| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/quic/quic_framer.h" |
| |
| #include "base/hash_tables.h" |
| #include "net/quic/crypto/quic_decrypter.h" |
| #include "net/quic/crypto/quic_encrypter.h" |
| #include "net/quic/quic_data_reader.h" |
| #include "net/quic/quic_data_writer.h" |
| #include "net/quic/quic_utils.h" |
| |
| using base::StringPiece; |
| using std::map; |
| using std::numeric_limits; |
| |
| namespace net { |
| |
| bool kQuicAllowOversizedPacketsForTest = false; |
| |
| QuicFramer::QuicFramer(QuicDecrypter* decrypter, QuicEncrypter* encrypter) |
| : visitor_(NULL), |
| fec_builder_(NULL), |
| error_(QUIC_NO_ERROR), |
| decrypter_(decrypter), |
| encrypter_(encrypter) { |
| } |
| |
| QuicFramer::~QuicFramer() {} |
| |
| bool CanTruncate(const QuicFrames& frames) { |
| if (frames.size() == 1 && ( |
| frames[0].type == ACK_FRAME || |
| frames[0].type == CONNECTION_CLOSE_FRAME)) { |
| return true; |
| } |
| return false; |
| } |
| |
| QuicPacket* QuicFramer::ConstructFrameDataPacket( |
| const QuicPacketHeader& header, |
| const QuicFrames& frames) { |
| // Compute the length of the packet. We use "magic numbers" here because |
| // sizeof(member_) is not necessarily the same as sizeof(member_wire_format). |
| size_t len = kPacketHeaderSize; |
| len += 1; // frame count |
| for (size_t i = 0; i < frames.size(); ++i) { |
| len += 1; // space for the 8 bit type |
| len += ComputeFramePayloadLength(frames[i]); |
| } |
| |
| bool truncating = false; |
| size_t max_plaintext_size = GetMaxPlaintextSize(kMaxPacketSize); |
| if (len > max_plaintext_size) { |
| if (CanTruncate(frames)) { |
| // Truncate the ack frame so the packet will not exceed kMaxPacketSize. |
| // Note that we may not use every byte of the writer in this case. |
| len = max_plaintext_size; |
| truncating = true; |
| DLOG(INFO) << "Truncating large ack"; |
| } else { |
| return NULL; |
| } |
| } |
| |
| QuicDataWriter writer(len); |
| |
| if (!WritePacketHeader(header, &writer)) { |
| return NULL; |
| } |
| |
| // frame count |
| if (frames.size() > 256u) { |
| return NULL; |
| } |
| if (!writer.WriteUInt8(frames.size())) { |
| return NULL; |
| } |
| |
| for (size_t i = 0; i < frames.size(); ++i) { |
| const QuicFrame& frame = frames[i]; |
| if (!writer.WriteUInt8(frame.type)) { |
| return NULL; |
| } |
| |
| switch (frame.type) { |
| case STREAM_FRAME: |
| if (!AppendStreamFramePayload(*frame.stream_frame, |
| &writer)) { |
| return NULL; |
| } |
| break; |
| case PDU_FRAME: |
| RaiseError(QUIC_INVALID_FRAME_DATA); |
| return NULL; |
| case ACK_FRAME: |
| if (!AppendAckFramePayload(*frame.ack_frame, &writer)) { |
| return NULL; |
| } |
| break; |
| case CONGESTION_FEEDBACK_FRAME: |
| if (!AppendQuicCongestionFeedbackFramePayload( |
| *frame.congestion_feedback_frame, &writer)) { |
| return NULL; |
| } |
| break; |
| case RST_STREAM_FRAME: |
| if (!AppendRstStreamFramePayload(*frame.rst_stream_frame, |
| &writer)) { |
| return NULL; |
| } |
| break; |
| case CONNECTION_CLOSE_FRAME: |
| if (!AppendConnectionCloseFramePayload( |
| *frame.connection_close_frame, &writer)) { |
| return NULL; |
| } |
| break; |
| default: |
| RaiseError(QUIC_INVALID_FRAME_DATA); |
| return NULL; |
| } |
| } |
| |
| DCHECK(truncating || len == writer.length()); |
| QuicPacket* packet = new QuicPacket(writer.take(), len, true, |
| PACKET_FLAGS_NONE); |
| if (fec_builder_) { |
| fec_builder_->OnBuiltFecProtectedPayload(header, |
| packet->FecProtectedData()); |
