blob: c9e5a3ea69e71bd02fa835be036f5f8339d914d9 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/time/time.h"
#if !defined(STARBOARD)
#include <time.h>
#endif
#include <limits>
#include <string>
#include "starboard/types.h"
#include "base/build_time.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/strings/stringprintf.h"
#include "nb/cpp14oncpp11.h"
#if defined(STARBOARD)
#include "base/test/time_helpers.h"
#endif // defined(STARBOARD)
#include "base/threading/platform_thread.h"
#include "base/time/time_override.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_ANDROID)
#include "base/android/jni_android.h"
#elif defined(OS_IOS)
#include "base/ios/ios_util.h"
#elif defined(OS_WIN)
#include <windows.h>
#endif
namespace base {
namespace {
TEST(TimeTestOutOfBounds, FromExplodedOutOfBoundsTime) {
// FromUTCExploded must set time to Time(0) and failure, if the day is set to
// 31 on a 28-30 day month. Test |exploded| returns Time(0) on 31st of
// February and 31st of April. New implementation handles this.
const struct DateTestData {
Time::Exploded explode;
bool is_valid;
} kDateTestData[] = {
// 31st of February
{{2016, 2, 0, 31, 12, 30, 0, 0}, true},
// 31st of April
{{2016, 4, 0, 31, 8, 43, 0, 0}, true},
// Negative month
{{2016, -5, 0, 2, 4, 10, 0, 0}, false},
// Negative date of month
{{2016, 6, 0, -15, 2, 50, 0, 0}, false},
// Negative hours
{{2016, 7, 0, 10, -11, 29, 0, 0}, false},
// Negative minutes
{{2016, 3, 0, 14, 10, -29, 0, 0}, false},
// Negative seconds
{{2016, 10, 0, 25, 7, 47, -30, 0}, false},
// Negative milliseconds
{{2016, 10, 0, 25, 7, 47, 20, -500}, false},
// Hours are too large
{{2016, 7, 0, 10, 26, 29, 0, 0}, false},
// Minutes are too large
{{2016, 3, 0, 14, 10, 78, 0, 0}, false},
// Seconds are too large
{{2016, 10, 0, 25, 7, 47, 234, 0}, false},
// Milliseconds are too large
{{2016, 10, 0, 25, 6, 31, 23, 1643}, false},
// Test overflow. Time is valid, but overflow case
// results in Time(0).
{{9840633, 1, 0, 1, 1, 1, 0, 0}, true},
// Underflow will fail as well.
{{-9840633, 1, 0, 1, 1, 1, 0, 0}, true},
// Test integer overflow and underflow cases for the values themselves.
{{std::numeric_limits<int>::min(), 1, 0, 1, 1, 1, 0, 0}, true},
{{std::numeric_limits<int>::max(), 1, 0, 1, 1, 1, 0, 0}, true},
{{2016, std::numeric_limits<int>::min(), 0, 1, 1, 1, 0, 0}, false},
{{2016, std::numeric_limits<int>::max(), 0, 1, 1, 1, 0, 0}, false},
};
for (const auto& test : kDateTestData) {
EXPECT_EQ(test.explode.HasValidValues(), test.is_valid);
base::Time result;
EXPECT_FALSE(base::Time::FromUTCExploded(test.explode, &result));
EXPECT_TRUE(result.is_null());
EXPECT_FALSE(base::Time::FromLocalExploded(test.explode, &result));
EXPECT_TRUE(result.is_null());
}
}
// Specialized test fixture allowing time strings without timezones to be
// tested by comparing them to a known time in the local zone.
// See also pr_time_unittests.cc
class TimeTest : public testing::Test {
protected:
void SetUp() override {
#if defined(OS_STARBOARD)
// Since we don't have access to mktime, let's use time_helpers to do the
// same thing in a portable way.
comparison_time_local_ = base::test::time_helpers::TestDateToTime(
base::test::time_helpers::kTimeZoneLocal);
comparison_time_pdt_ = base::test::time_helpers::TestDateToTime(
base::test::time_helpers::kTimeZonePacific);
#else // defined(OS_STARBOARD)
// Use mktime to get a time_t, and turn it into a PRTime by converting
// seconds to microseconds. Use 15th Oct 2007 12:45:00 local. This
// must be a time guaranteed to be outside of a DST fallback hour in
// any timezone.
struct tm local_comparison_tm = {
0, // second
45, // minute
12, // hour
15, // day of month
10 - 1, // month
2007 - 1900, // year
0, // day of week (ignored, output only)
0, // day of year (ignored, output only)
-1 // DST in effect, -1 tells mktime to figure it out
};
time_t converted_time = mktime(&local_comparison_tm);
ASSERT_GT(converted_time, 0);
comparison_time_local_ = Time::FromTimeT(converted_time);
// time_t representation of 15th Oct 2007 12:45:00 PDT
comparison_time_pdt_ = Time::FromTimeT(1192477500);
#endif
}
Time comparison_time_local_;
Time comparison_time_pdt_;
};
// Test conversion to/from TimeDeltas elapsed since the Windows epoch.
// Conversions should be idempotent and non-lossy.
TEST_F(TimeTest, DeltaSinceWindowsEpoch) {
const TimeDelta delta = TimeDelta::FromMicroseconds(123);
EXPECT_EQ(delta,
Time::FromDeltaSinceWindowsEpoch(delta).ToDeltaSinceWindowsEpoch());
const Time now = Time::Now();
const Time actual =
Time::FromDeltaSinceWindowsEpoch(now.ToDeltaSinceWindowsEpoch());
EXPECT_EQ(now, actual);
// Null times should remain null after a round-trip conversion. This is an
// important invariant for the common use case of serialization +
// deserialization.
const Time should_be_null =
Time::FromDeltaSinceWindowsEpoch(Time().ToDeltaSinceWindowsEpoch());
EXPECT_TRUE(should_be_null.is_null());
}
// Test conversion to/from time_t.
TEST_F(TimeTest, TimeT) {
EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT());
EXPECT_EQ(10.0, Time().FromTimeT(10).ToDoubleT());
// Conversions of 0 should stay 0.
EXPECT_EQ(0, Time().ToTimeT());
EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue());
}
#if !defined(STARBOARD)
// Test conversions to/from time_t and exploding/unexploding (utc time).
TEST_F(TimeTest, UTCTimeT) {
// C library time and exploded time.
time_t now_t_1 = time(nullptr);
struct tm tms;
#if defined(OS_WIN)
gmtime_s(&tms, &now_t_1);
#elif defined(OS_POSIX) || defined(OS_FUCHSIA)
gmtime_r(&now_t_1, &tms);
#endif
// Convert to ours.
Time our_time_1 = Time::FromTimeT(now_t_1);
Time::Exploded exploded;
our_time_1.UTCExplode(&exploded);
// This will test both our exploding and our time_t -> Time conversion.
EXPECT_EQ(tms.tm_year + 1900, exploded.year);
EXPECT_EQ(tms.tm_mon + 1, exploded.month);
EXPECT_EQ(tms.tm_mday, exploded.day_of_month);
EXPECT_EQ(tms.tm_hour, exploded.hour);
EXPECT_EQ(tms.tm_min, exploded.minute);
EXPECT_EQ(tms.tm_sec, exploded.second);
// Convert exploded back to the time struct.
Time our_time_2;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &our_time_2));
EXPECT_TRUE(our_time_1 == our_time_2);
time_t now_t_2 = our_time_2.ToTimeT();
EXPECT_EQ(now_t_1, now_t_2);
}
// Test conversions to/from time_t and exploding/unexploding (local time).
