blob: 1e67a7c42ef3dd4a8f6a709aef1ec6d734253aeb [file] [log] [blame]
* Copyright 2016 Google Inc.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
#ifndef GrSurfaceProxy_DEFINED
#define GrSurfaceProxy_DEFINED
#include "include/core/SkRect.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrGpuResource.h"
#include "include/gpu/GrSurface.h"
#include "include/gpu/GrTexture.h"
#include "include/private/SkNoncopyable.h"
#include "src/gpu/GrNonAtomicRef.h"
#include "src/gpu/GrSwizzle.h"
class GrCaps;
class GrContext_Base;
class GrOpsTask;
class GrRecordingContext;
class GrRenderTargetProxy;
class GrRenderTask;
class GrResourceProvider;
class GrSurfaceContext;
class GrSurfaceProxyPriv;
class GrTextureProxy;
class GrSurfaceProxy : public SkNVRefCnt<GrSurfaceProxy> {
virtual ~GrSurfaceProxy();
* Indicates "resolutions" that need to be done on a surface before its pixels can be accessed.
* If both types of resolve are requested, the MSAA resolve will happen first.
enum class ResolveFlags {
kNone = 0,
kMSAA = 1 << 0, // Blit and resolve an internal MSAA render buffer into the texture.
kMipMaps = 1 << 1, // Regenerate all mipmap levels.
* Some lazy proxy callbacks want to set their own (or no key) on the GrSurfaces they return.
* Others want the GrSurface's key to be kept in sync with the proxy's key. This enum controls
* the key relationship between proxies and their targets.
enum class LazyInstantiationKeyMode {
* Don't key the GrSurface with the proxy's key. The lazy instantiation callback is free to
* return a GrSurface that already has a unique key unrelated to the proxy's key.
* Keep the GrSurface's unique key in sync with the proxy's unique key. The GrSurface
* returned from the lazy instantiation callback must not have a unique key or have the same
* same unique key as the proxy. If the proxy is later assigned a key it is in turn assigned
* to the GrSurface.
struct LazyCallbackResult {
LazyCallbackResult() = default;
LazyCallbackResult(const LazyCallbackResult&) = default;
LazyCallbackResult(LazyCallbackResult&& that) = default;
LazyCallbackResult(sk_sp<GrSurface> surf,
bool releaseCallback = true,
LazyInstantiationKeyMode mode = LazyInstantiationKeyMode::kSynced)
: fSurface(std::move(surf)), fKeyMode(mode), fReleaseCallback(releaseCallback) {}
LazyCallbackResult(sk_sp<GrTexture> tex)
: LazyCallbackResult(sk_sp<GrSurface>(std::move(tex))) {}
LazyCallbackResult& operator=(const LazyCallbackResult&) = default;
LazyCallbackResult& operator=(LazyCallbackResult&&) = default;
sk_sp<GrSurface> fSurface;
LazyInstantiationKeyMode fKeyMode = LazyInstantiationKeyMode::kSynced;
* Should the callback be disposed of after it has returned or preserved until the proxy
* is freed. Only honored if fSurface is not-null. If it is null the callback is preserved.
bool fReleaseCallback = true;
using LazyInstantiateCallback = std::function<LazyCallbackResult(GrResourceProvider*)>;
enum class UseAllocator {
* This proxy will be instantiated outside the allocator (e.g. for proxies that are
* instantiated in on-flush callbacks).
kNo = false,
* GrResourceAllocator should instantiate this proxy.
kYes = true,
bool isLazy() const { return !this->isInstantiated() && SkToBool(fLazyInstantiateCallback); }
bool isFullyLazy() const {
bool result = fHeight < 0;
SkASSERT(result == (fWidth < 0));
SkASSERT(!result || this->isLazy());
return result;
GrPixelConfig config() const { return fConfig; }
int width() const {
return fWidth;
int height() const {
return fHeight;
SkISize isize() const { return {fWidth, fHeight}; }
int worstCaseWidth() const;
int worstCaseHeight() const;
* Helper that gets the width and height of the surface as a bounding rectangle.
SkRect getBoundsRect() const {
return SkRect::MakeIWH(this->width(), this->height());
* Helper that gets the worst case width and height of the surface as a bounding rectangle.
