blob: fe7787458fa6d77d35d394f2a28346682bbdee4d [file] [log] [blame]
//===-- Timer.cpp -----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/Timer.h"
#include "lldb/Utility/Stream.h"
#include <algorithm>
#include <map>
#include <mutex>
#include <utility> // for pair
#include <vector>
#include <assert.h> // for assert
#include <stdarg.h> // for va_end, va_list, va_start
#include <stdio.h>
using namespace lldb_private;
#define TIMER_INDENT_AMOUNT 2
namespace {
typedef std::vector<Timer *> TimerStack;
static std::atomic<Timer::Category *> g_categories;
} // end of anonymous namespace
std::atomic<bool> Timer::g_quiet(true);
std::atomic<unsigned> Timer::g_display_depth(0);
static std::mutex &GetFileMutex() {
static std::mutex *g_file_mutex_ptr = new std::mutex();
return *g_file_mutex_ptr;
}
static TimerStack &GetTimerStackForCurrentThread() {
static thread_local TimerStack g_stack;
return g_stack;
}
Timer::Category::Category(const char *cat) : m_name(cat) {
m_nanos.store(0, std::memory_order_release);
Category *expected = g_categories;
do {
m_next = expected;
} while (!g_categories.compare_exchange_weak(expected, this));
}
void Timer::SetQuiet(bool value) { g_quiet = value; }
Timer::Timer(Timer::Category &category, const char *format, ...)
: m_category(category), m_total_start(std::chrono::steady_clock::now()) {
TimerStack &stack = GetTimerStackForCurrentThread();
stack.push_back(this);
if (g_quiet && stack.size() <= g_display_depth) {
std::lock_guard<std::mutex> lock(GetFileMutex());
// Indent
::fprintf(stdout, "%*s", int(stack.size() - 1) * TIMER_INDENT_AMOUNT, "");
// Print formatted string
va_list args;
va_start(args, format);
::vfprintf(stdout, format, args);
va_end(args);
// Newline
::fprintf(stdout, "\n");
}
}
Timer::~Timer() {
using namespace std::chrono;
auto stop_time = steady_clock::now();
auto total_dur = stop_time - m_total_start;
auto timer_dur = total_dur - m_child_duration;
TimerStack &stack = GetTimerStackForCurrentThread();
if (g_quiet && stack.size() <= g_display_depth) {
std::lock_guard<std::mutex> lock(GetFileMutex());
::fprintf(stdout, "%*s%.9f sec (%.9f sec)\n",
int(stack.size() - 1) * TIMER_INDENT_AMOUNT, "",
duration<double>(total_dur).count(),
duration<double>(timer_dur).count());
}
assert(stack.back() == this);
stack.pop_back();
if (!stack.empty())
stack.back()->ChildDuration(total_dur);
// Keep total results for each category so we can dump results.
m_category.m_nanos += std::chrono::nanoseconds(timer_dur).count();
}
void Timer::SetDisplayDepth(uint32_t depth) { g_display_depth = depth; }
/* binary function predicate:
* - returns whether a person is less than another person
*/
typedef std::pair<const char *, uint64_t> TimerEntry;
static bool CategoryMapIteratorSortCriterion(const TimerEntry &lhs,
const TimerEntry &rhs) {
return lhs.second > rhs.second;
}
void Timer::ResetCategoryTimes() {
for (Category *i = g_categories; i; i = i->m_next)
i->m_nanos.store(0, std::memory_order_release);
}
void Timer::DumpCategoryTimes(Stream *s) {
std::vector<TimerEntry> sorted;
for (Category *i = g_categories; i; i = i->m_next) {
uint64_t nanos = i->m_nanos.load(std::memory_order_acquire);
if (nanos)
sorted.push_back(std::make_pair(i->m_name, nanos));
}
if (sorted.empty())
return; // Later code will break without any elements.
// Sort by time
std::sort(sorted.begin(), sorted.end(), CategoryMapIteratorSortCriterion);
for (const auto &timer : sorted)
s->Printf("%.9f sec for %s\n", timer.second / 1000000000., timer.first);
}