|  | //===--- TargetInfo.cpp - Information about Target machine ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements the TargetInfo and TargetInfoImpl interfaces. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Basic/AddressSpaces.h" | 
|  | #include "clang/Basic/CharInfo.h" | 
|  | #include "clang/Basic/Diagnostic.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/TargetParser.h" | 
|  | #include <cstdlib> | 
|  | using namespace clang; | 
|  |  | 
|  | static const LangASMap DefaultAddrSpaceMap = {0}; | 
|  |  | 
|  | // TargetInfo Constructor. | 
|  | TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { | 
|  | // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or | 
|  | // SPARC.  These should be overridden by concrete targets as needed. | 
|  | BigEndian = !T.isLittleEndian(); | 
|  | TLSSupported = true; | 
|  | VLASupported = true; | 
|  | NoAsmVariants = false; | 
|  | HasLegalHalfType = false; | 
|  | HasFloat128 = false; | 
|  | PointerWidth = PointerAlign = 32; | 
|  | BoolWidth = BoolAlign = 8; | 
|  | IntWidth = IntAlign = 32; | 
|  | LongWidth = LongAlign = 32; | 
|  | LongLongWidth = LongLongAlign = 64; | 
|  |  | 
|  | // Fixed point default bit widths | 
|  | ShortAccumWidth = ShortAccumAlign = 16; | 
|  | AccumWidth = AccumAlign = 32; | 
|  | LongAccumWidth = LongAccumAlign = 64; | 
|  | ShortFractWidth = ShortFractAlign = 8; | 
|  | FractWidth = FractAlign = 16; | 
|  | LongFractWidth = LongFractAlign = 32; | 
|  |  | 
|  | // Fixed point default integral and fractional bit sizes | 
|  | // We give the _Accum 1 fewer fractional bits than their corresponding _Fract | 
|  | // types by default to have the same number of fractional bits between _Accum | 
|  | // and _Fract types. | 
|  | PaddingOnUnsignedFixedPoint = false; | 
|  | ShortAccumScale = 7; | 
|  | AccumScale = 15; | 
|  | LongAccumScale = 31; | 
|  |  | 
|  | SuitableAlign = 64; | 
|  | DefaultAlignForAttributeAligned = 128; | 
|  | MinGlobalAlign = 0; | 
|  | // From the glibc documentation, on GNU systems, malloc guarantees 16-byte | 
|  | // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See | 
|  | // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html | 
|  | if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment()) | 
|  | NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; | 
|  | else | 
|  | NewAlign = 0; // Infer from basic type alignment. | 
|  | HalfWidth = 16; | 
|  | HalfAlign = 16; | 
|  | FloatWidth = 32; | 
|  | FloatAlign = 32; | 
|  | DoubleWidth = 64; | 
|  | DoubleAlign = 64; | 
|  | LongDoubleWidth = 64; | 
|  | LongDoubleAlign = 64; | 
|  | Float128Align = 128; | 
|  | LargeArrayMinWidth = 0; | 
|  | LargeArrayAlign = 0; | 
|  | MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; | 
|  | MaxVectorAlign = 0; | 
|  | MaxTLSAlign = 0; | 
|  | SimdDefaultAlign = 0; | 
|  | SizeType = UnsignedLong; | 
|  | PtrDiffType = SignedLong; | 
|  | IntMaxType = SignedLongLong; | 
|  | IntPtrType = SignedLong; | 
|  | WCharType = SignedInt; | 
|  | WIntType = SignedInt; | 
|  | Char16Type = UnsignedShort; | 
|  | Char32Type = UnsignedInt; | 
|  | Int64Type = SignedLongLong; | 
|  | SigAtomicType = SignedInt; | 
|  | ProcessIDType = SignedInt; | 
|  | UseSignedCharForObjCBool = true; | 
|  | UseBitFieldTypeAlignment = true; | 
|  | UseZeroLengthBitfieldAlignment = false; | 
|  | UseExplicitBitFieldAlignment = true; | 
|  | ZeroLengthBitfieldBoundary = 0; | 
|  | HalfFormat = &llvm::APFloat::IEEEhalf(); | 
|  | FloatFormat = &llvm::APFloat::IEEEsingle(); | 
|  | DoubleFormat = &llvm::APFloat::IEEEdouble(); | 
|  | LongDoubleFormat = &llvm::APFloat::IEEEdouble(); | 
|  | Float128Format = &llvm::APFloat::IEEEquad(); | 
|  | MCountName = "mcount"; | 
|  | RegParmMax = 0; | 
|  | SSERegParmMax = 0; | 
|  | HasAlignMac68kSupport = false; | 
|  | HasBuiltinMSVaList = false; | 
|  | IsRenderScriptTarget = false; | 
|  |  | 
|  | // Default to no types using fpret. | 
|  | RealTypeUsesObjCFPRet = 0; | 
|  |  | 
|  | // Default to not using fp2ret for __Complex long double | 
|  | ComplexLongDoubleUsesFP2Ret = false; | 
|  |  | 
|  | // Set the C++ ABI based on the triple. | 
|  | TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() | 
|  | ? TargetCXXABI::Microsoft | 
|  | : TargetCXXABI::GenericItanium); | 
|  |  | 
|  | // Default to an empty address space map. | 
|  | AddrSpaceMap = &DefaultAddrSpaceMap; | 
|  | UseAddrSpaceMapMangling = false; | 
|  |  | 
|  | // Default to an unknown platform name. | 
|  | PlatformName = "unknown"; | 
|  | PlatformMinVersion = VersionTuple(); | 
|  | } | 
|  |  | 
|  | // Out of line virtual dtor for TargetInfo. | 
|  | TargetInfo::~TargetInfo() {} | 
|  |  | 
|  | bool | 
|  | TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { | 
|  | Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { | 
|  | Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getTypeName - Return the user string for the specified integer type enum. | 
|  | /// For example, SignedShort -> "short". | 
|  | const char *TargetInfo::getTypeName(IntType T) { | 
|  | switch (T) { | 
|  | default: llvm_unreachable("not an integer!"); | 
|  | case SignedChar:       return "signed char"; | 
|  | case UnsignedChar:     return "unsigned char"; | 
|  | case SignedShort:      return "short"; | 
|  | case UnsignedShort:    return "unsigned short"; | 
|  | case SignedInt:        return "int"; | 
|  | case UnsignedInt:      return "unsigned int"; | 
|  | case SignedLong:       return "long int"; | 
|  | case UnsignedLong:     return "long unsigned int"; | 
|  | case SignedLongLong:   return "long long int"; | 
|  | case UnsignedLongLong: return "long long unsigned int"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getTypeConstantSuffix - Return the constant suffix for the specified | 
|  | /// integer type enum. For example, SignedLong -> "L". | 
|  | const char *TargetInfo::getTypeConstantSuffix(IntType T) const { | 
|  | switch (T) { | 
|  | default: llvm_unreachable("not an integer!"); | 
|  | case SignedChar: | 
|  | case SignedShort: | 
|  | case SignedInt:        return ""; | 
|  | case SignedLong:       return "L"; | 
|  | case SignedLongLong:   return "LL"; | 
|  | case UnsignedChar: | 
|  | if (getCharWidth() < getIntWidth()) | 
|  | return ""; | 
|  | LLVM_FALLTHROUGH; | 
|  | case UnsignedShort: | 
|  | if (getShortWidth() < getIntWidth()) | 
|  | return ""; | 
|  | LLVM_FALLTHROUGH; | 
|  | case UnsignedInt:      return "U"; | 
|  | case UnsignedLong:     return "UL"; | 
|  | case UnsignedLongLong: return "ULL"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getTypeFormatModifier - Return the printf format modifier for the | 
|  | /// specified integer type enum. For example, SignedLong -> "l". | 
|  |  | 
|  | const char *TargetInfo::getTypeFormatModifier(IntType T) { | 
|  | switch (T) { | 
|  | default: llvm_unreachable("not an integer!"); | 
|  | case SignedChar: | 
|  | case UnsignedChar:     return "hh"; | 
|  | case SignedShort: | 
|  | case UnsignedShort:    return "h"; | 
|  | case SignedInt: | 
|  | case UnsignedInt:      return ""; | 
|  | case SignedLong: | 
|  | case UnsignedLong:     return "l"; | 
|  | case SignedLongLong: | 
|  | case UnsignedLongLong: return "ll"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getTypeWidth - Return the width (in bits) of the specified integer type | 
|  | /// enum. For example, SignedInt -> getIntWidth(). | 
|  | unsigned TargetInfo::getTypeWidth(IntType T) const { | 
|  | switch (T) { | 
|  | default: llvm_unreachable("not an integer!"); | 
|  | case SignedChar: | 
|  | case UnsignedChar:     return getCharWidth(); | 
|  | case SignedShort: | 
|  | case UnsignedShort:    return getShortWidth(); | 
|  | case SignedInt: | 
|  | case UnsignedInt:      return getIntWidth(); | 
|  | case SignedLong: | 
|  | case UnsignedLong:     return getLongWidth(); | 
|  | case SignedLongLong: | 
|  | case UnsignedLongLong: return getLongLongWidth(); | 
|  | }; | 
|  | } | 
|  |  | 
|  | TargetInfo::IntType TargetInfo::getIntTypeByWidth( | 
|  | unsigned BitWidth, bool IsSigned) const { | 
|  | if (getCharWidth() == BitWidth) | 
|  | return IsSigned ? SignedChar : UnsignedChar; | 
|  | if (getShortWidth() == BitWidth) | 
|  | return IsSigned ? SignedShort : UnsignedShort; | 
|  | if (getIntWidth() == BitWidth) | 
|  | return IsSigned ? SignedInt : UnsignedInt; | 
|  | if (getLongWidth() == BitWidth) | 
|  | return IsSigned ? SignedLong : UnsignedLong; | 
|  | if (getLongLongWidth() == BitWidth) | 
|  | return IsSigned ? SignedLongLong : UnsignedLongLong; | 
|  | return NoInt; | 
|  | } | 
|  |  | 
|  | TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, | 
|  | bool IsSigned) const { | 
|  | if (getCharWidth() >= BitWidth) | 
|  | return IsSigned ? SignedChar : UnsignedChar; | 
|  | if (getShortWidth() >= BitWidth) | 
|  | return IsSigned ? SignedShort : UnsignedShort; | 
|  | if (getIntWidth() >= BitWidth) | 
|  | return IsSigned ? SignedInt : UnsignedInt; | 
|  | if (getLongWidth() >= BitWidth) | 
|  | return IsSigned ? SignedLong : UnsignedLong; | 
|  | if (getLongLongWidth() >= BitWidth) | 
|  | return IsSigned ? SignedLongLong : UnsignedLongLong; | 
|  | return NoInt; | 
|  | } | 
|  |  | 
|  | TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const { | 
|  | if (getFloatWidth() == BitWidth) | 
|  | return Float; | 
|  | if (getDoubleWidth() == BitWidth) | 
|  | return Double; | 
|  |  | 
|  | switch (BitWidth) { | 
|  | case 96: | 
|  | if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) | 
|  | return LongDouble; | 
|  | break; | 
|  | case 128: | 
|  | if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || | 
|  | &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) | 
|  | return LongDouble; | 
|  | if (hasFloat128Type()) | 
|  | return Float128; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NoFloat; | 
|  | } | 
|  |  | 
|  | /// getTypeAlign - Return the alignment (in bits) of the specified integer type | 
|  | /// enum. For example, SignedInt -> getIntAlign(). | 
|  | unsigned TargetInfo::getTypeAlign(IntType T) const { | 
|  | switch (T) { | 
|  | default: llvm_unreachable("not an integer!"); | 
|  | case SignedChar: | 
|  | case UnsignedChar:     return getCharAlign(); | 
|  | case SignedShort: | 
|  | case UnsignedShort:    return getShortAlign(); | 
|  | case SignedInt: | 
|  | case UnsignedInt:      return getIntAlign(); | 
|  | case SignedLong: | 
|  | case UnsignedLong:     return getLongAlign(); | 
|  | case SignedLongLong: | 
|  | case UnsignedLongLong: return getLongLongAlign(); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// isTypeSigned - Return whether an integer types is signed. Returns true if | 
|  | /// the type is signed; false otherwise. | 
|  | bool TargetInfo::isTypeSigned(IntType T) { | 
|  | switch (T) { | 
|  | default: llvm_unreachable("not an integer!"); | 
|  | case SignedChar: | 
|  | case SignedShort: | 
|  | case SignedInt: | 
|  | case SignedLong: | 
|  | case SignedLongLong: | 
|  | return true; | 
|  | case UnsignedChar: | 
|  | case UnsignedShort: | 
|  | case UnsignedInt: | 
|  | case UnsignedLong: | 
|  | case UnsignedLongLong: | 
|  | return false; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// adjust - Set forced language options. | 
|  | /// Apply changes to the target information with respect to certain | 
|  | /// language options which change the target configuration and adjust | 
|  | /// the language based on the target options where applicable. | 
|  | void TargetInfo::adjust(LangOptions &Opts) { | 
|  | if (Opts.NoBitFieldTypeAlign) | 
|  | UseBitFieldTypeAlignment = false; | 
|  |  | 
|  | switch (Opts.WCharSize) { | 
|  | default: llvm_unreachable("invalid wchar_t width"); | 
|  | case 0: break; | 
|  | case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; | 
|  | case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; | 
|  | case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; | 
|  | } | 
|  |  | 
|  | if (Opts.AlignDouble) { | 
|  | DoubleAlign = LongLongAlign = 64; | 
|  | LongDoubleAlign = 64; | 
|  | } | 
|  |  | 
|  | if (Opts.OpenCL) { | 
|  | // OpenCL C requires specific widths for types, irrespective of | 
|  | // what these normally are for the target. | 
|  | // We also define long long and long double here, although the | 
|  | // OpenCL standard only mentions these as "reserved". | 
|  | IntWidth = IntAlign = 32; | 
|  | LongWidth = LongAlign = 64; | 
|  | LongLongWidth = LongLongAlign = 128; | 
|  | HalfWidth = HalfAlign = 16; | 
|  | FloatWidth = FloatAlign = 32; | 
|  |  | 
|  | // Embedded 32-bit targets (OpenCL EP) might have double C type | 
|  | // defined as float. Let's not override this as it might lead | 
|  | // to generating illegal code that uses 64bit doubles. | 
|  | if (DoubleWidth != FloatWidth) { | 
|  | DoubleWidth = DoubleAlign = 64; | 
|  | DoubleFormat = &llvm::APFloat::IEEEdouble(); | 
|  | } | 
|  | LongDoubleWidth = LongDoubleAlign = 128; | 
|  |  | 
|  | unsigned MaxPointerWidth = getMaxPointerWidth(); | 
|  | assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); | 
|  | bool Is32BitArch = MaxPointerWidth == 32; | 
|  | SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; | 
|  | PtrDiffType = Is32BitArch ? SignedInt : SignedLong; | 
|  | IntPtrType = Is32BitArch ? SignedInt : SignedLong; | 
|  |  | 
|  | IntMaxType = SignedLongLong; | 
|  | Int64Type = SignedLong; | 
|  |  | 
|  | HalfFormat = &llvm::APFloat::IEEEhalf(); | 
|  | FloatFormat = &llvm::APFloat::IEEEsingle(); | 
|  | LongDoubleFormat = &llvm::APFloat::IEEEquad(); | 
|  | } | 
|  |  | 
|  | if (Opts.NewAlignOverride) | 
|  | NewAlign = Opts.NewAlignOverride * getCharWidth(); | 
|  |  | 
|  | // Each unsigned fixed point type has the same number of fractional bits as | 
|  | // its corresponding signed type. | 
|  | PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; | 
|  | CheckFixedPointBits(); | 
|  | } | 
|  |  | 
|  | bool TargetInfo::initFeatureMap( | 
|  | llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, | 
|  | const std::vector<std::string> &FeatureVec) const { | 
|  | for (const auto &F : FeatureVec) { | 
|  | StringRef Name = F; | 
|  | // Apply the feature via the target. | 
|  | bool Enabled = Name[0] == '+'; | 
|  | setFeatureEnabled(Features, Name.substr(1), Enabled); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TargetInfo::CallingConvKind | 
|  | TargetInfo::getCallingConvKind(bool ClangABICompat4) const { | 
|  | if (getCXXABI() != TargetCXXABI::Microsoft && | 
|  | (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) | 
|  | return CCK_ClangABI4OrPS4; | 
|  | return CCK_Default; | 
|  | } | 
|  |  | 
|  | LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { | 
|  | switch (TK) { | 
|  | case OCLTK_Image: | 
|  | case OCLTK_Pipe: | 
|  | return LangAS::opencl_global; | 
|  |  | 
|  | case OCLTK_Sampler: | 
|  | return LangAS::opencl_constant; | 
|  |  | 
|  | default: | 
|  | return LangAS::Default; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | static StringRef removeGCCRegisterPrefix(StringRef Name) { | 
|  | if (Name[0] == '%' || Name[0] == '#') | 
|  | Name = Name.substr(1); | 
|  |  | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | /// isValidClobber - Returns whether the passed in string is | 
|  | /// a valid clobber in an inline asm statement. This is used by | 
|  | /// Sema. | 
|  | bool TargetInfo::isValidClobber(StringRef Name) const { | 
|  | return (isValidGCCRegisterName(Name) || | 
|  | Name == "memory" || Name == "cc"); | 
|  | } | 
|  |  | 
|  | /// isValidGCCRegisterName - Returns whether the passed in string | 
|  | /// is a valid register name according to GCC. This is used by Sema for | 
|  | /// inline asm statements. | 
|  | bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { | 
|  | if (Name.empty()) | 
|  | return false; | 
|  |  | 
|  | // Get rid of any register prefix. | 
|  | Name = removeGCCRegisterPrefix(Name); | 
|  | if (Name.empty()) | 
|  | return false; | 
|  |  | 
|  | ArrayRef<const char *> Names = getGCCRegNames(); | 
|  |  | 
|  | // If we have a number it maps to an entry in the register name array. | 
|  | if (isDigit(Name[0])) { | 
|  | unsigned n; | 
|  | if (!Name.getAsInteger(0, n)) | 
|  | return n < Names.size(); | 
|  | } | 
|  |  | 
|  | // Check register names. | 
|  | if (std::find(Names.begin(), Names.end(), Name) != Names.end()) | 
|  | return true; | 
|  |  | 
|  | // Check any additional names that we have. | 
|  | for (const AddlRegName &ARN : getGCCAddlRegNames()) | 
|  | for (const char *AN : ARN.Names) { | 
|  | if (!AN) | 
|  | break; | 
|  | // Make sure the register that the additional name is for is within | 
|  | // the bounds of the register names from above. | 
|  | if (AN == Name && ARN.RegNum < Names.size()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Now check aliases. | 
|  | for (const GCCRegAlias &GRA : getGCCRegAliases()) | 
|  | for (const char *A : GRA.Aliases) { | 
|  | if (!A) | 
|  | break; | 
|  | if (A == Name) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, | 
|  | bool ReturnCanonical) const { | 
|  | assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); | 
|  |  | 
|  | // Get rid of any register prefix. | 
|  | Name = removeGCCRegisterPrefix(Name); | 
|  |  | 
|  | ArrayRef<const char *> Names = getGCCRegNames(); | 
|  |  | 
|  | // First, check if we have a number. | 
|  | if (isDigit(Name[0])) { | 
|  | unsigned n; | 
|  | if (!Name.getAsInteger(0, n)) { | 
|  | assert(n < Names.size() && "Out of bounds register number!"); | 
|  | return Names[n]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check any additional names that we have. | 
|  | for (const AddlRegName &ARN : getGCCAddlRegNames()) | 
|  | for (const char *AN : ARN.Names) { | 
|  | if (!AN) | 
|  | break; | 
|  | // Make sure the register that the additional name is for is within | 
|  | // the bounds of the register names from above. | 
|  | if (AN == Name && ARN.RegNum < Names.size()) | 
|  | return ReturnCanonical ? Names[ARN.RegNum] : Name; | 
|  | } | 
|  |  | 
|  | // Now check aliases. | 
|  | for (const GCCRegAlias &RA : getGCCRegAliases()) | 
|  | for (const char *A : RA.Aliases) { | 
|  | if (!A) | 
|  | break; | 
|  | if (A == Name) | 
|  | return RA.Register; | 
|  | } | 
|  |  | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { | 
|  | const char *Name = Info.getConstraintStr().c_str(); | 
|  | // An output constraint must start with '=' or '+' | 
|  | if (*Name != '=' && *Name != '+') | 
|  | return false; | 
|  |  | 
|  | if (*Name == '+') | 
|  | Info.setIsReadWrite(); | 
|  |  | 
|  | Name++; | 
|  | while (*Name) { | 
|  | switch (*Name) { | 
|  | default: | 
|  | if (!validateAsmConstraint(Name, Info)) { | 
|  | // FIXME: We temporarily return false | 
|  | // so we can add more constraints as we hit it. | 
|  | // Eventually, an unknown constraint should just be treated as 'g'. | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case '&': // early clobber. | 
|  | Info.setEarlyClobber(); | 
|  | break; | 
|  | case '%': // commutative. | 
|  | // FIXME: Check that there is a another register after this one. | 
|  | break; | 
|  | case 'r': // general register. | 
|  | Info.setAllowsRegister(); | 
|  | break; | 
|  | case 'm': // memory operand. | 
|  | case 'o': // offsetable memory operand. | 
|  | case 'V': // non-offsetable memory operand. | 
|  | case '<': // autodecrement memory operand. | 
|  | case '>': // autoincrement memory operand. | 
|  | Info.setAllowsMemory(); | 
|  | break; | 
|  | case 'g': // general register, memory operand or immediate integer. | 
|  | case 'X': // any operand. | 
|  | Info.setAllowsRegister(); | 
|  | Info.setAllowsMemory(); | 
|  | break; | 
|  | case ',': // multiple alternative constraint.  Pass it. | 
|  | // Handle additional optional '=' or '+' modifiers. | 
|  | if (Name[1] == '=' || Name[1] == '+') | 
|  | Name++; | 
|  | break; | 
|  | case '#': // Ignore as constraint. | 
|  | while (Name[1] && Name[1] != ',') | 
|  | Name++; | 
|  | break; | 
|  | case '?': // Disparage slightly code. | 
|  | case '!': // Disparage severely. | 
|  | case '*': // Ignore for choosing register preferences. | 
|  | case 'i': // Ignore i,n,E,F as output constraints (match from the other | 
|  | // chars) | 
|  | case 'n': | 
|  | case 'E': | 
|  | case 'F': | 
|  | break;  // Pass them. | 
|  | } | 
|  |  | 
|  | Name++; | 
|  | } | 
|  |  | 
|  | // Early clobber with a read-write constraint which doesn't permit registers | 
|  | // is invalid. | 
|  | if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) | 
|  | return false; | 
|  |  | 
|  | // If a constraint allows neither memory nor register operands it contains | 
|  | // only modifiers. Reject it. | 
|  | return Info.allowsMemory() || Info.allowsRegister(); | 
|  | } | 
|  |  | 
|  | bool TargetInfo::resolveSymbolicName(const char *&Name, | 
|  | ArrayRef<ConstraintInfo> OutputConstraints, | 
|  | unsigned &Index) const { | 
|  | assert(*Name == '[' && "Symbolic name did not start with '['"); | 
|  | Name++; | 
|  | const char *Start = Name; | 
|  | while (*Name && *Name != ']') | 
|  | Name++; | 
|  |  | 
|  | if (!*Name) { | 
|  | // Missing ']' | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::string SymbolicName(Start, Name - Start); | 
|  |  | 
|  | for (Index = 0; Index != OutputConstraints.size(); ++Index) | 
|  | if (SymbolicName == OutputConstraints[Index].getName()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TargetInfo::validateInputConstraint( | 
|  | MutableArrayRef<ConstraintInfo> OutputConstraints, | 
|  | ConstraintInfo &Info) const { | 
|  | const char *Name = Info.ConstraintStr.c_str(); | 
|  |  | 
|  | if (!*Name) | 
|  | return false; | 
|  |  | 
|  | while (*Name) { | 
|  | switch (*Name) { | 
|  | default: | 
|  | // Check if we have a matching constraint | 
|  | if (*Name >= '0' && *Name <= '9') { | 
|  | const char *DigitStart = Name; | 
|  | while (Name[1] >= '0' && Name[1] <= '9') | 
|  | Name++; | 
|  | const char *DigitEnd = Name; | 
|  | unsigned i; | 
|  | if (StringRef(DigitStart, DigitEnd - DigitStart + 1) | 
|  | .getAsInteger(10, i)) | 
|  | return false; | 
|  |  | 
|  | // Check if matching constraint is out of bounds. | 
|  | if (i >= OutputConstraints.size()) return false; | 
|  |  | 
|  | // A number must refer to an output only operand. | 
|  | if (OutputConstraints[i].isReadWrite()) | 
|  | return false; | 
|  |  | 
|  | // If the constraint is already tied, it must be tied to the | 
|  | // same operand referenced to by the number. | 
|  | if (Info.hasTiedOperand() && Info.getTiedOperand() != i) | 
|  | return false; | 
|  |  | 
|  | // The constraint should have the same info as the respective | 
|  | // output constraint. | 
|  | Info.setTiedOperand(i, OutputConstraints[i]); | 
|  | } else if (!validateAsmConstraint(Name, Info)) { | 
|  | // FIXME: This error return is in place temporarily so we can | 
|  | // add more constraints as we hit it.  Eventually, an unknown | 
|  | // constraint should just be treated as 'g'. | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case '[': { | 
|  | unsigned Index = 0; | 
|  | if (!resolveSymbolicName(Name, OutputConstraints, Index)) | 
|  | return false; | 
|  |  | 
|  | // If the constraint is already tied, it must be tied to the | 
|  | // same operand referenced to by the number. | 
|  | if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) | 
|  | return false; | 
|  |  | 
|  | // A number must refer to an output only operand. | 
|  | if (OutputConstraints[Index].isReadWrite()) | 
|  | return false; | 
|  |  | 
|  | Info.setTiedOperand(Index, OutputConstraints[Index]); | 
|  | break; | 
|  | } | 
|  | case '%': // commutative | 
|  | // FIXME: Fail if % is used with the last operand. | 
|  | break; | 
|  | case 'i': // immediate integer. | 
|  | case 'n': // immediate integer with a known value. | 
|  | break; | 
|  | case 'I':  // Various constant constraints with target-specific meanings. | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'O': | 
|  | case 'P': | 
|  | if (!validateAsmConstraint(Name, Info)) | 
|  | return false; | 
|  | break; | 
|  | case 'r': // general register. | 
|  | Info.setAllowsRegister(); | 
|  | break; | 
|  | case 'm': // memory operand. | 
|  | case 'o': // offsettable memory operand. | 
|  | case 'V': // non-offsettable memory operand. | 
|  | case '<': // autodecrement memory operand. | 
|  | case '>': // autoincrement memory operand. | 
|  | Info.setAllowsMemory(); | 
|  | break; | 
|  | case 'g': // general register, memory operand or immediate integer. | 
|  | case 'X': // any operand. | 
|  | Info.setAllowsRegister(); | 
|  | Info.setAllowsMemory(); | 
|  | break; | 
|  | case 'E': // immediate floating point. | 
|  | case 'F': // immediate floating point. | 
|  | case 'p': // address operand. | 
|  | break; | 
|  | case ',': // multiple alternative constraint.  Ignore comma. | 