TEST_F(TimeTest, LocalTimeT) {
#if defined(OS_IOS) && TARGET_OS_SIMULATOR
// The function CFTimeZoneCopySystem() fails to determine the system timezone
// when running iOS 11.0 simulator on an host running High Sierra and return
// the "GMT" timezone. This causes Time::LocalExplode and localtime_r values
// to differ by the local timezone offset. Disable the test if simulating
// iOS 10.0 as it is not possible to check the version of the host mac.
// TODO(crbug.com/782033): remove this once support for iOS pre-11.0 is
// dropped or when the bug in CFTimeZoneCopySystem() is fixed.
if (ios::IsRunningOnIOS10OrLater() && !ios::IsRunningOnIOS11OrLater()) {
return;
}
#endif
// C library time and exploded time.
time_t now_t_1 = time(nullptr);
struct tm tms;
#if defined(OS_WIN)
localtime_s(&tms, &now_t_1);
#elif defined(OS_POSIX) || defined(OS_FUCHSIA)
localtime_r(&now_t_1, &tms);
#endif
// Convert to ours.
Time our_time_1 = Time::FromTimeT(now_t_1);
Time::Exploded exploded;
our_time_1.LocalExplode(&exploded);
// This will test both our exploding and our time_t -> Time conversion.
EXPECT_EQ(tms.tm_year + 1900, exploded.year);
EXPECT_EQ(tms.tm_mon + 1, exploded.month);
EXPECT_EQ(tms.tm_mday, exploded.day_of_month);
EXPECT_EQ(tms.tm_hour, exploded.hour);
EXPECT_EQ(tms.tm_min, exploded.minute);
EXPECT_EQ(tms.tm_sec, exploded.second);
// Convert exploded back to the time struct.
Time our_time_2;
EXPECT_TRUE(Time::FromLocalExploded(exploded, &our_time_2));
EXPECT_TRUE(our_time_1 == our_time_2);
time_t now_t_2 = our_time_2.ToTimeT();
EXPECT_EQ(now_t_1, now_t_2);
}
#endif // !defined(STARBOARD)
// Test conversions to/from javascript time.
TEST_F(TimeTest, JsTime) {
Time epoch = Time::FromJsTime(0.0);
EXPECT_EQ(epoch, Time::UnixEpoch());
Time t = Time::FromJsTime(700000.3);
EXPECT_EQ(700.0003, t.ToDoubleT());
t = Time::FromDoubleT(800.73);
EXPECT_EQ(800730.0, t.ToJsTime());
}
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
TEST_F(TimeTest, FromTimeVal) {
Time now = Time::Now();
Time also_now = Time::FromTimeVal(now.ToTimeVal());
EXPECT_EQ(now, also_now);
}
#endif // defined(OS_POSIX) || defined(OS_FUCHSIA)
TEST_F(TimeTest, FromExplodedWithMilliseconds) {
// Some platform implementations of FromExploded are liable to drop
// milliseconds if we aren't careful.
Time now = Time::NowFromSystemTime();
Time::Exploded exploded1 = {0};
now.UTCExplode(&exploded1);
exploded1.millisecond = 500;
Time time;
EXPECT_TRUE(Time::FromUTCExploded(exploded1, &time));
Time::Exploded exploded2 = {0};
time.UTCExplode(&exploded2);
EXPECT_EQ(exploded1.millisecond, exploded2.millisecond);
}
TEST_F(TimeTest, ZeroIsSymmetric) {
Time zero_time(Time::FromTimeT(0));
EXPECT_EQ(0, zero_time.ToTimeT());
EXPECT_EQ(0.0, zero_time.ToDoubleT());
}
TEST_F(TimeTest, LocalExplode) {
Time a = Time::Now();
Time::Exploded exploded;
a.LocalExplode(&exploded);
Time b;
EXPECT_TRUE(Time::FromLocalExploded(exploded, &b));
// The exploded structure doesn't have microseconds, and on Mac & Linux, the
// internal OS conversion uses seconds, which will cause truncation. So we
// can only make sure that the delta is within one second.
EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1));
}
TEST_F(TimeTest, UTCExplode) {
Time a = Time::Now();
Time::Exploded exploded;
a.UTCExplode(&exploded);
Time b;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &b));
EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1));
}
TEST_F(TimeTest, UTCMidnight) {
Time::Exploded exploded;
Time::Now().UTCMidnight().UTCExplode(&exploded);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
}
TEST_F(TimeTest, LocalMidnight) {
Time::Exploded exploded;
Time::Now().LocalMidnight().LocalExplode(&exploded);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
}
#if defined(STARBOARD)
TEST_F(TimeTest, ParseTimeTest1) {
Time now = Time::Now();
Time parsed_time;
std::string formatted = base::test::time_helpers::TimeFormatUTC(now);
EXPECT_TRUE(Time::FromUTCString(formatted.c_str(), &parsed_time));
EXPECT_GE(1, (now - parsed_time).InSecondsF());
EXPECT_GE(1, (parsed_time - now).InSecondsF());
formatted = base::test::time_helpers::TimeFormatLocal(now);
EXPECT_TRUE(Time::FromString(formatted.c_str(), &parsed_time));
EXPECT_GE(1, (now - parsed_time).InSecondsF());
EXPECT_GE(1, (parsed_time - now).InSecondsF());
}
#else // !defined(STARBOARD)
TEST_F(TimeTest, ParseTimeTest1) {
time_t current_time = 0;
time(&current_time);
struct tm local_time = {};
char time_buf[64] = {};
#if defined(OS_WIN)
localtime_s(&local_time, &current_time);
asctime_s(time_buf, arraysize(time_buf), &local_time);
#elif defined(OS_POSIX) || defined(OS_FUCHSIA)
localtime_r(&current_time, &local_time);
asctime_r(&local_time, time_buf);
#endif
Time parsed_time;
EXPECT_TRUE(Time::FromString(time_buf, &parsed_time));
EXPECT_EQ(current_time, parsed_time.ToTimeT());
}
#endif // !defined(STARBOARD)
TEST_F(TimeTest, DayOfWeekSunday) {
Time time;
EXPECT_TRUE(Time::FromString("Sun, 06 May 2012 12:00:00 GMT", &time));
Time::Exploded exploded;
time.UTCExplode(&exploded);
EXPECT_EQ(0, exploded.day_of_week);
}
TEST_F(TimeTest, DayOfWeekWednesday) {
Time time;
EXPECT_TRUE(Time::FromString("Wed, 09 May 2012 12:00:00 GMT", &time));
Time::Exploded exploded;
time.UTCExplode(&exploded);
EXPECT_EQ(3, exploded.day_of_week);
}
TEST_F(TimeTest, DayOfWeekSaturday) {
Time time;
EXPECT_TRUE(Time::FromString("Sat, 12 May 2012 12:00:00 GMT", &time));
Time::Exploded exploded;
time.UTCExplode(&exploded);
EXPECT_EQ(6, exploded.day_of_week);
}
TEST_F(TimeTest, ParseTimeTest2) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("Mon, 15 Oct 2007 19:45:00 GMT", &parsed_time));
EXPECT_EQ(comparison_time_pdt_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest3) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("15 Oct 07 12:45:00", &parsed_time));
EXPECT_EQ(comparison_time_local_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest4) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("15 Oct 07 19:45 GMT", &parsed_time));
EXPECT_EQ(comparison_time_pdt_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest5) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("Mon Oct 15 12:45 PDT 2007", &parsed_time));
EXPECT_EQ(comparison_time_pdt_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest6) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("Monday, Oct 15, 2007 12:45 PM", &parsed_time));
EXPECT_EQ(comparison_time_local_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest7) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("10/15/07 12:45:00 PM", &parsed_time));
EXPECT_EQ(comparison_time_local_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest8) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("15-OCT-2007 12:45pm", &parsed_time));
EXPECT_EQ(comparison_time_local_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest9) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("16 Oct 2007 4:45-JST (Tuesday)", &parsed_time));
EXPECT_EQ(comparison_time_pdt_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest10) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("15/10/07 12:45", &parsed_time));
EXPECT_EQ(parsed_time, comparison_time_local_);
}
// Test some of edge cases around epoch, etc.
