| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/codegen/tick-counter.h" |
| #include "src/compiler/access-builder.h" |
| #include "src/compiler/common-operator.h" |
| #include "src/compiler/graph-visualizer.h" |
| #include "src/compiler/graph.h" |
| #include "src/compiler/js-graph.h" |
| #include "src/compiler/js-operator.h" |
| #include "src/compiler/loop-analysis.h" |
| #include "src/compiler/node.h" |
| #include "src/compiler/opcodes.h" |
| #include "src/compiler/operator.h" |
| #include "src/compiler/schedule.h" |
| #include "src/compiler/scheduler.h" |
| #include "src/compiler/simplified-operator.h" |
| #include "src/compiler/verifier.h" |
| #include "test/cctest/cctest.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| static Operator kIntAdd(IrOpcode::kInt32Add, Operator::kPure, "Int32Add", 2, 0, |
| 0, 1, 0, 0); |
| static Operator kIntLt(IrOpcode::kInt32LessThan, Operator::kPure, |
| "Int32LessThan", 2, 0, 0, 1, 0, 0); |
| static Operator kStore(IrOpcode::kStore, Operator::kNoProperties, "Store", 1, 1, |
| 1, 0, 1, 0); |
| |
| static const int kNumLeafs = 4; |
| |
| // A helper for all tests dealing with LoopFinder. |
| class LoopFinderTester : HandleAndZoneScope { |
| public: |
| LoopFinderTester() |
| : isolate(main_isolate()), |
| common(main_zone()), |
| graph(main_zone()), |
| jsgraph(main_isolate(), &graph, &common, nullptr, nullptr, nullptr), |
| start(graph.NewNode(common.Start(1))), |
| end(graph.NewNode(common.End(1), start)), |
| p0(graph.NewNode(common.Parameter(0), start)), |
| zero(jsgraph.Int32Constant(0)), |
| one(jsgraph.OneConstant()), |
| half(jsgraph.Constant(0.5)), |
| self(graph.NewNode(common.Int32Constant(0xAABBCCDD))), |
| dead(graph.NewNode(common.Dead())), |
| loop_tree(nullptr) { |
| graph.SetEnd(end); |
| graph.SetStart(start); |
| leaf[0] = zero; |
| leaf[1] = one; |
| leaf[2] = half; |
| leaf[3] = p0; |
| } |
| |
| Isolate* isolate; |
| TickCounter tick_counter; |
| CommonOperatorBuilder common; |
| Graph graph; |
| JSGraph jsgraph; |
| Node* start; |
| Node* end; |
| Node* p0; |
| Node* zero; |
| Node* one; |
| Node* half; |
| Node* self; |
| Node* dead; |
| Node* leaf[kNumLeafs]; |
| LoopTree* loop_tree; |
| |
| Node* Phi(Node* a) { |
| return SetSelfReferences(graph.NewNode(op(1, false), a, start)); |
| } |
| |
| Node* Phi(Node* a, Node* b) { |
| return SetSelfReferences(graph.NewNode(op(2, false), a, b, start)); |
| } |
| |
| Node* Phi(Node* a, Node* b, Node* c) { |
| return SetSelfReferences(graph.NewNode(op(3, false), a, b, c, start)); |
| } |
| |
| Node* Phi(Node* a, Node* b, Node* c, Node* d) { |
| return SetSelfReferences(graph.NewNode(op(4, false), a, b, c, d, start)); |
| } |
| |
| Node* EffectPhi(Node* a) { |
| return SetSelfReferences(graph.NewNode(op(1, true), a, start)); |
| } |
| |
| Node* EffectPhi(Node* a, Node* b) { |
| return SetSelfReferences(graph.NewNode(op(2, true), a, b, start)); |
| } |
| |
| Node* EffectPhi(Node* a, Node* b, Node* c) { |
| return SetSelfReferences(graph.NewNode(op(3, true), a, b, c, start)); |
| } |
| |
| Node* EffectPhi(Node* a, Node* b, Node* c, Node* d) { |
| return SetSelfReferences(graph.NewNode(op(4, true), a, b, c, d, start)); |
| } |
| |
| Node* SetSelfReferences(Node* node) { |
| for (Edge edge : node->input_edges()) { |
| if (edge.to() == self) node->ReplaceInput(edge.index(), node); |
| } |
| return node; |
| } |
| |
| const Operator* op(int count, bool effect) { |
| return effect ? common.EffectPhi(count) |
| : common.Phi(MachineRepresentation::kTagged, count); |
| } |
| |
| Node* Return(Node* val, Node* effect, Node* control) { |
| Node* zero = graph.NewNode(common.Int32Constant(0)); |
| Node* ret = graph.NewNode(common.Return(), zero, val, effect, control); |
| end->ReplaceInput(0, ret); |
| return ret; |
| } |
| |
| LoopTree* GetLoopTree() { |