SkRect getWorstCaseBoundsRect() const {
return SkRect::MakeIWH(this->worstCaseWidth(), this->worstCaseHeight());
GrSurfaceOrigin origin() const {
SkASSERT(kTopLeft_GrSurfaceOrigin == fOrigin || kBottomLeft_GrSurfaceOrigin == fOrigin);
return fOrigin;
const GrSwizzle& textureSwizzle() const { return fTextureSwizzle; }
const GrBackendFormat& backendFormat() const { return fFormat; }
class UniqueID {
static UniqueID InvalidID() {
return UniqueID(uint32_t(SK_InvalidUniqueID));
// wrapped
explicit UniqueID(const GrGpuResource::UniqueID& id) : fID(id.asUInt()) { }
// deferred and lazy-callback
UniqueID() : fID(GrGpuResource::CreateUniqueID()) { }
uint32_t asUInt() const { return fID; }
bool operator==(const UniqueID& other) const {
return fID == other.fID;
bool operator!=(const UniqueID& other) const {
return !(*this == other);
void makeInvalid() { fID = SK_InvalidUniqueID; }
bool isInvalid() const { return SK_InvalidUniqueID == fID; }
explicit UniqueID(uint32_t id) : fID(id) {}
uint32_t fID;
* The contract for the uniqueID is:
* for wrapped resources:
* the uniqueID will match that of the wrapped resource
* for deferred resources:
* the uniqueID will be different from the real resource, when it is allocated
* the proxy's uniqueID will not change across the instantiate call
* the uniqueIDs of the proxies and the resources draw from the same pool
* What this boils down to is that the uniqueID of a proxy can be used to consistently
* track/identify a proxy but should never be used to distinguish between
* resources and proxies - beware!
UniqueID uniqueID() const { return fUniqueID; }
UniqueID underlyingUniqueID() const {
if (fTarget) {
return UniqueID(fTarget->uniqueID());
return fUniqueID;
virtual bool instantiate(GrResourceProvider*) = 0;
void deinstantiate();
* Proxies that are already instantiated and whose backing surface cannot be recycled to
* instantiate other proxies do not need to be considered by GrResourceAllocator.
bool canSkipResourceAllocator() const;
* @return the texture proxy associated with the surface proxy, may be NULL.
virtual GrTextureProxy* asTextureProxy() { return nullptr; }
virtual const GrTextureProxy* asTextureProxy() const { return nullptr; }
* @return the render target proxy associated with the surface proxy, may be NULL.
virtual GrRenderTargetProxy* asRenderTargetProxy() { return nullptr; }
virtual const GrRenderTargetProxy* asRenderTargetProxy() const { return nullptr; }
bool isInstantiated() const { return SkToBool(fTarget); }
// If the proxy is already instantiated, return its backing GrTexture; if not, return null.
GrSurface* peekSurface() const { return fTarget.get(); }
// If this is a texture proxy and the proxy is already instantiated, return its backing
// GrTexture; if not, return null.
GrTexture* peekTexture() const { return fTarget ? fTarget->asTexture() : nullptr; }
// If this is a render target proxy and the proxy is already instantiated, return its backing
// GrRenderTarget; if not, return null.
GrRenderTarget* peekRenderTarget() const {
return fTarget ? fTarget->asRenderTarget() : nullptr;
* Does the resource count against the resource budget?
SkBudgeted isBudgeted() const { return fBudgeted; }
* The pixel values of this proxy's surface cannot be modified (e.g. doesn't support write
* pixels or MIP map level regen). Read-only proxies also bypass interval tracking and
* assignment in GrResourceAllocator.
bool readOnly() const { return fSurfaceFlags & GrInternalSurfaceFlags::kReadOnly; }
* This means surface is a multisampled render target, and internally holds a non-msaa texture
* for resolving into. The render target resolves itself by blitting into this internal texture.
* (asTexture() might or might not return the internal texture, but if it does, we always
* resolve the render target before accessing this texture's data.)
bool requiresManualMSAAResolve() const {
return fSurfaceFlags & GrInternalSurfaceFlags::kRequiresManualMSAAResolve;
void setLastRenderTask(GrRenderTask*);
GrRenderTask* getLastRenderTask() { return fLastRenderTask; }
GrOpsTask* getLastOpsTask();
* Retrieves the amount of GPU memory that will be or currently is used by this resource
* in bytes. It is approximate since we aren't aware of additional padding or copies made
* by the driver.
* @return the amount of GPU memory used in bytes
size_t gpuMemorySize(const GrCaps& caps) const {
if (fTarget) {
return fTarget->gpuMemorySize();
if (kInvalidGpuMemorySize == fGpuMemorySize) {
fGpuMemorySize = this->onUninstantiatedGpuMemorySize(caps);
SkASSERT(kInvalidGpuMemorySize != fGpuMemorySize);
return fGpuMemorySize;
enum class RectsMustMatch : bool {
kNo = false,
kYes = true
// Helper function that creates a temporary SurfaceContext to perform the copy
// The copy is is not a render target and not multisampled.
static sk_sp<GrTextureProxy> Copy(GrRecordingContext*, GrSurfaceProxy* src,
GrColorType srcColorType, GrMipMapped,
SkIRect srcRect, SkBackingFit, SkBudgeted,
RectsMustMatch = RectsMustMatch::kNo);
// Copy the entire 'src'
static sk_sp<GrTextureProxy> Copy(GrRecordingContext*, GrSurfaceProxy* src,
GrColorType srcColortype, GrMipMapped, SkBackingFit,
int32_t testingOnly_getBackingRefCnt() const;
GrInternalSurfaceFlags testingOnly_getFlags() const;
SkDEBUGCODE(void validate(GrContext_Base*) const;)
// Provides access to functions that aren't part of the public API.
inline GrSurfaceProxyPriv priv();
inline const GrSurfaceProxyPriv priv() const;
// Returns true if we are working with protected content.
bool isProtected() const { return fIsProtected == GrProtected::kYes; }
// Deferred version - takes a new UniqueID from the shared resource/proxy pool.