| } |
| |
| return packet; |
| } |
| |
| QuicPacket* QuicFramer::ConstructFecPacket(const QuicPacketHeader& header, |
| const QuicFecData& fec) { |
| // Compute the length of the packet. We use "magic numbers" here because |
| // sizeof(member_) is not necessairly the same as sizeof(member_wire_format). |
| size_t len = kPacketHeaderSize; |
| len += 6; // first protected packet sequence number |
| len += fec.redundancy.length(); |
| |
| QuicDataWriter writer(len); |
| |
| if (!WritePacketHeader(header, &writer)) { |
| return NULL; |
| } |
| |
| if (!writer.WriteUInt48(fec.min_protected_packet_sequence_number)) { |
| return NULL; |
| } |
| |
| if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) { |
| return NULL; |
| } |
| |
| return new QuicPacket(writer.take(), len, true, PACKET_FLAGS_FEC); |
| } |
| |
| bool QuicFramer::ProcessPacket(const IPEndPoint& self_address, |
| const IPEndPoint& peer_address, |
| const QuicEncryptedPacket& packet) { |
| DCHECK(!reader_.get()); |
| reader_.reset(new QuicDataReader(packet.data(), packet.length())); |
| visitor_->OnPacket(self_address, peer_address); |
| |
| // First parse the packet header. |
| QuicPacketHeader header; |
| if (!ProcessPacketHeader(&header, packet)) { |
| DLOG(WARNING) << "Unable to process header."; |
| return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| } |
| |
| if (!visitor_->OnPacketHeader(header)) { |
| reader_.reset(NULL); |
| return true; |
| } |
| |
| if (packet.length() > kMaxPacketSize) { |
| DLOG(WARNING) << "Packet too large: " << packet.length(); |
| return RaiseError(QUIC_PACKET_TOO_LARGE); |
| } |
| |
| // Handle the payload. |
| if ((header.flags & PACKET_FLAGS_FEC) == 0) { |
| if (header.fec_group != 0) { |
| StringPiece payload = reader_->PeekRemainingPayload(); |
| visitor_->OnFecProtectedPayload(payload); |
| } |
| if (!ProcessFrameData()) { |
| DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. |
| DLOG(WARNING) << "Unable to process frame data."; |
| return false; |
| } |
| } else { |
| QuicFecData fec_data; |
| fec_data.fec_group = header.fec_group; |
| if (!reader_->ReadUInt48( |
| &fec_data.min_protected_packet_sequence_number)) { |
| set_detailed_error("Unable to read first protected packet."); |
| return RaiseError(QUIC_INVALID_FEC_DATA); |
| } |
| |
| fec_data.redundancy = reader_->ReadRemainingPayload(); |
| visitor_->OnFecData(fec_data); |
| } |
| |
| visitor_->OnPacketComplete(); |
| reader_.reset(NULL); |
| return true; |
| } |
| |
| bool QuicFramer::ProcessRevivedPacket(const QuicPacketHeader& header, |
| StringPiece payload) { |
| DCHECK(!reader_.get()); |
| |
| visitor_->OnRevivedPacket(); |
| |
| visitor_->OnPacketHeader(header); |
| |
| if (payload.length() > kMaxPacketSize) { |
| set_detailed_error("Revived packet too large."); |
| return RaiseError(QUIC_PACKET_TOO_LARGE); |
| } |
| |
| reader_.reset(new QuicDataReader(payload.data(), payload.length())); |
| if (!ProcessFrameData()) { |
| DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. |
| DLOG(WARNING) << "Unable to process frame data."; |
| return false; |
| } |
| |
| visitor_->OnPacketComplete(); |
| reader_.reset(NULL); |
| return true; |
| } |
| |
| bool QuicFramer::WritePacketHeader(const QuicPacketHeader& header, |
| QuicDataWriter* writer) { |
| if (!writer->WriteUInt64(header.guid)) { |
| return false; |
| } |
| |
| if (!writer->WriteUInt48(header.packet_sequence_number)) { |
| return false; |
| } |
| |