| if (loop_tree == nullptr) { |
| if (FLAG_trace_turbo_graph) { |
| StdoutStream{} << AsRPO(graph); |
| } |
| Zone zone(main_isolate()->allocator(), ZONE_NAME); |
| loop_tree = LoopFinder::BuildLoopTree(&graph, &tick_counter, &zone); |
| } |
| return loop_tree; |
| } |
| |
| void CheckLoop(Node** header, int header_count, Node** body, int body_count) { |
| LoopTree* tree = GetLoopTree(); |
| LoopTree::Loop* loop = tree->ContainingLoop(header[0]); |
| CHECK(loop); |
| |
| CHECK(header_count == static_cast<int>(loop->HeaderSize())); |
| for (int i = 0; i < header_count; i++) { |
| // Each header node should be in the loop. |
| CHECK_EQ(loop, tree->ContainingLoop(header[i])); |
| CheckRangeContains(tree->HeaderNodes(loop), header[i]); |
| } |
| |
| CHECK_EQ(body_count, static_cast<int>(loop->BodySize())); |
| // TODO(turbofan): O(n^2) set equivalence in this test. |
| for (int i = 0; i < body_count; i++) { |
| // Each body node should be contained in the loop. |
| CHECK(tree->Contains(loop, body[i])); |
| CheckRangeContains(tree->BodyNodes(loop), body[i]); |
| } |
| } |
| |
| void CheckRangeContains(NodeRange range, Node* node) { |
| CHECK_NE(range.end(), std::find(range.begin(), range.end(), node)); |
| } |
| |
| void CheckNestedLoops(Node** chain, int chain_count) { |
| LoopTree* tree = GetLoopTree(); |
| for (int i = 0; i < chain_count; i++) { |
| Node* header = chain[i]; |
| // Each header should be in a loop. |
| LoopTree::Loop* loop = tree->ContainingLoop(header); |
| CHECK(loop); |
| // Check parentage. |
| LoopTree::Loop* parent = |
| i == 0 ? nullptr : tree->ContainingLoop(chain[i - 1]); |
| CHECK_EQ(parent, loop->parent()); |
| for (int j = i - 1; j >= 0; j--) { |
| // This loop should be nested inside all the outer loops. |
| Node* outer_header = chain[j]; |
| LoopTree::Loop* outer = tree->ContainingLoop(outer_header); |
| CHECK(tree->Contains(outer, header)); |
| CHECK(!tree->Contains(loop, outer_header)); |
| } |
| } |
| } |
| |
| Zone* zone() { return main_zone(); } |
| }; |
| |
| |
| struct While { |
| LoopFinderTester& t; |
| Node* branch; |
| Node* if_true; |
| Node* exit; |
| Node* loop; |
| |
| While(LoopFinderTester& R, Node* cond) : t(R) { |
| loop = t.graph.NewNode(t.common.Loop(2), t.start, t.start); |
| branch = t.graph.NewNode(t.common.Branch(), cond, loop); |
| if_true = t.graph.NewNode(t.common.IfTrue(), branch); |
| exit = t.graph.NewNode(t.common.IfFalse(), branch); |
| loop->ReplaceInput(1, if_true); |
| } |
| |
| void chain(Node* control) { loop->ReplaceInput(0, control); } |
| void nest(While& that) { // NOLINT(runtime/references) |
| that.loop->ReplaceInput(1, exit); |
| this->loop->ReplaceInput(0, that.if_true); |
| } |
| }; |
| |
| |
| struct Counter { |
| Node* base; |
| Node* inc; |
| Node* phi; |
| Node* add; |
| |
| Counter(While& w, // NOLINT(runtime/references) |
| int32_t b, int32_t k) |
| : base(w.t.jsgraph.Int32Constant(b)), inc(w.t.jsgraph.Int32Constant(k)) { |
| Build(w); |
| } |
| |
| Counter(While& w, Node* b, Node* k) : base(b), inc(k) { Build(w); } |
| |
| void Build(While& w) { |
| phi = w.t.graph.NewNode(w.t.op(2, false), base, base, w.loop); |
| add = w.t.graph.NewNode(&kIntAdd, phi, inc); |
| phi->ReplaceInput(1, add); |
| } |
| }; |
| |
| |
| struct StoreLoop { |
| Node* base; |
| Node* val; |
| Node* phi; |
| Node* store; |
| |
| explicit StoreLoop(While& w) // NOLINT(runtime/references) |
| : base(w.t.graph.start()), val(w.t.jsgraph.Int32Constant(13)) { |
| Build(w); |
| } |
| |
| StoreLoop(While& w, Node* b, Node* v) : base(b), val(v) { Build(w); } |
| |
| void Build(While& w) { |
| phi = w.t.graph.NewNode(w.t.op(2, true), base, base, w.loop); |
| store = w.t.graph.NewNode(&kStore, val, phi, w.loop); |
| phi->ReplaceInput(1, store); |
| } |
| }; |
| |
| |
| TEST(LaLoop1) { |
| // One loop. |
