| //===--- llvm-opt-fuzzer.cpp - Fuzzer for instruction selection ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Tool to fuzz optimization passes using libFuzzer. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Bitcode/BitcodeReader.h" |
| #include "llvm/Bitcode/BitcodeWriter.h" |
| #include "llvm/CodeGen/CommandFlags.inc" |
| #include "llvm/FuzzMutate/FuzzerCLI.h" |
| #include "llvm/FuzzMutate/IRMutator.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Passes/PassBuilder.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/TargetSelect.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<std::string> |
| TargetTripleStr("mtriple", cl::desc("Override target triple for module")); |
| |
| // Passes to run for this fuzzer instance. Expects new pass manager syntax. |
| static cl::opt<std::string> PassPipeline( |
| "passes", |
| cl::desc("A textual description of the pass pipeline for testing")); |
| |
| static std::unique_ptr<IRMutator> Mutator; |
| static std::unique_ptr<TargetMachine> TM; |
| |
| std::unique_ptr<IRMutator> createOptMutator() { |
| std::vector<TypeGetter> Types{ |
| Type::getInt1Ty, Type::getInt8Ty, Type::getInt16Ty, Type::getInt32Ty, |
| Type::getInt64Ty, Type::getFloatTy, Type::getDoubleTy}; |
| |
| std::vector<std::unique_ptr<IRMutationStrategy>> Strategies; |
| Strategies.push_back( |
| llvm::make_unique<InjectorIRStrategy>( |
| InjectorIRStrategy::getDefaultOps())); |
| Strategies.push_back( |
| llvm::make_unique<InstDeleterIRStrategy>()); |
| |
| return llvm::make_unique<IRMutator>(std::move(Types), std::move(Strategies)); |
| } |
| |
| extern "C" LLVM_ATTRIBUTE_USED size_t LLVMFuzzerCustomMutator( |
| uint8_t *Data, size_t Size, size_t MaxSize, unsigned int Seed) { |
| |
| assert(Mutator && |
| "IR mutator should have been created during fuzzer initialization"); |
| |
| LLVMContext Context; |
| auto M = parseAndVerify(Data, Size, Context); |
| if (!M) { |
| errs() << "error: mutator input module is broken!\n"; |
| return 0; |
| } |
| |
| Mutator->mutateModule(*M, Seed, Size, MaxSize); |
| |
| if (verifyModule(*M, &errs())) { |
| errs() << "mutation result doesn't pass verification\n"; |
| #ifndef NDEBUG |
| M->dump(); |
| #endif |
| // Avoid adding incorrect test cases to the corpus. |
| return 0; |
| } |
| |
| std::string Buf; |
| { |
| raw_string_ostream OS(Buf); |
| WriteBitcodeToFile(*M, OS); |
| } |
| if (Buf.size() > MaxSize) |
| return 0; |
| |
| // There are some invariants which are not checked by the verifier in favor |
| // of having them checked by the parser. They may be considered as bugs in the |
| // verifier and should be fixed there. However until all of those are covered |
| // we want to check for them explicitly. Otherwise we will add incorrect input |
| // to the corpus and this is going to confuse the fuzzer which will start |
| // exploration of the bitcode reader error handling code. |
| auto NewM = parseAndVerify( |
| reinterpret_cast<const uint8_t*>(Buf.data()), Buf.size(), Context); |
| if (!NewM) { |
| errs() << "mutator failed to re-read the module\n"; |
| #ifndef NDEBUG |
| M->dump(); |
| #endif |
| return 0; |
| } |
| |
| memcpy(Data, Buf.data(), Buf.size()); |
| return Buf.size(); |
| } |
| |
| extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { |
| assert(TM && "Should have been created during fuzzer initialization"); |
| |
| if (Size <= 1) |
| // We get bogus data given an empty corpus - ignore it. |
| return 0; |
| |
| // Parse module |
| // |
| |
| LLVMContext Context; |
| auto M = parseAndVerify(Data, Size, Context); |
| if (!M) { |
| errs() << "error: input module is broken!\n"; |
| return 0; |
| } |
| |
| // Set up target dependant options |
| // |