| uint8 flags = static_cast<uint8>(header.flags); |
| if (!writer->WriteBytes(&flags, 1)) { |
| return false; |
| } |
| |
| if (!writer->WriteBytes(&header.fec_group, 1)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessPacketHeader(QuicPacketHeader* header, |
| const QuicEncryptedPacket& packet) { |
| if (!reader_->ReadUInt64(&header->guid)) { |
| set_detailed_error("Unable to read GUID."); |
| return false; |
| } |
| |
| if (!reader_->ReadUInt48(&header->packet_sequence_number)) { |
| set_detailed_error("Unable to read sequence number."); |
| return false; |
| } |
| if (header->packet_sequence_number == 0u) { |
| set_detailed_error("Packet sequence numbers cannot be 0."); |
| return false; |
| } |
| |
| unsigned char flags; |
| if (!reader_->ReadBytes(&flags, 1)) { |
| set_detailed_error("Unable to read flags."); |
| return false; |
| } |
| |
| if (flags > PACKET_FLAGS_MAX) { |
| set_detailed_error("Illegal flags value."); |
| return false; |
| } |
| |
| header->flags = static_cast<QuicPacketFlags>(flags); |
| |
| if (!DecryptPayload(packet)) { |
| DLOG(WARNING) << "Unable to decrypt payload."; |
| return RaiseError(QUIC_DECRYPTION_FAILURE); |
| } |
| |
| if (!reader_->ReadBytes(&header->fec_group, 1)) { |
| set_detailed_error("Unable to read fec group."); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessFrameData() { |
| uint8 frame_count; |
| if (!reader_->ReadBytes(&frame_count, 1)) { |
| set_detailed_error("Unable to read frame count."); |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| |
| for (uint8 i = 0; i < frame_count; ++i) { |
| uint8 frame_type; |
| if (!reader_->ReadBytes(&frame_type, 1)) { |
| set_detailed_error("Unable to read frame type."); |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| switch (frame_type) { |
| case STREAM_FRAME: |
| if (!ProcessStreamFrame()) { |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| break; |
| case PDU_FRAME: |
| if (!ProcessPDUFrame()) { |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| break; |
| case ACK_FRAME: { |
| QuicAckFrame frame; |
| if (!ProcessAckFrame(&frame)) { |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| break; |
| } |
| case CONGESTION_FEEDBACK_FRAME: { |
| QuicCongestionFeedbackFrame frame; |
| if (!ProcessQuicCongestionFeedbackFrame(&frame)) { |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| break; |
| } |
| case RST_STREAM_FRAME: |
| if (!ProcessRstStreamFrame()) { |
| return RaiseError(QUIC_INVALID_RST_STREAM_DATA); |
| } |
| break; |
| case CONNECTION_CLOSE_FRAME: |
| if (!ProcessConnectionCloseFrame()) { |
| return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); |
| } |
| break; |
| default: |
| set_detailed_error("Illegal frame type."); |
| DLOG(WARNING) << "Illegal frame type: " << (int)frame_type; |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessStreamFrame() { |
| QuicStreamFrame frame; |
| if (!reader_->ReadUInt32(&frame.stream_id)) { |
| set_detailed_error("Unable to read stream_id."); |
| return false; |
| } |
| |
| uint8 fin; |
| if (!reader_->ReadBytes(&fin, 1)) { |
| set_detailed_error("Unable to read fin."); |
| return false; |
| } |
| if (fin > 1) { |
| set_detailed_error("Invalid fin value."); |
| return false; |
| } |
| frame.fin = (fin == 1); |
| |
| if (!reader_->ReadUInt64(&frame.offset)) { |
| set_detailed_error("Unable to read offset."); |
| return false; |
| } |
| |
| if (!reader_->ReadStringPiece16(&frame.data)) { |
| set_detailed_error("Unable to read frame data."); |
