__ ldr(r0, MemOperand(r4, offsetof(T, src2)));
__ uxtab(r2, r0, r1, 8);
__ str(r2, MemOperand(r4, offsetof(T, dst4)));
__ ldm(ia_w, sp, r4.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
t.src0 = 0x01020304;
t.src1 = 0x11121314;
t.src2 = 0x11121300;
t.dst0 = 0;
t.dst1 = 0;
t.dst2 = 0;
t.dst3 = 0;
t.dst4 = 0;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(0x12130304u, t.dst0);
CHECK_EQ(0x01021213u, t.dst1);
CHECK_EQ(0x00010003u, t.dst2);
CHECK_EQ(0x00000003u, t.dst3);
CHECK_EQ(0x11121313u, t.dst4);
}
TEST(17) {
// Test generating labels at high addresses.
// Should not assert.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
// Generate a code segment that will be longer than 2^24 bytes.
Assembler assm(AssemblerOptions{});
for (size_t i = 0; i < 1 << 23 ; ++i) { // 2^23
__ nop();
}
Label target;
__ b(eq, &target);
__ bind(&target);
__ nop();
}
#define TEST_SDIV(expected_, dividend_, divisor_) \
t.dividend = dividend_; \
t.divisor = divisor_; \
t.result = 0; \
f.Call(&t, 0, 0, 0, 0); \
CHECK_EQ(expected_, t.result);
TEST(sdiv) {
// Test the sdiv.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
struct T {
int32_t dividend;
int32_t divisor;
int32_t result;
} t;
if (CpuFeatures::IsSupported(SUDIV)) {
CpuFeatureScope scope(&assm, SUDIV);
__ mov(r3, Operand(r0));
__ ldr(r0, MemOperand(r3, offsetof(T, dividend)));
__ ldr(r1, MemOperand(r3, offsetof(T, divisor)));
__ sdiv(r2, r0, r1);
__ str(r2, MemOperand(r3, offsetof(T, result)));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
TEST_SDIV(0, kMinInt, 0);
TEST_SDIV(0, 1024, 0);
TEST_SDIV(1073741824, kMinInt, -2);
TEST_SDIV(kMinInt, kMinInt, -1);
TEST_SDIV(5, 10, 2);
TEST_SDIV(3, 10, 3);
TEST_SDIV(-5, 10, -2);
TEST_SDIV(-3, 10, -3);
TEST_SDIV(-5, -10, 2);
TEST_SDIV(-3, -10, 3);
TEST_SDIV(5, -10, -2);
TEST_SDIV(3, -10, -3);
}
}
#undef TEST_SDIV
#define TEST_UDIV(expected_, dividend_, divisor_) \
t.dividend = dividend_; \
t.divisor = divisor_; \
t.result = 0; \
f.Call(&t, 0, 0, 0, 0); \
CHECK_EQ(expected_, t.result);
TEST(udiv) {
// Test the udiv.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
struct T {
uint32_t dividend;
uint32_t divisor;
uint32_t result;
} t;
if (CpuFeatures::IsSupported(SUDIV)) {
CpuFeatureScope scope(&assm, SUDIV);
__ mov(r3, Operand(r0));
__ ldr(r0, MemOperand(r3, offsetof(T, dividend)));
__ ldr(r1, MemOperand(r3, offsetof(T, divisor)));
__ sdiv(r2, r0, r1);
__ str(r2, MemOperand(r3, offsetof(T, result)));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
TEST_UDIV(0u, 0, 0);
TEST_UDIV(0u, 1024, 0);
TEST_UDIV(5u, 10, 2);
TEST_UDIV(3u, 10, 3);
}
}
#undef TEST_UDIV
TEST(smmla) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ smmla(r1, r1, r2, r3);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt(), y = rng->NextInt(), z = rng->NextInt();
f.Call(&r, x, y, z, 0);
CHECK_EQ(base::bits::SignedMulHighAndAdd32(x, y, z), r);
}
}
TEST(smmul) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ smmul(r1, r1, r2);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt(), y = rng->NextInt();
f.Call(&r, x, y, 0, 0);
CHECK_EQ(base::bits::SignedMulHigh32(x, y), r);
}
}
TEST(sxtb) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ sxtb(r1, r1);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt();
f.Call(&r, x, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(static_cast<int8_t>(x)), r);
}
}
TEST(sxtab) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ sxtab(r1, r2, r1);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt(), y = rng->NextInt();
f.Call(&r, x, y, 0, 0);
CHECK_EQ(static_cast<int32_t>(static_cast<int8_t>(x)) + y, r);
}
}
TEST(sxth) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ sxth(r1, r1);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt();
f.Call(&r, x, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(static_cast<int16_t>(x)), r);
}
}
TEST(sxtah) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ sxtah(r1, r2, r1);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt(), y = rng->NextInt();
f.Call(&r, x, y, 0, 0);
CHECK_EQ(static_cast<int32_t>(static_cast<int16_t>(x)) + y, r);
}
}
TEST(uxtb) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ uxtb(r1, r1);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt();
f.Call(&r, x, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(static_cast<uint8_t>(x)), r);
}
}
TEST(uxtab) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ uxtab(r1, r2, r1);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt(), y = rng->NextInt();
f.Call(&r, x, y, 0, 0);
CHECK_EQ(static_cast<int32_t>(static_cast<uint8_t>(x)) + y, r);
}
}
TEST(uxth) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ uxth(r1, r1);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt();
f.Call(&r, x, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(static_cast<uint16_t>(x)), r);
}
}
TEST(uxtah) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
RandomNumberGenerator* const rng = isolate->random_number_generator();
Assembler assm(AssemblerOptions{});
__ uxtah(r1, r2, r1);
__ str(r1, MemOperand(r0));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
for (size_t i = 0; i < 128; ++i) {
int32_t r, x = rng->NextInt(), y = rng->NextInt();
f.Call(&r, x, y, 0, 0);
CHECK_EQ(static_cast<int32_t>(static_cast<uint16_t>(x)) + y, r);
}
}
#define TEST_RBIT(expected_, input_) \
t.input = input_; \
t.result = 0; \
f.Call(&t, 0, 0, 0, 0); \
CHECK_EQ(static_cast<uint32_t>(expected_), t.result);
TEST(rbit) {
CcTest::InitializeVM();
Isolate* const isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(ARMv7)) {
CpuFeatureScope scope(&assm, ARMv7);
struct T {
uint32_t input;
uint32_t result;
};
T t;
__ ldr(r1, MemOperand(r0, offsetof(T, input)));
__ rbit(r1, r1);
__ str(r1, MemOperand(r0, offsetof(T, result)));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
TEST_RBIT(0xFFFFFFFF, 0xFFFFFFFF);
TEST_RBIT(0x00000000, 0x00000000);
TEST_RBIT(0xFFFF0000, 0x0000FFFF);
TEST_RBIT(0xFF00FF00, 0x00FF00FF);
TEST_RBIT(0xF0F0F0F0, 0x0F0F0F0F);
TEST_RBIT(0x1E6A2C48, 0x12345678);
}
}
TEST(code_relative_offset) {
// Test extracting the offset of a label from the beginning of the code
// in a register.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
// Initialize a code object that will contain the code.