| LoopFinderTester t; |
| While w(t, t.p0); |
| t.Return(t.p0, t.start, w.exit); |
| |
| Node* chain[] = {w.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w.loop}; |
| Node* body[] = {w.branch, w.if_true}; |
| t.CheckLoop(header, 1, body, 2); |
| } |
| |
| |
| TEST(LaLoop1phi) { |
| // One loop with a simple phi. |
| LoopFinderTester t; |
| While w(t, t.p0); |
| Node* phi = t.graph.NewNode(t.common.Phi(MachineRepresentation::kTagged, 2), |
| t.zero, t.one, w.loop); |
| t.Return(phi, t.start, w.exit); |
| |
| Node* chain[] = {w.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w.loop, phi}; |
| Node* body[] = {w.branch, w.if_true}; |
| t.CheckLoop(header, 2, body, 2); |
| } |
| |
| |
| TEST(LaLoop1c) { |
| // One loop with a counter. |
| LoopFinderTester t; |
| While w(t, t.p0); |
| Counter c(w, 0, 1); |
| t.Return(c.phi, t.start, w.exit); |
| |
| Node* chain[] = {w.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w.loop, c.phi}; |
| Node* body[] = {w.branch, w.if_true, c.add}; |
| t.CheckLoop(header, 2, body, 3); |
| } |
| |
| |
| TEST(LaLoop1e) { |
| // One loop with an effect phi. |
| LoopFinderTester t; |
| While w(t, t.p0); |
| StoreLoop c(w); |
| t.Return(t.p0, c.phi, w.exit); |
| |
| Node* chain[] = {w.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w.loop, c.phi}; |
| Node* body[] = {w.branch, w.if_true, c.store}; |
| t.CheckLoop(header, 2, body, 3); |
| } |
| |
| |
| TEST(LaLoop1d) { |
| // One loop with two counters. |
| LoopFinderTester t; |
| While w(t, t.p0); |
| Counter c1(w, 0, 1); |
| Counter c2(w, 1, 1); |
| t.Return(t.graph.NewNode(&kIntAdd, c1.phi, c2.phi), t.start, w.exit); |
| |
| Node* chain[] = {w.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w.loop, c1.phi, c2.phi}; |
| Node* body[] = {w.branch, w.if_true, c1.add, c2.add}; |
| t.CheckLoop(header, 3, body, 4); |
| } |
| |
| |
| TEST(LaLoop2) { |
| // One loop following another. |
| LoopFinderTester t; |
| While w1(t, t.p0); |
| While w2(t, t.p0); |
| w2.chain(w1.exit); |
| t.Return(t.p0, t.start, w2.exit); |
| |
| { |
| Node* chain[] = {w1.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w1.loop}; |
| Node* body[] = {w1.branch, w1.if_true}; |
| t.CheckLoop(header, 1, body, 2); |
| } |
| |
| { |
| Node* chain[] = {w2.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w2.loop}; |
| Node* body[] = {w2.branch, w2.if_true}; |
| t.CheckLoop(header, 1, body, 2); |
| } |
| } |
| |
| |
| TEST(LaLoop2c) { |
| // One loop following another, each with counters. |
| LoopFinderTester t; |
| While w1(t, t.p0); |
| While w2(t, t.p0); |
| Counter c1(w1, 0, 1); |
| Counter c2(w2, 0, 1); |
| w2.chain(w1.exit); |
| t.Return(t.graph.NewNode(&kIntAdd, c1.phi, c2.phi), t.start, w2.exit); |
| |
| { |
| Node* chain[] = {w1.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w1.loop, c1.phi}; |
| Node* body[] = {w1.branch, w1.if_true, c1.add}; |
| t.CheckLoop(header, 2, body, 3); |
| } |
| |
| { |
| Node* chain[] = {w2.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w2.loop, c2.phi}; |
| Node* body[] = {w2.branch, w2.if_true, c2.add}; |
| t.CheckLoop(header, 2, body, 3); |
| } |
| } |
| |
| |
| TEST(LaLoop2cc) { |
| // One loop following another; second loop uses phi from first. |
| for (int i = 0; i < 8; i++) { |
| LoopFinderTester t; |
| While w1(t, t.p0); |
| While w2(t, t.p0); |
| Counter c1(w1, 0, 1); |
| |
| // various usage scenarios for the second loop. |
| Counter c2(w2, i & 1 ? t.p0 : c1.phi, i & 2 ? t.p0 : c1.phi); |
| if (i & 3) w2.branch->ReplaceInput(0, c1.phi); |
| |
| w2.chain(w1.exit); |
| t.Return(t.graph.NewNode(&kIntAdd, c1.phi, c2.phi), t.start, w2.exit); |
| |
| { |
| Node* chain[] = {w1.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w1.loop, c1.phi}; |
| Node* body[] = {w1.branch, w1.if_true, c1.add}; |
| t.CheckLoop(header, 2, body, 3); |