| return false; |
| } |
| |
| visitor_->OnStreamFrame(frame); |
| return true; |
| } |
| |
| bool QuicFramer::ProcessPDUFrame() { |
| return false; |
| } |
| |
| bool QuicFramer::ProcessAckFrame(QuicAckFrame* frame) { |
| if (!ProcessSentInfo(&frame->sent_info)) { |
| return false; |
| } |
| if (!ProcessReceivedInfo(&frame->received_info)) { |
| return false; |
| } |
| visitor_->OnAckFrame(*frame); |
| return true; |
| } |
| |
| bool QuicFramer::ProcessReceivedInfo(ReceivedPacketInfo* received_info) { |
| if (!reader_->ReadUInt48(&received_info->largest_received)) { |
| set_detailed_error("Unable to read largest received."); |
| return false; |
| } |
| |
| uint8 num_missing_packets; |
| if (!reader_->ReadBytes(&num_missing_packets, 1)) { |
| set_detailed_error("Unable to read num missing packets."); |
| return false; |
| } |
| |
| for (int i = 0; i < num_missing_packets; ++i) { |
| QuicPacketSequenceNumber sequence_number; |
| if (!reader_->ReadUInt48(&sequence_number)) { |
| set_detailed_error("Unable to read sequence number in missing packets."); |
| return false; |
| } |
| received_info->missing_packets.insert(sequence_number); |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessSentInfo(SentPacketInfo* sent_info) { |
| if (!reader_->ReadUInt48(&sent_info->least_unacked)) { |
| set_detailed_error("Unable to read least unacked."); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessQuicCongestionFeedbackFrame( |
| QuicCongestionFeedbackFrame* frame) { |
| uint8 feedback_type; |
| if (!reader_->ReadBytes(&feedback_type, 1)) { |
| set_detailed_error("Unable to read congestion feedback type."); |
| return false; |
| } |
| frame->type = |
| static_cast<CongestionFeedbackType>(feedback_type); |
| |
| switch (frame->type) { |
| case kInterArrival: { |
| CongestionFeedbackMessageInterArrival* inter_arrival = |
| &frame->inter_arrival; |
| if (!reader_->ReadUInt16( |
| &inter_arrival->accumulated_number_of_lost_packets)) { |
| set_detailed_error( |
| "Unable to read accumulated number of lost packets."); |
| return false; |
| } |
| if (!reader_->ReadBytes(&inter_arrival->offset_time, 2)) { |
| set_detailed_error("Unable to read offset time."); |
| return false; |
| } |
| if (!reader_->ReadUInt16(&inter_arrival->delta_time)) { |
| set_detailed_error("Unable to read delta time."); |
| return false; |
| } |
| uint8 num_received_packets; |
| if (!reader_->ReadBytes(&num_received_packets, 1)) { |
| set_detailed_error("Unable to read num received packets."); |
| return false; |
| } |
| |
| if (num_received_packets > 0u) { |
| uint64 smallest_received; |
| if (!reader_->ReadUInt48(&smallest_received)) { |
| set_detailed_error("Unable to read smallest received."); |
| return false; |
| } |
| |
| uint64 time_received_us; |
| if (!reader_->ReadUInt64(&time_received_us)) { |
| set_detailed_error("Unable to read time received."); |
| return false; |
| } |
| |
| inter_arrival->received_packet_times[smallest_received] = |
| QuicTime::FromMicroseconds(time_received_us); |
| |
| for (int i = 0; i < num_received_packets - 1; ++i) { |
| uint16 sequence_delta; |
| if (!reader_->ReadUInt16(&sequence_delta)) { |
| set_detailed_error( |
| "Unable to read sequence delta in received packets."); |
| return false; |
| } |
| |
| int32 time_delta_us; |
| if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) { |
| set_detailed_error( |
| "Unable to read time delta in received packets."); |
| return false; |
| } |