Handle<HeapObject> code_object(ReadOnlyRoots(isolate).self_reference_marker(),
isolate);
Assembler assm(AssemblerOptions{});
Label start, target_away, target_faraway;
__ stm(db_w, sp, r4.bit() | r5.bit() | lr.bit());
// r3 is used as the address zero, the test will crash when we load it.
__ mov(r3, Operand::Zero());
// r5 will be a pointer to the start of the code.
__ mov(r5, Operand(code_object));
__ mov_label_offset(r4, &start);
__ mov_label_offset(r1, &target_faraway);
__ str(r1, MemOperand(sp, kPointerSize, NegPreIndex));
__ mov_label_offset(r1, &target_away);
// Jump straight to 'target_away' the first time and use the relative
// position the second time. This covers the case when extracting the
// position of a label which is linked.
__ mov(r2, Operand::Zero());
__ bind(&start);
__ cmp(r2, Operand::Zero());
__ b(eq, &target_away);
__ add(pc, r5, r1);
// Emit invalid instructions to push the label between 2^8 and 2^16
// instructions away. The test will crash if they are reached.
for (int i = 0; i < (1 << 10); i++) {
__ ldr(r3, MemOperand(r3));
}
__ bind(&target_away);
// This will be hit twice: r0 = r0 + 5 + 5.
__ add(r0, r0, Operand(5));
__ ldr(r1, MemOperand(sp, kPointerSize, PostIndex), ne);
__ add(pc, r5, r4, LeaveCC, ne);
__ mov(r2, Operand(1));
__ b(&start);
// Emit invalid instructions to push the label between 2^16 and 2^24
// instructions away. The test will crash if they are reached.
for (int i = 0; i < (1 << 21); i++) {
__ ldr(r3, MemOperand(r3));
}
__ bind(&target_faraway);
// r0 = r0 + 5 + 5 + 11
__ add(r0, r0, Operand(11));
__ ldm(ia_w, sp, r4.bit() | r5.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB)
.set_self_reference(code_object)
.Build();
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
int res = reinterpret_cast<int>(f.Call(21, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(42, res);
}
TEST(msr_mrs) {
// Test msr and mrs.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
// Create a helper function:
// void TestMsrMrs(uint32_t nzcv,
// uint32_t * result_conditionals,
// uint32_t * result_mrs);
__ msr(CPSR_f, Operand(r0));
// Test that the condition flags have taken effect.
__ mov(r3, Operand(0));
__ orr(r3, r3, Operand(1 << 31), LeaveCC, mi); // N
__ orr(r3, r3, Operand(1 << 30), LeaveCC, eq); // Z
__ orr(r3, r3, Operand(1 << 29), LeaveCC, cs); // C
__ orr(r3, r3, Operand(1 << 28), LeaveCC, vs); // V
__ str(r3, MemOperand(r1));
// Also check mrs, ignoring everything other than the flags.
__ mrs(r3, CPSR);
__ and_(r3, r3, Operand(kSpecialCondition));
__ str(r3, MemOperand(r2));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_ippii>::FromCode(*code);
#define CHECK_MSR_MRS(n, z, c, v) \
do { \
uint32_t nzcv = (n << 31) | (z << 30) | (c << 29) | (v << 28); \
uint32_t result_conditionals = -1; \
uint32_t result_mrs = -1; \
f.Call(nzcv, &result_conditionals, &result_mrs, 0, 0); \
CHECK_EQ(nzcv, result_conditionals); \
CHECK_EQ(nzcv, result_mrs); \
} while (0);
// N Z C V
CHECK_MSR_MRS(0, 0, 0, 0);
CHECK_MSR_MRS(0, 0, 0, 1);
CHECK_MSR_MRS(0, 0, 1, 0);
CHECK_MSR_MRS(0, 0, 1, 1);
CHECK_MSR_MRS(0, 1, 0, 0);
CHECK_MSR_MRS(0, 1, 0, 1);
CHECK_MSR_MRS(0, 1, 1, 0);
CHECK_MSR_MRS(0, 1, 1, 1);
CHECK_MSR_MRS(1, 0, 0, 0);
CHECK_MSR_MRS(1, 0, 0, 1);
CHECK_MSR_MRS(1, 0, 1, 0);
CHECK_MSR_MRS(1, 0, 1, 1);
CHECK_MSR_MRS(1, 1, 0, 0);
CHECK_MSR_MRS(1, 1, 0, 1);
CHECK_MSR_MRS(1, 1, 1, 0);
CHECK_MSR_MRS(1, 1, 1, 1);
#undef CHECK_MSR_MRS
}
TEST(ARMv8_float32_vrintX) {
// Test the vrintX floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
float input;
float ar;
float nr;
float mr;
float pr;
float zr;
};
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the floats.
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(ARMv8)) {
CpuFeatureScope scope(&assm, ARMv8);
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ mov(r4, Operand(r0));
// Test vrinta
__ vldr(s6, r4, offsetof(T, input));
__ vrinta(s5, s6);
__ vstr(s5, r4, offsetof(T, ar));
// Test vrintn
__ vldr(s6, r4, offsetof(T, input));
__ vrintn(s5, s6);
__ vstr(s5, r4, offsetof(T, nr));
// Test vrintp
__ vldr(s6, r4, offsetof(T, input));
__ vrintp(s5, s6);
__ vstr(s5, r4, offsetof(T, pr));
// Test vrintm
__ vldr(s6, r4, offsetof(T, input));
__ vrintm(s5, s6);
__ vstr(s5, r4, offsetof(T, mr));
// Test vrintz
__ vldr(s6, r4, offsetof(T, input));
__ vrintz(s5, s6);
__ vstr(s5, r4, offsetof(T, zr));
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
#define CHECK_VRINT(input_val, ares, nres, mres, pres, zres) \
t.input = input_val; \
f.Call(&t, 0, 0, 0, 0); \
CHECK_EQ(ares, t.ar); \
CHECK_EQ(nres, t.nr); \
CHECK_EQ(mres, t.mr); \
CHECK_EQ(pres, t.pr); \
CHECK_EQ(zres, t.zr);
CHECK_VRINT(-0.5, -1.0, -0.0, -1.0, -0.0, -0.0)
CHECK_VRINT(-0.6, -1.0, -1.0, -1.0, -0.0, -0.0)
CHECK_VRINT(-1.1, -1.0, -1.0, -2.0, -1.0, -1.0)
CHECK_VRINT(0.5, 1.0, 0.0, 0.0, 1.0, 0.0)
CHECK_VRINT(0.6, 1.0, 1.0, 0.0, 1.0, 0.0)
CHECK_VRINT(1.1, 1.0, 1.0, 1.0, 2.0, 1.0)
float inf = std::numeric_limits<float>::infinity();
CHECK_VRINT(inf, inf, inf, inf, inf, inf)
CHECK_VRINT(-inf, -inf, -inf, -inf, -inf, -inf)
CHECK_VRINT(-0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
// Check NaN propagation.