GrSurfaceProxy(const GrBackendFormat&,
const GrSurfaceDesc&,
const GrSwizzle& textureSwizzle,
// Lazy-callback version - takes a new UniqueID from the shared resource/proxy pool.
const GrBackendFormat&,
const GrSurfaceDesc&,
const GrSwizzle& textureSwizzle,
// Wrapped version - shares the UniqueID of the passed surface.
// Takes UseAllocator because even though this is already instantiated it still can participate
// in allocation by having its backing resource recycled to other uninstantiated proxies or
// not depending on UseAllocator.
const GrSwizzle& textureSwizzle,
friend class GrSurfaceProxyPriv;
// Methods made available via GrSurfaceProxyPriv
bool ignoredByResourceAllocator() const { return fIgnoredByResourceAllocator; }
void setIgnoredByResourceAllocator() { fIgnoredByResourceAllocator = true; }
void computeScratchKey(GrScratchKey*) const;
virtual sk_sp<GrSurface> createSurface(GrResourceProvider*) const = 0;
void assign(sk_sp<GrSurface> surface);
sk_sp<GrSurface> createSurfaceImpl(GrResourceProvider*, int sampleCnt,
int minStencilSampleCount, GrRenderable, GrMipMapped) const;
// Once the size of a fully-lazy proxy is decided, and before it gets instantiated, the client
// can use this optional method to specify the proxy's size. (A proxy's size can be less than
// the GPU surface that backs it. e.g., SkBackingFit::kApprox.) Otherwise, the proxy's size will
// be set to match the underlying GPU surface upon instantiation.
void setLazySize(int width, int height) {
SkASSERT(width > 0 && height > 0);
fWidth = width;
fHeight = height;
bool instantiateImpl(GrResourceProvider* resourceProvider, int sampleCnt,
int minStencilSampleCount, GrRenderable, GrMipMapped, const GrUniqueKey*);
// For deferred proxies this will be null until the proxy is instantiated.
// For wrapped proxies it will point to the wrapped resource.
sk_sp<GrSurface> fTarget;
// In many cases these flags aren't actually known until the proxy has been instantiated.
// However, Ganesh frequently needs to change its behavior based on these settings. For
// internally create proxies we will know these properties ahead of time. For wrapped
// proxies we will copy the properties off of the GrSurface. For lazy proxies we force the
// call sites to provide the required information ahead of time. At instantiation time
// we verify that the assumed properties match the actual properties.
GrInternalSurfaceFlags fSurfaceFlags;
// For wrapped resources, 'fFormat', 'fConfig', 'fWidth', 'fHeight', and 'fOrigin; will always
// be filled in from the wrapped resource.
const GrBackendFormat fFormat;
const GrPixelConfig fConfig;
int fWidth;
int fHeight;
const GrSurfaceOrigin fOrigin;
const GrSwizzle fTextureSwizzle;
SkBackingFit fFit; // always kApprox for lazy-callback resources
// always kExact for wrapped resources
mutable SkBudgeted fBudgeted; // always kYes for lazy-callback resources
// set from the backing resource for wrapped resources
// mutable bc of SkSurface/SkImage wishy-washiness
// Only meaningful if fLazyInstantiateCallback is non-null.
UseAllocator fUseAllocator;
const UniqueID fUniqueID; // set from the backing resource for wrapped resources
LazyInstantiateCallback fLazyInstantiateCallback;
SkDEBUGCODE(void validateSurface(const GrSurface*);)
SkDEBUGCODE(virtual void onValidateSurface(const GrSurface*) = 0;)
static const size_t kInvalidGpuMemorySize = ~static_cast<size_t>(0);
SkDEBUGCODE(size_t getRawGpuMemorySize_debugOnly() const { return fGpuMemorySize; })
virtual size_t onUninstantiatedGpuMemorySize(const GrCaps&) const = 0;
bool fIgnoredByResourceAllocator = false;
GrProtected fIsProtected;
// This entry is lazily evaluated so, when the proxy wraps a resource, the resource
// will be called but, when the proxy is deferred, it will compute the answer itself.
// If the proxy computes its own answer that answer is checked (in debug mode) in
// the instantiation method.
mutable size_t fGpuMemorySize;
// The last GrRenderTask that wrote to or is currently going to write to this surface
// The GrRenderTask can be closed (e.g., no surface context is currently bound
// to this proxy).
// This back-pointer is required so that we can add a dependancy between
// the GrRenderTask used to create the current contents of this surface
// and the GrRenderTask of a destination surface to which this one is being drawn or copied.
// This pointer is unreffed. GrRenderTasks own a ref on their surface proxies.
GrRenderTask* fLastRenderTask = nullptr;