| QuicPacketSequenceNumber packet = smallest_received + sequence_delta; |
| inter_arrival->received_packet_times[packet] = |
| QuicTime::FromMicroseconds(time_received_us + time_delta_us); |
| } |
| } |
| break; |
| } |
| case kFixRate: { |
| CongestionFeedbackMessageFixRate* fix_rate = &frame->fix_rate; |
| if (!reader_->ReadUInt32(&fix_rate->bitrate_in_bytes_per_second)) { |
| set_detailed_error("Unable to read bitrate."); |
| return false; |
| } |
| break; |
| } |
| case kTCP: { |
| CongestionFeedbackMessageTCP* tcp = &frame->tcp; |
| if (!reader_->ReadUInt16(&tcp->accumulated_number_of_lost_packets)) { |
| set_detailed_error( |
| "Unable to read accumulated number of lost packets."); |
| return false; |
| } |
| if (!reader_->ReadUInt16(&tcp->receive_window)) { |
| set_detailed_error("Unable to read receive window."); |
| return false; |
| } |
| break; |
| } |
| default: |
| set_detailed_error("Illegal congestion feedback type."); |
| DLOG(WARNING) << "Illegal congestion feedback type: " |
| << frame->type; |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| |
| visitor_->OnCongestionFeedbackFrame(*frame); |
| return true; |
| } |
| |
| bool QuicFramer::ProcessRstStreamFrame() { |
| QuicRstStreamFrame frame; |
| if (!reader_->ReadUInt32(&frame.stream_id)) { |
| set_detailed_error("Unable to read stream_id."); |
| return false; |
| } |
| |
| if (!reader_->ReadUInt64(&frame.offset)) { |
| set_detailed_error("Unable to read offset in rst frame."); |
| return false; |
| } |
| |
| uint32 error_code; |
| if (!reader_->ReadUInt32(&error_code)) { |
| set_detailed_error("Unable to read rst stream error code."); |
| return false; |
| } |
| frame.error_code = static_cast<QuicErrorCode>(error_code); |
| |
| StringPiece error_details; |
| if (!reader_->ReadStringPiece16(&error_details)) { |
| set_detailed_error("Unable to read rst stream error details."); |
| return false; |
| } |
| frame.error_details = error_details.as_string(); |
| |
| visitor_->OnRstStreamFrame(frame); |
| return true; |
| } |
| |
| bool QuicFramer::ProcessConnectionCloseFrame() { |
| QuicConnectionCloseFrame frame; |
| |
| uint32 error_code; |
| if (!reader_->ReadUInt32(&error_code)) { |
| set_detailed_error("Unable to read connection close error code."); |
| return false; |
| } |
| frame.error_code = static_cast<QuicErrorCode>(error_code); |
| |
| StringPiece error_details; |
| if (!reader_->ReadStringPiece16(&error_details)) { |
| set_detailed_error("Unable to read connection close error details."); |
| return false; |
| } |
| frame.error_details = error_details.as_string(); |
| |
| if (!ProcessAckFrame(&frame.ack_frame)) { |
| DLOG(WARNING) << "Unable to process ack frame."; |
| return false; |
| } |
| |
| visitor_->OnConnectionCloseFrame(frame); |
| return true; |
| } |
| |
| void QuicFramer::WriteSequenceNumber(QuicPacketSequenceNumber sequence_number, |
| QuicPacket* packet) { |
| QuicDataWriter::WriteUint48ToBuffer( |
| sequence_number, packet->mutable_data() + kSequenceNumberOffset); |
| } |
| |
| void QuicFramer::WriteFecGroup(QuicFecGroupNumber fec_group, |
| QuicPacket* packet) { |
| QuicDataWriter::WriteUint8ToBuffer( |
| fec_group, packet->mutable_data() + kFecGroupOffset); |
| } |
| |
| QuicEncryptedPacket* QuicFramer::EncryptPacket(const QuicPacket& packet) { |
| scoped_ptr<QuicData> out(encrypter_->Encrypt(packet.AssociatedData(), |
| packet.Plaintext())); |
| if (out.get() == NULL) { |
| RaiseError(QUIC_ENCRYPTION_FAILURE); |
| return NULL; |