| } |
| |
| { |
| Node* chain[] = {w2.loop}; |
| t.CheckNestedLoops(chain, 1); |
| |
| Node* header[] = {w2.loop, c2.phi}; |
| Node* body[] = {w2.branch, w2.if_true, c2.add}; |
| t.CheckLoop(header, 2, body, 3); |
| } |
| } |
| } |
| |
| |
| TEST(LaNestedLoop1) { |
| // One loop nested in another. |
| LoopFinderTester t; |
| While w1(t, t.p0); |
| While w2(t, t.p0); |
| w2.nest(w1); |
| t.Return(t.p0, t.start, w1.exit); |
| |
| Node* chain[] = {w1.loop, w2.loop}; |
| t.CheckNestedLoops(chain, 2); |
| |
| Node* h1[] = {w1.loop}; |
| Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true, w2.exit}; |
| t.CheckLoop(h1, 1, b1, 6); |
| |
| Node* h2[] = {w2.loop}; |
| Node* b2[] = {w2.branch, w2.if_true}; |
| t.CheckLoop(h2, 1, b2, 2); |
| } |
| |
| |
| TEST(LaNestedLoop1c) { |
| // One loop nested in another, each with a counter. |
| LoopFinderTester t; |
| While w1(t, t.p0); |
| While w2(t, t.p0); |
| Counter c1(w1, 0, 1); |
| Counter c2(w2, 0, 1); |
| w2.branch->ReplaceInput(0, c2.phi); |
| w2.nest(w1); |
| t.Return(c1.phi, t.start, w1.exit); |
| |
| Node* chain[] = {w1.loop, w2.loop}; |
| t.CheckNestedLoops(chain, 2); |
| |
| Node* h1[] = {w1.loop, c1.phi}; |
| Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true, |
| w2.exit, c2.phi, c1.add, c2.add}; |
| t.CheckLoop(h1, 2, b1, 9); |
| |
| Node* h2[] = {w2.loop, c2.phi}; |
| Node* b2[] = {w2.branch, w2.if_true, c2.add}; |
| t.CheckLoop(h2, 2, b2, 3); |
| } |
| |
| |
| TEST(LaNestedLoop1x) { |
| // One loop nested in another. |
| LoopFinderTester t; |
| While w1(t, t.p0); |
| While w2(t, t.p0); |
| w2.nest(w1); |
| |
| const Operator* op = t.common.Phi(MachineRepresentation::kWord32, 2); |
| Node* p1a = t.graph.NewNode(op, t.p0, t.p0, w1.loop); |
| Node* p1b = t.graph.NewNode(op, t.p0, t.p0, w1.loop); |
| Node* p2a = t.graph.NewNode(op, p1a, t.p0, w2.loop); |
| Node* p2b = t.graph.NewNode(op, p1b, t.p0, w2.loop); |
| |
| p1a->ReplaceInput(1, p2b); |
| p1b->ReplaceInput(1, p2a); |
| |
| p2a->ReplaceInput(1, p2b); |
| p2b->ReplaceInput(1, p2a); |
| |
| t.Return(t.p0, t.start, w1.exit); |
| |
| Node* chain[] = {w1.loop, w2.loop}; |
| t.CheckNestedLoops(chain, 2); |
| |
| Node* h1[] = {w1.loop, p1a, p1b}; |
| Node* b1[] = {w1.branch, w1.if_true, w2.loop, p2a, |
| p2b, w2.branch, w2.if_true, w2.exit}; |
| t.CheckLoop(h1, 3, b1, 8); |
| |
| Node* h2[] = {w2.loop, p2a, p2b}; |
| Node* b2[] = {w2.branch, w2.if_true}; |
| t.CheckLoop(h2, 3, b2, 2); |
| } |
| |
| |
| TEST(LaNestedLoop2) { |
| // Two loops nested in an outer loop. |
| LoopFinderTester t; |
| While w1(t, t.p0); |
| While w2(t, t.p0); |
| While w3(t, t.p0); |
| w2.nest(w1); |
| w3.nest(w1); |
| w3.chain(w2.exit); |
| t.Return(t.p0, t.start, w1.exit); |
| |
| Node* chain1[] = {w1.loop, w2.loop}; |
| t.CheckNestedLoops(chain1, 2); |
| |
| Node* chain2[] = {w1.loop, w3.loop}; |
| t.CheckNestedLoops(chain2, 2); |
| |
| Node* h1[] = {w1.loop}; |
| Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true, |
| w2.exit, w3.loop, w3.branch, w3.if_true, w3.exit}; |
| t.CheckLoop(h1, 1, b1, 10); |
| |
| Node* h2[] = {w2.loop}; |
| Node* b2[] = {w2.branch, w2.if_true}; |
| t.CheckLoop(h2, 1, b2, 2); |
| |
| Node* h3[] = {w3.loop}; |
| Node* b3[] = {w3.branch, w3.if_true}; |
| t.CheckLoop(h3, 1, b3, 2); |
| } |
| |
| |
| TEST(LaNestedLoop3) { |
| // Three nested loops. |
| LoopFinderTester t; |
| While w1(t, t.p0); |
| While w2(t, t.p0); |
| While w3(t, t.p0); |
| w2.loop->ReplaceInput(0, w1.if_true); |
| w3.loop->ReplaceInput(0, w2.if_true); |
| w2.loop->ReplaceInput(1, w3.exit); |
| w1.loop->ReplaceInput(1, w2.exit); |
| t.Return(t.p0, t.start, w1.exit); |
| |
| Node* chain[] = {w1.loop, w2.loop, w3.loop}; |
| t.CheckNestedLoops(chain, 3); |
| |
| Node* h1[] = {w1.loop}; |
| Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true, |