float nan = std::numeric_limits<float>::quiet_NaN();
t.input = nan;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.ar));
CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.nr));
CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.mr));
CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.pr));
CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.zr));
#undef CHECK_VRINT
}
}
TEST(ARMv8_vrintX) {
// Test the vrintX floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
double input;
double ar;
double nr;
double mr;
double pr;
double zr;
};
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles and floats.
Assembler assm(AssemblerOptions{});
if (CpuFeatures::IsSupported(ARMv8)) {
CpuFeatureScope scope(&assm, ARMv8);
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ mov(r4, Operand(r0));
// Test vrinta
__ vldr(d6, r4, offsetof(T, input));
__ vrinta(d5, d6);
__ vstr(d5, r4, offsetof(T, ar));
// Test vrintn
__ vldr(d6, r4, offsetof(T, input));
__ vrintn(d5, d6);
__ vstr(d5, r4, offsetof(T, nr));
// Test vrintp
__ vldr(d6, r4, offsetof(T, input));
__ vrintp(d5, d6);
__ vstr(d5, r4, offsetof(T, pr));
// Test vrintm
__ vldr(d6, r4, offsetof(T, input));
__ vrintm(d5, d6);
__ vstr(d5, r4, offsetof(T, mr));
// Test vrintz
__ vldr(d6, r4, offsetof(T, input));
__ vrintz(d5, d6);
__ vstr(d5, r4, offsetof(T, zr));
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
#define CHECK_VRINT(input_val, ares, nres, mres, pres, zres) \
t.input = input_val; \
f.Call(&t, 0, 0, 0, 0); \
CHECK_EQ(ares, t.ar); \
CHECK_EQ(nres, t.nr); \
CHECK_EQ(mres, t.mr); \
CHECK_EQ(pres, t.pr); \
CHECK_EQ(zres, t.zr);
CHECK_VRINT(-0.5, -1.0, -0.0, -1.0, -0.0, -0.0)
CHECK_VRINT(-0.6, -1.0, -1.0, -1.0, -0.0, -0.0)
CHECK_VRINT(-1.1, -1.0, -1.0, -2.0, -1.0, -1.0)
CHECK_VRINT(0.5, 1.0, 0.0, 0.0, 1.0, 0.0)
CHECK_VRINT(0.6, 1.0, 1.0, 0.0, 1.0, 0.0)
CHECK_VRINT(1.1, 1.0, 1.0, 1.0, 2.0, 1.0)
double inf = std::numeric_limits<double>::infinity();
CHECK_VRINT(inf, inf, inf, inf, inf, inf)
CHECK_VRINT(-inf, -inf, -inf, -inf, -inf, -inf)
CHECK_VRINT(-0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
// Check NaN propagation.
double nan = std::numeric_limits<double>::quiet_NaN();
t.input = nan;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.ar));
CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.nr));
CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.mr));
CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.pr));
CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.zr));
#undef CHECK_VRINT
}
}
TEST(ARMv8_vsel) {
// Test the vsel floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
// Used to indicate whether a condition passed or failed.
static constexpr float kResultPass = 1.0f;
static constexpr float kResultFail = -kResultPass;
struct ResultsF32 {
float vseleq_;
float vselge_;
float vselgt_;
float vselvs_;
// The following conditions aren't architecturally supported, but the
// assembler implements them by swapping the inputs.
float vselne_;
float vsellt_;
float vselle_;
float vselvc_;
};
struct ResultsF64 {
double vseleq_;
double vselge_;
double vselgt_;
double vselvs_;
// The following conditions aren't architecturally supported, but the
// assembler implements them by swapping the inputs.