TEST_F(TimeTest, ParseTimeTestEpoch0) {
Time parsed_time;
// time_t == epoch == 0
EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:00 +0100 1970",
&parsed_time));
EXPECT_EQ(0, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:00 GMT 1970",
&parsed_time));
EXPECT_EQ(0, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpoch1) {
Time parsed_time;
// time_t == 1 second after epoch == 1
EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:01 +0100 1970",
&parsed_time));
EXPECT_EQ(1, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:01 GMT 1970",
&parsed_time));
EXPECT_EQ(1, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpoch2) {
Time parsed_time;
// time_t == 2 seconds after epoch == 2
EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:02 +0100 1970",
&parsed_time));
EXPECT_EQ(2, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:02 GMT 1970",
&parsed_time));
EXPECT_EQ(2, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpochNeg1) {
Time parsed_time;
// time_t == 1 second before epoch == -1
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:59 +0100 1970",
&parsed_time));
EXPECT_EQ(-1, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 1969",
&parsed_time));
EXPECT_EQ(-1, parsed_time.ToTimeT());
}
// If time_t is 32 bits, a date after year 2038 will overflow time_t and
// cause timegm() to return -1. The parsed time should not be 1 second
// before epoch.
TEST_F(TimeTest, ParseTimeTestEpochNotNeg1) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 2100",
&parsed_time));
EXPECT_NE(-1, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpochNeg2) {
Time parsed_time;
// time_t == 2 seconds before epoch == -2
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:58 +0100 1970",
&parsed_time));
EXPECT_EQ(-2, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:58 GMT 1969",
&parsed_time));
EXPECT_EQ(-2, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpoch1960) {
Time parsed_time;
// time_t before Epoch, in 1960
EXPECT_TRUE(Time::FromString("Wed Jun 29 19:40:01 +0100 1960",
&parsed_time));
EXPECT_EQ(-299999999, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Wed Jun 29 18:40:01 GMT 1960",
&parsed_time));
EXPECT_EQ(-299999999, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Wed Jun 29 17:40:01 GMT 1960",
&parsed_time));
EXPECT_EQ(-300003599, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEmpty) {
Time parsed_time;
EXPECT_FALSE(Time::FromString("", &parsed_time));
}
TEST_F(TimeTest, ParseTimeTestInvalidString) {
Time parsed_time;
EXPECT_FALSE(Time::FromString("Monday morning 2000", &parsed_time));
}
TEST_F(TimeTest, ExplodeBeforeUnixEpoch) {
static const int kUnixEpochYear = 1970; // In case this changes (ha!).
Time t;
Time::Exploded exploded;
t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 999 milliseconds (and 999 microseconds).
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 999 milliseconds.
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1001);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 998 milliseconds (and 999 microseconds).
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(998, exploded.millisecond);
t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59.
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1001);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:58 999 milliseconds.
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(58, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
// Make sure we still handle at/after Unix epoch correctly.
t = Time::UnixEpoch();
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-12-31 00:00:00 0 milliseconds.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:00 0 milliseconds (and 1 microsecond).
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:00 1 millisecond.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(1, exploded.millisecond);
t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:01.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(1, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1001);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:01 1 millisecond.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(1, exploded.second);
EXPECT_EQ(1, exploded.millisecond);
}
TEST_F(TimeTest, Max) {
Time max = Time::Max();
EXPECT_TRUE(max.is_max());
EXPECT_EQ(max, Time::Max());
EXPECT_GT(max, Time::Now());
EXPECT_GT(max, Time());
}
TEST_F(TimeTest, MaxConversions) {
Time t = Time::Max();
EXPECT_EQ(std::numeric_limits<int64_t>::max(), t.ToInternalValue());
t = Time::FromDoubleT(std::numeric_limits<double>::infinity());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<double>::infinity(), t.ToDoubleT());
t = Time::FromJsTime(std::numeric_limits<double>::infinity());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<double>::infinity(), t.ToJsTime());
t = Time::FromTimeT(std::numeric_limits<time_t>::max());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<time_t>::max(), t.ToTimeT());
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
struct timeval tval;
tval.tv_sec = std::numeric_limits<time_t>::max();
tval.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1;
t = Time::FromTimeVal(tval);
EXPECT_TRUE(t.is_max());
tval = t.ToTimeVal();
EXPECT_EQ(std::numeric_limits<time_t>::max(), tval.tv_sec);
EXPECT_EQ(static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1,
tval.tv_usec);
#endif
#if defined(OS_MACOSX)
t = Time::FromCFAbsoluteTime(std::numeric_limits<CFAbsoluteTime>::infinity());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<CFAbsoluteTime>::infinity(),
t.ToCFAbsoluteTime());
#endif
#if defined(OS_WIN)
FILETIME ftime;
ftime.dwHighDateTime = std::numeric_limits<DWORD>::max();
ftime.dwLowDateTime = std::numeric_limits<DWORD>::max();
t = Time::FromFileTime(ftime);
EXPECT_TRUE(t.is_max());
ftime = t.ToFileTime();
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwHighDateTime);
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwLowDateTime);
#endif
}
#if defined(OS_MACOSX)
TEST_F(TimeTest, TimeTOverflow) {
Time t = Time::FromInternalValue(std::numeric_limits<int64_t>::max() - 1);
EXPECT_FALSE(t.is_max());
EXPECT_EQ(std::numeric_limits<time_t>::max(), t.ToTimeT());
}
#endif
#if defined(OS_ANDROID)
TEST_F(TimeTest, FromLocalExplodedCrashOnAndroid) {
// This crashed inside Time:: FromLocalExploded() on Android 4.1.2.
// See http://crbug.com/287821
Time::Exploded midnight = {2013, // year
10, // month
0, // day_of_week
13, // day_of_month
0, // hour
0, // minute
0, // second
};
// The string passed to putenv() must be a char* and the documentation states
// that it 'becomes part of the environment', so use a static buffer.
static char buffer[] = "TZ=America/Santiago";
putenv(buffer);
tzset();
Time t;
EXPECT_TRUE(Time::FromLocalExploded(midnight, &t));
EXPECT_EQ(1381633200, t.ToTimeT());
}
#endif // OS_ANDROID
TEST_F(TimeTest, FromExploded_MinMax) {
Time::Exploded exploded = {0};
exploded.month = 1;
exploded.day_of_month = 1;
Time parsed_time;
if (Time::kExplodedMinYear != std::numeric_limits<int>::min()) {
exploded.year = Time::kExplodedMinYear;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time));
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
// On Windows, January 1, 1601 00:00:00 is actually the null time.