| w2.exit, w3.loop, w3.branch, w3.if_true, w3.exit}; |
| t.CheckLoop(h1, 1, b1, 10); |
| |
| Node* h2[] = {w2.loop}; |
| Node* b2[] = {w2.branch, w2.if_true, w3.loop, w3.branch, w3.if_true, w3.exit}; |
| t.CheckLoop(h2, 1, b2, 6); |
| |
| Node* h3[] = {w3.loop}; |
| Node* b3[] = {w3.branch, w3.if_true}; |
| t.CheckLoop(h3, 1, b3, 2); |
| } |
| |
| |
| TEST(LaNestedLoop3c) { |
| // Three nested loops with counters. |
| LoopFinderTester t; |
| While w1(t, t.p0); |
| Counter c1(w1, 0, 1); |
| While w2(t, t.p0); |
| Counter c2(w2, 0, 1); |
| While w3(t, t.p0); |
| Counter c3(w3, 0, 1); |
| w2.loop->ReplaceInput(0, w1.if_true); |
| w3.loop->ReplaceInput(0, w2.if_true); |
| w2.loop->ReplaceInput(1, w3.exit); |
| w1.loop->ReplaceInput(1, w2.exit); |
| w1.branch->ReplaceInput(0, c1.phi); |
| w2.branch->ReplaceInput(0, c2.phi); |
| w3.branch->ReplaceInput(0, c3.phi); |
| t.Return(c1.phi, t.start, w1.exit); |
| |
| Node* chain[] = {w1.loop, w2.loop, w3.loop}; |
| t.CheckNestedLoops(chain, 3); |
| |
| Node* h1[] = {w1.loop, c1.phi}; |
| Node* b1[] = {w1.branch, w1.if_true, c1.add, c2.add, c2.add, |
| c2.phi, c3.phi, w2.loop, w2.branch, w2.if_true, |
| w2.exit, w3.loop, w3.branch, w3.if_true, w3.exit}; |
| t.CheckLoop(h1, 2, b1, 15); |
| |
| Node* h2[] = {w2.loop, c2.phi}; |
| Node* b2[] = {w2.branch, w2.if_true, c2.add, c3.add, c3.phi, |
| w3.loop, w3.branch, w3.if_true, w3.exit}; |
| t.CheckLoop(h2, 2, b2, 9); |
| |
| Node* h3[] = {w3.loop, c3.phi}; |
| Node* b3[] = {w3.branch, w3.if_true, c3.add}; |
| t.CheckLoop(h3, 2, b3, 3); |
| } |
| |
| |
| TEST(LaMultipleExit1) { |
| const int kMaxExits = 10; |
| Node* merge[1 + kMaxExits]; |
| Node* body[2 * kMaxExits]; |
| |
| // A single loop with {i} exits. |
| for (int i = 1; i < kMaxExits; i++) { |
| LoopFinderTester t; |
| Node* cond = t.p0; |
| |
| int merge_count = 0; |
| int body_count = 0; |
| Node* loop = t.graph.NewNode(t.common.Loop(2), t.start, t.start); |
| Node* last = loop; |
| |
| for (int e = 0; e < i; e++) { |
| Node* branch = t.graph.NewNode(t.common.Branch(), cond, last); |
| Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch); |
| Node* exit = t.graph.NewNode(t.common.IfFalse(), branch); |
| last = if_true; |
| |
| body[body_count++] = branch; |
| body[body_count++] = if_true; |
| merge[merge_count++] = exit; |
| } |
| |
| loop->ReplaceInput(1, last); // form loop backedge. |
| Node* end = t.graph.NewNode(t.common.Merge(i), i, merge); // form exit. |
| t.graph.SetEnd(end); |
| |
| Node* h[] = {loop}; |
| t.CheckLoop(h, 1, body, body_count); |
| } |
| } |
| |
| |
| TEST(LaMultipleBackedge1) { |
| const int kMaxBackedges = 10; |
| Node* loop_inputs[1 + kMaxBackedges]; |
| Node* body[3 * kMaxBackedges]; |
| |
| // A single loop with {i} backedges. |
| for (int i = 1; i < kMaxBackedges; i++) { |
| LoopFinderTester t; |
| |
| for (int j = 0; j <= i; j++) loop_inputs[j] = t.start; |
| Node* loop = t.graph.NewNode(t.common.Loop(1 + i), 1 + i, loop_inputs); |
| |
| Node* cond = t.p0; |
| int body_count = 0; |
| Node* exit = loop; |
| |
| for (int b = 0; b < i; b++) { |
| Node* branch = t.graph.NewNode(t.common.Branch(), cond, exit); |
| Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch); |
| Node* if_false = t.graph.NewNode(t.common.IfFalse(), branch); |
| exit = if_false; |
| |
| body[body_count++] = branch; |
| body[body_count++] = if_true; |
| if (b != (i - 1)) body[body_count++] = if_false; |
| |
| loop->ReplaceInput(1 + b, if_true); |
| } |
| |
| t.graph.SetEnd(exit); |
| |
| Node* h[] = {loop}; |
| t.CheckLoop(h, 1, body, body_count); |
| } |
| } |
| |
| |
| TEST(LaEdgeMatrix1) { |
| // Test various kinds of extra edges added to a simple loop. |
| for (int i = 0; i < 3; i++) { |
| for (int j = 0; j < 3; j++) { |
| for (int k = 0; k < 3; k++) { |
| LoopFinderTester t; |
| |