double vselne_;
double vsellt_;
double vselle_;
double vselvc_;
};
if (CpuFeatures::IsSupported(ARMv8)) {
CpuFeatureScope scope(&assm, ARMv8);
// Create a helper function:
// void TestVsel(uint32_t nzcv,
// ResultsF32* results_f32,
// ResultsF64* results_f64);
__ msr(CPSR_f, Operand(r0));
__ vmov(s1, Float32(kResultPass));
__ vmov(s2, Float32(kResultFail));
__ vsel(eq, s0, s1, s2);
__ vstr(s0, r1, offsetof(ResultsF32, vseleq_));
__ vsel(ge, s0, s1, s2);
__ vstr(s0, r1, offsetof(ResultsF32, vselge_));
__ vsel(gt, s0, s1, s2);
__ vstr(s0, r1, offsetof(ResultsF32, vselgt_));
__ vsel(vs, s0, s1, s2);
__ vstr(s0, r1, offsetof(ResultsF32, vselvs_));
__ vsel(ne, s0, s1, s2);
__ vstr(s0, r1, offsetof(ResultsF32, vselne_));
__ vsel(lt, s0, s1, s2);
__ vstr(s0, r1, offsetof(ResultsF32, vsellt_));
__ vsel(le, s0, s1, s2);
__ vstr(s0, r1, offsetof(ResultsF32, vselle_));
__ vsel(vc, s0, s1, s2);
__ vstr(s0, r1, offsetof(ResultsF32, vselvc_));
__ vmov(d1, Double(kResultPass));
__ vmov(d2, Double(kResultFail));
__ vsel(eq, d0, d1, d2);
__ vstr(d0, r2, offsetof(ResultsF64, vseleq_));
__ vsel(ge, d0, d1, d2);
__ vstr(d0, r2, offsetof(ResultsF64, vselge_));
__ vsel(gt, d0, d1, d2);
__ vstr(d0, r2, offsetof(ResultsF64, vselgt_));
__ vsel(vs, d0, d1, d2);
__ vstr(d0, r2, offsetof(ResultsF64, vselvs_));
__ vsel(ne, d0, d1, d2);
__ vstr(d0, r2, offsetof(ResultsF64, vselne_));
__ vsel(lt, d0, d1, d2);
__ vstr(d0, r2, offsetof(ResultsF64, vsellt_));
__ vsel(le, d0, d1, d2);
__ vstr(d0, r2, offsetof(ResultsF64, vselle_));
__ vsel(vc, d0, d1, d2);
__ vstr(d0, r2, offsetof(ResultsF64, vselvc_));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_ippii>::FromCode(*code);
STATIC_ASSERT(kResultPass == -kResultFail);
#define CHECK_VSEL(n, z, c, v, vseleq, vselge, vselgt, vselvs) \
do { \
ResultsF32 results_f32; \
ResultsF64 results_f64; \
uint32_t nzcv = (n << 31) | (z << 30) | (c << 29) | (v << 28); \
f.Call(nzcv, &results_f32, &results_f64, 0, 0); \
CHECK_EQ(vseleq, results_f32.vseleq_); \
CHECK_EQ(vselge, results_f32.vselge_); \
CHECK_EQ(vselgt, results_f32.vselgt_); \
CHECK_EQ(vselvs, results_f32.vselvs_); \
CHECK_EQ(-vseleq, results_f32.vselne_); \
CHECK_EQ(-vselge, results_f32.vsellt_); \
CHECK_EQ(-vselgt, results_f32.vselle_); \
CHECK_EQ(-vselvs, results_f32.vselvc_); \
CHECK_EQ(vseleq, results_f64.vseleq_); \
CHECK_EQ(vselge, results_f64.vselge_); \
CHECK_EQ(vselgt, results_f64.vselgt_); \
CHECK_EQ(vselvs, results_f64.vselvs_); \
CHECK_EQ(-vseleq, results_f64.vselne_); \
CHECK_EQ(-vselge, results_f64.vsellt_); \
CHECK_EQ(-vselgt, results_f64.vselle_); \
CHECK_EQ(-vselvs, results_f64.vselvc_); \
} while (0);
// N Z C V vseleq vselge vselgt vselvs
CHECK_VSEL(0, 0, 0, 0, kResultFail, kResultPass, kResultPass, kResultFail);
CHECK_VSEL(0, 0, 0, 1, kResultFail, kResultFail, kResultFail, kResultPass);
CHECK_VSEL(0, 0, 1, 0, kResultFail, kResultPass, kResultPass, kResultFail);
CHECK_VSEL(0, 0, 1, 1, kResultFail, kResultFail, kResultFail, kResultPass);
CHECK_VSEL(0, 1, 0, 0, kResultPass, kResultPass, kResultFail, kResultFail);
CHECK_VSEL(0, 1, 0, 1, kResultPass, kResultFail, kResultFail, kResultPass);
CHECK_VSEL(0, 1, 1, 0, kResultPass, kResultPass, kResultFail, kResultFail);
CHECK_VSEL(0, 1, 1, 1, kResultPass, kResultFail, kResultFail, kResultPass);
CHECK_VSEL(1, 0, 0, 0, kResultFail, kResultFail, kResultFail, kResultFail);
CHECK_VSEL(1, 0, 0, 1, kResultFail, kResultPass, kResultPass, kResultPass);
CHECK_VSEL(1, 0, 1, 0, kResultFail, kResultFail, kResultFail, kResultFail);
CHECK_VSEL(1, 0, 1, 1, kResultFail, kResultPass, kResultPass, kResultPass);
CHECK_VSEL(1, 1, 0, 0, kResultPass, kResultFail, kResultFail, kResultFail);
CHECK_VSEL(1, 1, 0, 1, kResultPass, kResultPass, kResultFail, kResultPass);
CHECK_VSEL(1, 1, 1, 0, kResultPass, kResultFail, kResultFail, kResultFail);
CHECK_VSEL(1, 1, 1, 1, kResultPass, kResultPass, kResultFail, kResultPass);
#undef CHECK_VSEL
}
}
TEST(ARMv8_vminmax_f64) {
// Test the vminnm and vmaxnm floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
struct Inputs {
double left_;
double right_;
};
struct Results {
double vminnm_;
double vmaxnm_;
};
if (CpuFeatures::IsSupported(ARMv8)) {
CpuFeatureScope scope(&assm, ARMv8);
// Create a helper function:
// void TestVminmax(const Inputs* inputs,
// Results* results);
__ vldr(d1, r0, offsetof(Inputs, left_));
__ vldr(d2, r0, offsetof(Inputs, right_));
__ vminnm(d0, d1, d2);
__ vstr(d0, r1, offsetof(Results, vminnm_));
__ vmaxnm(d0, d1, d2);
__ vstr(d0, r1, offsetof(Results, vmaxnm_));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_ppiii>::FromCode(*code);
#define CHECK_VMINMAX(left, right, vminnm, vmaxnm) \
do { \
Inputs inputs = {left, right}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
/* Use a bit_cast to correctly identify -0.0 and NaNs. */ \
CHECK_EQ(bit_cast<uint64_t>(vminnm), bit_cast<uint64_t>(results.vminnm_)); \
CHECK_EQ(bit_cast<uint64_t>(vmaxnm), bit_cast<uint64_t>(results.vmaxnm_)); \
} while (0);
double nan_a = bit_cast<double>(UINT64_C(0x7FF8000000000001));
double nan_b = bit_cast<double>(UINT64_C(0x7FF8000000000002));
CHECK_VMINMAX(1.0, -1.0, -1.0, 1.0);
CHECK_VMINMAX(-1.0, 1.0, -1.0, 1.0);
CHECK_VMINMAX(0.0, -1.0, -1.0, 0.0);
CHECK_VMINMAX(-1.0, 0.0, -1.0, 0.0);
CHECK_VMINMAX(-0.0, -1.0, -1.0, -0.0);