EXPECT_FALSE(parsed_time.is_null());
#endif
#if !defined(OS_ANDROID) && !defined(OS_MACOSX) && !defined(STARBOARD)
// The dates earlier than |kExplodedMinYear| that don't work are OS version
// dependent on Android and Mac (for example, macOS 10.13 seems to support
// dates before 1902).
exploded.year--;
EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time));
EXPECT_TRUE(parsed_time.is_null());
#endif
}
if (Time::kExplodedMaxYear != std::numeric_limits<int>::max()) {
exploded.year = Time::kExplodedMaxYear;
exploded.month = 12;
exploded.day_of_month = 31;
exploded.hour = 23;
exploded.minute = 59;
exploded.second = 59;
exploded.millisecond = 999;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time));
EXPECT_FALSE(parsed_time.is_null());
exploded.year++;
#ifndef STARBOARD
// Cobalt's Raspi platform can have time older than 1901-01-01 or later
// than 2038-12-31.
EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time));
EXPECT_TRUE(parsed_time.is_null());
#endif
}
}
class TimeOverride {
public:
static Time Now() {
now_time_ += TimeDelta::FromSeconds(1);
return now_time_;
}
static Time now_time_;
};
// static
Time TimeOverride::now_time_;
// GetBuildTime is not supported by Starboard.
#ifndef STARBOARD
TEST_F(TimeTest, NowOverride) {
TimeOverride::now_time_ = Time::UnixEpoch();
// Choose a reference time that we know to be in the past but close to now.
Time build_time = GetBuildTime();
// Override is not active. All Now() methods should return a time greater than
// the build time.
EXPECT_LT(build_time, Time::Now());
EXPECT_GT(Time::Max(), Time::Now());
EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
EXPECT_LT(build_time, Time::NowFromSystemTime());
EXPECT_GT(Time::Max(), Time::NowFromSystemTime());
EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
{
// Set override.
subtle::ScopedTimeClockOverrides overrides(&TimeOverride::Now, nullptr,
nullptr);
// Overridden value is returned and incremented when Now() or
// NowFromSystemTime() is called.
EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(1), Time::Now());
EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(2), Time::Now());
EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(3),
Time::NowFromSystemTime());
EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(4),
Time::NowFromSystemTime());
// IgnoringOverride methods still return real time.
EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
// IgnoringOverride methods didn't call NowOverrideClock::Now().
EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(5), Time::Now());
EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(6),
Time::NowFromSystemTime());
}
// All methods return real time again.
EXPECT_LT(build_time, Time::Now());
EXPECT_GT(Time::Max(), Time::Now());
EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
EXPECT_LT(build_time, Time::NowFromSystemTime());
EXPECT_GT(Time::Max(), Time::NowFromSystemTime());
EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
}
#endif
TEST(TimeTicks, Deltas) {
for (int index = 0; index < 50; index++) {
TimeTicks ticks_start = TimeTicks::Now();
base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(10));
TimeTicks ticks_stop = TimeTicks::Now();
TimeDelta delta = ticks_stop - ticks_start;
// Note: Although we asked for a 10ms sleep, if the
// time clock has a finer granularity than the Sleep()
// clock, it is quite possible to wakeup early. Here
// is how that works:
// Time(ms timer) Time(us timer)
// 5 5010
// 6 6010
// 7 7010
// 8 8010
// 9 9000
// Elapsed 4ms 3990us
//
// Unfortunately, our InMilliseconds() function truncates
// rather than rounds. We should consider fixing this
// so that our averages come out better.
EXPECT_GE(delta.InMilliseconds(), 9);
EXPECT_GE(delta.InMicroseconds(), 9000);
EXPECT_EQ(delta.InSeconds(), 0);
}
}
static void HighResClockTest(TimeTicks (*GetTicks)()) {
// IsHighResolution() is false on some systems. Since the product still works
// even if it's false, it makes this entire test questionable.
if (!TimeTicks::IsHighResolution())
return;
// Why do we loop here?
// We're trying to measure that intervals increment in a VERY small amount
// of time -- less than 15ms. Unfortunately, if we happen to have a
// context switch in the middle of our test, the context switch could easily
// exceed our limit. So, we iterate on this several times. As long as we're
// able to detect the fine-granularity timers at least once, then the test
// has succeeded.
const int kTargetGranularityUs = 15000; // 15ms
bool success = false;
int retries = 100; // Arbitrary.
TimeDelta delta;
while (!success && retries--) {
TimeTicks ticks_start = GetTicks();
// Loop until we can detect that the clock has changed. Non-HighRes timers
// will increment in chunks, e.g. 15ms. By spinning until we see a clock
// change, we detect the minimum time between measurements.
do {
delta = GetTicks() - ticks_start;
} while (delta.InMilliseconds() == 0);
if (delta.InMicroseconds() <= kTargetGranularityUs)
success = true;
}
// In high resolution mode, we expect to see the clock increment
// in intervals less than 15ms.
EXPECT_TRUE(success);
}
TEST(TimeTicks, HighRes) {
HighResClockTest(&TimeTicks::Now);
}
class TimeTicksOverride {
public:
static TimeTicks Now() {
now_ticks_ += TimeDelta::FromSeconds(1);
return now_ticks_;
}
static TimeTicks now_ticks_;
};
// static
TimeTicks TimeTicksOverride::now_ticks_;
TEST(TimeTicks, NowOverride) {
TimeTicksOverride::now_ticks_ = TimeTicks::Min();
// Override is not active. All Now() methods should return a sensible value.
EXPECT_LT(TimeTicks::Min(), TimeTicks::UnixEpoch());
EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now());
EXPECT_GT(TimeTicks::Max(), TimeTicks::Now());
EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
{
// Set override.
subtle::ScopedTimeClockOverrides overrides(nullptr, &TimeTicksOverride::Now,
nullptr);
// Overridden value is returned and incremented when Now() is called.
EXPECT_EQ(TimeTicks::Min() + TimeDelta::FromSeconds(1), TimeTicks::Now());
EXPECT_EQ(TimeTicks::Min() + TimeDelta::FromSeconds(2), TimeTicks::Now());
// NowIgnoringOverride() still returns real ticks.
EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
// IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
EXPECT_EQ(TimeTicks::Min() + TimeDelta::FromSeconds(3), TimeTicks::Now());
}
// All methods return real ticks again.
EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now());
EXPECT_GT(TimeTicks::Max(), TimeTicks::Now());
EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
}
class ThreadTicksOverride {
public:
static ThreadTicks Now() {
now_ticks_ += TimeDelta::FromSeconds(1);
return now_ticks_;
}
static ThreadTicks now_ticks_;
};
// static
ThreadTicks ThreadTicksOverride::now_ticks_;
#if SB_API_VERSION >= SB_FEATURE_RUNTIME_CONFIGS_VERSION || \
SB_HAS(TIME_THREAD_NOW)
// IOS doesn't support ThreadTicks::Now().
#if defined(OS_IOS)
#define MAYBE_NowOverride DISABLED_NowOverride
#else
#define MAYBE_NowOverride NowOverride
#endif
TEST(ThreadTicks, MAYBE_NowOverride) {
#if SB_API_VERSION >= SB_FEATURE_RUNTIME_CONFIGS_VERSION
if (!SbTimeIsTimeThreadNowSupported()) {
SB_LOG(INFO) << "Time thread now not supported. Test skipped.";
return;
}
#endif // SB_API_VERSION >= SB_FEATURE_RUNTIME_CONFIGS_VERSION
ThreadTicksOverride::now_ticks_ = ThreadTicks::Min();
// Override is not active. All Now() methods should return a sensible value.
ThreadTicks initial_thread_ticks = ThreadTicks::Now();
EXPECT_LE(initial_thread_ticks, ThreadTicks::Now());
EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now());
EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
{
// Set override.
subtle::ScopedTimeClockOverrides overrides(nullptr, nullptr,
&ThreadTicksOverride::Now);
// Overridden value is returned and incremented when Now() is called.