| } |
| size_t len = kStartOfEncryptedData + out->length(); |
| char* buffer = new char[len]; |
| // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt(). |
| memcpy(buffer, packet.data(), kStartOfEncryptedData); |
| memcpy(buffer + kStartOfEncryptedData, out->data(), out->length()); |
| return new QuicEncryptedPacket(buffer, len, true); |
| } |
| |
| size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { |
| return encrypter_->GetMaxPlaintextSize(ciphertext_size); |
| } |
| |
| bool QuicFramer::DecryptPayload(const QuicEncryptedPacket& packet) { |
| StringPiece encrypted; |
| if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) { |
| return false; |
| } |
| DCHECK(decrypter_.get() != NULL); |
| decrypted_.reset(decrypter_->Decrypt(packet.AssociatedData(), encrypted)); |
| if (decrypted_.get() == NULL) { |
| return false; |
| } |
| |
| reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length())); |
| return true; |
| } |
| |
| size_t QuicFramer::ComputeFramePayloadLength(const QuicFrame& frame) { |
| size_t len = 0; |
| // We use "magic numbers" here because sizeof(member_) is not necessairly the |
| // same as sizeof(member_wire_format). |
| switch (frame.type) { |
| case STREAM_FRAME: |
| len += 4; // stream id |
| len += 1; // fin |
| len += 8; // offset |
| len += 2; // space for the 16 bit length |
| len += frame.stream_frame->data.size(); |
| break; |
| case PDU_FRAME: |
| DLOG(INFO) << "PDU_FRAME not yet supported"; |
| break; // Need to support this eventually :> |
| case ACK_FRAME: { |
| const QuicAckFrame& ack = *frame.ack_frame; |
| len += 6; // largest received packet sequence number |
| len += 1; // num missing packets |
| len += 6 * ack.received_info.missing_packets.size(); |
| len += 6; // least packet sequence number awaiting an ack |
| break; |
| } |
| case CONGESTION_FEEDBACK_FRAME: { |
| const QuicCongestionFeedbackFrame& congestion_feedback = |
| *frame.congestion_feedback_frame; |
| len += 1; // congestion feedback type |
| |
| switch (congestion_feedback.type) { |
| case kInterArrival: { |
| const CongestionFeedbackMessageInterArrival& inter_arrival = |
| congestion_feedback.inter_arrival; |
| len += 6; |
| len += 1; // num received packets |
| if (inter_arrival.received_packet_times.size() > 0) { |
| len += 6; // smallest received |
| len += 8; // time |
| // 2 bytes per sequence number delta plus 4 bytes per delta time. |
| len += 6 * (inter_arrival.received_packet_times.size() - 1); |
| } |
| break; |
| } |
| case kFixRate: |
| len += 4; |
| break; |
| case kTCP: |
| len += 4; |
| break; |
| default: |
| set_detailed_error("Illegal feedback type."); |
| DLOG(INFO) << "Illegal feedback type: " << congestion_feedback.type; |
| break; |
| } |
| break; |
| } |
| case RST_STREAM_FRAME: |
| len += 4; // stream id |
| len += 8; // offset |
| len += 4; // error code |
| len += 2; // error details size |
| len += frame.rst_stream_frame->error_details.size(); |
| break; |
| case CONNECTION_CLOSE_FRAME: |
| len += 4; // error code |
| len += 2; // error details size |
| len += frame.connection_close_frame->error_details.size(); |
| len += ComputeFramePayloadLength( |
| QuicFrame(&frame.connection_close_frame->ack_frame)); |
| break; |
| default: |
| set_detailed_error("Illegal frame type."); |
| DLOG(INFO) << "Illegal frame type: " << frame.type; |
| break; |
| } |
| return len; |
| } |
| |
| bool QuicFramer::AppendStreamFramePayload( |
| const QuicStreamFrame& frame, |