CHECK_VMINMAX(-1.0, -0.0, -1.0, -0.0);
CHECK_VMINMAX(0.0, 1.0, 0.0, 1.0);
CHECK_VMINMAX(1.0, 0.0, 0.0, 1.0);
CHECK_VMINMAX(0.0, 0.0, 0.0, 0.0);
CHECK_VMINMAX(-0.0, -0.0, -0.0, -0.0);
CHECK_VMINMAX(-0.0, 0.0, -0.0, 0.0);
CHECK_VMINMAX(0.0, -0.0, -0.0, 0.0);
CHECK_VMINMAX(0.0, nan_a, 0.0, 0.0);
CHECK_VMINMAX(nan_a, 0.0, 0.0, 0.0);
CHECK_VMINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_VMINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_VMINMAX
}
}
TEST(ARMv8_vminmax_f32) {
// Test the vminnm and vmaxnm floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
struct Inputs {
float left_;
float right_;
};
struct Results {
float vminnm_;
float vmaxnm_;
};
if (CpuFeatures::IsSupported(ARMv8)) {
CpuFeatureScope scope(&assm, ARMv8);
// Create a helper function:
// void TestVminmax(const Inputs* inputs,
// Results* results);
__ vldr(s1, r0, offsetof(Inputs, left_));
__ vldr(s2, r0, offsetof(Inputs, right_));
__ vminnm(s0, s1, s2);
__ vstr(s0, r1, offsetof(Results, vminnm_));
__ vmaxnm(s0, s1, s2);
__ vstr(s0, r1, offsetof(Results, vmaxnm_));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_ppiii>::FromCode(*code);
#define CHECK_VMINMAX(left, right, vminnm, vmaxnm) \
do { \
Inputs inputs = {left, right}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
/* Use a bit_cast to correctly identify -0.0 and NaNs. */ \
CHECK_EQ(bit_cast<uint32_t>(vminnm), bit_cast<uint32_t>(results.vminnm_)); \
CHECK_EQ(bit_cast<uint32_t>(vmaxnm), bit_cast<uint32_t>(results.vmaxnm_)); \
} while (0);
float nan_a = bit_cast<float>(UINT32_C(0x7FC00001));
float nan_b = bit_cast<float>(UINT32_C(0x7FC00002));
CHECK_VMINMAX(1.0f, -1.0f, -1.0f, 1.0f);
CHECK_VMINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
CHECK_VMINMAX(0.0f, -1.0f, -1.0f, 0.0f);
CHECK_VMINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
CHECK_VMINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
CHECK_VMINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
CHECK_VMINMAX(0.0f, 1.0f, 0.0f, 1.0f);
CHECK_VMINMAX(1.0f, 0.0f, 0.0f, 1.0f);
CHECK_VMINMAX(0.0f, 0.0f, 0.0f, 0.0f);
CHECK_VMINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
CHECK_VMINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
CHECK_VMINMAX(0.0f, -0.0f, -0.0f, 0.0f);
CHECK_VMINMAX(0.0f, nan_a, 0.0f, 0.0f);
CHECK_VMINMAX(nan_a, 0.0f, 0.0f, 0.0f);
CHECK_VMINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_VMINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_VMINMAX
}
}
template <typename T, typename Inputs, typename Results>
static GeneratedCode<F_ppiii> GenerateMacroFloatMinMax(
MacroAssembler& assm) { // NOLINT(runtime/references)
T a = T::from_code(0); // d0/s0
T b = T::from_code(1); // d1/s1
T c = T::from_code(2); // d2/s2
// Create a helper function:
// void TestFloatMinMax(const Inputs* inputs,
// Results* results);
Label ool_min_abc, ool_min_aab, ool_min_aba;
Label ool_max_abc, ool_max_aab, ool_max_aba;
Label done_min_abc, done_min_aab, done_min_aba;
Label done_max_abc, done_max_aab, done_max_aba;
// a = min(b, c);
__ vldr(b, r0, offsetof(Inputs, left_));
__ vldr(c, r0, offsetof(Inputs, right_));
__ FloatMin(a, b, c, &ool_min_abc);
__ bind(&done_min_abc);
__ vstr(a, r1, offsetof(Results, min_abc_));
// a = min(a, b);
__ vldr(a, r0, offsetof(Inputs, left_));
__ vldr(b, r0, offsetof(Inputs, right_));
__ FloatMin(a, a, b, &ool_min_aab);
__ bind(&done_min_aab);
__ vstr(a, r1, offsetof(Results, min_aab_));
// a = min(b, a);
__ vldr(b, r0, offsetof(Inputs, left_));
__ vldr(a, r0, offsetof(Inputs, right_));
__ FloatMin(a, b, a, &ool_min_aba);
__ bind(&done_min_aba);
__ vstr(a, r1, offsetof(Results, min_aba_));
// a = max(b, c);
__ vldr(b, r0, offsetof(Inputs, left_));
__ vldr(c, r0, offsetof(Inputs, right_));
__ FloatMax(a, b, c, &ool_max_abc);
__ bind(&done_max_abc);
__ vstr(a, r1, offsetof(Results, max_abc_));
// a = max(a, b);
__ vldr(a, r0, offsetof(Inputs, left_));
__ vldr(b, r0, offsetof(Inputs, right_));
__ FloatMax(a, a, b, &ool_max_aab);
__ bind(&done_max_aab);
__ vstr(a, r1, offsetof(Results, max_aab_));
// a = max(b, a);
__ vldr(b, r0, offsetof(Inputs, left_));
__ vldr(a, r0, offsetof(Inputs, right_));
__ FloatMax(a, b, a, &ool_max_aba);
__ bind(&done_max_aba);
__ vstr(a, r1, offsetof(Results, max_aba_));
__ bx(lr);
// Generate out-of-line cases.
__ bind(&ool_min_abc);
__ FloatMinOutOfLine(a, b, c);
__ b(&done_min_abc);
__ bind(&ool_min_aab);
__ FloatMinOutOfLine(a, a, b);
__ b(&done_min_aab);
__ bind(&ool_min_aba);
__ FloatMinOutOfLine(a, b, a);
__ b(&done_min_aba);
__ bind(&ool_max_abc);
__ FloatMaxOutOfLine(a, b, c);
__ b(&done_max_abc);
__ bind(&ool_max_aab);
__ FloatMaxOutOfLine(a, a, b);
__ b(&done_max_aab);
__ bind(&ool_max_aba);
__ FloatMaxOutOfLine(a, b, a);
__ b(&done_max_aba);
CodeDesc desc;
assm.GetCode(assm.isolate(), &desc);
Handle<Code> code =
Factory::CodeBuilder(assm.isolate(), desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
return GeneratedCode<F_ppiii>::FromCode(*code);
}
TEST(macro_float_minmax_f64) {
// Test the FloatMin and FloatMax macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, CodeObjectRequired::kYes);
struct Inputs {
double left_;
double right_;
};
struct Results {
// Check all register aliasing possibilities in order to exercise all
// code-paths in the macro assembler.