EXPECT_EQ(ThreadTicks::Min() + TimeDelta::FromSeconds(1),
ThreadTicks::Now());
EXPECT_EQ(ThreadTicks::Min() + TimeDelta::FromSeconds(2),
ThreadTicks::Now());
// NowIgnoringOverride() still returns real ticks.
EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
// IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
EXPECT_EQ(ThreadTicks::Min() + TimeDelta::FromSeconds(3),
ThreadTicks::Now());
}
// All methods return real ticks again.
EXPECT_LE(initial_thread_ticks, ThreadTicks::Now());
EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now());
EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
}
#endif // SB_API_VERSION >= SB_FEATURE_RUNTIME_CONFIGS_VERSION ||
// SB_HAS(TIME_THREAD_NOW)
TEST(ThreadTicks, ThreadNow) {
if (ThreadTicks::IsSupported()) {
ThreadTicks::WaitUntilInitialized();
TimeTicks begin = TimeTicks::Now();
ThreadTicks begin_thread = ThreadTicks::Now();
// Make sure that ThreadNow value is non-zero.
EXPECT_GT(begin_thread, ThreadTicks());
// Sleep for 10 milliseconds to get the thread de-scheduled.
base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(10));
ThreadTicks end_thread = ThreadTicks::Now();
TimeTicks end = TimeTicks::Now();
TimeDelta delta = end - begin;
TimeDelta delta_thread = end_thread - begin_thread;
// Make sure that some thread time have elapsed.
EXPECT_GE(delta_thread.InMicroseconds(), 0);
// But the thread time is at least 9ms less than clock time.
TimeDelta difference = delta - delta_thread;
EXPECT_GE(difference.InMicroseconds(), 9000);
}
}
TEST(TimeTicks, SnappedToNextTickBasic) {
base::TimeTicks phase = base::TimeTicks::FromInternalValue(4000);
base::TimeDelta interval = base::TimeDelta::FromMicroseconds(1000);
base::TimeTicks timestamp;
// Timestamp in previous interval.
timestamp = base::TimeTicks::FromInternalValue(3500);
EXPECT_EQ(4000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp in next interval.
timestamp = base::TimeTicks::FromInternalValue(4500);
EXPECT_EQ(5000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp multiple intervals before.
timestamp = base::TimeTicks::FromInternalValue(2500);
EXPECT_EQ(3000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp multiple intervals after.
timestamp = base::TimeTicks::FromInternalValue(6500);
EXPECT_EQ(7000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp on previous interval.
timestamp = base::TimeTicks::FromInternalValue(3000);
EXPECT_EQ(3000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp on next interval.
timestamp = base::TimeTicks::FromInternalValue(5000);
EXPECT_EQ(5000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp equal to phase.
timestamp = base::TimeTicks::FromInternalValue(4000);
EXPECT_EQ(4000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
}
TEST(TimeTicks, SnappedToNextTickOverflow) {
// int(big_timestamp / interval) < 0, so this causes a crash if the number of
// intervals elapsed is attempted to be stored in an int.
base::TimeTicks phase = base::TimeTicks::FromInternalValue(0);
base::TimeDelta interval = base::TimeDelta::FromMicroseconds(4000);
base::TimeTicks big_timestamp =
base::TimeTicks::FromInternalValue(8635916564000);
EXPECT_EQ(8635916564000,
big_timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
EXPECT_EQ(8635916564000,
big_timestamp.SnappedToNextTick(big_timestamp, interval)
.ToInternalValue());
}
#if defined(OS_ANDROID)
TEST(TimeTicks, Android_FromUptimeMillis_ClocksMatch) {
JNIEnv* const env = android::AttachCurrentThread();
android::ScopedJavaLocalRef<jclass> clazz(
android::GetClass(env, "android/os/SystemClock"));
ASSERT_TRUE(clazz.obj());
const jmethodID method_id =
android::MethodID::Get<android::MethodID::TYPE_STATIC>(
env, clazz.obj(), "uptimeMillis", "()J");
ASSERT_FALSE(!method_id);
// Subtract 1ms from the expected lower bound to allow millisecon-level
// truncation performed in uptimeMillis().
const TimeTicks lower_bound_ticks =
TimeTicks::Now() - TimeDelta::FromMilliseconds(1);
const TimeTicks converted_ticks = TimeTicks::FromUptimeMillis(
env->CallStaticLongMethod(clazz.obj(), method_id));
const TimeTicks upper_bound_ticks = TimeTicks::Now();
EXPECT_LE(lower_bound_ticks, converted_ticks);
EXPECT_GE(upper_bound_ticks, converted_ticks);
}
#endif // OS_ANDROID
TEST(TimeDelta, FromAndIn) {
// static_assert also checks that the contained expression is a constant
// expression, meaning all its components are suitable for initializing global
// variables.
static_assert(TimeDelta::FromDays(2) == TimeDelta::FromHours(48), "");
static_assert(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180), "");
static_assert(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120), "");
static_assert(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000),
"");
static_assert(
TimeDelta::FromMilliseconds(2) == TimeDelta::FromMicroseconds(2000), "");
static_assert(
TimeDelta::FromSecondsD(2.3) == TimeDelta::FromMilliseconds(2300), "");
static_assert(
TimeDelta::FromMillisecondsD(2.5) == TimeDelta::FromMicroseconds(2500),
"");
EXPECT_EQ(TimeDelta::FromDays(13).InDays(), 13);
EXPECT_EQ(TimeDelta::FromHours(13).InHours(), 13);
EXPECT_EQ(TimeDelta::FromMinutes(13).InMinutes(), 13);
EXPECT_EQ(TimeDelta::FromSeconds(13).InSeconds(), 13);
EXPECT_EQ(TimeDelta::FromSeconds(13).InSecondsF(), 13.0);
EXPECT_EQ(TimeDelta::FromMilliseconds(13).InMilliseconds(), 13);
EXPECT_EQ(TimeDelta::FromMilliseconds(13).InMillisecondsF(), 13.0);
EXPECT_EQ(TimeDelta::FromSecondsD(13.1).InSeconds(), 13);
EXPECT_EQ(TimeDelta::FromSecondsD(13.1).InSecondsF(), 13.1);
EXPECT_EQ(TimeDelta::FromMillisecondsD(13.3).InMilliseconds(), 13);
EXPECT_EQ(TimeDelta::FromMillisecondsD(13.3).InMillisecondsF(), 13.3);
EXPECT_EQ(TimeDelta::FromMicroseconds(13).InMicroseconds(), 13);
EXPECT_EQ(TimeDelta::FromMicrosecondsD(13.3).InMicroseconds(), 13);
EXPECT_EQ(TimeDelta::FromMillisecondsD(3.45678).InMillisecondsF(), 3.456);
EXPECT_EQ(TimeDelta::FromNanoseconds(12345).InNanoseconds(), 12000);
EXPECT_EQ(TimeDelta::FromNanosecondsD(12345.678).InNanoseconds(), 12000);
}
TEST(TimeDelta, InRoundsTowardsZero) {
EXPECT_EQ(TimeDelta::FromHours(23).InDays(), 0);
EXPECT_EQ(TimeDelta::FromHours(-23).InDays(), 0);
EXPECT_EQ(TimeDelta::FromMinutes(59).InHours(), 0);
EXPECT_EQ(TimeDelta::FromMinutes(-59).InHours(), 0);
EXPECT_EQ(TimeDelta::FromSeconds(59).InMinutes(), 0);
EXPECT_EQ(TimeDelta::FromSeconds(-59).InMinutes(), 0);
EXPECT_EQ(TimeDelta::FromMilliseconds(999).InSeconds(), 0);
EXPECT_EQ(TimeDelta::FromMilliseconds(-999).InSeconds(), 0);
EXPECT_EQ(TimeDelta::FromMicroseconds(999).InMilliseconds(), 0);
EXPECT_EQ(TimeDelta::FromMicroseconds(-999).InMilliseconds(), 0);
}
TEST(TimeDelta, InDaysFloored) {
EXPECT_EQ(TimeDelta::FromHours(-25).InDaysFloored(), -2);
EXPECT_EQ(TimeDelta::FromHours(-24).InDaysFloored(), -1);
EXPECT_EQ(TimeDelta::FromHours(-23).InDaysFloored(), -1);
EXPECT_EQ(TimeDelta::FromHours(-1).InDaysFloored(), -1);
EXPECT_EQ(TimeDelta::FromHours(0).InDaysFloored(), 0);
EXPECT_EQ(TimeDelta::FromHours(1).InDaysFloored(), 0);
EXPECT_EQ(TimeDelta::FromHours(23).InDaysFloored(), 0);
EXPECT_EQ(TimeDelta::FromHours(24).InDaysFloored(), 1);
EXPECT_EQ(TimeDelta::FromHours(25).InDaysFloored(), 1);
}
TEST(TimeDelta, InMillisecondsRoundedUp) {
EXPECT_EQ(TimeDelta::FromMicroseconds(-1001).InMillisecondsRoundedUp(), -1);
EXPECT_EQ(TimeDelta::FromMicroseconds(-1000).InMillisecondsRoundedUp(), -1);
EXPECT_EQ(TimeDelta::FromMicroseconds(-999).InMillisecondsRoundedUp(), 0);
EXPECT_EQ(TimeDelta::FromMicroseconds(-1).InMillisecondsRoundedUp(), 0);
EXPECT_EQ(TimeDelta::FromMicroseconds(0).InMillisecondsRoundedUp(), 0);
EXPECT_EQ(TimeDelta::FromMicroseconds(1).InMillisecondsRoundedUp(), 1);
EXPECT_EQ(TimeDelta::FromMicroseconds(999).InMillisecondsRoundedUp(), 1);
EXPECT_EQ(TimeDelta::FromMicroseconds(1000).InMillisecondsRoundedUp(), 1);
EXPECT_EQ(TimeDelta::FromMicroseconds(1001).InMillisecondsRoundedUp(), 2);
}
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
TEST(TimeDelta, TimeSpecConversion) {
TimeDelta delta = TimeDelta::FromSeconds(0);
struct timespec result = delta.ToTimeSpec();
EXPECT_EQ(result.tv_sec, 0);
EXPECT_EQ(result.tv_nsec, 0);
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
delta = TimeDelta::FromSeconds(1);
result = delta.ToTimeSpec();
EXPECT_EQ(result.tv_sec, 1);
EXPECT_EQ(result.tv_nsec, 0);
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
delta = TimeDelta::FromMicroseconds(1);
result = delta.ToTimeSpec();
EXPECT_EQ(result.tv_sec, 0);
EXPECT_EQ(result.tv_nsec, 1000);
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
delta = TimeDelta::FromMicroseconds(Time::kMicrosecondsPerSecond + 1);
result = delta.ToTimeSpec();
EXPECT_EQ(result.tv_sec, 1);
EXPECT_EQ(result.tv_nsec, 1000);
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
}
#endif // defined(OS_POSIX) || defined(OS_FUCHSIA)
// Our internal time format is serialized in things like databases, so it's
// important that it's consistent across all our platforms. We use the 1601
// Windows epoch as the internal format across all platforms.
TEST(TimeDelta, WindowsEpoch) {
Time::Exploded exploded;
exploded.year = 1970;
exploded.month = 1;
exploded.day_of_week = 0; // Should be unusued.
exploded.day_of_month = 1;
exploded.hour = 0;
exploded.minute = 0;
exploded.second = 0;
exploded.millisecond = 0;
Time t;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &t));
// Unix 1970 epoch.
EXPECT_EQ(INT64_C(11644473600000000), t.ToInternalValue());
// We can't test 1601 epoch, since the system time functions on Linux
// only compute years starting from 1900.
}
// We could define this separately for Time, TimeTicks and TimeDelta but the
// definitions would be identical anyway.
template <class Any>
std::string AnyToString(Any any) {
std::ostringstream oss;
oss << any;
return oss.str();
}
TEST(TimeDelta, Magnitude) {
constexpr int64_t zero = 0;
STATIC_ASSERT(TimeDelta::FromMicroseconds(zero) ==
TimeDelta::FromMicroseconds(zero).magnitude(),
"");
constexpr int64_t one = 1;
constexpr int64_t negative_one = -1;
STATIC_ASSERT(TimeDelta::FromMicroseconds(one) ==
TimeDelta::FromMicroseconds(one).magnitude(),
"");
STATIC_ASSERT(TimeDelta::FromMicroseconds(one) ==
TimeDelta::FromMicroseconds(negative_one).magnitude(),
"");
constexpr int64_t max_int64_minus_one =
std::numeric_limits<int64_t>::max() - 1;
constexpr int64_t min_int64_plus_two =
std::numeric_limits<int64_t>::min() + 2;
STATIC_ASSERT(
TimeDelta::FromMicroseconds(max_int64_minus_one) ==
TimeDelta::FromMicroseconds(max_int64_minus_one).magnitude(),
"");
STATIC_ASSERT(TimeDelta::FromMicroseconds(max_int64_minus_one) ==
TimeDelta::FromMicroseconds(min_int64_plus_two).magnitude(),
"");
}
TEST(TimeDelta, ZeroMinMax) {
constexpr TimeDelta kZero;
static_assert(kZero.is_zero(), "");
constexpr TimeDelta kMax = TimeDelta::Max();
static_assert(kMax.is_max(), "");
static_assert(kMax == TimeDelta::Max(), "");
static_assert(kMax > TimeDelta::FromDays(100 * 365), "");
static_assert(kMax > kZero, "");
constexpr TimeDelta kMin = TimeDelta::Min();
static_assert(kMin.is_min(), "");
static_assert(kMin == TimeDelta::Min(), "");
static_assert(kMin < TimeDelta::FromDays(-100 * 365), "");
static_assert(kMin < kZero, "");
}
TEST(TimeDelta, MaxConversions) {
// static_assert also confirms constexpr works as intended.