| Node* p1 = t.jsgraph.Int32Constant(11); |
| Node* p2 = t.jsgraph.Int32Constant(22); |
| Node* p3 = t.jsgraph.Int32Constant(33); |
| |
| Node* loop = t.graph.NewNode(t.common.Loop(2), t.start, t.start); |
| Node* phi = t.graph.NewNode( |
| t.common.Phi(MachineRepresentation::kWord32, 2), t.one, p1, loop); |
| Node* cond = t.graph.NewNode(&kIntAdd, phi, p2); |
| Node* branch = t.graph.NewNode(t.common.Branch(), cond, loop); |
| Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch); |
| Node* exit = t.graph.NewNode(t.common.IfFalse(), branch); |
| loop->ReplaceInput(1, if_true); |
| Node* zero = t.graph.NewNode(t.common.Int32Constant(0)); |
| Node* ret = t.graph.NewNode(t.common.Return(), zero, p3, t.start, exit); |
| t.graph.SetEnd(ret); |
| |
| Node* choices[] = {p1, phi, cond}; |
| p1->ReplaceUses(choices[i]); |
| p2->ReplaceUses(choices[j]); |
| p3->ReplaceUses(choices[k]); |
| |
| Node* header[] = {loop, phi}; |
| Node* body[] = {cond, branch, if_true}; |
| t.CheckLoop(header, 2, body, 3); |
| } |
| } |
| } |
| } |
| |
| |
| void RunEdgeMatrix2(int i) { |
| CHECK(i >= 0 && i < 5); |
| for (int j = 0; j < 5; j++) { |
| for (int k = 0; k < 5; k++) { |
| LoopFinderTester t; |
| |
| Node* p1 = t.jsgraph.Int32Constant(11); |
| Node* p2 = t.jsgraph.Int32Constant(22); |
| Node* p3 = t.jsgraph.Int32Constant(33); |
| |
| // outer loop. |
| Node* loop1 = t.graph.NewNode(t.common.Loop(2), t.start, t.start); |
| Node* phi1 = t.graph.NewNode( |
| t.common.Phi(MachineRepresentation::kWord32, 2), t.one, p1, loop1); |
| Node* cond1 = t.graph.NewNode(&kIntAdd, phi1, t.one); |
| Node* branch1 = t.graph.NewNode(t.common.Branch(), cond1, loop1); |
| Node* if_true1 = t.graph.NewNode(t.common.IfTrue(), branch1); |
| Node* exit1 = t.graph.NewNode(t.common.IfFalse(), branch1); |
| |
| // inner loop. |
| Node* loop2 = t.graph.NewNode(t.common.Loop(2), if_true1, t.start); |
| Node* phi2 = t.graph.NewNode( |
| t.common.Phi(MachineRepresentation::kWord32, 2), t.one, p2, loop2); |
| Node* cond2 = t.graph.NewNode(&kIntAdd, phi2, p3); |
| Node* branch2 = t.graph.NewNode(t.common.Branch(), cond2, loop2); |
| Node* if_true2 = t.graph.NewNode(t.common.IfTrue(), branch2); |
| Node* exit2 = t.graph.NewNode(t.common.IfFalse(), branch2); |
| loop2->ReplaceInput(1, if_true2); |
| loop1->ReplaceInput(1, exit2); |
| |
| Node* zero = t.graph.NewNode(t.common.Int32Constant(0)); |
| Node* ret = |
| t.graph.NewNode(t.common.Return(), zero, phi1, t.start, exit1); |
| t.graph.SetEnd(ret); |
| |
| Node* choices[] = {p1, phi1, cond1, phi2, cond2}; |
| p1->ReplaceUses(choices[i]); |
| p2->ReplaceUses(choices[j]); |
| p3->ReplaceUses(choices[k]); |
| |
| Node* header1[] = {loop1, phi1}; |
| Node* body1[] = {cond1, branch1, if_true1, exit2, loop2, |
| phi2, cond2, branch2, if_true2}; |
| t.CheckLoop(header1, 2, body1, 9); |
| |
| Node* header2[] = {loop2, phi2}; |
| Node* body2[] = {cond2, branch2, if_true2}; |
| t.CheckLoop(header2, 2, body2, 3); |
| |
| Node* chain[] = {loop1, loop2}; |
| t.CheckNestedLoops(chain, 2); |
| } |
| } |
| } |
| |
| |
| TEST(LaEdgeMatrix2_0) { RunEdgeMatrix2(0); } |
| |
| |
| TEST(LaEdgeMatrix2_1) { RunEdgeMatrix2(1); } |
| |
| |
| TEST(LaEdgeMatrix2_2) { RunEdgeMatrix2(2); } |
| |
| |
| TEST(LaEdgeMatrix2_3) { RunEdgeMatrix2(3); } |
| |
| |
| TEST(LaEdgeMatrix2_4) { RunEdgeMatrix2(4); } |
| |
| |
| // Generates a triply-nested loop with extra edges between the phis and |
| // conditions according to the edge choice parameters. |
| void RunEdgeMatrix3(int c1a, int c1b, int c1c, // line break |
| int c2a, int c2b, int c2c, // line break |
| int c3a, int c3b, int c3c) { // line break |
| LoopFinderTester t; |
| |
| Node* p1a = t.jsgraph.Int32Constant(11); |
| Node* p1b = t.jsgraph.Int32Constant(22); |
| Node* p1c = t.jsgraph.Int32Constant(33); |
| Node* p2a = t.jsgraph.Int32Constant(44); |