double min_abc_;
double min_aab_;
double min_aba_;
double max_abc_;
double max_aab_;
double max_aba_;
};
auto f = GenerateMacroFloatMinMax<DwVfpRegister, Inputs, Results>(assm);
#define CHECK_MINMAX(left, right, min, max) \
do { \
Inputs inputs = {left, right}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
/* Use a bit_cast to correctly identify -0.0 and NaNs. */ \
CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \
CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \
CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \
CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \
CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \
CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \
} while (0)
double nan_a = bit_cast<double>(UINT64_C(0x7FF8000000000001));
double nan_b = bit_cast<double>(UINT64_C(0x7FF8000000000002));
CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);
CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);
CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_MINMAX
}
TEST(macro_float_minmax_f32) {
// Test the FloatMin and FloatMax macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, CodeObjectRequired::kYes);
struct Inputs {
float left_;
float right_;
};
struct Results {
// Check all register aliasing possibilities in order to exercise all
// code-paths in the macro assembler.
float min_abc_;
float min_aab_;
float min_aba_;
float max_abc_;
float max_aab_;
float max_aba_;
};
auto f = GenerateMacroFloatMinMax<SwVfpRegister, Inputs, Results>(assm);
#define CHECK_MINMAX(left, right, min, max) \
do { \
Inputs inputs = {left, right}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
/* Use a bit_cast to correctly identify -0.0 and NaNs. */ \
CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \
CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \
CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \
CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \
CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \
CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \
} while (0)
float nan_a = bit_cast<float>(UINT32_C(0x7FC00001));
float nan_b = bit_cast<float>(UINT32_C(0x7FC00002));
CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);
CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);
CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_MINMAX
}
TEST(unaligned_loads) {
// All supported ARM targets allow unaligned accesses.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
uint32_t ldrh;
uint32_t ldrsh;
uint32_t ldr;
};
T t;
Assembler assm(AssemblerOptions{});
__ ldrh(ip, MemOperand(r1, r2));
__ str(ip, MemOperand(r0, offsetof(T, ldrh)));
__ ldrsh(ip, MemOperand(r1, r2));
__ str(ip, MemOperand(r0, offsetof(T, ldrsh)));
__ ldr(ip, MemOperand(r1, r2));
__ str(ip, MemOperand(r0, offsetof(T, ldr)));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_ppiii>::FromCode(*code);
#ifndef V8_TARGET_LITTLE_ENDIAN
#error This test assumes a little-endian layout.
#endif
uint64_t data = UINT64_C(0x84838281807F7E7D);
f.Call(&t, &data, 0, 0, 0);
CHECK_EQ(0x00007E7Du, t.ldrh);
CHECK_EQ(0x00007E7Du, t.ldrsh);
CHECK_EQ(0x807F7E7Du, t.ldr);
f.Call(&t, &data, 1, 0, 0);
CHECK_EQ(0x00007F7Eu, t.ldrh);
CHECK_EQ(0x00007F7Eu, t.ldrsh);
CHECK_EQ(0x81807F7Eu, t.ldr);
f.Call(&t, &data, 2, 0, 0);
CHECK_EQ(0x0000807Fu, t.ldrh);
CHECK_EQ(0xFFFF807Fu, t.ldrsh);
CHECK_EQ(0x8281807Fu, t.ldr);
f.Call(&t, &data, 3, 0, 0);
CHECK_EQ(0x00008180u, t.ldrh);
CHECK_EQ(0xFFFF8180u, t.ldrsh);
CHECK_EQ(0x83828180u, t.ldr);
}
TEST(unaligned_stores) {
// All supported ARM targets allow unaligned accesses.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
__ strh(r3, MemOperand(r0, r2));
__ str(r3, MemOperand(r1, r2));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_ppiii>::FromCode(*code);
#ifndef V8_TARGET_LITTLE_ENDIAN
#error This test assumes a little-endian layout.
#endif
{
uint64_t strh = 0;
uint64_t str = 0;
f.Call(&strh, &str, 0, 0xFEDCBA98, 0);
CHECK_EQ(UINT64_C(0x000000000000BA98), strh);
CHECK_EQ(UINT64_C(0x00000000FEDCBA98), str);
}
{
uint64_t strh = 0;
uint64_t str = 0;
f.Call(&strh, &str, 1, 0xFEDCBA98, 0);
CHECK_EQ(UINT64_C(0x0000000000BA9800), strh);
CHECK_EQ(UINT64_C(0x000000FEDCBA9800), str);
}
{
uint64_t strh = 0;
uint64_t str = 0;
f.Call(&strh, &str, 2, 0xFEDCBA98, 0);
CHECK_EQ(UINT64_C(0x00000000BA980000), strh);
CHECK_EQ(UINT64_C(0x0000FEDCBA980000), str);
}
{
uint64_t strh = 0;
uint64_t str = 0;
f.Call(&strh, &str, 3, 0xFEDCBA98, 0);
CHECK_EQ(UINT64_C(0x000000BA98000000), strh);
CHECK_EQ(UINT64_C(0x00FEDCBA98000000), str);
}
}
TEST(vswp) {
if (!CpuFeatures::IsSupported(NEON)) return;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
struct T {
uint64_t vswp_d0;
uint64_t vswp_d1;
uint64_t vswp_d30;
uint64_t vswp_d31;
uint32_t vswp_q4[4];
uint32_t vswp_q5[4];
};
T t;
__ stm(db_w, sp, r4.bit() | r5.bit() | r6.bit() | r7.bit() | lr.bit());
uint64_t one = bit_cast<uint64_t>(1.0);
__ mov(r5, Operand(one >> 32));
__ mov(r4, Operand(one & 0xFFFFFFFF));
uint64_t minus_one = bit_cast<uint64_t>(-1.0);
__ mov(r7, Operand(minus_one >> 32));
__ mov(r6, Operand(minus_one & 0xFFFFFFFF));
__ vmov(d0, r4, r5); // d0 = 1.0
__ vmov(d1, r6, r7); // d1 = -1.0
__ vswp(d0, d1);
__ vstr(d0, r0, offsetof(T, vswp_d0));
__ vstr(d1, r0, offsetof(T, vswp_d1));
if (CpuFeatures::IsSupported(VFP32DREGS)) {
__ vmov(d30, r4, r5); // d30 = 1.0
__ vmov(d31, r6, r7); // d31 = -1.0
__ vswp(d30, d31);
__ vstr(d30, r0, offsetof(T, vswp_d30));
__ vstr(d31, r0, offsetof(T, vswp_d31));
}
// q-register swap.