|  | break; | 
|  | case '#': // Ignore as constraint. | 
|  | while (Name[1] && Name[1] != ',') | 
|  | Name++; | 
|  | break; | 
|  | case '?': // Disparage slightly code. | 
|  | case '!': // Disparage severely. | 
|  | case '*': // Ignore for choosing register preferences. | 
|  | break;  // Pass them. | 
|  | } | 
|  |  | 
|  | Name++; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void TargetInfo::CheckFixedPointBits() const { | 
|  | // Check that the number of fractional and integral bits (and maybe sign) can | 
|  | // fit into the bits given for a fixed point type. | 
|  | assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); | 
|  | assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); | 
|  | assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); | 
|  | assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= | 
|  | ShortAccumWidth); | 
|  | assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); | 
|  | assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= | 
|  | LongAccumWidth); | 
|  |  | 
|  | assert(getShortFractScale() + 1 <= ShortFractWidth); | 
|  | assert(getFractScale() + 1 <= FractWidth); | 
|  | assert(getLongFractScale() + 1 <= LongFractWidth); | 
|  | assert(getUnsignedShortFractScale() <= ShortFractWidth); | 
|  | assert(getUnsignedFractScale() <= FractWidth); | 
|  | assert(getUnsignedLongFractScale() <= LongFractWidth); | 
|  |  | 
|  | // Each unsigned fract type has either the same number of fractional bits | 
|  | // as, or one more fractional bit than, its corresponding signed fract type. | 
|  | assert(getShortFractScale() == getUnsignedShortFractScale() || | 
|  | getShortFractScale() == getUnsignedShortFractScale() - 1); | 
|  | assert(getFractScale() == getUnsignedFractScale() || | 
|  | getFractScale() == getUnsignedFractScale() - 1); | 
|  | assert(getLongFractScale() == getUnsignedLongFractScale() || | 
|  | getLongFractScale() == getUnsignedLongFractScale() - 1); | 
|  |  | 
|  | // When arranged in order of increasing rank (see 6.3.1.3a), the number of | 
|  | // fractional bits is nondecreasing for each of the following sets of | 
|  | // fixed-point types: | 
|  | // - signed fract types | 
|  | // - unsigned fract types | 
|  | // - signed accum types | 
|  | // - unsigned accum types. | 
|  | assert(getLongFractScale() >= getFractScale() && | 
|  | getFractScale() >= getShortFractScale()); | 
|  | assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && | 
|  | getUnsignedFractScale() >= getUnsignedShortFractScale()); | 
|  | assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); | 
|  | assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && | 
|  | getUnsignedAccumScale() >= getUnsignedShortAccumScale()); | 
|  |  | 
|  | // When arranged in order of increasing rank (see 6.3.1.3a), the number of | 
|  | // integral bits is nondecreasing for each of the following sets of | 
|  | // fixed-point types: | 
|  | // - signed accum types | 
|  | // - unsigned accum types | 
|  | assert(getLongAccumIBits() >= getAccumIBits() && | 
|  | getAccumIBits() >= getShortAccumIBits()); | 
|  | assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && | 
|  | getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); | 
|  |  | 
|  | // Each signed accum type has at least as many integral bits as its | 
|  | // corresponding unsigned accum type. | 
|  | assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); | 
|  | assert(getAccumIBits() >= getUnsignedAccumIBits()); | 
|  | assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); | 
|  | } |