| Node* p2b = t.jsgraph.Int32Constant(55); |
| Node* p2c = t.jsgraph.Int32Constant(66); |
| Node* p3a = t.jsgraph.Int32Constant(77); |
| Node* p3b = t.jsgraph.Int32Constant(88); |
| Node* p3c = t.jsgraph.Int32Constant(99); |
| |
| // L1 depth = 0 |
| Node* loop1 = t.graph.NewNode(t.common.Loop(2), t.start, t.start); |
| Node* phi1 = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2), |
| p1a, p1c, loop1); |
| Node* cond1 = t.graph.NewNode(&kIntAdd, phi1, p1b); |
| Node* branch1 = t.graph.NewNode(t.common.Branch(), cond1, loop1); |
| Node* if_true1 = t.graph.NewNode(t.common.IfTrue(), branch1); |
| Node* exit1 = t.graph.NewNode(t.common.IfFalse(), branch1); |
| |
| // L2 depth = 1 |
| Node* loop2 = t.graph.NewNode(t.common.Loop(2), if_true1, t.start); |
| Node* phi2 = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2), |
| p2a, p2c, loop2); |
| Node* cond2 = t.graph.NewNode(&kIntAdd, phi2, p2b); |
| Node* branch2 = t.graph.NewNode(t.common.Branch(), cond2, loop2); |
| Node* if_true2 = t.graph.NewNode(t.common.IfTrue(), branch2); |
| Node* exit2 = t.graph.NewNode(t.common.IfFalse(), branch2); |
| |
| // L3 depth = 2 |
| Node* loop3 = t.graph.NewNode(t.common.Loop(2), if_true2, t.start); |
| Node* phi3 = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2), |
| p3a, p3c, loop3); |
| Node* cond3 = t.graph.NewNode(&kIntAdd, phi3, p3b); |
| Node* branch3 = t.graph.NewNode(t.common.Branch(), cond3, loop3); |
| Node* if_true3 = t.graph.NewNode(t.common.IfTrue(), branch3); |
| Node* exit3 = t.graph.NewNode(t.common.IfFalse(), branch3); |
| |
| loop3->ReplaceInput(1, if_true3); |
| loop2->ReplaceInput(1, exit3); |
| loop1->ReplaceInput(1, exit2); |
| |
| Node* zero = t.graph.NewNode(t.common.Int32Constant(0)); |
| Node* ret = t.graph.NewNode(t.common.Return(), zero, phi1, t.start, exit1); |
| t.graph.SetEnd(ret); |
| |
| // Mutate the graph according to the edge choices. |
| |
| Node* o1[] = {t.one}; |
| Node* o2[] = {t.one, phi1, cond1}; |
| Node* o3[] = {t.one, phi1, cond1, phi2, cond2}; |
| |
| p1a->ReplaceUses(o1[c1a]); |
| p1b->ReplaceUses(o1[c1b]); |
| |
| p2a->ReplaceUses(o2[c2a]); |
| p2b->ReplaceUses(o2[c2b]); |
| |
| p3a->ReplaceUses(o3[c3a]); |
| p3b->ReplaceUses(o3[c3b]); |
| |
| Node* l2[] = {phi1, cond1, phi2, cond2}; |
| Node* l3[] = {phi1, cond1, phi2, cond2, phi3, cond3}; |
| |
| p1c->ReplaceUses(l2[c1c]); |
| p2c->ReplaceUses(l3[c2c]); |
| p3c->ReplaceUses(l3[c3c]); |
| |
| // Run the tests and verify loop structure. |
| |
| Node* chain[] = {loop1, loop2, loop3}; |
| t.CheckNestedLoops(chain, 3); |
| |
| Node* header1[] = {loop1, phi1}; |
| Node* body1[] = {cond1, branch1, if_true1, exit2, loop2, |
| phi2, cond2, branch2, if_true2, exit3, |
| loop3, phi3, cond3, branch3, if_true3}; |
| t.CheckLoop(header1, 2, body1, 15); |
| |
| Node* header2[] = {loop2, phi2}; |
| Node* body2[] = {cond2, branch2, if_true2, exit3, loop3, |
| phi3, cond3, branch3, if_true3}; |
| t.CheckLoop(header2, 2, body2, 9); |
| |
| Node* header3[] = {loop3, phi3}; |
| Node* body3[] = {cond3, branch3, if_true3}; |
| t.CheckLoop(header3, 2, body3, 3); |
| } |
| |
| |
| // Runs all combinations with a fixed {i}. |
| static void RunEdgeMatrix3_i(int i) { |
| for (int a = 0; a < 1; a++) { |
| for (int b = 0; b < 1; b++) { |
| for (int c = 0; c < 4; c++) { |
| for (int d = 0; d < 3; d++) { |
| for (int e = 0; e < 3; e++) { |
| for (int f = 0; f < 6; f++) { |
| for (int g = 0; g < 5; g++) { |
| for (int h = 0; h < 5; h++) { |
| RunEdgeMatrix3(a, b, c, d, e, f, g, h, i); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // Test all possible legal triply-nested loops with conditions and phis. |
| TEST(LaEdgeMatrix3_0) { RunEdgeMatrix3_i(0); } |
| |
| |
| TEST(LaEdgeMatrix3_1) { RunEdgeMatrix3_i(1); } |
| |
| |
| TEST(LaEdgeMatrix3_2) { RunEdgeMatrix3_i(2); } |