const uint32_t test_1 = 0x01234567;
const uint32_t test_2 = 0x89ABCDEF;
__ mov(r4, Operand(test_1));
__ mov(r5, Operand(test_2));
__ vdup(Neon32, q4, r4);
__ vdup(Neon32, q5, r5);
__ vswp(q4, q5);
__ add(r6, r0, Operand(static_cast<int32_t>(offsetof(T, vswp_q4))));
__ vst1(Neon8, NeonListOperand(q4), NeonMemOperand(r6));
__ add(r6, r0, Operand(static_cast<int32_t>(offsetof(T, vswp_q5))));
__ vst1(Neon8, NeonListOperand(q5), NeonMemOperand(r6));
__ ldm(ia_w, sp, r4.bit() | r5.bit() | r6.bit() | r7.bit() | pc.bit());
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_piiii>::FromCode(*code);
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(minus_one, t.vswp_d0);
CHECK_EQ(one, t.vswp_d1);
if (CpuFeatures::IsSupported(VFP32DREGS)) {
CHECK_EQ(minus_one, t.vswp_d30);
CHECK_EQ(one, t.vswp_d31);
}
CHECK_EQ(t.vswp_q4[0], test_2);
CHECK_EQ(t.vswp_q4[1], test_2);
CHECK_EQ(t.vswp_q4[2], test_2);
CHECK_EQ(t.vswp_q4[3], test_2);
CHECK_EQ(t.vswp_q5[0], test_1);
CHECK_EQ(t.vswp_q5[1], test_1);
CHECK_EQ(t.vswp_q5[2], test_1);
CHECK_EQ(t.vswp_q5[3], test_1);
}
TEST(regress4292_b) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label end;
__ mov(r0, Operand(isolate->factory()->infinity_value()));
for (int i = 0; i < 1020; ++i) {
__ b(hi, &end);
}
__ bind(&end);
}
TEST(regress4292_bl) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label end;
__ mov(r0, Operand(isolate->factory()->infinity_value()));
for (int i = 0; i < 1020; ++i) {
__ bl(hi, &end);
}
__ bind(&end);
}
TEST(regress4292_blx) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
Label end;
__ mov(r0, Operand(isolate->factory()->infinity_value()));
for (int i = 0; i < 1020; ++i) {
__ blx(&end);
}
__ bind(&end);
}
TEST(regress4292_CheckConstPool) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
__ mov(r0, Operand(isolate->factory()->infinity_value()));
__ BlockConstPoolFor(1019);
for (int i = 0; i < 1019; ++i) __ nop();
__ vldr(d0, MemOperand(r0, 0));
}
TEST(use_scratch_register_scope) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
// The assembler should have ip as a scratch by default.
CHECK_EQ(*assm.GetScratchRegisterList(), ip.bit());
{
UseScratchRegisterScope temps(&assm);
CHECK_EQ(*assm.GetScratchRegisterList(), ip.bit());
Register scratch = temps.Acquire();
CHECK_EQ(scratch.code(), ip.code());
CHECK_EQ(*assm.GetScratchRegisterList(), 0);
}
CHECK_EQ(*assm.GetScratchRegisterList(), ip.bit());
}
TEST(use_scratch_vfp_register_scope) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(AssemblerOptions{});
VfpRegList orig_scratches = *assm.GetScratchVfpRegisterList();
if (CpuFeatures::IsSupported(VFP32DREGS)) {
CHECK_EQ(orig_scratches, d14.ToVfpRegList() | d15.ToVfpRegList());
} else {
CHECK_EQ(orig_scratches, d14.ToVfpRegList());
}
// Test each configuration of scratch registers we can have at the same time.
{
UseScratchRegisterScope temps(&assm);
SwVfpRegister s1_scratch = temps.AcquireS();
CHECK_EQ(s1_scratch, s28);
SwVfpRegister s2_scratch = temps.AcquireS();
CHECK_EQ(s2_scratch, s29);
if (CpuFeatures::IsSupported(VFP32DREGS)) {
SwVfpRegister s3_scratch = temps.AcquireS();
CHECK_EQ(s3_scratch, s30);
SwVfpRegister s4_scratch = temps.AcquireS();
CHECK_EQ(s4_scratch, s31);
}
}
CHECK_EQ(*assm.GetScratchVfpRegisterList(), orig_scratches);
{
UseScratchRegisterScope temps(&assm);
SwVfpRegister s1_scratch = temps.AcquireS();
CHECK_EQ(s1_scratch, s28);
SwVfpRegister s2_scratch = temps.AcquireS();
CHECK_EQ(s2_scratch, s29);
if (CpuFeatures::IsSupported(VFP32DREGS)) {
DwVfpRegister d_scratch = temps.AcquireD();
CHECK_EQ(d_scratch, d15);
}
}
CHECK_EQ(*assm.GetScratchVfpRegisterList(), orig_scratches);
{
UseScratchRegisterScope temps(&assm);
DwVfpRegister d_scratch = temps.AcquireD();
CHECK_EQ(d_scratch, d14);
if (CpuFeatures::IsSupported(VFP32DREGS)) {
SwVfpRegister s1_scratch = temps.AcquireS();
CHECK_EQ(s1_scratch, s30);
SwVfpRegister s2_scratch = temps.AcquireS();
CHECK_EQ(s2_scratch, s31);
}
}
CHECK_EQ(*assm.GetScratchVfpRegisterList(), orig_scratches);
{
UseScratchRegisterScope temps(&assm);
DwVfpRegister d1_scratch = temps.AcquireD();
CHECK_EQ(d1_scratch, d14);
if (CpuFeatures::IsSupported(VFP32DREGS)) {
DwVfpRegister d2_scratch = temps.AcquireD();
CHECK_EQ(d2_scratch, d15);
}
}
CHECK_EQ(*assm.GetScratchVfpRegisterList(), orig_scratches);
if (CpuFeatures::IsSupported(NEON)) {
UseScratchRegisterScope temps(&assm);
QwNeonRegister q_scratch = temps.AcquireQ();
CHECK_EQ(q_scratch, q7);
}
CHECK_EQ(*assm.GetScratchVfpRegisterList(), orig_scratches);
}
TEST(split_add_immediate) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
{
Assembler assm(AssemblerOptions{});
__ mov(r1, r0);
// Re-use the destination as a scratch.
__ add(r0, r1, Operand(0x12345678));
__ blx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
uint32_t res = reinterpret_cast<int>(f.Call(0, 0, 0, 0, 0));
::printf("f() = 0x%x\n", res);
CHECK_EQ(0x12345678, res);
}
{
Assembler assm(AssemblerOptions{});
// Use ip as a scratch.