constexpr TimeDelta kMax = TimeDelta::Max();
static_assert(kMax.ToInternalValue() == std::numeric_limits<int64_t>::max(),
"");
EXPECT_EQ(kMax.InDays(), std::numeric_limits<int>::max());
EXPECT_EQ(kMax.InHours(), std::numeric_limits<int>::max());
EXPECT_EQ(kMax.InMinutes(), std::numeric_limits<int>::max());
EXPECT_EQ(kMax.InSecondsF(), std::numeric_limits<double>::infinity());
EXPECT_EQ(kMax.InSeconds(), std::numeric_limits<int64_t>::max());
EXPECT_EQ(kMax.InMillisecondsF(), std::numeric_limits<double>::infinity());
EXPECT_EQ(kMax.InMilliseconds(), std::numeric_limits<int64_t>::max());
EXPECT_EQ(kMax.InMillisecondsRoundedUp(), std::numeric_limits<int64_t>::max());
static_assert(TimeDelta::FromDays(std::numeric_limits<int>::max()).is_max(),
"");
static_assert(TimeDelta::FromHours(std::numeric_limits<int>::max()).is_max(),
"");
static_assert(
TimeDelta::FromMinutes(std::numeric_limits<int>::max()).is_max(), "");
constexpr int64_t max_int = std::numeric_limits<int64_t>::max();
constexpr int64_t min_int = std::numeric_limits<int64_t>::min();
static_assert(
TimeDelta::FromSeconds(max_int / Time::kMicrosecondsPerSecond + 1)
.is_max(),
"");
static_assert(
TimeDelta::FromMilliseconds(max_int / Time::kMillisecondsPerSecond + 1)
.is_max(),
"");
static_assert(TimeDelta::FromMicroseconds(max_int).is_max(), "");
static_assert(
TimeDelta::FromSeconds(min_int / Time::kMicrosecondsPerSecond - 1)
.is_min(),
"");
static_assert(
TimeDelta::FromMilliseconds(min_int / Time::kMillisecondsPerSecond - 1)
.is_min(),
"");
static_assert(TimeDelta::FromMicroseconds(min_int).is_min(), "");
static_assert(
TimeDelta::FromMicroseconds(std::numeric_limits<int64_t>::min()).is_min(),
"");
// Floating point arithmetic resulting in infinity isn't constexpr in C++14.
EXPECT_TRUE(TimeDelta::FromSecondsD(std::numeric_limits<double>::infinity())
.is_max());
// Note that max_int/min_int will be rounded when converted to doubles - they
// can't be exactly represented.
constexpr double max_d = static_cast<double>(max_int);
constexpr double min_d = static_cast<double>(min_int);
static_assert(
TimeDelta::FromSecondsD(max_d / Time::kMicrosecondsPerSecond + 1)
.is_max(),
"");
// Floating point arithmetic resulting in infinity isn't constexpr in C++14.
EXPECT_TRUE(
TimeDelta::FromMillisecondsD(std::numeric_limits<double>::infinity())
.is_max());
static_assert(
TimeDelta::FromMillisecondsD(max_d / Time::kMillisecondsPerSecond * 2)
.is_max(),
"");
static_assert(
TimeDelta::FromSecondsD(min_d / Time::kMicrosecondsPerSecond - 1)
.is_min(),
"");
static_assert(
TimeDelta::FromMillisecondsD(min_d / Time::kMillisecondsPerSecond * 2)
.is_min(),
"");
}
TEST(TimeDelta, NumericOperators) {
constexpr double d = 0.5;
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) * d));
STATIC_ASSERT(TimeDelta::FromMilliseconds(2000) ==
(TimeDelta::FromMilliseconds(1000) / d),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) *= d));
STATIC_ASSERT(TimeDelta::FromMilliseconds(2000) ==
(TimeDelta::FromMilliseconds(1000) /= d),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(d * TimeDelta::FromMilliseconds(1000)));
constexpr float f = 0.5;
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) * f));
STATIC_ASSERT(TimeDelta::FromMilliseconds(2000) ==
(TimeDelta::FromMilliseconds(1000) / f),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) *= f));
STATIC_ASSERT(TimeDelta::FromMilliseconds(2000) ==
(TimeDelta::FromMilliseconds(1000) /= f),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(f * TimeDelta::FromMilliseconds(1000)));
constexpr int i = 2;
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) * i));
STATIC_ASSERT(TimeDelta::FromMilliseconds(500) ==
(TimeDelta::FromMilliseconds(1000) / i),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) *= i));
STATIC_ASSERT(TimeDelta::FromMilliseconds(500) ==
(TimeDelta::FromMilliseconds(1000) /= i),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(i * TimeDelta::FromMilliseconds(1000)));
constexpr int64_t i64 = 2;
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) * i64));
STATIC_ASSERT(TimeDelta::FromMilliseconds(500) ==
(TimeDelta::FromMilliseconds(1000) / i64),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) *= i64));
STATIC_ASSERT(TimeDelta::FromMilliseconds(500) ==
(TimeDelta::FromMilliseconds(1000) /= i64),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(i64 * TimeDelta::FromMilliseconds(1000)));
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) * 0.5));
STATIC_ASSERT(TimeDelta::FromMilliseconds(2000) ==
(TimeDelta::FromMilliseconds(1000) / 0.5),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(TimeDelta::FromMilliseconds(1000) *= 0.5));
STATIC_ASSERT(TimeDelta::FromMilliseconds(2000) ==
(TimeDelta::FromMilliseconds(1000) /= 0.5),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
(0.5 * TimeDelta::FromMilliseconds(1000)));
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) * 2));
STATIC_ASSERT(TimeDelta::FromMilliseconds(500) ==
(TimeDelta::FromMilliseconds(1000) / 2),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(TimeDelta::FromMilliseconds(1000) *= 2));
STATIC_ASSERT(TimeDelta::FromMilliseconds(500) ==
(TimeDelta::FromMilliseconds(1000) /= 2),
"");
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
(2 * TimeDelta::FromMilliseconds(1000)));
}
// Basic test of operators between TimeDeltas (without overflow -- next test
// handles overflow).
TEST(TimeDelta, TimeDeltaOperators) {
constexpr TimeDelta kElevenSeconds = TimeDelta::FromSeconds(11);
constexpr TimeDelta kThreeSeconds = TimeDelta::FromSeconds(3);
EXPECT_EQ(TimeDelta::FromSeconds(14), kElevenSeconds + kThreeSeconds);
EXPECT_EQ(TimeDelta::FromSeconds(14), kThreeSeconds + kElevenSeconds);
EXPECT_EQ(TimeDelta::FromSeconds(8), kElevenSeconds - kThreeSeconds);
EXPECT_EQ(TimeDelta::FromSeconds(-8), kThreeSeconds - kElevenSeconds);
static_assert(3 == kElevenSeconds / kThreeSeconds, "");
static_assert(0 == kThreeSeconds / kElevenSeconds, "");
static_assert(TimeDelta::FromSeconds(2) == kElevenSeconds % kThreeSeconds,
"");
}
TEST(TimeDelta, Overflows) {
// Some sanity checks. static_assert's used were possible to verify constexpr
// evaluation at the same time.
static_assert(TimeDelta::Max().is_max(), "");
static_assert(-TimeDelta::Max() < TimeDelta(), "");
static_assert(-TimeDelta::Max() > TimeDelta::Min(), "");
static_assert(TimeDelta() > -TimeDelta::Max(), "");
TimeDelta large_delta = TimeDelta::Max() - TimeDelta::FromMilliseconds(1);
TimeDelta large_negative = -large_delta;
EXPECT_GT(TimeDelta(), large_negative);
EXPECT_FALSE(large_delta.is_max());
EXPECT_FALSE((-large_negative).is_min());
constexpr TimeDelta kOneSecond = TimeDelta::FromSeconds(1);
// Test +, -, * and / operators.
EXPECT_TRUE((large_delta + kOneSecond).is_max());
EXPECT_TRUE((large_negative + (-kOneSecond)).is_min());
EXPECT_TRUE((large_negative - kOneSecond).is_min());
EXPECT_TRUE((large_delta - (-kOneSecond)).is_max());
EXPECT_TRUE((large_delta * 2).is_max());
EXPECT_TRUE((large_delta * -2).is_min());
EXPECT_TRUE((large_delta / 0.5).is_max());
EXPECT_TRUE((large_delta / -0.5).is_min());
// Test that double conversions overflow to infinity.
EXPECT_EQ((large_delta + kOneSecond).InSecondsF(),
std::numeric_limits<double>::infinity());
EXPECT_EQ((large_delta + kOneSecond).InMillisecondsF(),
std::numeric_limits<double>::infinity());
EXPECT_EQ((large_delta + kOneSecond).InMicrosecondsF(),
std::numeric_limits<double>::infinity());
// Test +=, -=, *= and /= operators.