| QuicDataWriter* writer) { |
| if (!writer->WriteUInt32(frame.stream_id)) { |
| return false; |
| } |
| if (!writer->WriteUInt8(frame.fin)) { |
| return false; |
| } |
| if (!writer->WriteUInt64(frame.offset)) { |
| return false; |
| } |
| if (!writer->WriteUInt16(frame.data.size())) { |
| return false; |
| } |
| if (!writer->WriteBytes(frame.data.data(), |
| frame.data.size())) { |
| return false; |
| } |
| return true; |
| } |
| |
| // TODO(alyssar): revisit the complexity here to rch's satisfaction |
| QuicPacketSequenceNumber QuicFramer::CalculateLargestReceived( |
| const SequenceSet& missing_packets, |
| SequenceSet::const_iterator largest_written) { |
| SequenceSet::const_iterator it = largest_written; |
| QuicPacketSequenceNumber previous_missing = *it; |
| ++it; |
| |
| // Try to find a gap in the missing packets: any gap indicates a non-missing |
| // packet which we can then return. |
| for (; it != missing_packets.end(); ++it) { |
| if (previous_missing + 1 != *it) { |
| return *it - 1; |
| } |
| previous_missing = *it; |
| } |
| |
| // If we've hit the end of the list, and we're not missing any packets, try |
| // finding a gap between the largest written and the beginning of the set. |
| it = largest_written++; |
| previous_missing = *it; |
| do { |
| --it; |
| if (previous_missing - 1 != *it) { |
| return previous_missing - 1; |
| } |
| previous_missing = *it; |
| } while (it != missing_packets.begin()); |
| |
| // The missing packets are entirely contiguous. Return the value of the first |
| // missing packet - 1, as that must have been seen. |
| return *missing_packets.begin() - 1; |
| } |
| |
| // TODO(ianswett): Use varints or another more compact approach for all deltas. |
| bool QuicFramer::AppendAckFramePayload( |
| const QuicAckFrame& frame, |
| QuicDataWriter* writer) { |
| if (!writer->WriteUInt48(frame.sent_info.least_unacked)) { |
| return false; |
| } |
| |
| size_t largest_received_offset = writer->length(); |
| if (!writer->WriteUInt48(frame.received_info.largest_received)) { |
| return false; |
| } |
| |
| // We don't check for overflowing uint8 here, because we only can fit 192 acks |
| // per packet, so if we overflow we will be truncated. |
| uint8 num_missing_packets = frame.received_info.missing_packets.size(); |
| size_t num_missing_packets_offset = writer->length(); |
| if (!writer->WriteBytes(&num_missing_packets, 1)) { |
| return false; |
| } |
| |
| SequenceSet::const_iterator it = frame.received_info.missing_packets.begin(); |
| int num_missing_packets_written = 0; |
| for (; it != frame.received_info.missing_packets.end(); ++it) { |
| if (!writer->WriteUInt48(*it)) { |
| // We are truncating. Overwrite largest_received. |
| QuicPacketSequenceNumber largest_received = |
| CalculateLargestReceived(frame.received_info.missing_packets, --it); |
| writer->WriteUInt48ToOffset(largest_received, largest_received_offset); |
| writer->WriteUInt8ToOffset(num_missing_packets_written, |
| num_missing_packets_offset); |
| return true; |
| } |
| ++num_missing_packets_written; |
| DCHECK_GE(numeric_limits<uint8>::max(), num_missing_packets_written); |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::AppendQuicCongestionFeedbackFramePayload( |
| const QuicCongestionFeedbackFrame& frame, |
| QuicDataWriter* writer) { |
| if (!writer->WriteBytes(&frame.type, 1)) { |
| return false; |
| } |
| |
| switch (frame.type) { |
| case kInterArrival: { |
| const CongestionFeedbackMessageInterArrival& inter_arrival = |