__ add(r0, r0, Operand(0x12345678));
__ blx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
uint32_t res = reinterpret_cast<int>(f.Call(0, 0, 0, 0, 0));
::printf("f() = 0x%x\n", res);
CHECK_EQ(0x12345678, res);
}
{
Assembler assm(AssemblerOptions{});
UseScratchRegisterScope temps(&assm);
Register reserved = temps.Acquire();
USE(reserved);
// If ip is not available, split the operation into multiple additions.
__ add(r0, r0, Operand(0x12345678));
__ blx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
auto f = GeneratedCode<F_iiiii>::FromCode(*code);
uint32_t res = reinterpret_cast<int>(f.Call(0, 0, 0, 0, 0));
::printf("f() = 0x%x\n", res);
CHECK_EQ(0x12345678, res);
}
}
namespace {
std::vector<Float32> Float32Inputs() {
std::vector<Float32> inputs;
FOR_FLOAT32_INPUTS(f) {
inputs.push_back(Float32::FromBits(bit_cast<uint32_t>(f)));
}
FOR_UINT32_INPUTS(bits) { inputs.push_back(Float32::FromBits(bits)); }
return inputs;
}
std::vector<Float64> Float64Inputs() {
std::vector<Float64> inputs;
FOR_FLOAT64_INPUTS(f) {
inputs.push_back(Float64::FromBits(bit_cast<uint64_t>(f)));
}
FOR_UINT64_INPUTS(bits) { inputs.push_back(Float64::FromBits(bits)); }
return inputs;
}
} // namespace
TEST(vabs_32) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
auto f = AssembleCode<F_iiiii>([](Assembler& assm) {
__ vmov(s0, r0);
__ vabs(s0, s0);
__ vmov(r0, s0);
});
for (Float32 f32 : Float32Inputs()) {
Float32 res = Float32::FromBits(
reinterpret_cast<uint32_t>(f.Call(f32.get_bits(), 0, 0, 0, 0)));
Float32 exp = Float32::FromBits(f32.get_bits() & ~(1 << 31));
CHECK_EQ(exp.get_bits(), res.get_bits());
}
}
TEST(vabs_64) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
auto f = AssembleCode<F_iiiii>([](Assembler& assm) {
__ vmov(d0, r0, r1);
__ vabs(d0, d0);
__ vmov(r1, r0, d0);
});
for (Float64 f64 : Float64Inputs()) {
uint32_t p0 = static_cast<uint32_t>(f64.get_bits());
uint32_t p1 = static_cast<uint32_t>(f64.get_bits() >> 32);
uint32_t res = reinterpret_cast<uint32_t>(f.Call(p0, p1, 0, 0, 0));
Float64 exp = Float64::FromBits(f64.get_bits() & ~(1ull << 63));
// We just get back the top word, so only compare that one.
CHECK_EQ(exp.get_bits() >> 32, res);
}
}
TEST(vneg_32) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
auto f = AssembleCode<F_iiiii>([](Assembler& assm) {
__ vmov(s0, r0);
__ vneg(s0, s0);
__ vmov(r0, s0);
});
for (Float32 f32 : Float32Inputs()) {
Float32 res = Float32::FromBits(
reinterpret_cast<uint32_t>(f.Call(f32.get_bits(), 0, 0, 0, 0)));
Float32 exp = Float32::FromBits(f32.get_bits() ^ (1 << 31));
CHECK_EQ(exp.get_bits(), res.get_bits());
}
}
TEST(vneg_64) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
auto f = AssembleCode<F_iiiii>([](Assembler& assm) {
__ vmov(d0, r0, r1);
__ vneg(d0, d0);
__ vmov(r1, r0, d0);
});
for (Float64 f64 : Float64Inputs()) {
uint32_t p0 = static_cast<uint32_t>(f64.get_bits());
uint32_t p1 = static_cast<uint32_t>(f64.get_bits() >> 32);
uint32_t res = reinterpret_cast<uint32_t>(f.Call(p0, p1, 0, 0, 0));
Float64 exp = Float64::FromBits(f64.get_bits() ^ (1ull << 63));
// We just get back the top word, so only compare that one.
CHECK_EQ(exp.get_bits() >> 32, res);
}
}
TEST(move_pair) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
auto f = AssembleCode<F_piiii>([](MacroAssembler& assm) {
RegList used_callee_saved =
r4.bit() | r5.bit() | r6.bit() | r7.bit() | r8.bit();
__ stm(db_w, sp, used_callee_saved);
// Save output register bank pointer to r8.
__ mov(r8, r0);
__ mov(r0, Operand(0xabababab));
__ mov(r1, Operand(0xbabababa));
__ mov(r2, Operand(0x12341234));
__ mov(r3, Operand(0x43214321));
// No overlap:
// r4 <- r0
// r5 <- r1
__ MovePair(r4, r0, r5, r1);
// Overlap but we can swap moves:
// r2 <- r0
// r6 <- r2
__ MovePair(r2, r0, r6, r2);
// Overlap but can be done:
// r7 <- r3
// r3 <- r0
__ MovePair(r7, r3, r3, r0);
// Swap.
// r0 <- r1
// r1 <- r0
__ MovePair(r0, r1, r1, r0);
// Fill the fake register bank.
__ str(r0, MemOperand(r8, 0 * kPointerSize));
__ str(r1, MemOperand(r8, 1 * kPointerSize));
__ str(r2, MemOperand(r8, 2 * kPointerSize));
__ str(r3, MemOperand(r8, 3 * kPointerSize));
__ str(r4, MemOperand(r8, 4 * kPointerSize));
__ str(r5, MemOperand(r8, 5 * kPointerSize));
__ str(r6, MemOperand(r8, 6 * kPointerSize));
__ str(r7, MemOperand(r8, 7 * kPointerSize));
__ ldm(ia_w, sp, used_callee_saved);
});
// Create a fake register bank.
uint32_t r[] = {0, 0, 0, 0, 0, 0, 0, 0};
f.Call(r, 0, 0, 0, 0);
// r4 <- r0
// r5 <- r1
CHECK_EQ(0xabababab, r[4]);
CHECK_EQ(0xbabababa, r[5]);
// r2 <- r0
// r6 <- r2
CHECK_EQ(0xabababab, r[2]);
CHECK_EQ(0x12341234, r[6]);
// r7 <- r3
// r3 <- r0
CHECK_EQ(0x43214321, r[7]);
CHECK_EQ(0xabababab, r[3]);
// r0 and r1 should be swapped.
CHECK_EQ(0xbabababa, r[0]);
CHECK_EQ(0xabababab, r[1]);
}
#undef __
} // namespace test_assembler_arm
} // namespace internal
} // namespace v8