TimeDelta delta = large_delta;
delta += kOneSecond;
EXPECT_TRUE(delta.is_max());
delta = large_negative;
delta += -kOneSecond;
EXPECT_TRUE((delta).is_min());
delta = large_negative;
delta -= kOneSecond;
EXPECT_TRUE((delta).is_min());
delta = large_delta;
delta -= -kOneSecond;
EXPECT_TRUE(delta.is_max());
delta = large_delta;
delta *= 2;
EXPECT_TRUE(delta.is_max());
delta = large_negative;
delta *= 1.5;
EXPECT_TRUE((delta).is_min());
delta = large_delta;
delta /= 0.5;
EXPECT_TRUE(delta.is_max());
delta = large_negative;
delta /= 0.5;
EXPECT_TRUE((delta).is_min());
// Test operations with Time and TimeTicks.
EXPECT_TRUE((large_delta + Time::Now()).is_max());
EXPECT_TRUE((large_delta + TimeTicks::Now()).is_max());
EXPECT_TRUE((Time::Now() + large_delta).is_max());
EXPECT_TRUE((TimeTicks::Now() + large_delta).is_max());
Time time_now = Time::Now();
EXPECT_EQ(kOneSecond, (time_now + kOneSecond) - time_now);
EXPECT_EQ(-kOneSecond, (time_now - kOneSecond) - time_now);
TimeTicks ticks_now = TimeTicks::Now();
EXPECT_EQ(-kOneSecond, (ticks_now - kOneSecond) - ticks_now);
EXPECT_EQ(kOneSecond, (ticks_now + kOneSecond) - ticks_now);
}
CONSTEXPR TimeTicks TestTimeTicksConstexprCopyAssignment() {
TimeTicks a = TimeTicks::FromInternalValue(12345);
TimeTicks b;
b = a;
return b;
}
TEST(TimeTicks, ConstexprAndTriviallyCopiable) {
// "Trivially copyable" is necessary for use in std::atomic<TimeTicks>.
#ifdef STARBOARD
static_assert(std::is_trivially_destructible<TimeTicks>(), "");
#else
static_assert(std::is_trivially_copyable<TimeTicks>(), "");
#endif
// Copy ctor.
constexpr TimeTicks a = TimeTicks::FromInternalValue(12345);
constexpr TimeTicks b{a};
static_assert(a.ToInternalValue() == b.ToInternalValue(), "");
// Copy assignment.
STATIC_ASSERT(a.ToInternalValue() ==
TestTimeTicksConstexprCopyAssignment().ToInternalValue(),
"");
}
CONSTEXPR ThreadTicks TestThreadTicksConstexprCopyAssignment() {
ThreadTicks a = ThreadTicks::FromInternalValue(12345);
ThreadTicks b;
b = a;
return b;
}
TEST(ThreadTicks, ConstexprAndTriviallyCopiable) {
// "Trivially copyable" is necessary for use in std::atomic<ThreadTicks>.
#ifdef STARBOARD
static_assert(std::is_trivially_destructible<ThreadTicks>(), "");
#else
static_assert(std::is_trivially_copyable<ThreadTicks>(), "");
#endif
// Copy ctor.
constexpr ThreadTicks a = ThreadTicks::FromInternalValue(12345);
constexpr ThreadTicks b{a};
static_assert(a.ToInternalValue() == b.ToInternalValue(), "");
// Copy assignment.
STATIC_ASSERT(a.ToInternalValue() ==
TestThreadTicksConstexprCopyAssignment().ToInternalValue(),
"");
}
CONSTEXPR TimeDelta TestTimeDeltaConstexprCopyAssignment() {
TimeDelta a = TimeDelta::FromSeconds(1);
TimeDelta b;
b = a;
return b;
}
TEST(TimeDelta, ConstexprAndTriviallyCopiable) {
// "Trivially copyable" is necessary for use in std::atomic<TimeDelta>.
#ifdef STARBOARD
static_assert(std::is_trivially_destructible<TimeDelta>(), "");
#else
static_assert(std::is_trivially_copyable<TimeDelta>(), "");
#endif
// Copy ctor.
constexpr TimeDelta a = TimeDelta::FromSeconds(1);
constexpr TimeDelta b{a};
static_assert(a == b, "");
// Copy assignment.
STATIC_ASSERT(a == TestTimeDeltaConstexprCopyAssignment(), "");
}
TEST(TimeDeltaLogging, DCheckEqCompiles) {
DCHECK_EQ(TimeDelta(), TimeDelta());
}
TEST(TimeDeltaLogging, EmptyIsZero) {
constexpr TimeDelta kZero;
EXPECT_EQ("0 s", AnyToString(kZero));
}
TEST(TimeDeltaLogging, FiveHundredMs) {
constexpr TimeDelta kFiveHundredMs = TimeDelta::FromMilliseconds(500);
EXPECT_EQ("0.5 s", AnyToString(kFiveHundredMs));
}
TEST(TimeDeltaLogging, MinusTenSeconds) {
constexpr TimeDelta kMinusTenSeconds = TimeDelta::FromSeconds(-10);
EXPECT_EQ("-10 s", AnyToString(kMinusTenSeconds));
}
TEST(TimeDeltaLogging, DoesNotMessUpFormattingFlags) {
std::ostringstream oss;
std::ios_base::fmtflags flags_before = oss.flags();
oss << TimeDelta();
EXPECT_EQ(flags_before, oss.flags());
}
TEST(TimeDeltaLogging, DoesNotMakeStreamBad) {
std::ostringstream oss;
oss << TimeDelta();
EXPECT_TRUE(oss.good());
}
TEST(TimeLogging, DCheckEqCompiles) {
DCHECK_EQ(Time(), Time());
}
TEST(TimeLogging, ChromeBirthdate) {
Time birthdate;
ASSERT_TRUE(Time::FromString("Tue, 02 Sep 2008 09:42:18 GMT", &birthdate));
EXPECT_EQ("2008-09-02 09:42:18.000 UTC", AnyToString(birthdate));
}
TEST(TimeLogging, DoesNotMessUpFormattingFlags) {
std::ostringstream oss;
std::ios_base::fmtflags flags_before = oss.flags();
oss << Time();
EXPECT_EQ(flags_before, oss.flags());
}
TEST(TimeLogging, DoesNotMakeStreamBad) {
std::ostringstream oss;
oss << Time();
EXPECT_TRUE(oss.good());
}
TEST(TimeTicksLogging, DCheckEqCompiles) {
DCHECK_EQ(TimeTicks(), TimeTicks());
}
TEST(TimeTicksLogging, ZeroTime) {
TimeTicks zero;
EXPECT_EQ("0 bogo-microseconds", AnyToString(zero));
}
TEST(TimeTicksLogging, FortyYearsLater) {
TimeTicks forty_years_later =
TimeTicks() + TimeDelta::FromDays(365.25 * 40);
EXPECT_EQ("1262304000000000 bogo-microseconds",
AnyToString(forty_years_later));
}
TEST(TimeTicksLogging, DoesNotMessUpFormattingFlags) {
std::ostringstream oss;
std::ios_base::fmtflags flags_before = oss.flags();
oss << TimeTicks();
EXPECT_EQ(flags_before, oss.flags());
}
TEST(TimeTicksLogging, DoesNotMakeStreamBad) {
std::ostringstream oss;
oss << TimeTicks();
EXPECT_TRUE(oss.good());
}
} // namespace
} // namespace base