| frame.inter_arrival; |
| if (!writer->WriteUInt16( |
| inter_arrival.accumulated_number_of_lost_packets)) { |
| return false; |
| } |
| if (!writer->WriteBytes(&inter_arrival.offset_time, 2)) { |
| return false; |
| } |
| if (!writer->WriteUInt16(inter_arrival.delta_time)) { |
| return false; |
| } |
| DCHECK_GE(numeric_limits<uint8>::max(), |
| inter_arrival.received_packet_times.size()); |
| if (inter_arrival.received_packet_times.size() > |
| numeric_limits<uint8>::max()) { |
| return false; |
| } |
| |
| // TODO(ianswett): Make num_received_packets a varint. |
| uint8 num_received_packets = |
| inter_arrival.received_packet_times.size(); |
| if (!writer->WriteBytes(&num_received_packets, 1)) { |
| return false; |
| } |
| if (num_received_packets > 0) { |
| TimeMap::const_iterator it = |
| inter_arrival.received_packet_times.begin(); |
| |
| QuicPacketSequenceNumber lowest_sequence = it->first; |
| if (!writer->WriteUInt48(lowest_sequence)) { |
| return false; |
| } |
| |
| QuicTime lowest_time = it->second; |
| // TODO(ianswett): Use time deltas from the connection's first received |
| // packet. |
| if (!writer->WriteUInt64(lowest_time.ToMicroseconds())) { |
| return false; |
| } |
| |
| for (++it; it != inter_arrival.received_packet_times.end(); ++it) { |
| QuicPacketSequenceNumber sequence_delta = it->first - lowest_sequence; |
| DCHECK_GE(numeric_limits<uint16>::max(), sequence_delta); |
| if (sequence_delta > numeric_limits<uint16>::max()) { |
| return false; |
| } |
| if (!writer->WriteUInt16(static_cast<uint16>(sequence_delta))) { |
| return false; |
| } |
| |
| int32 time_delta_us = |
| it->second.Subtract(lowest_time).ToMicroseconds(); |
| if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) { |
| return false; |
| } |
| } |
| } |
| break; |
| } |
| case kFixRate: { |
| const CongestionFeedbackMessageFixRate& fix_rate = |
| frame.fix_rate; |
| if (!writer->WriteUInt32(fix_rate.bitrate_in_bytes_per_second)) { |
| return false; |
| } |
| break; |
| } |
| case kTCP: { |
| const CongestionFeedbackMessageTCP& tcp = frame.tcp; |
| if (!writer->WriteUInt16(tcp.accumulated_number_of_lost_packets)) { |
| return false; |
| } |
| if (!writer->WriteUInt16(tcp.receive_window)) { |
| return false; |
| } |
| break; |
| } |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::AppendRstStreamFramePayload( |
| const QuicRstStreamFrame& frame, |
| QuicDataWriter* writer) { |
| if (!writer->WriteUInt32(frame.stream_id)) { |
| return false; |
| } |
| if (!writer->WriteUInt64(frame.offset)) { |
| return false; |
| } |
| |
| uint32 error_code = static_cast<uint32>(frame.error_code); |
| if (!writer->WriteUInt32(error_code)) { |
| return false; |
| } |
| |
| if (!writer->WriteStringPiece16(frame.error_details)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool QuicFramer::AppendConnectionCloseFramePayload( |
| const QuicConnectionCloseFrame& frame, |
| QuicDataWriter* writer) { |
| uint32 error_code = static_cast<uint32>(frame.error_code); |
| if (!writer->WriteUInt32(error_code)) { |
| return false; |
| } |
| if (!writer->WriteStringPiece16(frame.error_details)) { |
| return false; |
| } |
| AppendAckFramePayload(frame.ack_frame, writer); |
| return true; |
| } |
| |
| bool QuicFramer::RaiseError(QuicErrorCode error) { |
| DLOG(INFO) << detailed_error_; |
| set_error(error); |
| visitor_->OnError(this); |
| reader_.reset(NULL); |
| return false; |
| } |
| |
| } // namespace net |