| |
| M->setTargetTriple(TM->getTargetTriple().normalize()); |
| M->setDataLayout(TM->createDataLayout()); |
| setFunctionAttributes(TM->getTargetCPU(), TM->getTargetFeatureString(), *M); |
| |
| // Create pass pipeline |
| // |
| |
| PassBuilder PB(TM.get()); |
| |
| LoopAnalysisManager LAM; |
| FunctionAnalysisManager FAM; |
| CGSCCAnalysisManager CGAM; |
| ModulePassManager MPM; |
| ModuleAnalysisManager MAM; |
| |
| FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); |
| PB.registerModuleAnalyses(MAM); |
| PB.registerCGSCCAnalyses(CGAM); |
| PB.registerFunctionAnalyses(FAM); |
| PB.registerLoopAnalyses(LAM); |
| PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); |
| |
| bool Ok = PB.parsePassPipeline(MPM, PassPipeline, false, false); |
| assert(Ok && "Should have been checked during fuzzer initialization"); |
| (void)Ok; // silence unused variable warning on release builds |
| |
| // Run passes which we need to test |
| // |
| |
| MPM.run(*M, MAM); |
| |
| // Check that passes resulted in a correct code |
| if (verifyModule(*M, &errs())) { |
| errs() << "Transformation resulted in an invalid module\n"; |
| abort(); |
| } |
| |
| return 0; |
| } |
| |
| static void handleLLVMFatalError(void *, const std::string &Message, bool) { |
| // TODO: Would it be better to call into the fuzzer internals directly? |
| dbgs() << "LLVM ERROR: " << Message << "\n" |
| << "Aborting to trigger fuzzer exit handling.\n"; |
| abort(); |
| } |
| |
| extern "C" LLVM_ATTRIBUTE_USED int LLVMFuzzerInitialize( |
| int *argc, char ***argv) { |
| EnableDebugBuffering = true; |
| |
| // Make sure we print the summary and the current unit when LLVM errors out. |
| install_fatal_error_handler(handleLLVMFatalError, nullptr); |
| |
| // Initialize llvm |
| // |
| |
| InitializeAllTargets(); |
| InitializeAllTargetMCs(); |
| |
| PassRegistry &Registry = *PassRegistry::getPassRegistry(); |
| initializeCore(Registry); |
| initializeCoroutines(Registry); |
| initializeScalarOpts(Registry); |
| initializeObjCARCOpts(Registry); |
| initializeVectorization(Registry); |
| initializeIPO(Registry); |
| initializeAnalysis(Registry); |
| initializeTransformUtils(Registry); |
| initializeInstCombine(Registry); |
| initializeAggressiveInstCombine(Registry); |
| initializeInstrumentation(Registry); |
| initializeTarget(Registry); |
| |
| // Parse input options |
| // |
| |
| handleExecNameEncodedOptimizerOpts(*argv[0]); |
| parseFuzzerCLOpts(*argc, *argv); |
| |
| // Create TargetMachine |
| // |
| |
| if (TargetTripleStr.empty()) { |
| errs() << *argv[0] << ": -mtriple must be specified\n"; |
| exit(1); |
| } |
| Triple TargetTriple = Triple(Triple::normalize(TargetTripleStr)); |
| |
| std::string Error; |
| const Target *TheTarget = |
| TargetRegistry::lookupTarget(MArch, TargetTriple, Error); |
| if (!TheTarget) { |
| errs() << *argv[0] << ": " << Error; |
| exit(1); |
| } |
| |
| TargetOptions Options = InitTargetOptionsFromCodeGenFlags(); |
| TM.reset(TheTarget->createTargetMachine( |
| TargetTriple.getTriple(), getCPUStr(), getFeaturesStr(), |
| Options, getRelocModel(), getCodeModel(), CodeGenOpt::Default)); |
| assert(TM && "Could not allocate target machine!"); |
| |
| // Check that pass pipeline is specified and correct |
| // |
| |
| if (PassPipeline.empty()) { |
| errs() << *argv[0] << ": at least one pass should be specified\n"; |
| exit(1); |
| } |
| |
| PassBuilder PB(TM.get()); |
| ModulePassManager MPM; |
| if (!PB.parsePassPipeline(MPM, PassPipeline, false, false)) { |
| errs() << *argv[0] << ": can't parse pass pipeline\n"; |
| exit(1); |
| } |
| |
| // Create mutator |
| // |
| |
| Mutator = createOptMutator(); |
| |
| return 0; |
| } |