| |
| |
| TEST(LaEdgeMatrix3_3) { RunEdgeMatrix3_i(3); } |
| |
| |
| TEST(LaEdgeMatrix3_4) { RunEdgeMatrix3_i(4); } |
| |
| |
| TEST(LaEdgeMatrix3_5) { RunEdgeMatrix3_i(5); } |
| |
| |
| static void RunManyChainedLoops_i(int count) { |
| LoopFinderTester t; |
| Node** nodes = t.zone()->NewArray<Node*>(count * 4); |
| Node* k11 = t.jsgraph.Int32Constant(11); |
| Node* k12 = t.jsgraph.Int32Constant(12); |
| Node* last = t.start; |
| |
| // Build loops. |
| for (int i = 0; i < count; i++) { |
| Node* loop = t.graph.NewNode(t.common.Loop(2), last, t.start); |
| Node* phi = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2), |
| k11, k12, loop); |
| Node* branch = t.graph.NewNode(t.common.Branch(), phi, loop); |
| Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch); |
| Node* exit = t.graph.NewNode(t.common.IfFalse(), branch); |
| loop->ReplaceInput(1, if_true); |
| |
| nodes[i * 4 + 0] = loop; |
| nodes[i * 4 + 1] = phi; |
| nodes[i * 4 + 2] = branch; |
| nodes[i * 4 + 3] = if_true; |
| |
| last = exit; |
| } |
| |
| Node* zero = t.graph.NewNode(t.common.Int32Constant(0)); |
| Node* ret = t.graph.NewNode(t.common.Return(), zero, t.p0, t.start, last); |
| t.graph.SetEnd(ret); |
| |
| // Verify loops. |
| for (int i = 0; i < count; i++) { |
| t.CheckLoop(nodes + i * 4, 2, nodes + i * 4 + 2, 2); |
| } |
| } |
| |
| |
| static void RunManyNestedLoops_i(int count) { |
| LoopFinderTester t; |
| Node** nodes = t.zone()->NewArray<Node*>(count * 5); |
| Node* k11 = t.jsgraph.Int32Constant(11); |
| Node* k12 = t.jsgraph.Int32Constant(12); |
| Node* outer = nullptr; |
| Node* entry = t.start; |
| |
| // Build loops. |
| Node* zero = t.graph.NewNode(t.common.Int32Constant(0)); |
| for (int i = 0; i < count; i++) { |
| Node* loop = t.graph.NewNode(t.common.Loop(2), entry, t.start); |
| Node* phi = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2), |
| k11, k12, loop); |
| Node* branch = t.graph.NewNode(t.common.Branch(), phi, loop); |
| Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch); |
| Node* exit = t.graph.NewNode(t.common.IfFalse(), branch); |
| |
| nodes[i * 5 + 0] = exit; // outside |
| nodes[i * 5 + 1] = loop; // header |
| nodes[i * 5 + 2] = phi; // header |
| nodes[i * 5 + 3] = branch; // body |
| nodes[i * 5 + 4] = if_true; // body |
| |
| if (outer != nullptr) { |
| // inner loop. |
| outer->ReplaceInput(1, exit); |
| } else { |
| // outer loop. |
| Node* ret = t.graph.NewNode(t.common.Return(), zero, t.p0, t.start, exit); |
| t.graph.SetEnd(ret); |
| } |
| outer = loop; |
| entry = if_true; |
| } |
| outer->ReplaceInput(1, entry); // innermost loop. |
| |
| // Verify loops. |
| for (int i = 0; i < count; i++) { |
| int k = i * 5; |
| t.CheckLoop(nodes + k + 1, 2, nodes + k + 3, count * 5 - k - 3); |
| } |
| } |
| |
| |
| TEST(LaManyChained_30) { RunManyChainedLoops_i(30); } |
| TEST(LaManyChained_31) { RunManyChainedLoops_i(31); } |
| TEST(LaManyChained_32) { RunManyChainedLoops_i(32); } |
| TEST(LaManyChained_33) { RunManyChainedLoops_i(33); } |
| TEST(LaManyChained_34) { RunManyChainedLoops_i(34); } |
| TEST(LaManyChained_62) { RunManyChainedLoops_i(62); } |
| TEST(LaManyChained_63) { RunManyChainedLoops_i(63); } |
| TEST(LaManyChained_64) { RunManyChainedLoops_i(64); } |
| |
| TEST(LaManyNested_30) { RunManyNestedLoops_i(30); } |
| TEST(LaManyNested_31) { RunManyNestedLoops_i(31); } |
| TEST(LaManyNested_32) { RunManyNestedLoops_i(32); } |
| TEST(LaManyNested_33) { RunManyNestedLoops_i(33); } |
| TEST(LaManyNested_34) { RunManyNestedLoops_i(34); } |
| TEST(LaManyNested_62) { RunManyNestedLoops_i(62); } |
| TEST(LaManyNested_63) { RunManyNestedLoops_i(63); } |
| TEST(LaManyNested_64) { RunManyNestedLoops_i(64); } |
| |
| |
| TEST(LaPhiTangle) { LoopFinderTester t; } |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |