|  | // Copyright 2012 the V8 project authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #if V8_TARGET_ARCH_MIPS64 | 
|  |  | 
|  | #include "src/api/api-arguments.h" | 
|  | #include "src/codegen/code-factory.h" | 
|  | #include "src/debug/debug.h" | 
|  | #include "src/deoptimizer/deoptimizer.h" | 
|  | #include "src/execution/frame-constants.h" | 
|  | #include "src/execution/frames.h" | 
|  | #include "src/logging/counters.h" | 
|  | // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. | 
|  | #include "src/codegen/macro-assembler-inl.h" | 
|  | #include "src/codegen/mips64/constants-mips64.h" | 
|  | #include "src/codegen/register-configuration.h" | 
|  | #include "src/heap/heap-inl.h" | 
|  | #include "src/objects/cell.h" | 
|  | #include "src/objects/foreign.h" | 
|  | #include "src/objects/heap-number.h" | 
|  | #include "src/objects/js-generator.h" | 
|  | #include "src/objects/objects-inl.h" | 
|  | #include "src/objects/smi.h" | 
|  | #include "src/runtime/runtime.h" | 
|  | #include "src/wasm/wasm-linkage.h" | 
|  | #include "src/wasm/wasm-objects.h" | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | #define __ ACCESS_MASM(masm) | 
|  |  | 
|  | void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { | 
|  | __ li(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | static void GenerateTailCallToReturnedCode(MacroAssembler* masm, | 
|  | Runtime::FunctionId function_id) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : actual argument count | 
|  | //  -- a1 : target function (preserved for callee) | 
|  | //  -- a3 : new target (preserved for callee) | 
|  | // ----------------------------------- | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  | // Push a copy of the target function, the new target and the actual | 
|  | // argument count. | 
|  | // Push function as parameter to the runtime call. | 
|  | __ SmiTag(kJavaScriptCallArgCountRegister); | 
|  | __ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister, | 
|  | kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister); | 
|  |  | 
|  | __ CallRuntime(function_id, 1); | 
|  | // Restore target function, new target and actual argument count. | 
|  | __ Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister, | 
|  | kJavaScriptCallArgCountRegister); | 
|  | __ SmiUntag(kJavaScriptCallArgCountRegister); | 
|  | } | 
|  |  | 
|  | static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); | 
|  | __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); | 
|  | __ Jump(a2); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0     : number of arguments | 
|  | //  -- a1     : constructor function | 
|  | //  -- a3     : new target | 
|  | //  -- cp     : context | 
|  | //  -- ra     : return address | 
|  | //  -- sp[...]: constructor arguments | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Enter a construct frame. | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::CONSTRUCT); | 
|  |  | 
|  | // Preserve the incoming parameters on the stack. | 
|  | __ SmiTag(a0); | 
|  | __ Push(cp, a0); | 
|  | __ SmiUntag(a0); | 
|  |  | 
|  | // Set up pointer to last argument (skip receiver). | 
|  | __ Daddu( | 
|  | t2, fp, | 
|  | Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); | 
|  | // Copy arguments and receiver to the expression stack. | 
|  | __ PushArray(t2, a0, t3, t0); | 
|  | // The receiver for the builtin/api call. | 
|  | __ PushRoot(RootIndex::kTheHoleValue); | 
|  |  | 
|  | // Call the function. | 
|  | // a0: number of arguments (untagged) | 
|  | // a1: constructor function | 
|  | // a3: new target | 
|  | __ InvokeFunctionWithNewTarget(a1, a3, a0, CALL_FUNCTION); | 
|  |  | 
|  | // Restore context from the frame. | 
|  | __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); | 
|  | // Restore smi-tagged arguments count from the frame. | 
|  | __ Ld(t3, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); | 
|  | // Leave construct frame. | 
|  | } | 
|  |  | 
|  | // Remove caller arguments from the stack and return. | 
|  | __ SmiScale(t3, t3, kPointerSizeLog2); | 
|  | __ Daddu(sp, sp, t3); | 
|  | __ Daddu(sp, sp, kPointerSize); | 
|  | __ Ret(); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // The construct stub for ES5 constructor functions and ES6 class constructors. | 
|  | void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  --      a0: number of arguments (untagged) | 
|  | //  --      a1: constructor function | 
|  | //  --      a3: new target | 
|  | //  --      cp: context | 
|  | //  --      ra: return address | 
|  | //  -- sp[...]: constructor arguments | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Enter a construct frame. | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::CONSTRUCT); | 
|  | Label post_instantiation_deopt_entry, not_create_implicit_receiver; | 
|  |  | 
|  | // Preserve the incoming parameters on the stack. | 
|  | __ SmiTag(a0); | 
|  | __ Push(cp, a0, a1); | 
|  | __ PushRoot(RootIndex::kUndefinedValue); | 
|  | __ Push(a3); | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  --        sp[0*kPointerSize]: new target | 
|  | //  --        sp[1*kPointerSize]: padding | 
|  | //  -- a1 and sp[2*kPointerSize]: constructor function | 
|  | //  --        sp[3*kPointerSize]: number of arguments (tagged) | 
|  | //  --        sp[4*kPointerSize]: context | 
|  | // ----------------------------------- | 
|  |  | 
|  | __ Ld(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ lwu(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset)); | 
|  | __ DecodeField<SharedFunctionInfo::FunctionKindBits>(t2); | 
|  | __ JumpIfIsInRange(t2, kDefaultDerivedConstructor, kDerivedConstructor, | 
|  | ¬_create_implicit_receiver); | 
|  |  | 
|  | // If not derived class constructor: Allocate the new receiver object. | 
|  | __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, | 
|  | t2, t3); | 
|  | __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), | 
|  | RelocInfo::CODE_TARGET); | 
|  | __ Branch(&post_instantiation_deopt_entry); | 
|  |  | 
|  | // Else: use TheHoleValue as receiver for constructor call | 
|  | __ bind(¬_create_implicit_receiver); | 
|  | __ LoadRoot(v0, RootIndex::kTheHoleValue); | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  --                          v0: receiver | 
|  | //  -- Slot 4 / sp[0*kPointerSize]: new target | 
|  | //  -- Slot 3 / sp[1*kPointerSize]: padding | 
|  | //  -- Slot 2 / sp[2*kPointerSize]: constructor function | 
|  | //  -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged) | 
|  | //  -- Slot 0 / sp[4*kPointerSize]: context | 
|  | // ----------------------------------- | 
|  | // Deoptimizer enters here. | 
|  | masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( | 
|  | masm->pc_offset()); | 
|  | __ bind(&post_instantiation_deopt_entry); | 
|  |  | 
|  | // Restore new target. | 
|  | __ Pop(a3); | 
|  |  | 
|  | // Push the allocated receiver to the stack. | 
|  | __ Push(v0); | 
|  |  | 
|  | // We need two copies because we may have to return the original one | 
|  | // and the calling conventions dictate that the called function pops the | 
|  | // receiver. The second copy is pushed after the arguments, we saved in a6 | 
|  | // since v0 will store the return value of callRuntime. | 
|  | __ mov(a6, v0); | 
|  |  | 
|  | // Set up pointer to last argument. | 
|  | __ Daddu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset + | 
|  | kSystemPointerSize)); | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  --                 r3: new target | 
|  | //  -- sp[0*kPointerSize]: implicit receiver | 
|  | //  -- sp[1*kPointerSize]: implicit receiver | 
|  | //  -- sp[2*kPointerSize]: padding | 
|  | //  -- sp[3*kPointerSize]: constructor function | 
|  | //  -- sp[4*kPointerSize]: number of arguments (tagged) | 
|  | //  -- sp[5*kPointerSize]: context | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Restore constructor function and argument count. | 
|  | __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); | 
|  | __ Ld(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); | 
|  | __ SmiUntag(a0); | 
|  |  | 
|  | Label enough_stack_space, stack_overflow; | 
|  | __ StackOverflowCheck(a0, t0, t1, &stack_overflow); | 
|  | __ Branch(&enough_stack_space); | 
|  |  | 
|  | __ bind(&stack_overflow); | 
|  | // Restore the context from the frame. | 
|  | __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); | 
|  | __ CallRuntime(Runtime::kThrowStackOverflow); | 
|  | // Unreachable code. | 
|  | __ break_(0xCC); | 
|  |  | 
|  | __ bind(&enough_stack_space); | 
|  |  | 
|  | // TODO(victorgomes): When the arguments adaptor is completely removed, we | 
|  | // should get the formal parameter count and copy the arguments in its | 
|  | // correct position (including any undefined), instead of delaying this to | 
|  | // InvokeFunction. | 
|  |  | 
|  | // Copy arguments and receiver to the expression stack. | 
|  | __ PushArray(t2, a0, t0, t1); | 
|  | // We need two copies because we may have to return the original one | 
|  | // and the calling conventions dictate that the called function pops the | 
|  | // receiver. The second copy is pushed after the arguments, | 
|  | __ Push(a6); | 
|  |  | 
|  | // Call the function. | 
|  | __ InvokeFunctionWithNewTarget(a1, a3, a0, CALL_FUNCTION); | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  --                 v0: constructor result | 
|  | //  -- sp[0*kPointerSize]: implicit receiver | 
|  | //  -- sp[1*kPointerSize]: padding | 
|  | //  -- sp[2*kPointerSize]: constructor function | 
|  | //  -- sp[3*kPointerSize]: number of arguments | 
|  | //  -- sp[4*kPointerSize]: context | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Store offset of return address for deoptimizer. | 
|  | masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( | 
|  | masm->pc_offset()); | 
|  |  | 
|  | // Restore the context from the frame. | 
|  | __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); | 
|  |  | 
|  | // If the result is an object (in the ECMA sense), we should get rid | 
|  | // of the receiver and use the result; see ECMA-262 section 13.2.2-7 | 
|  | // on page 74. | 
|  | Label use_receiver, do_throw, leave_frame; | 
|  |  | 
|  | // If the result is undefined, we jump out to using the implicit receiver. | 
|  | __ JumpIfRoot(v0, RootIndex::kUndefinedValue, &use_receiver); | 
|  |  | 
|  | // Otherwise we do a smi check and fall through to check if the return value | 
|  | // is a valid receiver. | 
|  |  | 
|  | // If the result is a smi, it is *not* an object in the ECMA sense. | 
|  | __ JumpIfSmi(v0, &use_receiver); | 
|  |  | 
|  | // If the type of the result (stored in its map) is less than | 
|  | // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. | 
|  | __ GetObjectType(v0, t2, t2); | 
|  | STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); | 
|  | __ Branch(&leave_frame, greater_equal, t2, Operand(FIRST_JS_RECEIVER_TYPE)); | 
|  | __ Branch(&use_receiver); | 
|  |  | 
|  | __ bind(&do_throw); | 
|  | __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); | 
|  |  | 
|  | // Throw away the result of the constructor invocation and use the | 
|  | // on-stack receiver as the result. | 
|  | __ bind(&use_receiver); | 
|  | __ Ld(v0, MemOperand(sp, 0 * kPointerSize)); | 
|  | __ JumpIfRoot(v0, RootIndex::kTheHoleValue, &do_throw); | 
|  |  | 
|  | __ bind(&leave_frame); | 
|  | // Restore smi-tagged arguments count from the frame. | 
|  | __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); | 
|  | // Leave construct frame. | 
|  | } | 
|  | // Remove caller arguments from the stack and return. | 
|  | __ SmiScale(a4, a1, kPointerSizeLog2); | 
|  | __ Daddu(sp, sp, a4); | 
|  | __ Daddu(sp, sp, kPointerSize); | 
|  | __ Ret(); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { | 
|  | Generate_JSBuiltinsConstructStubHelper(masm); | 
|  | } | 
|  |  | 
|  | static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, | 
|  | Register sfi_data, | 
|  | Register scratch1) { | 
|  | Label done; | 
|  |  | 
|  | __ GetObjectType(sfi_data, scratch1, scratch1); | 
|  | __ Branch(&done, ne, scratch1, Operand(INTERPRETER_DATA_TYPE)); | 
|  | __ Ld(sfi_data, | 
|  | FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); | 
|  |  | 
|  | __ bind(&done); | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- v0 : the value to pass to the generator | 
|  | //  -- a1 : the JSGeneratorObject to resume | 
|  | //  -- ra : return address | 
|  | // ----------------------------------- | 
|  | __ AssertGeneratorObject(a1); | 
|  |  | 
|  | // Store input value into generator object. | 
|  | __ Sd(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset)); | 
|  | __ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3, | 
|  | kRAHasNotBeenSaved, kDontSaveFPRegs); | 
|  |  | 
|  | // Load suspended function and context. | 
|  | __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); | 
|  | __ Ld(cp, FieldMemOperand(a4, JSFunction::kContextOffset)); | 
|  |  | 
|  | // Flood function if we are stepping. | 
|  | Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; | 
|  | Label stepping_prepared; | 
|  | ExternalReference debug_hook = | 
|  | ExternalReference::debug_hook_on_function_call_address(masm->isolate()); | 
|  | __ li(a5, debug_hook); | 
|  | __ Lb(a5, MemOperand(a5)); | 
|  | __ Branch(&prepare_step_in_if_stepping, ne, a5, Operand(zero_reg)); | 
|  |  | 
|  | // Flood function if we need to continue stepping in the suspended generator. | 
|  | ExternalReference debug_suspended_generator = | 
|  | ExternalReference::debug_suspended_generator_address(masm->isolate()); | 
|  | __ li(a5, debug_suspended_generator); | 
|  | __ Ld(a5, MemOperand(a5)); | 
|  | __ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5)); | 
|  | __ bind(&stepping_prepared); | 
|  |  | 
|  | // Check the stack for overflow. We are not trying to catch interruptions | 
|  | // (i.e. debug break and preemption) here, so check the "real stack limit". | 
|  | Label stack_overflow; | 
|  | __ LoadStackLimit(kScratchReg, | 
|  | MacroAssembler::StackLimitKind::kRealStackLimit); | 
|  | __ Branch(&stack_overflow, lo, sp, Operand(kScratchReg)); | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a1    : the JSGeneratorObject to resume | 
|  | //  -- a4    : generator function | 
|  | //  -- cp    : generator context | 
|  | //  -- ra    : return address | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Push holes for arguments to generator function. Since the parser forced | 
|  | // context allocation for any variables in generators, the actual argument | 
|  | // values have already been copied into the context and these dummy values | 
|  | // will never be used. | 
|  | __ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ Lhu(a3, | 
|  | FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); | 
|  | __ Ld(t1, | 
|  | FieldMemOperand(a1, JSGeneratorObject::kParametersAndRegistersOffset)); | 
|  | { | 
|  | Label done_loop, loop; | 
|  | __ bind(&loop); | 
|  | __ Dsubu(a3, a3, Operand(1)); | 
|  | __ Branch(&done_loop, lt, a3, Operand(zero_reg)); | 
|  | __ Dlsa(kScratchReg, t1, a3, kPointerSizeLog2); | 
|  | __ Ld(kScratchReg, FieldMemOperand(kScratchReg, FixedArray::kHeaderSize)); | 
|  | __ Push(kScratchReg); | 
|  | __ Branch(&loop); | 
|  | __ bind(&done_loop); | 
|  | // Push receiver. | 
|  | __ Ld(kScratchReg, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset)); | 
|  | __ Push(kScratchReg); | 
|  | } | 
|  |  | 
|  | // Underlying function needs to have bytecode available. | 
|  | if (FLAG_debug_code) { | 
|  | __ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ Ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset)); | 
|  | GetSharedFunctionInfoBytecode(masm, a3, a0); | 
|  | __ GetObjectType(a3, a3, a3); | 
|  | __ Assert(eq, AbortReason::kMissingBytecodeArray, a3, | 
|  | Operand(BYTECODE_ARRAY_TYPE)); | 
|  | } | 
|  |  | 
|  | // Resume (Ignition/TurboFan) generator object. | 
|  | { | 
|  | __ Ld(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ Lhu(a0, FieldMemOperand( | 
|  | a0, SharedFunctionInfo::kFormalParameterCountOffset)); | 
|  | // We abuse new.target both to indicate that this is a resume call and to | 
|  | // pass in the generator object.  In ordinary calls, new.target is always | 
|  | // undefined because generator functions are non-constructable. | 
|  | __ Move(a3, a1); | 
|  | __ Move(a1, a4); | 
|  | static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); | 
|  | __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); | 
|  | __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); | 
|  | __ Jump(a2); | 
|  | } | 
|  |  | 
|  | __ bind(&prepare_step_in_if_stepping); | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  | __ Push(a1, a4); | 
|  | // Push hole as receiver since we do not use it for stepping. | 
|  | __ PushRoot(RootIndex::kTheHoleValue); | 
|  | __ CallRuntime(Runtime::kDebugOnFunctionCall); | 
|  | __ Pop(a1); | 
|  | } | 
|  | __ Branch(USE_DELAY_SLOT, &stepping_prepared); | 
|  | __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); | 
|  |  | 
|  | __ bind(&prepare_step_in_suspended_generator); | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  | __ Push(a1); | 
|  | __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); | 
|  | __ Pop(a1); | 
|  | } | 
|  | __ Branch(USE_DELAY_SLOT, &stepping_prepared); | 
|  | __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); | 
|  |  | 
|  | __ bind(&stack_overflow); | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  | __ CallRuntime(Runtime::kThrowStackOverflow); | 
|  | __ break_(0xCC);  // This should be unreachable. | 
|  | } | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  | __ Push(a1); | 
|  | __ CallRuntime(Runtime::kThrowConstructedNonConstructable); | 
|  | } | 
|  |  | 
|  | // Clobbers scratch1 and scratch2; preserves all other registers. | 
|  | static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, | 
|  | Register scratch1, Register scratch2) { | 
|  | // Check the stack for overflow. We are not trying to catch | 
|  | // interruptions (e.g. debug break and preemption) here, so the "real stack | 
|  | // limit" is checked. | 
|  | Label okay; | 
|  | __ LoadStackLimit(scratch1, MacroAssembler::StackLimitKind::kRealStackLimit); | 
|  | // Make a2 the space we have left. The stack might already be overflowed | 
|  | // here which will cause r2 to become negative. | 
|  | __ dsubu(scratch1, sp, scratch1); | 
|  | // Check if the arguments will overflow the stack. | 
|  | __ dsll(scratch2, argc, kPointerSizeLog2); | 
|  | __ Branch(&okay, gt, scratch1, Operand(scratch2));  // Signed comparison. | 
|  |  | 
|  | // Out of stack space. | 
|  | __ CallRuntime(Runtime::kThrowStackOverflow); | 
|  |  | 
|  | __ bind(&okay); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Called with the native C calling convention. The corresponding function | 
|  | // signature is either: | 
|  | // | 
|  | //   using JSEntryFunction = GeneratedCode<Address( | 
|  | //       Address root_register_value, Address new_target, Address target, | 
|  | //       Address receiver, intptr_t argc, Address** args)>; | 
|  | // or | 
|  | //   using JSEntryFunction = GeneratedCode<Address( | 
|  | //       Address root_register_value, MicrotaskQueue* microtask_queue)>; | 
|  | void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, | 
|  | Builtins::Name entry_trampoline) { | 
|  | Label invoke, handler_entry, exit; | 
|  |  | 
|  | { | 
|  | NoRootArrayScope no_root_array(masm); | 
|  |  | 
|  | // TODO(plind): unify the ABI description here. | 
|  | // Registers: | 
|  | //  either | 
|  | //   a0: root register value | 
|  | //   a1: entry address | 
|  | //   a2: function | 
|  | //   a3: receiver | 
|  | //   a4: argc | 
|  | //   a5: argv | 
|  | //  or | 
|  | //   a0: root register value | 
|  | //   a1: microtask_queue | 
|  | // | 
|  | // Stack: | 
|  | // 0 arg slots on mips64 (4 args slots on mips) | 
|  |  | 
|  | // Save callee saved registers on the stack. | 
|  | __ MultiPush(kCalleeSaved | ra.bit()); | 
|  |  | 
|  | // Save callee-saved FPU registers. | 
|  | __ MultiPushFPU(kCalleeSavedFPU); | 
|  | // Set up the reserved register for 0.0. | 
|  | __ Move(kDoubleRegZero, 0.0); | 
|  |  | 
|  | // Initialize the root register. | 
|  | // C calling convention. The first argument is passed in a0. | 
|  | __ mov(kRootRegister, a0); | 
|  | } | 
|  |  | 
|  | // a1: entry address | 
|  | // a2: function | 
|  | // a3: receiver | 
|  | // a4: argc | 
|  | // a5: argv | 
|  |  | 
|  | // We build an EntryFrame. | 
|  | __ li(s1, Operand(-1));  // Push a bad frame pointer to fail if it is used. | 
|  | __ li(s2, Operand(StackFrame::TypeToMarker(type))); | 
|  | __ li(s3, Operand(StackFrame::TypeToMarker(type))); | 
|  | ExternalReference c_entry_fp = ExternalReference::Create( | 
|  | IsolateAddressId::kCEntryFPAddress, masm->isolate()); | 
|  | __ li(s4, c_entry_fp); | 
|  | __ Ld(s4, MemOperand(s4)); | 
|  | __ Push(s1, s2, s3, s4); | 
|  | // Set up frame pointer for the frame to be pushed. | 
|  | __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset); | 
|  |  | 
|  | // Registers: | 
|  | //  either | 
|  | //   a1: entry address | 
|  | //   a2: function | 
|  | //   a3: receiver | 
|  | //   a4: argc | 
|  | //   a5: argv | 
|  | //  or | 
|  | //   a1: microtask_queue | 
|  | // | 
|  | // Stack: | 
|  | // caller fp          | | 
|  | // function slot      | entry frame | 
|  | // context slot       | | 
|  | // bad fp (0xFF...F)  | | 
|  | // callee saved registers + ra | 
|  | // [ O32: 4 args slots] | 
|  | // args | 
|  |  | 
|  | // If this is the outermost JS call, set js_entry_sp value. | 
|  | Label non_outermost_js; | 
|  | ExternalReference js_entry_sp = ExternalReference::Create( | 
|  | IsolateAddressId::kJSEntrySPAddress, masm->isolate()); | 
|  | __ li(s1, js_entry_sp); | 
|  | __ Ld(s2, MemOperand(s1)); | 
|  | __ Branch(&non_outermost_js, ne, s2, Operand(zero_reg)); | 
|  | __ Sd(fp, MemOperand(s1)); | 
|  | __ li(s3, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); | 
|  | Label cont; | 
|  | __ b(&cont); | 
|  | __ nop();  // Branch delay slot nop. | 
|  | __ bind(&non_outermost_js); | 
|  | __ li(s3, Operand(StackFrame::INNER_JSENTRY_FRAME)); | 
|  | __ bind(&cont); | 
|  | __ push(s3); | 
|  |  | 
|  | // Jump to a faked try block that does the invoke, with a faked catch | 
|  | // block that sets the pending exception. | 
|  | __ jmp(&invoke); | 
|  | __ bind(&handler_entry); | 
|  |  | 
|  | // Store the current pc as the handler offset. It's used later to create the | 
|  | // handler table. | 
|  | masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); | 
|  |  | 
|  | // Caught exception: Store result (exception) in the pending exception | 
|  | // field in the JSEnv and return a failure sentinel.  Coming in here the | 
|  | // fp will be invalid because the PushStackHandler below sets it to 0 to | 
|  | // signal the existence of the JSEntry frame. | 
|  | __ li(s1, ExternalReference::Create( | 
|  | IsolateAddressId::kPendingExceptionAddress, masm->isolate())); | 
|  | __ Sd(v0, MemOperand(s1));  // We come back from 'invoke'. result is in v0. | 
|  | __ LoadRoot(v0, RootIndex::kException); | 
|  | __ b(&exit);  // b exposes branch delay slot. | 
|  | __ nop();     // Branch delay slot nop. | 
|  |  | 
|  | // Invoke: Link this frame into the handler chain. | 
|  | __ bind(&invoke); | 
|  | __ PushStackHandler(); | 
|  | // If an exception not caught by another handler occurs, this handler | 
|  | // returns control to the code after the bal(&invoke) above, which | 
|  | // restores all kCalleeSaved registers (including cp and fp) to their | 
|  | // saved values before returning a failure to C. | 
|  | // | 
|  | // Registers: | 
|  | //  either | 
|  | //   a0: root register value | 
|  | //   a1: entry address | 
|  | //   a2: function | 
|  | //   a3: receiver | 
|  | //   a4: argc | 
|  | //   a5: argv | 
|  | //  or | 
|  | //   a0: root register value | 
|  | //   a1: microtask_queue | 
|  | // | 
|  | // Stack: | 
|  | // handler frame | 
|  | // entry frame | 
|  | // callee saved registers + ra | 
|  | // [ O32: 4 args slots] | 
|  | // args | 
|  | // | 
|  | // Invoke the function by calling through JS entry trampoline builtin and | 
|  | // pop the faked function when we return. | 
|  |  | 
|  | Handle<Code> trampoline_code = | 
|  | masm->isolate()->builtins()->builtin_handle(entry_trampoline); | 
|  | __ Call(trampoline_code, RelocInfo::CODE_TARGET); | 
|  |  | 
|  | // Unlink this frame from the handler chain. | 
|  | __ PopStackHandler(); | 
|  |  | 
|  | __ bind(&exit);  // v0 holds result | 
|  | // Check if the current stack frame is marked as the outermost JS frame. | 
|  | Label non_outermost_js_2; | 
|  | __ pop(a5); | 
|  | __ Branch(&non_outermost_js_2, ne, a5, | 
|  | Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); | 
|  | __ li(a5, js_entry_sp); | 
|  | __ Sd(zero_reg, MemOperand(a5)); | 
|  | __ bind(&non_outermost_js_2); | 
|  |  | 
|  | // Restore the top frame descriptors from the stack. | 
|  | __ pop(a5); | 
|  | __ li(a4, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, | 
|  | masm->isolate())); | 
|  | __ Sd(a5, MemOperand(a4)); | 
|  |  | 
|  | // Reset the stack to the callee saved registers. | 
|  | __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset); | 
|  |  | 
|  | // Restore callee-saved fpu registers. | 
|  | __ MultiPopFPU(kCalleeSavedFPU); | 
|  |  | 
|  | // Restore callee saved registers from the stack. | 
|  | __ MultiPop(kCalleeSaved | ra.bit()); | 
|  | // Return. | 
|  | __ Jump(ra); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | void Builtins::Generate_JSEntry(MacroAssembler* masm) { | 
|  | Generate_JSEntryVariant(masm, StackFrame::ENTRY, | 
|  | Builtins::kJSEntryTrampoline); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { | 
|  | Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, | 
|  | Builtins::kJSConstructEntryTrampoline); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { | 
|  | Generate_JSEntryVariant(masm, StackFrame::ENTRY, | 
|  | Builtins::kRunMicrotasksTrampoline); | 
|  | } | 
|  |  | 
|  | static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, | 
|  | bool is_construct) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a1: new.target | 
|  | //  -- a2: function | 
|  | //  -- a3: receiver_pointer | 
|  | //  -- a4: argc | 
|  | //  -- a5: argv | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Enter an internal frame. | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  |  | 
|  | // Setup the context (we need to use the caller context from the isolate). | 
|  | ExternalReference context_address = ExternalReference::Create( | 
|  | IsolateAddressId::kContextAddress, masm->isolate()); | 
|  | __ li(cp, context_address); | 
|  | __ Ld(cp, MemOperand(cp)); | 
|  |  | 
|  | // Push the function onto the stack. | 
|  | __ Push(a2); | 
|  |  | 
|  | // Check if we have enough stack space to push all arguments. | 
|  | __ daddiu(a6, a4, 1); | 
|  | Generate_CheckStackOverflow(masm, a6, a0, s2); | 
|  |  | 
|  | // Copy arguments to the stack in a loop. | 
|  | // a4: argc | 
|  | // a5: argv, i.e. points to first arg | 
|  | Label loop, entry; | 
|  | __ Dlsa(s1, a5, a4, kPointerSizeLog2); | 
|  | __ b(&entry); | 
|  | __ nop();  // Branch delay slot nop. | 
|  | // s1 points past last arg. | 
|  | __ bind(&loop); | 
|  | __ daddiu(s1, s1, -kPointerSize); | 
|  | __ Ld(s2, MemOperand(s1));  // Read next parameter. | 
|  | __ Ld(s2, MemOperand(s2));  // Dereference handle. | 
|  | __ push(s2);                // Push parameter. | 
|  | __ bind(&entry); | 
|  | __ Branch(&loop, ne, a5, Operand(s1)); | 
|  |  | 
|  | // Push the receive. | 
|  | __ Push(a3); | 
|  |  | 
|  | // a0: argc | 
|  | // a1: function | 
|  | // a3: new.target | 
|  | __ mov(a3, a1); | 
|  | __ mov(a1, a2); | 
|  | __ mov(a0, a4); | 
|  |  | 
|  | // Initialize all JavaScript callee-saved registers, since they will be seen | 
|  | // by the garbage collector as part of handlers. | 
|  | __ LoadRoot(a4, RootIndex::kUndefinedValue); | 
|  | __ mov(a5, a4); | 
|  | __ mov(s1, a4); | 
|  | __ mov(s2, a4); | 
|  | __ mov(s3, a4); | 
|  | __ mov(s4, a4); | 
|  | __ mov(s5, a4); | 
|  | // s6 holds the root address. Do not clobber. | 
|  | // s7 is cp. Do not init. | 
|  |  | 
|  | // Invoke the code. | 
|  | Handle<Code> builtin = is_construct | 
|  | ? BUILTIN_CODE(masm->isolate(), Construct) | 
|  | : masm->isolate()->builtins()->Call(); | 
|  | __ Call(builtin, RelocInfo::CODE_TARGET); | 
|  |  | 
|  | // Leave internal frame. | 
|  | } | 
|  | __ Jump(ra); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { | 
|  | Generate_JSEntryTrampolineHelper(masm, false); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { | 
|  | Generate_JSEntryTrampolineHelper(masm, true); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { | 
|  | // a1: microtask_queue | 
|  | __ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), a1); | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm, | 
|  | Register optimized_code, | 
|  | Register closure, | 
|  | Register scratch1, | 
|  | Register scratch2) { | 
|  | // Store code entry in the closure. | 
|  | __ Sd(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset)); | 
|  | __ mov(scratch1, optimized_code);  // Write barrier clobbers scratch1 below. | 
|  | __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, | 
|  | kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, | 
|  | OMIT_SMI_CHECK); | 
|  | } | 
|  |  | 
|  | static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, | 
|  | Register scratch2) { | 
|  | Register params_size = scratch1; | 
|  |  | 
|  | // Get the size of the formal parameters + receiver (in bytes). | 
|  | __ Ld(params_size, | 
|  | MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); | 
|  | __ Lw(params_size, | 
|  | FieldMemOperand(params_size, BytecodeArray::kParameterSizeOffset)); | 
|  |  | 
|  | #ifdef V8_NO_ARGUMENTS_ADAPTOR | 
|  | Register actual_params_size = scratch2; | 
|  | // Compute the size of the actual parameters + receiver (in bytes). | 
|  | __ Ld(actual_params_size, | 
|  | MemOperand(fp, StandardFrameConstants::kArgCOffset)); | 
|  | __ dsll(actual_params_size, actual_params_size, kPointerSizeLog2); | 
|  | __ Daddu(actual_params_size, actual_params_size, Operand(kSystemPointerSize)); | 
|  |  | 
|  | // If actual is bigger than formal, then we should use it to free up the stack | 
|  | // arguments. | 
|  | __ slt(t2, params_size, actual_params_size); | 
|  | __ movn(params_size, actual_params_size, t2); | 
|  | #endif | 
|  |  | 
|  | // Leave the frame (also dropping the register file). | 
|  | __ LeaveFrame(StackFrame::INTERPRETED); | 
|  |  | 
|  | // Drop receiver + arguments. | 
|  | __ Daddu(sp, sp, params_size); | 
|  | } | 
|  |  | 
|  | // Tail-call |function_id| if |actual_marker| == |expected_marker| | 
|  | static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, | 
|  | Register actual_marker, | 
|  | OptimizationMarker expected_marker, | 
|  | Runtime::FunctionId function_id) { | 
|  | Label no_match; | 
|  | __ Branch(&no_match, ne, actual_marker, Operand(expected_marker)); | 
|  | GenerateTailCallToReturnedCode(masm, function_id); | 
|  | __ bind(&no_match); | 
|  | } | 
|  |  | 
|  | static void TailCallOptimizedCodeSlot(MacroAssembler* masm, | 
|  | Register optimized_code_entry, | 
|  | Register scratch1, Register scratch2) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : actual argument count | 
|  | //  -- a3 : new target (preserved for callee if needed, and caller) | 
|  | //  -- a1 : target function (preserved for callee if needed, and caller) | 
|  | // ----------------------------------- | 
|  | DCHECK(!AreAliased(optimized_code_entry, a1, a3, scratch1, scratch2)); | 
|  |  | 
|  | Register closure = a1; | 
|  | Label heal_optimized_code_slot; | 
|  |  | 
|  | // If the optimized code is cleared, go to runtime to update the optimization | 
|  | // marker field. | 
|  | __ LoadWeakValue(optimized_code_entry, optimized_code_entry, | 
|  | &heal_optimized_code_slot); | 
|  |  | 
|  | // Check if the optimized code is marked for deopt. If it is, call the | 
|  | // runtime to clear it. | 
|  | __ Ld(a5, | 
|  | FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); | 
|  | __ Lw(a5, FieldMemOperand(a5, CodeDataContainer::kKindSpecificFlagsOffset)); | 
|  | __ And(a5, a5, Operand(1 << Code::kMarkedForDeoptimizationBit)); | 
|  | __ Branch(&heal_optimized_code_slot, ne, a5, Operand(zero_reg)); | 
|  |  | 
|  | // Optimized code is good, get it into the closure and link the closure into | 
|  | // the optimized functions list, then tail call the optimized code. | 
|  | // The feedback vector is no longer used, so re-use it as a scratch | 
|  | // register. | 
|  | ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, | 
|  | scratch1, scratch2); | 
|  |  | 
|  | static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); | 
|  | __ Daddu(a2, optimized_code_entry, | 
|  | Operand(Code::kHeaderSize - kHeapObjectTag)); | 
|  | __ Jump(a2); | 
|  |  | 
|  | // Optimized code slot contains deoptimized code or code is cleared and | 
|  | // optimized code marker isn't updated. Evict the code, update the marker | 
|  | // and re-enter the closure's code. | 
|  | __ bind(&heal_optimized_code_slot); | 
|  | GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot); | 
|  | } | 
|  |  | 
|  | static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector, | 
|  | Register optimization_marker) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : actual argument count | 
|  | //  -- a3 : new target (preserved for callee if needed, and caller) | 
|  | //  -- a1 : target function (preserved for callee if needed, and caller) | 
|  | //  -- feedback vector (preserved for caller if needed) | 
|  | //  -- optimization_marker : a int32 containing a non-zero optimization | 
|  | //  marker. | 
|  | // ----------------------------------- | 
|  | DCHECK(!AreAliased(feedback_vector, a1, a3, optimization_marker)); | 
|  |  | 
|  | // TODO(v8:8394): The logging of first execution will break if | 
|  | // feedback vectors are not allocated. We need to find a different way of | 
|  | // logging these events if required. | 
|  | TailCallRuntimeIfMarkerEquals(masm, optimization_marker, | 
|  | OptimizationMarker::kLogFirstExecution, | 
|  | Runtime::kFunctionFirstExecution); | 
|  | TailCallRuntimeIfMarkerEquals(masm, optimization_marker, | 
|  | OptimizationMarker::kCompileOptimized, | 
|  | Runtime::kCompileOptimized_NotConcurrent); | 
|  | TailCallRuntimeIfMarkerEquals(masm, optimization_marker, | 
|  | OptimizationMarker::kCompileOptimizedConcurrent, | 
|  | Runtime::kCompileOptimized_Concurrent); | 
|  |  | 
|  | // Marker should be one of LogFirstExecution / CompileOptimized / | 
|  | // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach | 
|  | // here. | 
|  | if (FLAG_debug_code) { | 
|  | __ stop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Advance the current bytecode offset. This simulates what all bytecode | 
|  | // handlers do upon completion of the underlying operation. Will bail out to a | 
|  | // label if the bytecode (without prefix) is a return bytecode. Will not advance | 
|  | // the bytecode offset if the current bytecode is a JumpLoop, instead just | 
|  | // re-executing the JumpLoop to jump to the correct bytecode. | 
|  | static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, | 
|  | Register bytecode_array, | 
|  | Register bytecode_offset, | 
|  | Register bytecode, Register scratch1, | 
|  | Register scratch2, Register scratch3, | 
|  | Label* if_return) { | 
|  | Register bytecode_size_table = scratch1; | 
|  |  | 
|  | // The bytecode offset value will be increased by one in wide and extra wide | 
|  | // cases. In the case of having a wide or extra wide JumpLoop bytecode, we | 
|  | // will restore the original bytecode. In order to simplify the code, we have | 
|  | // a backup of it. | 
|  | Register original_bytecode_offset = scratch3; | 
|  | DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode, | 
|  | bytecode_size_table, original_bytecode_offset)); | 
|  | __ Move(original_bytecode_offset, bytecode_offset); | 
|  | __ li(bytecode_size_table, ExternalReference::bytecode_size_table_address()); | 
|  |  | 
|  | // Check if the bytecode is a Wide or ExtraWide prefix bytecode. | 
|  | Label process_bytecode, extra_wide; | 
|  | STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); | 
|  | STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); | 
|  | STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); | 
|  | STATIC_ASSERT(3 == | 
|  | static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); | 
|  | __ Branch(&process_bytecode, hi, bytecode, Operand(3)); | 
|  | __ And(scratch2, bytecode, Operand(1)); | 
|  | __ Branch(&extra_wide, ne, scratch2, Operand(zero_reg)); | 
|  |  | 
|  | // Load the next bytecode and update table to the wide scaled table. | 
|  | __ Daddu(bytecode_offset, bytecode_offset, Operand(1)); | 
|  | __ Daddu(scratch2, bytecode_array, bytecode_offset); | 
|  | __ Lbu(bytecode, MemOperand(scratch2)); | 
|  | __ Daddu(bytecode_size_table, bytecode_size_table, | 
|  | Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); | 
|  | __ jmp(&process_bytecode); | 
|  |  | 
|  | __ bind(&extra_wide); | 
|  | // Load the next bytecode and update table to the extra wide scaled table. | 
|  | __ Daddu(bytecode_offset, bytecode_offset, Operand(1)); | 
|  | __ Daddu(scratch2, bytecode_array, bytecode_offset); | 
|  | __ Lbu(bytecode, MemOperand(scratch2)); | 
|  | __ Daddu(bytecode_size_table, bytecode_size_table, | 
|  | Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); | 
|  |  | 
|  | __ bind(&process_bytecode); | 
|  |  | 
|  | // Bailout to the return label if this is a return bytecode. | 
|  | #define JUMP_IF_EQUAL(NAME)          \ | 
|  | __ Branch(if_return, eq, bytecode, \ | 
|  | Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); | 
|  | RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) | 
|  | #undef JUMP_IF_EQUAL | 
|  |  | 
|  | // If this is a JumpLoop, re-execute it to perform the jump to the beginning | 
|  | // of the loop. | 
|  | Label end, not_jump_loop; | 
|  | __ Branch(¬_jump_loop, ne, bytecode, | 
|  | Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop))); | 
|  | // We need to restore the original bytecode_offset since we might have | 
|  | // increased it to skip the wide / extra-wide prefix bytecode. | 
|  | __ Move(bytecode_offset, original_bytecode_offset); | 
|  | __ jmp(&end); | 
|  |  | 
|  | __ bind(¬_jump_loop); | 
|  | // Otherwise, load the size of the current bytecode and advance the offset. | 
|  | __ Dlsa(scratch2, bytecode_size_table, bytecode, 2); | 
|  | __ Lw(scratch2, MemOperand(scratch2)); | 
|  | __ Daddu(bytecode_offset, bytecode_offset, scratch2); | 
|  |  | 
|  | __ bind(&end); | 
|  | } | 
|  |  | 
|  | // Generate code for entering a JS function with the interpreter. | 
|  | // On entry to the function the receiver and arguments have been pushed on the | 
|  | // stack left to right. | 
|  | // | 
|  | // The live registers are: | 
|  | //   o a0 : actual argument count (not including the receiver) | 
|  | //   o a1: the JS function object being called. | 
|  | //   o a3: the incoming new target or generator object | 
|  | //   o cp: our context | 
|  | //   o fp: the caller's frame pointer | 
|  | //   o sp: stack pointer | 
|  | //   o ra: return address | 
|  | // | 
|  | // The function builds an interpreter frame.  See InterpreterFrameConstants in | 
|  | // frames.h for its layout. | 
|  | void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { | 
|  | Register closure = a1; | 
|  | Register feedback_vector = a2; | 
|  |  | 
|  | // Get the bytecode array from the function object and load it into | 
|  | // kInterpreterBytecodeArrayRegister. | 
|  | __ Ld(kScratchReg, | 
|  | FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ Ld(kInterpreterBytecodeArrayRegister, | 
|  | FieldMemOperand(kScratchReg, SharedFunctionInfo::kFunctionDataOffset)); | 
|  | GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, | 
|  | kScratchReg); | 
|  |  | 
|  | // The bytecode array could have been flushed from the shared function info, | 
|  | // if so, call into CompileLazy. | 
|  | Label compile_lazy; | 
|  | __ GetObjectType(kInterpreterBytecodeArrayRegister, kScratchReg, kScratchReg); | 
|  | __ Branch(&compile_lazy, ne, kScratchReg, Operand(BYTECODE_ARRAY_TYPE)); | 
|  |  | 
|  | // Load the feedback vector from the closure. | 
|  | __ Ld(feedback_vector, | 
|  | FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); | 
|  | __ Ld(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); | 
|  |  | 
|  | Label push_stack_frame; | 
|  | // Check if feedback vector is valid. If valid, check for optimized code | 
|  | // and update invocation count. Otherwise, setup the stack frame. | 
|  | __ Ld(a4, FieldMemOperand(feedback_vector, HeapObject::kMapOffset)); | 
|  | __ Lhu(a4, FieldMemOperand(a4, Map::kInstanceTypeOffset)); | 
|  | __ Branch(&push_stack_frame, ne, a4, Operand(FEEDBACK_VECTOR_TYPE)); | 
|  |  | 
|  | // Read off the optimization state in the feedback vector, and if there | 
|  | // is optimized code or an optimization marker, call that instead. | 
|  | Register optimization_state = a4; | 
|  | __ Lw(optimization_state, | 
|  | FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset)); | 
|  |  | 
|  | // Check if the optimized code slot is not empty or has a optimization marker. | 
|  | Label has_optimized_code_or_marker; | 
|  |  | 
|  | __ andi(t0, optimization_state, | 
|  | FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask); | 
|  | __ Branch(&has_optimized_code_or_marker, ne, t0, Operand(zero_reg)); | 
|  |  | 
|  | Label not_optimized; | 
|  | __ bind(¬_optimized); | 
|  |  | 
|  | // Increment invocation count for the function. | 
|  | __ Lw(a4, FieldMemOperand(feedback_vector, | 
|  | FeedbackVector::kInvocationCountOffset)); | 
|  | __ Addu(a4, a4, Operand(1)); | 
|  | __ Sw(a4, FieldMemOperand(feedback_vector, | 
|  | FeedbackVector::kInvocationCountOffset)); | 
|  |  | 
|  | // Open a frame scope to indicate that there is a frame on the stack.  The | 
|  | // MANUAL indicates that the scope shouldn't actually generate code to set up | 
|  | // the frame (that is done below). | 
|  | __ bind(&push_stack_frame); | 
|  | FrameScope frame_scope(masm, StackFrame::MANUAL); | 
|  | __ PushStandardFrame(closure); | 
|  |  | 
|  | // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are | 
|  | // 8-bit fields next to each other, so we could just optimize by writing a | 
|  | // 16-bit. These static asserts guard our assumption is valid. | 
|  | STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == | 
|  | BytecodeArray::kOsrNestingLevelOffset + kCharSize); | 
|  | STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); | 
|  | __ sh(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister, | 
|  | BytecodeArray::kOsrNestingLevelOffset)); | 
|  |  | 
|  | // Load initial bytecode offset. | 
|  | __ li(kInterpreterBytecodeOffsetRegister, | 
|  | Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); | 
|  |  | 
|  | // Push bytecode array and Smi tagged bytecode array offset. | 
|  | __ SmiTag(a4, kInterpreterBytecodeOffsetRegister); | 
|  | __ Push(kInterpreterBytecodeArrayRegister, a4); | 
|  |  | 
|  | // Allocate the local and temporary register file on the stack. | 
|  | Label stack_overflow; | 
|  | { | 
|  | // Load frame size (word) from the BytecodeArray object. | 
|  | __ Lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister, | 
|  | BytecodeArray::kFrameSizeOffset)); | 
|  |  | 
|  | // Do a stack check to ensure we don't go over the limit. | 
|  | __ Dsubu(a5, sp, Operand(a4)); | 
|  | __ LoadStackLimit(a2, MacroAssembler::StackLimitKind::kRealStackLimit); | 
|  | __ Branch(&stack_overflow, lo, a5, Operand(a2)); | 
|  |  | 
|  | // If ok, push undefined as the initial value for all register file entries. | 
|  | Label loop_header; | 
|  | Label loop_check; | 
|  | __ LoadRoot(a5, RootIndex::kUndefinedValue); | 
|  | __ Branch(&loop_check); | 
|  | __ bind(&loop_header); | 
|  | // TODO(rmcilroy): Consider doing more than one push per loop iteration. | 
|  | __ push(a5); | 
|  | // Continue loop if not done. | 
|  | __ bind(&loop_check); | 
|  | __ Dsubu(a4, a4, Operand(kPointerSize)); | 
|  | __ Branch(&loop_header, ge, a4, Operand(zero_reg)); | 
|  | } | 
|  |  | 
|  | // If the bytecode array has a valid incoming new target or generator object | 
|  | // register, initialize it with incoming value which was passed in r3. | 
|  | Label no_incoming_new_target_or_generator_register; | 
|  | __ Lw(a5, FieldMemOperand( | 
|  | kInterpreterBytecodeArrayRegister, | 
|  | BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); | 
|  | __ Branch(&no_incoming_new_target_or_generator_register, eq, a5, | 
|  | Operand(zero_reg)); | 
|  | __ Dlsa(a5, fp, a5, kPointerSizeLog2); | 
|  | __ Sd(a3, MemOperand(a5)); | 
|  | __ bind(&no_incoming_new_target_or_generator_register); | 
|  |  | 
|  | // Perform interrupt stack check. | 
|  | // TODO(solanes): Merge with the real stack limit check above. | 
|  | Label stack_check_interrupt, after_stack_check_interrupt; | 
|  | __ LoadStackLimit(a5, MacroAssembler::StackLimitKind::kInterruptStackLimit); | 
|  | __ Branch(&stack_check_interrupt, lo, sp, Operand(a5)); | 
|  | __ bind(&after_stack_check_interrupt); | 
|  |  | 
|  | // Load accumulator as undefined. | 
|  | __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); | 
|  |  | 
|  | // Load the dispatch table into a register and dispatch to the bytecode | 
|  | // handler at the current bytecode offset. | 
|  | Label do_dispatch; | 
|  | __ bind(&do_dispatch); | 
|  | __ li(kInterpreterDispatchTableRegister, | 
|  | ExternalReference::interpreter_dispatch_table_address(masm->isolate())); | 
|  | __ Daddu(a0, kInterpreterBytecodeArrayRegister, | 
|  | kInterpreterBytecodeOffsetRegister); | 
|  | __ Lbu(a7, MemOperand(a0)); | 
|  | __ Dlsa(kScratchReg, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2); | 
|  | __ Ld(kJavaScriptCallCodeStartRegister, MemOperand(kScratchReg)); | 
|  | __ Call(kJavaScriptCallCodeStartRegister); | 
|  | masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); | 
|  |  | 
|  | // Any returns to the entry trampoline are either due to the return bytecode | 
|  | // or the interpreter tail calling a builtin and then a dispatch. | 
|  |  | 
|  | // Get bytecode array and bytecode offset from the stack frame. | 
|  | __ Ld(kInterpreterBytecodeArrayRegister, | 
|  | MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); | 
|  | __ Ld(kInterpreterBytecodeOffsetRegister, | 
|  | MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); | 
|  | __ SmiUntag(kInterpreterBytecodeOffsetRegister); | 
|  |  | 
|  | // Either return, or advance to the next bytecode and dispatch. | 
|  | Label do_return; | 
|  | __ Daddu(a1, kInterpreterBytecodeArrayRegister, | 
|  | kInterpreterBytecodeOffsetRegister); | 
|  | __ Lbu(a1, MemOperand(a1)); | 
|  | AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, | 
|  | kInterpreterBytecodeOffsetRegister, a1, a2, a3, | 
|  | a4, &do_return); | 
|  | __ jmp(&do_dispatch); | 
|  |  | 
|  | __ bind(&do_return); | 
|  | // The return value is in v0. | 
|  | LeaveInterpreterFrame(masm, t0, t1); | 
|  | __ Jump(ra); | 
|  |  | 
|  | __ bind(&stack_check_interrupt); | 
|  | // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset | 
|  | // for the call to the StackGuard. | 
|  | __ li(kInterpreterBytecodeOffsetRegister, | 
|  | Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag + | 
|  | kFunctionEntryBytecodeOffset))); | 
|  | __ Sd(kInterpreterBytecodeOffsetRegister, | 
|  | MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); | 
|  | __ CallRuntime(Runtime::kStackGuard); | 
|  |  | 
|  | // After the call, restore the bytecode array, bytecode offset and accumulator | 
|  | // registers again. Also, restore the bytecode offset in the stack to its | 
|  | // previous value. | 
|  | __ Ld(kInterpreterBytecodeArrayRegister, | 
|  | MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); | 
|  | __ li(kInterpreterBytecodeOffsetRegister, | 
|  | Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); | 
|  | __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); | 
|  |  | 
|  | __ SmiTag(a5, kInterpreterBytecodeOffsetRegister); | 
|  | __ Sd(a5, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); | 
|  |  | 
|  | __ jmp(&after_stack_check_interrupt); | 
|  |  | 
|  | __ bind(&has_optimized_code_or_marker); | 
|  | Label maybe_has_optimized_code; | 
|  | // Check if optimized code marker is available | 
|  | __ andi(t0, optimization_state, | 
|  | FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker); | 
|  | __ Branch(&maybe_has_optimized_code, eq, t0, Operand(zero_reg)); | 
|  |  | 
|  | Register optimization_marker = optimization_state; | 
|  | __ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker); | 
|  | MaybeOptimizeCode(masm, feedback_vector, optimization_marker); | 
|  | // Fall through if there's no runnable optimized code. | 
|  | __ jmp(¬_optimized); | 
|  |  | 
|  | __ bind(&maybe_has_optimized_code); | 
|  | Register optimized_code_entry = optimization_state; | 
|  | __ Ld(optimization_marker, | 
|  | FieldMemOperand(feedback_vector, | 
|  | FeedbackVector::kMaybeOptimizedCodeOffset)); | 
|  |  | 
|  | TailCallOptimizedCodeSlot(masm, optimized_code_entry, t3, a5); | 
|  |  | 
|  | __ bind(&compile_lazy); | 
|  | GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); | 
|  | // Unreachable code. | 
|  | __ break_(0xCC); | 
|  |  | 
|  | __ bind(&stack_overflow); | 
|  | __ CallRuntime(Runtime::kThrowStackOverflow); | 
|  | // Unreachable code. | 
|  | __ break_(0xCC); | 
|  | } | 
|  |  | 
|  | static void Generate_InterpreterPushArgs(MacroAssembler* masm, | 
|  | Register num_args, | 
|  | Register start_address, | 
|  | Register scratch, | 
|  | Register scratch2) { | 
|  | // Find the address of the last argument. | 
|  | __ Dsubu(scratch, num_args, Operand(1)); | 
|  | __ dsll(scratch, scratch, kPointerSizeLog2); | 
|  | __ Dsubu(start_address, start_address, scratch); | 
|  |  | 
|  | // Push the arguments. | 
|  | __ PushArray(start_address, num_args, scratch, scratch2, | 
|  | TurboAssembler::PushArrayOrder::kReverse); | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_InterpreterPushArgsThenCallImpl( | 
|  | MacroAssembler* masm, ConvertReceiverMode receiver_mode, | 
|  | InterpreterPushArgsMode mode) { | 
|  | DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a2 : the address of the first argument to be pushed. Subsequent | 
|  | //          arguments should be consecutive above this, in the same order as | 
|  | //          they are to be pushed onto the stack. | 
|  | //  -- a1 : the target to call (can be any Object). | 
|  | // ----------------------------------- | 
|  | Label stack_overflow; | 
|  | if (mode == InterpreterPushArgsMode::kWithFinalSpread) { | 
|  | // The spread argument should not be pushed. | 
|  | __ Dsubu(a0, a0, Operand(1)); | 
|  | } | 
|  |  | 
|  | __ Daddu(a3, a0, Operand(1));  // Add one for receiver. | 
|  |  | 
|  | __ StackOverflowCheck(a3, a4, t0, &stack_overflow); | 
|  |  | 
|  | if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { | 
|  | // Don't copy receiver. | 
|  | __ mov(a3, a0); | 
|  | } | 
|  |  | 
|  | // This function modifies a2, t0 and a4. | 
|  | Generate_InterpreterPushArgs(masm, a3, a2, a4, t0); | 
|  |  | 
|  | if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { | 
|  | __ PushRoot(RootIndex::kUndefinedValue); | 
|  | } | 
|  |  | 
|  | if (mode == InterpreterPushArgsMode::kWithFinalSpread) { | 
|  | // Pass the spread in the register a2. | 
|  | // a2 already points to the penultime argument, the spread | 
|  | // is below that. | 
|  | __ Ld(a2, MemOperand(a2, -kSystemPointerSize)); | 
|  | } | 
|  |  | 
|  | // Call the target. | 
|  | if (mode == InterpreterPushArgsMode::kWithFinalSpread) { | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } else { | 
|  | __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | __ bind(&stack_overflow); | 
|  | { | 
|  | __ TailCallRuntime(Runtime::kThrowStackOverflow); | 
|  | // Unreachable code. | 
|  | __ break_(0xCC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_InterpreterPushArgsThenConstructImpl( | 
|  | MacroAssembler* masm, InterpreterPushArgsMode mode) { | 
|  | // ----------- S t a t e ------------- | 
|  | // -- a0 : argument count (not including receiver) | 
|  | // -- a3 : new target | 
|  | // -- a1 : constructor to call | 
|  | // -- a2 : allocation site feedback if available, undefined otherwise. | 
|  | // -- a4 : address of the first argument | 
|  | // ----------------------------------- | 
|  | Label stack_overflow; | 
|  | __ daddiu(a6, a0, 1); | 
|  | __ StackOverflowCheck(a6, a5, t0, &stack_overflow); | 
|  |  | 
|  | if (mode == InterpreterPushArgsMode::kWithFinalSpread) { | 
|  | // The spread argument should not be pushed. | 
|  | __ Dsubu(a0, a0, Operand(1)); | 
|  | } | 
|  |  | 
|  | // Push the arguments, This function modifies t0, a4 and a5. | 
|  | Generate_InterpreterPushArgs(masm, a0, a4, a5, t0); | 
|  |  | 
|  | // Push a slot for the receiver. | 
|  | __ push(zero_reg); | 
|  |  | 
|  | if (mode == InterpreterPushArgsMode::kWithFinalSpread) { | 
|  | // Pass the spread in the register a2. | 
|  | // a4 already points to the penultimate argument, the spread | 
|  | // lies in the next interpreter register. | 
|  | __ Ld(a2, MemOperand(a4, -kSystemPointerSize)); | 
|  | } else { | 
|  | __ AssertUndefinedOrAllocationSite(a2, t0); | 
|  | } | 
|  |  | 
|  | if (mode == InterpreterPushArgsMode::kArrayFunction) { | 
|  | __ AssertFunction(a1); | 
|  |  | 
|  | // Tail call to the function-specific construct stub (still in the caller | 
|  | // context at this point). | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { | 
|  | // Call the constructor with a0, a1, and a3 unmodified. | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } else { | 
|  | DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); | 
|  | // Call the constructor with a0, a1, and a3 unmodified. | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | __ bind(&stack_overflow); | 
|  | { | 
|  | __ TailCallRuntime(Runtime::kThrowStackOverflow); | 
|  | // Unreachable code. | 
|  | __ break_(0xCC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { | 
|  | // Set the return address to the correct point in the interpreter entry | 
|  | // trampoline. | 
|  | Label builtin_trampoline, trampoline_loaded; | 
|  | Smi interpreter_entry_return_pc_offset( | 
|  | masm->isolate()->heap()->interpreter_entry_return_pc_offset()); | 
|  | DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero()); | 
|  |  | 
|  | // If the SFI function_data is an InterpreterData, the function will have a | 
|  | // custom copy of the interpreter entry trampoline for profiling. If so, | 
|  | // get the custom trampoline, otherwise grab the entry address of the global | 
|  | // trampoline. | 
|  | __ Ld(t0, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); | 
|  | __ Ld(t0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ Ld(t0, FieldMemOperand(t0, SharedFunctionInfo::kFunctionDataOffset)); | 
|  | __ GetObjectType(t0, kInterpreterDispatchTableRegister, | 
|  | kInterpreterDispatchTableRegister); | 
|  | __ Branch(&builtin_trampoline, ne, kInterpreterDispatchTableRegister, | 
|  | Operand(INTERPRETER_DATA_TYPE)); | 
|  |  | 
|  | __ Ld(t0, FieldMemOperand(t0, InterpreterData::kInterpreterTrampolineOffset)); | 
|  | __ Daddu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag)); | 
|  | __ Branch(&trampoline_loaded); | 
|  |  | 
|  | __ bind(&builtin_trampoline); | 
|  | __ li(t0, ExternalReference:: | 
|  | address_of_interpreter_entry_trampoline_instruction_start( | 
|  | masm->isolate())); | 
|  | __ Ld(t0, MemOperand(t0)); | 
|  |  | 
|  | __ bind(&trampoline_loaded); | 
|  | __ Daddu(ra, t0, Operand(interpreter_entry_return_pc_offset.value())); | 
|  |  | 
|  | // Initialize the dispatch table register. | 
|  | __ li(kInterpreterDispatchTableRegister, | 
|  | ExternalReference::interpreter_dispatch_table_address(masm->isolate())); | 
|  |  | 
|  | // Get the bytecode array pointer from the frame. | 
|  | __ Ld(kInterpreterBytecodeArrayRegister, | 
|  | MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); | 
|  |  | 
|  | if (FLAG_debug_code) { | 
|  | // Check function data field is actually a BytecodeArray object. | 
|  | __ SmiTst(kInterpreterBytecodeArrayRegister, kScratchReg); | 
|  | __ Assert(ne, | 
|  | AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, | 
|  | kScratchReg, Operand(zero_reg)); | 
|  | __ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1); | 
|  | __ Assert(eq, | 
|  | AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, | 
|  | a1, Operand(BYTECODE_ARRAY_TYPE)); | 
|  | } | 
|  |  | 
|  | // Get the target bytecode offset from the frame. | 
|  | __ SmiUntag(kInterpreterBytecodeOffsetRegister, | 
|  | MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); | 
|  |  | 
|  | if (FLAG_debug_code) { | 
|  | Label okay; | 
|  | __ Branch(&okay, ge, kInterpreterBytecodeOffsetRegister, | 
|  | Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); | 
|  | // Unreachable code. | 
|  | __ break_(0xCC); | 
|  | __ bind(&okay); | 
|  | } | 
|  |  | 
|  | // Dispatch to the target bytecode. | 
|  | __ Daddu(a1, kInterpreterBytecodeArrayRegister, | 
|  | kInterpreterBytecodeOffsetRegister); | 
|  | __ Lbu(a7, MemOperand(a1)); | 
|  | __ Dlsa(a1, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2); | 
|  | __ Ld(kJavaScriptCallCodeStartRegister, MemOperand(a1)); | 
|  | __ Jump(kJavaScriptCallCodeStartRegister); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { | 
|  | // Advance the current bytecode offset stored within the given interpreter | 
|  | // stack frame. This simulates what all bytecode handlers do upon completion | 
|  | // of the underlying operation. | 
|  | __ Ld(kInterpreterBytecodeArrayRegister, | 
|  | MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); | 
|  | __ Ld(kInterpreterBytecodeOffsetRegister, | 
|  | MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); | 
|  | __ SmiUntag(kInterpreterBytecodeOffsetRegister); | 
|  |  | 
|  | Label enter_bytecode, function_entry_bytecode; | 
|  | __ Branch(&function_entry_bytecode, eq, kInterpreterBytecodeOffsetRegister, | 
|  | Operand(BytecodeArray::kHeaderSize - kHeapObjectTag + | 
|  | kFunctionEntryBytecodeOffset)); | 
|  |  | 
|  | // Load the current bytecode. | 
|  | __ Daddu(a1, kInterpreterBytecodeArrayRegister, | 
|  | kInterpreterBytecodeOffsetRegister); | 
|  | __ Lbu(a1, MemOperand(a1)); | 
|  |  | 
|  | // Advance to the next bytecode. | 
|  | Label if_return; | 
|  | AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, | 
|  | kInterpreterBytecodeOffsetRegister, a1, a2, a3, | 
|  | a4, &if_return); | 
|  |  | 
|  | __ bind(&enter_bytecode); | 
|  | // Convert new bytecode offset to a Smi and save in the stackframe. | 
|  | __ SmiTag(a2, kInterpreterBytecodeOffsetRegister); | 
|  | __ Sd(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); | 
|  |  | 
|  | Generate_InterpreterEnterBytecode(masm); | 
|  |  | 
|  | __ bind(&function_entry_bytecode); | 
|  | // If the code deoptimizes during the implicit function entry stack interrupt | 
|  | // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is | 
|  | // not a valid bytecode offset. Detect this case and advance to the first | 
|  | // actual bytecode. | 
|  | __ li(kInterpreterBytecodeOffsetRegister, | 
|  | Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); | 
|  | __ Branch(&enter_bytecode); | 
|  |  | 
|  | // We should never take the if_return path. | 
|  | __ bind(&if_return); | 
|  | __ Abort(AbortReason::kInvalidBytecodeAdvance); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { | 
|  | Generate_InterpreterEnterBytecode(masm); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, | 
|  | bool java_script_builtin, | 
|  | bool with_result) { | 
|  | const RegisterConfiguration* config(RegisterConfiguration::Default()); | 
|  | int allocatable_register_count = config->num_allocatable_general_registers(); | 
|  | Register scratch = t3; | 
|  | if (with_result) { | 
|  | if (java_script_builtin) { | 
|  | __ mov(scratch, v0); | 
|  | } else { | 
|  | // Overwrite the hole inserted by the deoptimizer with the return value from | 
|  | // the LAZY deopt point. | 
|  | __ Sd(v0, | 
|  | MemOperand( | 
|  | sp, config->num_allocatable_general_registers() * kPointerSize + | 
|  | BuiltinContinuationFrameConstants::kFixedFrameSize)); | 
|  | } | 
|  | } | 
|  | for (int i = allocatable_register_count - 1; i >= 0; --i) { | 
|  | int code = config->GetAllocatableGeneralCode(i); | 
|  | __ Pop(Register::from_code(code)); | 
|  | if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { | 
|  | __ SmiUntag(Register::from_code(code)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (with_result && java_script_builtin) { | 
|  | // Overwrite the hole inserted by the deoptimizer with the return value from | 
|  | // the LAZY deopt point. t0 contains the arguments count, the return value | 
|  | // from LAZY is always the last argument. | 
|  | __ Daddu(a0, a0, | 
|  | Operand(BuiltinContinuationFrameConstants::kFixedSlotCount)); | 
|  | __ Dlsa(t0, sp, a0, kSystemPointerSizeLog2); | 
|  | __ Sd(scratch, MemOperand(t0)); | 
|  | // Recover arguments count. | 
|  | __ Dsubu(a0, a0, | 
|  | Operand(BuiltinContinuationFrameConstants::kFixedSlotCount)); | 
|  | } | 
|  |  | 
|  | __ Ld(fp, MemOperand( | 
|  | sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); | 
|  | // Load builtin index (stored as a Smi) and use it to get the builtin start | 
|  | // address from the builtins table. | 
|  | __ Pop(t0); | 
|  | __ Daddu(sp, sp, | 
|  | Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); | 
|  | __ Pop(ra); | 
|  | __ LoadEntryFromBuiltinIndex(t0); | 
|  | __ Jump(t0); | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { | 
|  | Generate_ContinueToBuiltinHelper(masm, false, false); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( | 
|  | MacroAssembler* masm) { | 
|  | Generate_ContinueToBuiltinHelper(masm, false, true); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { | 
|  | Generate_ContinueToBuiltinHelper(masm, true, false); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( | 
|  | MacroAssembler* masm) { | 
|  | Generate_ContinueToBuiltinHelper(masm, true, true); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  | __ CallRuntime(Runtime::kNotifyDeoptimized); | 
|  | } | 
|  |  | 
|  | DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code()); | 
|  | __ Ld(v0, MemOperand(sp, 0 * kPointerSize)); | 
|  | __ Ret(USE_DELAY_SLOT); | 
|  | // Safe to fill delay slot Addu will emit one instruction. | 
|  | __ Daddu(sp, sp, Operand(1 * kPointerSize));  // Remove state. | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  | __ CallRuntime(Runtime::kCompileForOnStackReplacement); | 
|  | } | 
|  |  | 
|  | // If the code object is null, just return to the caller. | 
|  | __ Ret(eq, v0, Operand(Smi::zero())); | 
|  |  | 
|  | // Drop the handler frame that is be sitting on top of the actual | 
|  | // JavaScript frame. This is the case then OSR is triggered from bytecode. | 
|  | __ LeaveFrame(StackFrame::STUB); | 
|  |  | 
|  | // Load deoptimization data from the code object. | 
|  | // <deopt_data> = <code>[#deoptimization_data_offset] | 
|  | __ Ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); | 
|  |  | 
|  | // Load the OSR entrypoint offset from the deoptimization data. | 
|  | // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] | 
|  | __ SmiUntag(a1, MemOperand(a1, FixedArray::OffsetOfElementAt( | 
|  | DeoptimizationData::kOsrPcOffsetIndex) - | 
|  | kHeapObjectTag)); | 
|  |  | 
|  | // Compute the target address = code_obj + header_size + osr_offset | 
|  | // <entry_addr> = <code_obj> + #header_size + <osr_offset> | 
|  | __ Daddu(v0, v0, a1); | 
|  | __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag); | 
|  |  | 
|  | // And "return" to the OSR entry point of the function. | 
|  | __ Ret(); | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0    : argc | 
|  | //  -- sp[0] : receiver | 
|  | //  -- sp[4] : thisArg | 
|  | //  -- sp[8] : argArray | 
|  | // ----------------------------------- | 
|  |  | 
|  | Register argc = a0; | 
|  | Register arg_array = a2; | 
|  | Register receiver = a1; | 
|  | Register this_arg = a5; | 
|  | Register undefined_value = a3; | 
|  | Register scratch = a4; | 
|  |  | 
|  | __ LoadRoot(undefined_value, RootIndex::kUndefinedValue); | 
|  |  | 
|  | // 1. Load receiver into a1, argArray into a2 (if present), remove all | 
|  | // arguments from the stack (including the receiver), and push thisArg (if | 
|  | // present) instead. | 
|  | { | 
|  | // Claim (2 - argc) dummy arguments form the stack, to put the stack in a | 
|  | // consistent state for a simple pop operation. | 
|  |  | 
|  | __ mov(scratch, argc); | 
|  | __ Ld(this_arg, MemOperand(sp, kPointerSize)); | 
|  | __ Ld(arg_array, MemOperand(sp, 2 * kPointerSize)); | 
|  | __ Movz(arg_array, undefined_value, scratch);  // if argc == 0 | 
|  | __ Movz(this_arg, undefined_value, scratch);   // if argc == 0 | 
|  | __ Dsubu(scratch, scratch, Operand(1)); | 
|  | __ Movz(arg_array, undefined_value, scratch);  // if argc == 1 | 
|  | __ Ld(receiver, MemOperand(sp)); | 
|  | __ Dlsa(sp, sp, argc, kSystemPointerSizeLog2); | 
|  | __ Sd(this_arg, MemOperand(sp)); | 
|  | } | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a2    : argArray | 
|  | //  -- a1    : receiver | 
|  | //  -- a3    : undefined root value | 
|  | //  -- sp[0] : thisArg | 
|  | // ----------------------------------- | 
|  |  | 
|  | // 2. We don't need to check explicitly for callable receiver here, | 
|  | // since that's the first thing the Call/CallWithArrayLike builtins | 
|  | // will do. | 
|  |  | 
|  | // 3. Tail call with no arguments if argArray is null or undefined. | 
|  | Label no_arguments; | 
|  | __ JumpIfRoot(arg_array, RootIndex::kNullValue, &no_arguments); | 
|  | __ Branch(&no_arguments, eq, arg_array, Operand(undefined_value)); | 
|  |  | 
|  | // 4a. Apply the receiver to the given argArray. | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), | 
|  | RelocInfo::CODE_TARGET); | 
|  |  | 
|  | // 4b. The argArray is either null or undefined, so we tail call without any | 
|  | // arguments to the receiver. | 
|  | __ bind(&no_arguments); | 
|  | { | 
|  | __ mov(a0, zero_reg); | 
|  | DCHECK(receiver == a1); | 
|  | __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); | 
|  | } | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { | 
|  | // 1. Get the callable to call (passed as receiver) from the stack. | 
|  | { | 
|  | __ Pop(a1); | 
|  | } | 
|  |  | 
|  | // 2. Make sure we have at least one argument. | 
|  | // a0: actual number of arguments | 
|  | { | 
|  | Label done; | 
|  | __ Branch(&done, ne, a0, Operand(zero_reg)); | 
|  | __ PushRoot(RootIndex::kUndefinedValue); | 
|  | __ Daddu(a0, a0, Operand(1)); | 
|  | __ bind(&done); | 
|  | } | 
|  |  | 
|  | // 3. Adjust the actual number of arguments. | 
|  | __ daddiu(a0, a0, -1); | 
|  |  | 
|  | // 4. Call the callable. | 
|  | __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_ReflectApply(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0     : argc | 
|  | //  -- sp[0]  : receiver | 
|  | //  -- sp[8]  : target         (if argc >= 1) | 
|  | //  -- sp[16] : thisArgument   (if argc >= 2) | 
|  | //  -- sp[24] : argumentsList  (if argc == 3) | 
|  | // ----------------------------------- | 
|  |  | 
|  | Register argc = a0; | 
|  | Register arguments_list = a2; | 
|  | Register target = a1; | 
|  | Register this_argument = a5; | 
|  | Register undefined_value = a3; | 
|  | Register scratch = a4; | 
|  |  | 
|  | __ LoadRoot(undefined_value, RootIndex::kUndefinedValue); | 
|  |  | 
|  | // 1. Load target into a1 (if present), argumentsList into a2 (if present), | 
|  | // remove all arguments from the stack (including the receiver), and push | 
|  | // thisArgument (if present) instead. | 
|  | { | 
|  | // Claim (3 - argc) dummy arguments form the stack, to put the stack in a | 
|  | // consistent state for a simple pop operation. | 
|  |  | 
|  | __ mov(scratch, argc); | 
|  | __ Ld(target, MemOperand(sp, kPointerSize)); | 
|  | __ Ld(this_argument, MemOperand(sp, 2 * kPointerSize)); | 
|  | __ Ld(arguments_list, MemOperand(sp, 3 * kPointerSize)); | 
|  | __ Movz(arguments_list, undefined_value, scratch);  // if argc == 0 | 
|  | __ Movz(this_argument, undefined_value, scratch);   // if argc == 0 | 
|  | __ Movz(target, undefined_value, scratch);          // if argc == 0 | 
|  | __ Dsubu(scratch, scratch, Operand(1)); | 
|  | __ Movz(arguments_list, undefined_value, scratch);  // if argc == 1 | 
|  | __ Movz(this_argument, undefined_value, scratch);   // if argc == 1 | 
|  | __ Dsubu(scratch, scratch, Operand(1)); | 
|  | __ Movz(arguments_list, undefined_value, scratch);  // if argc == 2 | 
|  |  | 
|  | __ Dlsa(sp, sp, argc, kSystemPointerSizeLog2); | 
|  | __ Sd(this_argument, MemOperand(sp, 0));  // Overwrite receiver | 
|  | } | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a2    : argumentsList | 
|  | //  -- a1    : target | 
|  | //  -- a3    : undefined root value | 
|  | //  -- sp[0] : thisArgument | 
|  | // ----------------------------------- | 
|  |  | 
|  | // 2. We don't need to check explicitly for callable target here, | 
|  | // since that's the first thing the Call/CallWithArrayLike builtins | 
|  | // will do. | 
|  |  | 
|  | // 3. Apply the target to the given argumentsList. | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0     : argc | 
|  | //  -- sp[0]   : receiver | 
|  | //  -- sp[8]   : target | 
|  | //  -- sp[16]  : argumentsList | 
|  | //  -- sp[24]  : new.target (optional) | 
|  | // ----------------------------------- | 
|  |  | 
|  | Register argc = a0; | 
|  | Register arguments_list = a2; | 
|  | Register target = a1; | 
|  | Register new_target = a3; | 
|  | Register undefined_value = a4; | 
|  | Register scratch = a5; | 
|  |  | 
|  | __ LoadRoot(undefined_value, RootIndex::kUndefinedValue); | 
|  |  | 
|  | // 1. Load target into a1 (if present), argumentsList into a2 (if present), | 
|  | // new.target into a3 (if present, otherwise use target), remove all | 
|  | // arguments from the stack (including the receiver), and push thisArgument | 
|  | // (if present) instead. | 
|  | { | 
|  | // Claim (3 - argc) dummy arguments form the stack, to put the stack in a | 
|  | // consistent state for a simple pop operation. | 
|  |  | 
|  | __ mov(scratch, argc); | 
|  | __ Ld(target, MemOperand(sp, kPointerSize)); | 
|  | __ Ld(arguments_list, MemOperand(sp, 2 * kPointerSize)); | 
|  | __ Ld(new_target, MemOperand(sp, 3 * kPointerSize)); | 
|  | __ Movz(arguments_list, undefined_value, scratch);  // if argc == 0 | 
|  | __ Movz(new_target, undefined_value, scratch);      // if argc == 0 | 
|  | __ Movz(target, undefined_value, scratch);          // if argc == 0 | 
|  | __ Dsubu(scratch, scratch, Operand(1)); | 
|  | __ Movz(arguments_list, undefined_value, scratch);  // if argc == 1 | 
|  | __ Movz(new_target, target, scratch);               // if argc == 1 | 
|  | __ Dsubu(scratch, scratch, Operand(1)); | 
|  | __ Movz(new_target, target, scratch);               // if argc == 2 | 
|  |  | 
|  | __ Dlsa(sp, sp, argc, kSystemPointerSizeLog2); | 
|  | __ Sd(undefined_value, MemOperand(sp, 0));    // Overwrite receiver | 
|  | } | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a2    : argumentsList | 
|  | //  -- a1    : target | 
|  | //  -- a3    : new.target | 
|  | //  -- sp[0] : receiver (undefined) | 
|  | // ----------------------------------- | 
|  |  | 
|  | // 2. We don't need to check explicitly for constructor target here, | 
|  | // since that's the first thing the Construct/ConstructWithArrayLike | 
|  | // builtins will do. | 
|  |  | 
|  | // 3. We don't need to check explicitly for constructor new.target here, | 
|  | // since that's the second thing the Construct/ConstructWithArrayLike | 
|  | // builtins will do. | 
|  |  | 
|  | // 4. Construct the target with the given new.target and argumentsList. | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { | 
|  | __ SmiTag(a0); | 
|  | __ li(a4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); | 
|  | __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit()); | 
|  | __ Push(Smi::zero());  // Padding. | 
|  | __ Daddu(fp, sp, | 
|  | Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); | 
|  | } | 
|  |  | 
|  | static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- v0 : result being passed through | 
|  | // ----------------------------------- | 
|  | // Get the number of arguments passed (as a smi), tear down the frame and | 
|  | // then tear down the parameters. | 
|  | __ Ld(a1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 
|  | __ mov(sp, fp); | 
|  | __ MultiPop(fp.bit() | ra.bit()); | 
|  | __ SmiScale(a4, a1, kPointerSizeLog2); | 
|  | __ Daddu(sp, sp, a4); | 
|  | // Adjust for the receiver. | 
|  | __ Daddu(sp, sp, Operand(kPointerSize)); | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, | 
|  | Handle<Code> code) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a1 : target | 
|  | //  -- a0 : number of parameters on the stack (not including the receiver) | 
|  | //  -- a2 : arguments list (a FixedArray) | 
|  | //  -- a4 : len (number of elements to push from args) | 
|  | //  -- a3 : new.target (for [[Construct]]) | 
|  | // ----------------------------------- | 
|  | if (masm->emit_debug_code()) { | 
|  | // Allow a2 to be a FixedArray, or a FixedDoubleArray if a4 == 0. | 
|  | Label ok, fail; | 
|  | __ AssertNotSmi(a2); | 
|  | __ GetObjectType(a2, t8, t8); | 
|  | __ Branch(&ok, eq, t8, Operand(FIXED_ARRAY_TYPE)); | 
|  | __ Branch(&fail, ne, t8, Operand(FIXED_DOUBLE_ARRAY_TYPE)); | 
|  | __ Branch(&ok, eq, a4, Operand(zero_reg)); | 
|  | // Fall through. | 
|  | __ bind(&fail); | 
|  | __ Abort(AbortReason::kOperandIsNotAFixedArray); | 
|  |  | 
|  | __ bind(&ok); | 
|  | } | 
|  |  | 
|  | Register args = a2; | 
|  | Register len = a4; | 
|  |  | 
|  | // Check for stack overflow. | 
|  | Label stack_overflow; | 
|  | __ StackOverflowCheck(len, kScratchReg, a5, &stack_overflow); | 
|  |  | 
|  | // Move the arguments already in the stack, | 
|  | // including the receiver and the return address. | 
|  | { | 
|  | Label copy; | 
|  | Register src = a6, dest = a7; | 
|  | __ mov(src, sp); | 
|  | __ dsll(t0, a4, kSystemPointerSizeLog2); | 
|  | __ Dsubu(sp, sp, Operand(t0)); | 
|  | // Update stack pointer. | 
|  | __ mov(dest, sp); | 
|  | __ Daddu(t0, a0, Operand(zero_reg)); | 
|  |  | 
|  | __ bind(©); | 
|  | __ Ld(t1, MemOperand(src, 0)); | 
|  | __ Sd(t1, MemOperand(dest, 0)); | 
|  | __ Dsubu(t0, t0, Operand(1)); | 
|  | __ Daddu(src, src, Operand(kSystemPointerSize)); | 
|  | __ Daddu(dest, dest, Operand(kSystemPointerSize)); | 
|  | __ Branch(©, ge, t0, Operand(zero_reg)); | 
|  | } | 
|  |  | 
|  | // Push arguments onto the stack (thisArgument is already on the stack). | 
|  | { | 
|  | Label done, push, loop; | 
|  | Register src = a6; | 
|  | Register scratch = len; | 
|  |  | 
|  | __ daddiu(src, args, FixedArray::kHeaderSize - kHeapObjectTag); | 
|  | __ Branch(&done, eq, len, Operand(zero_reg), i::USE_DELAY_SLOT); | 
|  | __ Daddu(a0, a0, len);  // The 'len' argument for Call() or Construct(). | 
|  | __ dsll(scratch, len, kPointerSizeLog2); | 
|  | __ Dsubu(scratch, sp, Operand(scratch)); | 
|  | __ LoadRoot(t1, RootIndex::kTheHoleValue); | 
|  | __ bind(&loop); | 
|  | __ Ld(a5, MemOperand(src)); | 
|  | __ daddiu(src, src, kPointerSize); | 
|  | __ Branch(&push, ne, a5, Operand(t1)); | 
|  | __ LoadRoot(a5, RootIndex::kUndefinedValue); | 
|  | __ bind(&push); | 
|  | __ Sd(a5, MemOperand(a7, 0)); | 
|  | __ Daddu(a7, a7, Operand(kSystemPointerSize)); | 
|  | __ Daddu(scratch, scratch, Operand(kSystemPointerSize)); | 
|  | __ Branch(&loop, ne, scratch, Operand(sp)); | 
|  | __ bind(&done); | 
|  | } | 
|  |  | 
|  | // Tail-call to the actual Call or Construct builtin. | 
|  | __ Jump(code, RelocInfo::CODE_TARGET); | 
|  |  | 
|  | __ bind(&stack_overflow); | 
|  | __ TailCallRuntime(Runtime::kThrowStackOverflow); | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, | 
|  | CallOrConstructMode mode, | 
|  | Handle<Code> code) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a3 : the new.target (for [[Construct]] calls) | 
|  | //  -- a1 : the target to call (can be any Object) | 
|  | //  -- a2 : start index (to support rest parameters) | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Check if new.target has a [[Construct]] internal method. | 
|  | if (mode == CallOrConstructMode::kConstruct) { | 
|  | Label new_target_constructor, new_target_not_constructor; | 
|  | __ JumpIfSmi(a3, &new_target_not_constructor); | 
|  | __ ld(t1, FieldMemOperand(a3, HeapObject::kMapOffset)); | 
|  | __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); | 
|  | __ And(t1, t1, Operand(Map::Bits1::IsConstructorBit::kMask)); | 
|  | __ Branch(&new_target_constructor, ne, t1, Operand(zero_reg)); | 
|  | __ bind(&new_target_not_constructor); | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::MANUAL); | 
|  | __ EnterFrame(StackFrame::INTERNAL); | 
|  | __ Push(a3); | 
|  | __ CallRuntime(Runtime::kThrowNotConstructor); | 
|  | } | 
|  | __ bind(&new_target_constructor); | 
|  | } | 
|  |  | 
|  | #ifdef V8_NO_ARGUMENTS_ADAPTOR | 
|  | // TODO(victorgomes): Remove this copy when all the arguments adaptor frame | 
|  | // code is erased. | 
|  | __ mov(a6, fp); | 
|  | __ Ld(a7, MemOperand(fp, StandardFrameConstants::kArgCOffset)); | 
|  | #else | 
|  |  | 
|  | // Check if we have an arguments adaptor frame below the function frame. | 
|  | Label arguments_adaptor, arguments_done; | 
|  | __ Ld(a6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 
|  | __ Ld(a7, MemOperand(a6, CommonFrameConstants::kContextOrFrameTypeOffset)); | 
|  | __ Branch(&arguments_adaptor, eq, a7, | 
|  | Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); | 
|  | { | 
|  | __ Ld(a7, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); | 
|  | __ Ld(a7, FieldMemOperand(a7, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ Lhu(a7, FieldMemOperand( | 
|  | a7, SharedFunctionInfo::kFormalParameterCountOffset)); | 
|  | __ mov(a6, fp); | 
|  | } | 
|  | __ Branch(&arguments_done); | 
|  | __ bind(&arguments_adaptor); | 
|  | { | 
|  | // Just get the length from the ArgumentsAdaptorFrame. | 
|  | __ SmiUntag(a7, | 
|  | MemOperand(a6, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 
|  | } | 
|  | __ bind(&arguments_done); | 
|  | #endif | 
|  |  | 
|  | Label stack_done, stack_overflow; | 
|  | __ Subu(a7, a7, a2); | 
|  | __ Branch(&stack_done, le, a7, Operand(zero_reg)); | 
|  | { | 
|  | // Check for stack overflow. | 
|  | __ StackOverflowCheck(a7, a4, a5, &stack_overflow); | 
|  |  | 
|  | // Forward the arguments from the caller frame. | 
|  |  | 
|  | // Point to the first argument to copy (skipping the receiver). | 
|  | __ Daddu(a6, a6, | 
|  | Operand(CommonFrameConstants::kFixedFrameSizeAboveFp + | 
|  | kSystemPointerSize)); | 
|  | __ Dlsa(a6, a6, a2, kSystemPointerSizeLog2); | 
|  |  | 
|  | // Move the arguments already in the stack, | 
|  | // including the receiver and the return address. | 
|  | { | 
|  | Label copy; | 
|  | Register src = t0, dest = a2; | 
|  | __ mov(src, sp); | 
|  | // Update stack pointer. | 
|  | __ dsll(t1, a7, kSystemPointerSizeLog2); | 
|  | __ Dsubu(sp, sp, Operand(t1)); | 
|  | __ mov(dest, sp); | 
|  | __ Daddu(t2, a0, Operand(zero_reg)); | 
|  |  | 
|  | __ bind(©); | 
|  | __ Ld(t1, MemOperand(src, 0)); | 
|  | __ Sd(t1, MemOperand(dest, 0)); | 
|  | __ Dsubu(t2, t2, Operand(1)); | 
|  | __ Daddu(src, src, Operand(kSystemPointerSize)); | 
|  | __ Daddu(dest, dest, Operand(kSystemPointerSize)); | 
|  | __ Branch(©, ge, t2, Operand(zero_reg)); | 
|  | } | 
|  |  | 
|  | // Copy arguments from the caller frame. | 
|  | // TODO(victorgomes): Consider using forward order as potentially more cache | 
|  | // friendly. | 
|  | { | 
|  | Label loop; | 
|  | __ Daddu(a0, a0, a7); | 
|  | __ bind(&loop); | 
|  | { | 
|  | __ Subu(a7, a7, Operand(1)); | 
|  | __ Dlsa(t0, a6, a7, kPointerSizeLog2); | 
|  | __ Ld(kScratchReg, MemOperand(t0)); | 
|  | __ Dlsa(t0, a2, a7, kPointerSizeLog2); | 
|  | __ Sd(kScratchReg, MemOperand(t0)); | 
|  | __ Branch(&loop, ne, a7, Operand(zero_reg)); | 
|  | } | 
|  | } | 
|  | } | 
|  | __ Branch(&stack_done); | 
|  | __ bind(&stack_overflow); | 
|  | __ TailCallRuntime(Runtime::kThrowStackOverflow); | 
|  | __ bind(&stack_done); | 
|  |  | 
|  | // Tail-call to the {code} handler. | 
|  | __ Jump(code, RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_CallFunction(MacroAssembler* masm, | 
|  | ConvertReceiverMode mode) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the function to call (checked to be a JSFunction) | 
|  | // ----------------------------------- | 
|  | __ AssertFunction(a1); | 
|  |  | 
|  | // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) | 
|  | // Check that function is not a "classConstructor". | 
|  | Label class_constructor; | 
|  | __ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); | 
|  | __ And(kScratchReg, a3, | 
|  | Operand(SharedFunctionInfo::IsClassConstructorBit::kMask)); | 
|  | __ Branch(&class_constructor, ne, kScratchReg, Operand(zero_reg)); | 
|  |  | 
|  | // Enter the context of the function; ToObject has to run in the function | 
|  | // context, and we also need to take the global proxy from the function | 
|  | // context in case of conversion. | 
|  | __ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); | 
|  | // We need to convert the receiver for non-native sloppy mode functions. | 
|  | Label done_convert; | 
|  | __ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); | 
|  | __ And(kScratchReg, a3, | 
|  | Operand(SharedFunctionInfo::IsNativeBit::kMask | | 
|  | SharedFunctionInfo::IsStrictBit::kMask)); | 
|  | __ Branch(&done_convert, ne, kScratchReg, Operand(zero_reg)); | 
|  | { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the function to call (checked to be a JSFunction) | 
|  | //  -- a2 : the shared function info. | 
|  | //  -- cp : the function context. | 
|  | // ----------------------------------- | 
|  |  | 
|  | if (mode == ConvertReceiverMode::kNullOrUndefined) { | 
|  | // Patch receiver to global proxy. | 
|  | __ LoadGlobalProxy(a3); | 
|  | } else { | 
|  | Label convert_to_object, convert_receiver; | 
|  | __ LoadReceiver(a3, a0); | 
|  | __ JumpIfSmi(a3, &convert_to_object); | 
|  | STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); | 
|  | __ GetObjectType(a3, a4, a4); | 
|  | __ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE)); | 
|  | if (mode != ConvertReceiverMode::kNotNullOrUndefined) { | 
|  | Label convert_global_proxy; | 
|  | __ JumpIfRoot(a3, RootIndex::kUndefinedValue, &convert_global_proxy); | 
|  | __ JumpIfNotRoot(a3, RootIndex::kNullValue, &convert_to_object); | 
|  | __ bind(&convert_global_proxy); | 
|  | { | 
|  | // Patch receiver to global proxy. | 
|  | __ LoadGlobalProxy(a3); | 
|  | } | 
|  | __ Branch(&convert_receiver); | 
|  | } | 
|  | __ bind(&convert_to_object); | 
|  | { | 
|  | // Convert receiver using ToObject. | 
|  | // TODO(bmeurer): Inline the allocation here to avoid building the frame | 
|  | // in the fast case? (fall back to AllocateInNewSpace?) | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  | __ SmiTag(a0); | 
|  | __ Push(a0, a1); | 
|  | __ mov(a0, a3); | 
|  | __ Push(cp); | 
|  | __ Call(BUILTIN_CODE(masm->isolate(), ToObject), | 
|  | RelocInfo::CODE_TARGET); | 
|  | __ Pop(cp); | 
|  | __ mov(a3, v0); | 
|  | __ Pop(a0, a1); | 
|  | __ SmiUntag(a0); | 
|  | } | 
|  | __ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ bind(&convert_receiver); | 
|  | } | 
|  | __ StoreReceiver(a3, a0, kScratchReg); | 
|  | } | 
|  | __ bind(&done_convert); | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the function to call (checked to be a JSFunction) | 
|  | //  -- a2 : the shared function info. | 
|  | //  -- cp : the function context. | 
|  | // ----------------------------------- | 
|  |  | 
|  | __ Lhu(a2, | 
|  | FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset)); | 
|  | __ InvokeFunctionCode(a1, no_reg, a2, a0, JUMP_FUNCTION); | 
|  |  | 
|  | // The function is a "classConstructor", need to raise an exception. | 
|  | __ bind(&class_constructor); | 
|  | { | 
|  | FrameScope frame(masm, StackFrame::INTERNAL); | 
|  | __ Push(a1); | 
|  | __ CallRuntime(Runtime::kThrowConstructorNonCallableError); | 
|  | } | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the function to call (checked to be a JSBoundFunction) | 
|  | // ----------------------------------- | 
|  | __ AssertBoundFunction(a1); | 
|  |  | 
|  | // Patch the receiver to [[BoundThis]]. | 
|  | { | 
|  | __ Ld(t0, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset)); | 
|  | __ StoreReceiver(t0, a0, kScratchReg); | 
|  | } | 
|  |  | 
|  | // Load [[BoundArguments]] into a2 and length of that into a4. | 
|  | __ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); | 
|  | __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the function to call (checked to be a JSBoundFunction) | 
|  | //  -- a2 : the [[BoundArguments]] (implemented as FixedArray) | 
|  | //  -- a4 : the number of [[BoundArguments]] | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Reserve stack space for the [[BoundArguments]]. | 
|  | { | 
|  | Label done; | 
|  | __ dsll(a5, a4, kPointerSizeLog2); | 
|  | __ Dsubu(t0, sp, Operand(a5)); | 
|  | // Check the stack for overflow. We are not trying to catch interruptions | 
|  | // (i.e. debug break and preemption) here, so check the "real stack limit". | 
|  | __ LoadStackLimit(kScratchReg, | 
|  | MacroAssembler::StackLimitKind::kRealStackLimit); | 
|  | __ Branch(&done, hs, t0, Operand(kScratchReg)); | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::MANUAL); | 
|  | __ EnterFrame(StackFrame::INTERNAL); | 
|  | __ CallRuntime(Runtime::kThrowStackOverflow); | 
|  | } | 
|  | __ bind(&done); | 
|  | } | 
|  |  | 
|  | // Pop receiver. | 
|  | __ Pop(t0); | 
|  |  | 
|  | // Push [[BoundArguments]]. | 
|  | { | 
|  | Label loop, done_loop; | 
|  | __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); | 
|  | __ Daddu(a0, a0, Operand(a4)); | 
|  | __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 
|  | __ bind(&loop); | 
|  | __ Dsubu(a4, a4, Operand(1)); | 
|  | __ Branch(&done_loop, lt, a4, Operand(zero_reg)); | 
|  | __ Dlsa(a5, a2, a4, kPointerSizeLog2); | 
|  | __ Ld(kScratchReg, MemOperand(a5)); | 
|  | __ Push(kScratchReg); | 
|  | __ Branch(&loop); | 
|  | __ bind(&done_loop); | 
|  | } | 
|  |  | 
|  | // Push receiver. | 
|  | __ Push(t0); | 
|  |  | 
|  | // Call the [[BoundTargetFunction]] via the Call builtin. | 
|  | __ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the target to call (can be any Object). | 
|  | // ----------------------------------- | 
|  |  | 
|  | Label non_callable, non_smi; | 
|  | __ JumpIfSmi(a1, &non_callable); | 
|  | __ bind(&non_smi); | 
|  | __ GetObjectType(a1, t1, t2); | 
|  | __ Jump(masm->isolate()->builtins()->CallFunction(mode), | 
|  | RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), | 
|  | RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); | 
|  |  | 
|  | // Check if target has a [[Call]] internal method. | 
|  | __ Lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); | 
|  | __ And(t1, t1, Operand(Map::Bits1::IsCallableBit::kMask)); | 
|  | __ Branch(&non_callable, eq, t1, Operand(zero_reg)); | 
|  |  | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), | 
|  | RelocInfo::CODE_TARGET, eq, t2, Operand(JS_PROXY_TYPE)); | 
|  |  | 
|  | // 2. Call to something else, which might have a [[Call]] internal method (if | 
|  | // not we raise an exception). | 
|  | // Overwrite the original receiver with the (original) target. | 
|  | __ StoreReceiver(a1, a0, kScratchReg); | 
|  | // Let the "call_as_function_delegate" take care of the rest. | 
|  | __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1); | 
|  | __ Jump(masm->isolate()->builtins()->CallFunction( | 
|  | ConvertReceiverMode::kNotNullOrUndefined), | 
|  | RelocInfo::CODE_TARGET); | 
|  |  | 
|  | // 3. Call to something that is not callable. | 
|  | __ bind(&non_callable); | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::INTERNAL); | 
|  | __ Push(a1); | 
|  | __ CallRuntime(Runtime::kThrowCalledNonCallable); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the constructor to call (checked to be a JSFunction) | 
|  | //  -- a3 : the new target (checked to be a constructor) | 
|  | // ----------------------------------- | 
|  | __ AssertConstructor(a1); | 
|  | __ AssertFunction(a1); | 
|  |  | 
|  | // Calling convention for function specific ConstructStubs require | 
|  | // a2 to contain either an AllocationSite or undefined. | 
|  | __ LoadRoot(a2, RootIndex::kUndefinedValue); | 
|  |  | 
|  | Label call_generic_stub; | 
|  |  | 
|  | // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. | 
|  | __ Ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); | 
|  | __ lwu(a4, FieldMemOperand(a4, SharedFunctionInfo::kFlagsOffset)); | 
|  | __ And(a4, a4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); | 
|  | __ Branch(&call_generic_stub, eq, a4, Operand(zero_reg)); | 
|  |  | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), | 
|  | RelocInfo::CODE_TARGET); | 
|  |  | 
|  | __ bind(&call_generic_stub); | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the function to call (checked to be a JSBoundFunction) | 
|  | //  -- a3 : the new target (checked to be a constructor) | 
|  | // ----------------------------------- | 
|  | __ AssertConstructor(a1); | 
|  | __ AssertBoundFunction(a1); | 
|  |  | 
|  | // Load [[BoundArguments]] into a2 and length of that into a4. | 
|  | __ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); | 
|  | __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); | 
|  |  | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the function to call (checked to be a JSBoundFunction) | 
|  | //  -- a2 : the [[BoundArguments]] (implemented as FixedArray) | 
|  | //  -- a3 : the new target (checked to be a constructor) | 
|  | //  -- a4 : the number of [[BoundArguments]] | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Reserve stack space for the [[BoundArguments]]. | 
|  | { | 
|  | Label done; | 
|  | __ dsll(a5, a4, kPointerSizeLog2); | 
|  | __ Dsubu(t0, sp, Operand(a5)); | 
|  | // Check the stack for overflow. We are not trying to catch interruptions | 
|  | // (i.e. debug break and preemption) here, so check the "real stack limit". | 
|  | __ LoadStackLimit(kScratchReg, | 
|  | MacroAssembler::StackLimitKind::kRealStackLimit); | 
|  | __ Branch(&done, hs, t0, Operand(kScratchReg)); | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::MANUAL); | 
|  | __ EnterFrame(StackFrame::INTERNAL); | 
|  | __ CallRuntime(Runtime::kThrowStackOverflow); | 
|  | } | 
|  | __ bind(&done); | 
|  | } | 
|  |  | 
|  | // Pop receiver. | 
|  | __ Pop(t0); | 
|  |  | 
|  | // Push [[BoundArguments]]. | 
|  | { | 
|  | Label loop, done_loop; | 
|  | __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset)); | 
|  | __ Daddu(a0, a0, Operand(a4)); | 
|  | __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 
|  | __ bind(&loop); | 
|  | __ Dsubu(a4, a4, Operand(1)); | 
|  | __ Branch(&done_loop, lt, a4, Operand(zero_reg)); | 
|  | __ Dlsa(a5, a2, a4, kPointerSizeLog2); | 
|  | __ Ld(kScratchReg, MemOperand(a5)); | 
|  | __ Push(kScratchReg); | 
|  | __ Branch(&loop); | 
|  | __ bind(&done_loop); | 
|  | } | 
|  |  | 
|  | // Push receiver. | 
|  | __ Push(t0); | 
|  |  | 
|  | // Patch new.target to [[BoundTargetFunction]] if new.target equals target. | 
|  | { | 
|  | Label skip_load; | 
|  | __ Branch(&skip_load, ne, a1, Operand(a3)); | 
|  | __ Ld(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); | 
|  | __ bind(&skip_load); | 
|  | } | 
|  |  | 
|  | // Construct the [[BoundTargetFunction]] via the Construct builtin. | 
|  | __ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | // static | 
|  | void Builtins::Generate_Construct(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0 : the number of arguments (not including the receiver) | 
|  | //  -- a1 : the constructor to call (can be any Object) | 
|  | //  -- a3 : the new target (either the same as the constructor or | 
|  | //          the JSFunction on which new was invoked initially) | 
|  | // ----------------------------------- | 
|  |  | 
|  | // Check if target is a Smi. | 
|  | Label non_constructor, non_proxy; | 
|  | __ JumpIfSmi(a1, &non_constructor); | 
|  |  | 
|  | // Check if target has a [[Construct]] internal method. | 
|  | __ ld(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); | 
|  | __ Lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset)); | 
|  | __ And(t3, t3, Operand(Map::Bits1::IsConstructorBit::kMask)); | 
|  | __ Branch(&non_constructor, eq, t3, Operand(zero_reg)); | 
|  |  | 
|  | // Dispatch based on instance type. | 
|  | __ Lhu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset)); | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), | 
|  | RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); | 
|  |  | 
|  | // Only dispatch to bound functions after checking whether they are | 
|  | // constructors. | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), | 
|  | RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); | 
|  |  | 
|  | // Only dispatch to proxies after checking whether they are constructors. | 
|  | __ Branch(&non_proxy, ne, t2, Operand(JS_PROXY_TYPE)); | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), | 
|  | RelocInfo::CODE_TARGET); | 
|  |  | 
|  | // Called Construct on an exotic Object with a [[Construct]] internal method. | 
|  | __ bind(&non_proxy); | 
|  | { | 
|  | // Overwrite the original receiver with the (original) target. | 
|  | __ StoreReceiver(a1, a0, kScratchReg); | 
|  | // Let the "call_as_constructor_delegate" take care of the rest. | 
|  | __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1); | 
|  | __ Jump(masm->isolate()->builtins()->CallFunction(), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | // Called Construct on an Object that doesn't have a [[Construct]] internal | 
|  | // method. | 
|  | __ bind(&non_constructor); | 
|  | __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), | 
|  | RelocInfo::CODE_TARGET); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { | 
|  | // State setup as expected by MacroAssembler::InvokePrologue. | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- a0: actual arguments count | 
|  | //  -- a1: function (passed through to callee) | 
|  | //  -- a2: expected arguments count | 
|  | //  -- a3: new target (passed through to callee) | 
|  | // ----------------------------------- | 
|  |  | 
|  | Label invoke, dont_adapt_arguments, stack_overflow; | 
|  |  | 
|  | Label enough, too_few; | 
|  | __ Branch(&dont_adapt_arguments, eq, a2, | 
|  | Operand(kDontAdaptArgumentsSentinel)); | 
|  | // We use Uless as the number of argument should always be greater than 0. | 
|  | __ Branch(&too_few, Uless, a0, Operand(a2)); | 
|  |  | 
|  | {  // Enough parameters: actual >= expected. | 
|  | // a0: actual number of arguments as a smi | 
|  | // a1: function | 
|  | // a2: expected number of arguments | 
|  | // a3: new target (passed through to callee) | 
|  | __ bind(&enough); | 
|  | EnterArgumentsAdaptorFrame(masm); | 
|  | __ StackOverflowCheck(a2, a5, kScratchReg, &stack_overflow); | 
|  |  | 
|  | // Calculate copy start address into a0 and copy end address into a4. | 
|  | __ dsll(a0, a2, kPointerSizeLog2); | 
|  | __ Daddu(a0, fp, a0); | 
|  |  | 
|  | // Adjust for return address and receiver. | 
|  | __ Daddu(a0, a0, Operand(2 * kPointerSize)); | 
|  | // Compute copy end address. | 
|  | __ dsll(a4, a2, kPointerSizeLog2); | 
|  | __ dsubu(a4, a0, a4); | 
|  |  | 
|  | // Copy the arguments (including the receiver) to the new stack frame. | 
|  | // a0: copy start address | 
|  | // a1: function | 
|  | // a2: expected number of arguments | 
|  | // a3: new target (passed through to callee) | 
|  | // a4: copy end address | 
|  |  | 
|  | Label copy; | 
|  | __ bind(©); | 
|  | __ Ld(a5, MemOperand(a0)); | 
|  | __ push(a5); | 
|  | __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a4)); | 
|  | __ daddiu(a0, a0, -kPointerSize);  // In delay slot. | 
|  |  | 
|  | __ jmp(&invoke); | 
|  | } | 
|  |  | 
|  | {  // Too few parameters: Actual < expected. | 
|  | __ bind(&too_few); | 
|  | EnterArgumentsAdaptorFrame(masm); | 
|  | __ StackOverflowCheck(a2, a5, kScratchReg, &stack_overflow); | 
|  |  | 
|  | // Fill the remaining expected arguments with undefined. | 
|  | __ LoadRoot(t0, RootIndex::kUndefinedValue); | 
|  | __ SmiUntag(t1, a0); | 
|  | __ Dsubu(t2, a2, Operand(t1)); | 
|  | __ dsll(a4, t2, kSystemPointerSizeLog2); | 
|  | __ Dsubu(a4, fp, a4); | 
|  | // Adjust for frame. | 
|  | __ Dsubu(a4, a4, | 
|  | Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + | 
|  | kSystemPointerSize)); | 
|  |  | 
|  | Label fill; | 
|  | __ bind(&fill); | 
|  | __ push(t0); | 
|  | __ Branch(&fill, ne, sp, Operand(a4)); | 
|  |  | 
|  | // Calculate copy start address into r0 and copy end address is fp. | 
|  | __ SmiScale(a0, a0, kPointerSizeLog2); | 
|  | __ Daddu(a0, fp, a0); | 
|  |  | 
|  | // Copy the arguments (including the receiver) to the new stack frame. | 
|  | Label copy; | 
|  | __ bind(©); | 
|  |  | 
|  | // Adjust load for return address and receiver. | 
|  | __ Ld(t0, MemOperand(a0, 2 * kSystemPointerSize)); | 
|  | __ push(t0); | 
|  |  | 
|  | __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(fp)); | 
|  | __ Dsubu(a0, a0, Operand(kSystemPointerSize)); | 
|  | } | 
|  |  | 
|  | // Call the entry point. | 
|  | __ bind(&invoke); | 
|  | __ mov(a0, a2); | 
|  | // a0 : expected number of arguments | 
|  | // a1 : function (passed through to callee) | 
|  | // a3: new target (passed through to callee) | 
|  | static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); | 
|  | __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); | 
|  | __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); | 
|  | __ Call(a2); | 
|  |  | 
|  | // Store offset of return address for deoptimizer. | 
|  | masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); | 
|  |  | 
|  | // Exit frame and return. | 
|  | LeaveArgumentsAdaptorFrame(masm); | 
|  | __ Ret(); | 
|  |  | 
|  | // ------------------------------------------- | 
|  | // Don't adapt arguments. | 
|  | // ------------------------------------------- | 
|  | __ bind(&dont_adapt_arguments); | 
|  | static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); | 
|  | __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); | 
|  | __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); | 
|  | __ Jump(a2); | 
|  |  | 
|  | __ bind(&stack_overflow); | 
|  | { | 
|  | FrameScope frame(masm, StackFrame::MANUAL); | 
|  | __ CallRuntime(Runtime::kThrowStackOverflow); | 
|  | __ break_(0xCC); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { | 
|  | // The function index was put in t0 by the jump table trampoline. | 
|  | // Convert to Smi for the runtime call | 
|  | __ SmiTag(kWasmCompileLazyFuncIndexRegister); | 
|  | { | 
|  | HardAbortScope hard_abort(masm);  // Avoid calls to Abort. | 
|  | FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); | 
|  |  | 
|  | // Save all parameter registers (see wasm-linkage.cc). They might be | 
|  | // overwritten in the runtime call below. We don't have any callee-saved | 
|  | // registers in wasm, so no need to store anything else. | 
|  | constexpr RegList gp_regs = | 
|  | Register::ListOf(a0, a2, a3, a4, a5, a6, a7); | 
|  | constexpr RegList fp_regs = | 
|  | DoubleRegister::ListOf(f2, f4, f6, f8, f10, f12, f14); | 
|  | constexpr int16_t num_to_push = base::bits::CountPopulation(gp_regs) + | 
|  | base::bits::CountPopulation(fp_regs); | 
|  | // The number of regs to be pushed before kWasmInstanceRegister should be | 
|  | // equal to kNumberOfSavedAllParamRegs. | 
|  | STATIC_ASSERT(num_to_push == | 
|  | WasmCompileLazyFrameConstants::kNumberOfSavedAllParamRegs); | 
|  | __ MultiPush(gp_regs); | 
|  | __ MultiPushFPU(fp_regs); | 
|  |  | 
|  | // Pass instance and function index as an explicit arguments to the runtime | 
|  | // function. | 
|  | __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister); | 
|  | // Initialize the JavaScript context with 0. CEntry will use it to | 
|  | // set the current context on the isolate. | 
|  | __ Move(kContextRegister, Smi::zero()); | 
|  | __ CallRuntime(Runtime::kWasmCompileLazy, 2); | 
|  |  | 
|  | // Restore registers. | 
|  | __ MultiPopFPU(fp_regs); | 
|  | __ MultiPop(gp_regs); | 
|  | } | 
|  | // Finally, jump to the entrypoint. | 
|  | __ Jump(v0); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) { | 
|  | HardAbortScope hard_abort(masm);  // Avoid calls to Abort. | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK); | 
|  |  | 
|  | // Save all parameter registers. They might hold live values, we restore | 
|  | // them after the runtime call. | 
|  | __ MultiPush(WasmDebugBreakFrameConstants::kPushedGpRegs); | 
|  | __ MultiPushFPU(WasmDebugBreakFrameConstants::kPushedFpRegs); | 
|  |  | 
|  | // Initialize the JavaScript context with 0. CEntry will use it to | 
|  | // set the current context on the isolate. | 
|  | __ Move(cp, Smi::zero()); | 
|  | __ CallRuntime(Runtime::kWasmDebugBreak, 0); | 
|  |  | 
|  | // Restore registers. | 
|  | __ MultiPopFPU(WasmDebugBreakFrameConstants::kPushedFpRegs); | 
|  | __ MultiPop(WasmDebugBreakFrameConstants::kPushedGpRegs); | 
|  | } | 
|  | __ Ret(); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, | 
|  | SaveFPRegsMode save_doubles, ArgvMode argv_mode, | 
|  | bool builtin_exit_frame) { | 
|  | // Called from JavaScript; parameters are on stack as if calling JS function | 
|  | // a0: number of arguments including receiver | 
|  | // a1: pointer to builtin function | 
|  | // fp: frame pointer    (restored after C call) | 
|  | // sp: stack pointer    (restored as callee's sp after C call) | 
|  | // cp: current context  (C callee-saved) | 
|  | // | 
|  | // If argv_mode == kArgvInRegister: | 
|  | // a2: pointer to the first argument | 
|  |  | 
|  | if (argv_mode == kArgvInRegister) { | 
|  | // Move argv into the correct register. | 
|  | __ mov(s1, a2); | 
|  | } else { | 
|  | // Compute the argv pointer in a callee-saved register. | 
|  | __ Dlsa(s1, sp, a0, kPointerSizeLog2); | 
|  | __ Dsubu(s1, s1, kPointerSize); | 
|  | } | 
|  |  | 
|  | // Enter the exit frame that transitions from JavaScript to C++. | 
|  | FrameScope scope(masm, StackFrame::MANUAL); | 
|  | __ EnterExitFrame( | 
|  | save_doubles == kSaveFPRegs, 0, | 
|  | builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); | 
|  |  | 
|  | // s0: number of arguments  including receiver (C callee-saved) | 
|  | // s1: pointer to first argument (C callee-saved) | 
|  | // s2: pointer to builtin function (C callee-saved) | 
|  |  | 
|  | // Prepare arguments for C routine. | 
|  | // a0 = argc | 
|  | __ mov(s0, a0); | 
|  | __ mov(s2, a1); | 
|  |  | 
|  | // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We | 
|  | // also need to reserve the 4 argument slots on the stack. | 
|  |  | 
|  | __ AssertStackIsAligned(); | 
|  |  | 
|  | // a0 = argc, a1 = argv, a2 = isolate | 
|  | __ li(a2, ExternalReference::isolate_address(masm->isolate())); | 
|  | __ mov(a1, s1); | 
|  |  | 
|  | __ StoreReturnAddressAndCall(s2); | 
|  |  | 
|  | // Result returned in v0 or v1:v0 - do not destroy these registers! | 
|  |  | 
|  | // Check result for exception sentinel. | 
|  | Label exception_returned; | 
|  | __ LoadRoot(a4, RootIndex::kException); | 
|  | __ Branch(&exception_returned, eq, a4, Operand(v0)); | 
|  |  | 
|  | // Check that there is no pending exception, otherwise we | 
|  | // should have returned the exception sentinel. | 
|  | if (FLAG_debug_code) { | 
|  | Label okay; | 
|  | ExternalReference pending_exception_address = ExternalReference::Create( | 
|  | IsolateAddressId::kPendingExceptionAddress, masm->isolate()); | 
|  | __ li(a2, pending_exception_address); | 
|  | __ Ld(a2, MemOperand(a2)); | 
|  | __ LoadRoot(a4, RootIndex::kTheHoleValue); | 
|  | // Cannot use check here as it attempts to generate call into runtime. | 
|  | __ Branch(&okay, eq, a4, Operand(a2)); | 
|  | __ stop(); | 
|  | __ bind(&okay); | 
|  | } | 
|  |  | 
|  | // Exit C frame and return. | 
|  | // v0:v1: result | 
|  | // sp: stack pointer | 
|  | // fp: frame pointer | 
|  | Register argc = argv_mode == kArgvInRegister | 
|  | // We don't want to pop arguments so set argc to no_reg. | 
|  | ? no_reg | 
|  | // s0: still holds argc (callee-saved). | 
|  | : s0; | 
|  | __ LeaveExitFrame(save_doubles == kSaveFPRegs, argc, EMIT_RETURN); | 
|  |  | 
|  | // Handling of exception. | 
|  | __ bind(&exception_returned); | 
|  |  | 
|  | ExternalReference pending_handler_context_address = ExternalReference::Create( | 
|  | IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); | 
|  | ExternalReference pending_handler_entrypoint_address = | 
|  | ExternalReference::Create( | 
|  | IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); | 
|  | ExternalReference pending_handler_fp_address = ExternalReference::Create( | 
|  | IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); | 
|  | ExternalReference pending_handler_sp_address = ExternalReference::Create( | 
|  | IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); | 
|  |  | 
|  | // Ask the runtime for help to determine the handler. This will set v0 to | 
|  | // contain the current pending exception, don't clobber it. | 
|  | ExternalReference find_handler = | 
|  | ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); | 
|  | { | 
|  | FrameScope scope(masm, StackFrame::MANUAL); | 
|  | __ PrepareCallCFunction(3, 0, a0); | 
|  | __ mov(a0, zero_reg); | 
|  | __ mov(a1, zero_reg); | 
|  | __ li(a2, ExternalReference::isolate_address(masm->isolate())); | 
|  | __ CallCFunction(find_handler, 3); | 
|  | } | 
|  |  | 
|  | // Retrieve the handler context, SP and FP. | 
|  | __ li(cp, pending_handler_context_address); | 
|  | __ Ld(cp, MemOperand(cp)); | 
|  | __ li(sp, pending_handler_sp_address); | 
|  | __ Ld(sp, MemOperand(sp)); | 
|  | __ li(fp, pending_handler_fp_address); | 
|  | __ Ld(fp, MemOperand(fp)); | 
|  |  | 
|  | // If the handler is a JS frame, restore the context to the frame. Note that | 
|  | // the context will be set to (cp == 0) for non-JS frames. | 
|  | Label zero; | 
|  | __ Branch(&zero, eq, cp, Operand(zero_reg)); | 
|  | __ Sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | 
|  | __ bind(&zero); | 
|  |  | 
|  | // Reset the masking register. This is done independent of the underlying | 
|  | // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work | 
|  | // with both configurations. It is safe to always do this, because the | 
|  | // underlying register is caller-saved and can be arbitrarily clobbered. | 
|  | __ ResetSpeculationPoisonRegister(); | 
|  |  | 
|  | // Compute the handler entry address and jump to it. | 
|  | __ li(t9, pending_handler_entrypoint_address); | 
|  | __ Ld(t9, MemOperand(t9)); | 
|  | __ Jump(t9); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_DoubleToI(MacroAssembler* masm) { | 
|  | Label done; | 
|  | Register result_reg = t0; | 
|  |  | 
|  | Register scratch = GetRegisterThatIsNotOneOf(result_reg); | 
|  | Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch); | 
|  | Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2); | 
|  | DoubleRegister double_scratch = kScratchDoubleReg; | 
|  |  | 
|  | // Account for saved regs. | 
|  | const int kArgumentOffset = 4 * kPointerSize; | 
|  |  | 
|  | __ Push(result_reg); | 
|  | __ Push(scratch, scratch2, scratch3); | 
|  |  | 
|  | // Load double input. | 
|  | __ Ldc1(double_scratch, MemOperand(sp, kArgumentOffset)); | 
|  |  | 
|  | // Clear cumulative exception flags and save the FCSR. | 
|  | __ cfc1(scratch2, FCSR); | 
|  | __ ctc1(zero_reg, FCSR); | 
|  |  | 
|  | // Try a conversion to a signed integer. | 
|  | __ Trunc_w_d(double_scratch, double_scratch); | 
|  | // Move the converted value into the result register. | 
|  | __ mfc1(scratch3, double_scratch); | 
|  |  | 
|  | // Retrieve and restore the FCSR. | 
|  | __ cfc1(scratch, FCSR); | 
|  | __ ctc1(scratch2, FCSR); | 
|  |  | 
|  | // Check for overflow and NaNs. | 
|  | __ And( | 
|  | scratch, scratch, | 
|  | kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); | 
|  | // If we had no exceptions then set result_reg and we are done. | 
|  | Label error; | 
|  | __ Branch(&error, ne, scratch, Operand(zero_reg)); | 
|  | __ Move(result_reg, scratch3); | 
|  | __ Branch(&done); | 
|  | __ bind(&error); | 
|  |  | 
|  | // Load the double value and perform a manual truncation. | 
|  | Register input_high = scratch2; | 
|  | Register input_low = scratch3; | 
|  |  | 
|  | __ Lw(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset)); | 
|  | __ Lw(input_high, | 
|  | MemOperand(sp, kArgumentOffset + Register::kExponentOffset)); | 
|  |  | 
|  | Label normal_exponent; | 
|  | // Extract the biased exponent in result. | 
|  | __ Ext(result_reg, input_high, HeapNumber::kExponentShift, | 
|  | HeapNumber::kExponentBits); | 
|  |  | 
|  | // Check for Infinity and NaNs, which should return 0. | 
|  | __ Subu(scratch, result_reg, HeapNumber::kExponentMask); | 
|  | __ Movz(result_reg, zero_reg, scratch); | 
|  | __ Branch(&done, eq, scratch, Operand(zero_reg)); | 
|  |  | 
|  | // Express exponent as delta to (number of mantissa bits + 31). | 
|  | __ Subu(result_reg, result_reg, | 
|  | Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); | 
|  |  | 
|  | // If the delta is strictly positive, all bits would be shifted away, | 
|  | // which means that we can return 0. | 
|  | __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg)); | 
|  | __ mov(result_reg, zero_reg); | 
|  | __ Branch(&done); | 
|  |  | 
|  | __ bind(&normal_exponent); | 
|  | const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; | 
|  | // Calculate shift. | 
|  | __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits)); | 
|  |  | 
|  | // Save the sign. | 
|  | Register sign = result_reg; | 
|  | result_reg = no_reg; | 
|  | __ And(sign, input_high, Operand(HeapNumber::kSignMask)); | 
|  |  | 
|  | // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need | 
|  | // to check for this specific case. | 
|  | Label high_shift_needed, high_shift_done; | 
|  | __ Branch(&high_shift_needed, lt, scratch, Operand(32)); | 
|  | __ mov(input_high, zero_reg); | 
|  | __ Branch(&high_shift_done); | 
|  | __ bind(&high_shift_needed); | 
|  |  | 
|  | // Set the implicit 1 before the mantissa part in input_high. | 
|  | __ Or(input_high, input_high, | 
|  | Operand(1 << HeapNumber::kMantissaBitsInTopWord)); | 
|  | // Shift the mantissa bits to the correct position. | 
|  | // We don't need to clear non-mantissa bits as they will be shifted away. | 
|  | // If they weren't, it would mean that the answer is in the 32bit range. | 
|  | __ sllv(input_high, input_high, scratch); | 
|  |  | 
|  | __ bind(&high_shift_done); | 
|  |  | 
|  | // Replace the shifted bits with bits from the lower mantissa word. | 
|  | Label pos_shift, shift_done; | 
|  | __ li(kScratchReg, 32); | 
|  | __ subu(scratch, kScratchReg, scratch); | 
|  | __ Branch(&pos_shift, ge, scratch, Operand(zero_reg)); | 
|  |  | 
|  | // Negate scratch. | 
|  | __ Subu(scratch, zero_reg, scratch); | 
|  | __ sllv(input_low, input_low, scratch); | 
|  | __ Branch(&shift_done); | 
|  |  | 
|  | __ bind(&pos_shift); | 
|  | __ srlv(input_low, input_low, scratch); | 
|  |  | 
|  | __ bind(&shift_done); | 
|  | __ Or(input_high, input_high, Operand(input_low)); | 
|  | // Restore sign if necessary. | 
|  | __ mov(scratch, sign); | 
|  | result_reg = sign; | 
|  | sign = no_reg; | 
|  | __ Subu(result_reg, zero_reg, input_high); | 
|  | __ Movz(result_reg, input_high, scratch); | 
|  |  | 
|  | __ bind(&done); | 
|  |  | 
|  | __ Sd(result_reg, MemOperand(sp, kArgumentOffset)); | 
|  | __ Pop(scratch, scratch2, scratch3); | 
|  | __ Pop(result_reg); | 
|  | __ Ret(); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) { | 
|  | // TODO(v8:10701): Implement for this platform. | 
|  | __ Trap(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | int AddressOffset(ExternalReference ref0, ExternalReference ref1) { | 
|  | int64_t offset = (ref0.address() - ref1.address()); | 
|  | DCHECK(static_cast<int>(offset) == offset); | 
|  | return static_cast<int>(offset); | 
|  | } | 
|  |  | 
|  | // Calls an API function.  Allocates HandleScope, extracts returned value | 
|  | // from handle and propagates exceptions.  Restores context.  stack_space | 
|  | // - space to be unwound on exit (includes the call JS arguments space and | 
|  | // the additional space allocated for the fast call). | 
|  | void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, | 
|  | ExternalReference thunk_ref, int stack_space, | 
|  | MemOperand* stack_space_operand, | 
|  | MemOperand return_value_operand) { | 
|  | Isolate* isolate = masm->isolate(); | 
|  | ExternalReference next_address = | 
|  | ExternalReference::handle_scope_next_address(isolate); | 
|  | const int kNextOffset = 0; | 
|  | const int kLimitOffset = AddressOffset( | 
|  | ExternalReference::handle_scope_limit_address(isolate), next_address); | 
|  | const int kLevelOffset = AddressOffset( | 
|  | ExternalReference::handle_scope_level_address(isolate), next_address); | 
|  |  | 
|  | DCHECK(function_address == a1 || function_address == a2); | 
|  |  | 
|  | Label profiler_enabled, end_profiler_check; | 
|  | __ li(t9, ExternalReference::is_profiling_address(isolate)); | 
|  | __ Lb(t9, MemOperand(t9, 0)); | 
|  | __ Branch(&profiler_enabled, ne, t9, Operand(zero_reg)); | 
|  | __ li(t9, ExternalReference::address_of_runtime_stats_flag()); | 
|  | __ Lw(t9, MemOperand(t9, 0)); | 
|  | __ Branch(&profiler_enabled, ne, t9, Operand(zero_reg)); | 
|  | { | 
|  | // Call the api function directly. | 
|  | __ mov(t9, function_address); | 
|  | __ Branch(&end_profiler_check); | 
|  | } | 
|  |  | 
|  | __ bind(&profiler_enabled); | 
|  | { | 
|  | // Additional parameter is the address of the actual callback. | 
|  | __ li(t9, thunk_ref); | 
|  | } | 
|  | __ bind(&end_profiler_check); | 
|  |  | 
|  | // Allocate HandleScope in callee-save registers. | 
|  | __ li(s5, next_address); | 
|  | __ Ld(s0, MemOperand(s5, kNextOffset)); | 
|  | __ Ld(s1, MemOperand(s5, kLimitOffset)); | 
|  | __ Lw(s2, MemOperand(s5, kLevelOffset)); | 
|  | __ Addu(s2, s2, Operand(1)); | 
|  | __ Sw(s2, MemOperand(s5, kLevelOffset)); | 
|  |  | 
|  | __ StoreReturnAddressAndCall(t9); | 
|  |  | 
|  | Label promote_scheduled_exception; | 
|  | Label delete_allocated_handles; | 
|  | Label leave_exit_frame; | 
|  | Label return_value_loaded; | 
|  |  | 
|  | // Load value from ReturnValue. | 
|  | __ Ld(v0, return_value_operand); | 
|  | __ bind(&return_value_loaded); | 
|  |  | 
|  | // No more valid handles (the result handle was the last one). Restore | 
|  | // previous handle scope. | 
|  | __ Sd(s0, MemOperand(s5, kNextOffset)); | 
|  | if (__ emit_debug_code()) { | 
|  | __ Lw(a1, MemOperand(s5, kLevelOffset)); | 
|  | __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall, a1, | 
|  | Operand(s2)); | 
|  | } | 
|  | __ Subu(s2, s2, Operand(1)); | 
|  | __ Sw(s2, MemOperand(s5, kLevelOffset)); | 
|  | __ Ld(kScratchReg, MemOperand(s5, kLimitOffset)); | 
|  | __ Branch(&delete_allocated_handles, ne, s1, Operand(kScratchReg)); | 
|  |  | 
|  | // Leave the API exit frame. | 
|  | __ bind(&leave_exit_frame); | 
|  |  | 
|  | if (stack_space_operand == nullptr) { | 
|  | DCHECK_NE(stack_space, 0); | 
|  | __ li(s0, Operand(stack_space)); | 
|  | } else { | 
|  | DCHECK_EQ(stack_space, 0); | 
|  | STATIC_ASSERT(kCArgSlotCount == 0); | 
|  | __ Ld(s0, *stack_space_operand); | 
|  | } | 
|  |  | 
|  | static constexpr bool kDontSaveDoubles = false; | 
|  | static constexpr bool kRegisterContainsSlotCount = false; | 
|  | __ LeaveExitFrame(kDontSaveDoubles, s0, NO_EMIT_RETURN, | 
|  | kRegisterContainsSlotCount); | 
|  |  | 
|  | // Check if the function scheduled an exception. | 
|  | __ LoadRoot(a4, RootIndex::kTheHoleValue); | 
|  | __ li(kScratchReg, ExternalReference::scheduled_exception_address(isolate)); | 
|  | __ Ld(a5, MemOperand(kScratchReg)); | 
|  | __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5)); | 
|  |  | 
|  | __ Ret(); | 
|  |  | 
|  | // Re-throw by promoting a scheduled exception. | 
|  | __ bind(&promote_scheduled_exception); | 
|  | __ TailCallRuntime(Runtime::kPromoteScheduledException); | 
|  |  | 
|  | // HandleScope limit has changed. Delete allocated extensions. | 
|  | __ bind(&delete_allocated_handles); | 
|  | __ Sd(s1, MemOperand(s5, kLimitOffset)); | 
|  | __ mov(s0, v0); | 
|  | __ mov(a0, v0); | 
|  | __ PrepareCallCFunction(1, s1); | 
|  | __ li(a0, ExternalReference::isolate_address(isolate)); | 
|  | __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1); | 
|  | __ mov(v0, s0); | 
|  | __ jmp(&leave_exit_frame); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | void Builtins::Generate_CallApiCallback(MacroAssembler* masm) { | 
|  | // ----------- S t a t e ------------- | 
|  | //  -- cp                  : context | 
|  | //  -- a1                  : api function address | 
|  | //  -- a2                  : arguments count (not including the receiver) | 
|  | //  -- a3                  : call data | 
|  | //  -- a0                  : holder | 
|  | //  -- sp[0]               : receiver | 
|  | //  -- sp[8]               : first argument | 
|  | //  -- ... | 
|  | //  -- sp[(argc) * 8]      : last argument | 
|  | // ----------------------------------- | 
|  |  | 
|  | Register api_function_address = a1; | 
|  | Register argc = a2; | 
|  | Register call_data = a3; | 
|  | Register holder = a0; | 
|  | Register scratch = t0; | 
|  | Register base = t1;  // For addressing MemOperands on the stack. | 
|  |  | 
|  | DCHECK(!AreAliased(api_function_address, argc, call_data, | 
|  | holder, scratch, base)); | 
|  |  | 
|  | using FCA = FunctionCallbackArguments; | 
|  |  | 
|  | STATIC_ASSERT(FCA::kArgsLength == 6); | 
|  | STATIC_ASSERT(FCA::kNewTargetIndex == 5); | 
|  | STATIC_ASSERT(FCA::kDataIndex == 4); | 
|  | STATIC_ASSERT(FCA::kReturnValueOffset == 3); | 
|  | STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); | 
|  | STATIC_ASSERT(FCA::kIsolateIndex == 1); | 
|  | STATIC_ASSERT(FCA::kHolderIndex == 0); | 
|  |  | 
|  | // Set up FunctionCallbackInfo's implicit_args on the stack as follows: | 
|  | // | 
|  | // Target state: | 
|  | //   sp[0 * kPointerSize]: kHolder | 
|  | //   sp[1 * kPointerSize]: kIsolate | 
|  | //   sp[2 * kPointerSize]: undefined (kReturnValueDefaultValue) | 
|  | //   sp[3 * kPointerSize]: undefined (kReturnValue) | 
|  | //   sp[4 * kPointerSize]: kData | 
|  | //   sp[5 * kPointerSize]: undefined (kNewTarget) | 
|  |  | 
|  | // Set up the base register for addressing through MemOperands. It will point | 
|  | // at the receiver (located at sp + argc * kPointerSize). | 
|  | __ Dlsa(base, sp, argc, kPointerSizeLog2); | 
|  |  | 
|  | // Reserve space on the stack. | 
|  | __ Dsubu(sp, sp, Operand(FCA::kArgsLength * kPointerSize)); | 
|  |  | 
|  | // kHolder. | 
|  | __ Sd(holder, MemOperand(sp, 0 * kPointerSize)); | 
|  |  | 
|  | // kIsolate. | 
|  | __ li(scratch, ExternalReference::isolate_address(masm->isolate())); | 
|  | __ Sd(scratch, MemOperand(sp, 1 * kPointerSize)); | 
|  |  | 
|  | // kReturnValueDefaultValue and kReturnValue. | 
|  | __ LoadRoot(scratch, RootIndex::kUndefinedValue); | 
|  | __ Sd(scratch, MemOperand(sp, 2 * kPointerSize)); | 
|  | __ Sd(scratch, MemOperand(sp, 3 * kPointerSize)); | 
|  |  | 
|  | // kData. | 
|  | __ Sd(call_data, MemOperand(sp, 4 * kPointerSize)); | 
|  |  | 
|  | // kNewTarget. | 
|  | __ Sd(scratch, MemOperand(sp, 5 * kPointerSize)); | 
|  |  | 
|  | // Keep a pointer to kHolder (= implicit_args) in a scratch register. | 
|  | // We use it below to set up the FunctionCallbackInfo object. | 
|  | __ mov(scratch, sp); | 
|  |  | 
|  | // Allocate the v8::Arguments structure in the arguments' space since | 
|  | // it's not controlled by GC. | 
|  | static constexpr int kApiStackSpace = 4; | 
|  | static constexpr bool kDontSaveDoubles = false; | 
|  | FrameScope frame_scope(masm, StackFrame::MANUAL); | 
|  | __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace); | 
|  |  | 
|  | // EnterExitFrame may align the sp. | 
|  |  | 
|  | // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above). | 
|  | // Arguments are after the return address (pushed by EnterExitFrame()). | 
|  | __ Sd(scratch, MemOperand(sp, 1 * kPointerSize)); | 
|  |  | 
|  | // FunctionCallbackInfo::values_ (points at the first varargs argument passed | 
|  | // on the stack). | 
|  | __ Daddu(scratch, scratch, | 
|  | Operand((FCA::kArgsLength + 1) * kSystemPointerSize)); | 
|  |  | 
|  | __ Sd(scratch, MemOperand(sp, 2 * kPointerSize)); | 
|  |  | 
|  | // FunctionCallbackInfo::length_. | 
|  | // Stored as int field, 32-bit integers within struct on stack always left | 
|  | // justified by n64 ABI. | 
|  | __ Sw(argc, MemOperand(sp, 3 * kPointerSize)); | 
|  |  | 
|  | // We also store the number of bytes to drop from the stack after returning | 
|  | // from the API function here. | 
|  | // Note: Unlike on other architectures, this stores the number of slots to | 
|  | // drop, not the number of bytes. | 
|  | __ Daddu(scratch, argc, Operand(FCA::kArgsLength + 1 /* receiver */)); | 
|  | __ Sd(scratch, MemOperand(sp, 4 * kPointerSize)); | 
|  |  | 
|  | // v8::InvocationCallback's argument. | 
|  | DCHECK(!AreAliased(api_function_address, scratch, a0)); | 
|  | __ Daddu(a0, sp, Operand(1 * kPointerSize)); | 
|  |  | 
|  | ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); | 
|  |  | 
|  | // There are two stack slots above the arguments we constructed on the stack. | 
|  | // TODO(jgruber): Document what these arguments are. | 
|  | static constexpr int kStackSlotsAboveFCA = 2; | 
|  | MemOperand return_value_operand( | 
|  | fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kPointerSize); | 
|  |  | 
|  | static constexpr int kUseStackSpaceOperand = 0; | 
|  | MemOperand stack_space_operand(sp, 4 * kPointerSize); | 
|  |  | 
|  | AllowExternalCallThatCantCauseGC scope(masm); | 
|  | CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, | 
|  | kUseStackSpaceOperand, &stack_space_operand, | 
|  | return_value_operand); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_CallApiGetter(MacroAssembler* masm) { | 
|  | // Build v8::PropertyCallbackInfo::args_ array on the stack and push property | 
|  | // name below the exit frame to make GC aware of them. | 
|  | STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); | 
|  | STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); | 
|  | STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); | 
|  | STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); | 
|  | STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); | 
|  | STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); | 
|  | STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); | 
|  | STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); | 
|  |  | 
|  | Register receiver = ApiGetterDescriptor::ReceiverRegister(); | 
|  | Register holder = ApiGetterDescriptor::HolderRegister(); | 
|  | Register callback = ApiGetterDescriptor::CallbackRegister(); | 
|  | Register scratch = a4; | 
|  | DCHECK(!AreAliased(receiver, holder, callback, scratch)); | 
|  |  | 
|  | Register api_function_address = a2; | 
|  |  | 
|  | // Here and below +1 is for name() pushed after the args_ array. | 
|  | using PCA = PropertyCallbackArguments; | 
|  | __ Dsubu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize); | 
|  | __ Sd(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize)); | 
|  | __ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); | 
|  | __ Sd(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize)); | 
|  | __ LoadRoot(scratch, RootIndex::kUndefinedValue); | 
|  | __ Sd(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize)); | 
|  | __ Sd(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) * | 
|  | kPointerSize)); | 
|  | __ li(scratch, ExternalReference::isolate_address(masm->isolate())); | 
|  | __ Sd(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize)); | 
|  | __ Sd(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize)); | 
|  | // should_throw_on_error -> false | 
|  | DCHECK_EQ(0, Smi::zero().ptr()); | 
|  | __ Sd(zero_reg, | 
|  | MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize)); | 
|  | __ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); | 
|  | __ Sd(scratch, MemOperand(sp, 0 * kPointerSize)); | 
|  |  | 
|  | // v8::PropertyCallbackInfo::args_ array and name handle. | 
|  | const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; | 
|  |  | 
|  | // Load address of v8::PropertyAccessorInfo::args_ array and name handle. | 
|  | __ mov(a0, sp);                               // a0 = Handle<Name> | 
|  | __ Daddu(a1, a0, Operand(1 * kPointerSize));  // a1 = v8::PCI::args_ | 
|  |  | 
|  | const int kApiStackSpace = 1; | 
|  | FrameScope frame_scope(masm, StackFrame::MANUAL); | 
|  | __ EnterExitFrame(false, kApiStackSpace); | 
|  |  | 
|  | // Create v8::PropertyCallbackInfo object on the stack and initialize | 
|  | // it's args_ field. | 
|  | __ Sd(a1, MemOperand(sp, 1 * kPointerSize)); | 
|  | __ Daddu(a1, sp, Operand(1 * kPointerSize)); | 
|  | // a1 = v8::PropertyCallbackInfo& | 
|  |  | 
|  | ExternalReference thunk_ref = | 
|  | ExternalReference::invoke_accessor_getter_callback(); | 
|  |  | 
|  | __ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); | 
|  | __ Ld(api_function_address, | 
|  | FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); | 
|  |  | 
|  | // +3 is to skip prolog, return address and name handle. | 
|  | MemOperand return_value_operand( | 
|  | fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); | 
|  | MemOperand* const kUseStackSpaceConstant = nullptr; | 
|  | CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, | 
|  | kStackUnwindSpace, kUseStackSpaceConstant, | 
|  | return_value_operand); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_DirectCEntry(MacroAssembler* masm) { | 
|  | // The sole purpose of DirectCEntry is for movable callers (e.g. any general | 
|  | // purpose Code object) to be able to call into C functions that may trigger | 
|  | // GC and thus move the caller. | 
|  | // | 
|  | // DirectCEntry places the return address on the stack (updated by the GC), | 
|  | // making the call GC safe. The irregexp backend relies on this. | 
|  |  | 
|  | // Make place for arguments to fit C calling convention. Callers use | 
|  | // EnterExitFrame/LeaveExitFrame so they handle stack restoring and we don't | 
|  | // have to do that here. Any caller must drop kCArgsSlotsSize stack space | 
|  | // after the call. | 
|  | __ daddiu(sp, sp, -kCArgsSlotsSize); | 
|  |  | 
|  | __ Sd(ra, MemOperand(sp, kCArgsSlotsSize));  // Store the return address. | 
|  | __ Call(t9);                                 // Call the C++ function. | 
|  | __ Ld(t9, MemOperand(sp, kCArgsSlotsSize));  // Return to calling code. | 
|  |  | 
|  | if (FLAG_debug_code && FLAG_enable_slow_asserts) { | 
|  | // In case of an error the return address may point to a memory area | 
|  | // filled with kZapValue by the GC. Dereference the address and check for | 
|  | // this. | 
|  | __ Uld(a4, MemOperand(t9)); | 
|  | __ Assert(ne, AbortReason::kReceivedInvalidReturnAddress, a4, | 
|  | Operand(reinterpret_cast<uint64_t>(kZapValue))); | 
|  | } | 
|  |  | 
|  | __ Jump(t9); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // This code tries to be close to ia32 code so that any changes can be | 
|  | // easily ported. | 
|  | void Generate_DeoptimizationEntry(MacroAssembler* masm, | 
|  | DeoptimizeKind deopt_kind) { | 
|  | Isolate* isolate = masm->isolate(); | 
|  |  | 
|  | // Unlike on ARM we don't save all the registers, just the useful ones. | 
|  | // For the rest, there are gaps on the stack, so the offsets remain the same. | 
|  | const int kNumberOfRegisters = Register::kNumRegisters; | 
|  |  | 
|  | RegList restored_regs = kJSCallerSaved | kCalleeSaved; | 
|  | RegList saved_regs = restored_regs | sp.bit() | ra.bit(); | 
|  |  | 
|  | const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters; | 
|  |  | 
|  | // Save all double FPU registers before messing with them. | 
|  | __ Dsubu(sp, sp, Operand(kDoubleRegsSize)); | 
|  | const RegisterConfiguration* config = RegisterConfiguration::Default(); | 
|  | for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { | 
|  | int code = config->GetAllocatableDoubleCode(i); | 
|  | const DoubleRegister fpu_reg = DoubleRegister::from_code(code); | 
|  | int offset = code * kDoubleSize; | 
|  | __ Sdc1(fpu_reg, MemOperand(sp, offset)); | 
|  | } | 
|  |  | 
|  | // Push saved_regs (needed to populate FrameDescription::registers_). | 
|  | // Leave gaps for other registers. | 
|  | __ Dsubu(sp, sp, kNumberOfRegisters * kPointerSize); | 
|  | for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) { | 
|  | if ((saved_regs & (1 << i)) != 0) { | 
|  | __ Sd(ToRegister(i), MemOperand(sp, kPointerSize * i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | __ li(a2, | 
|  | ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate)); | 
|  | __ Sd(fp, MemOperand(a2)); | 
|  |  | 
|  | const int kSavedRegistersAreaSize = | 
|  | (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize; | 
|  |  | 
|  | __ li(a2, Operand(Deoptimizer::kFixedExitSizeMarker)); | 
|  | // Get the address of the location in the code object (a3) (return | 
|  | // address for lazy deoptimization) and compute the fp-to-sp delta in | 
|  | // register a4. | 
|  | __ mov(a3, ra); | 
|  | __ Daddu(a4, sp, Operand(kSavedRegistersAreaSize)); | 
|  |  | 
|  | __ Dsubu(a4, fp, a4); | 
|  |  | 
|  | // Allocate a new deoptimizer object. | 
|  | __ PrepareCallCFunction(6, a5); | 
|  | // Pass six arguments, according to n64 ABI. | 
|  | __ mov(a0, zero_reg); | 
|  | Label context_check; | 
|  | __ Ld(a1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); | 
|  | __ JumpIfSmi(a1, &context_check); | 
|  | __ Ld(a0, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); | 
|  | __ bind(&context_check); | 
|  | __ li(a1, Operand(static_cast<int>(deopt_kind))); | 
|  | // a2: bailout id already loaded. | 
|  | // a3: code address or 0 already loaded. | 
|  | // a4: already has fp-to-sp delta. | 
|  | __ li(a5, ExternalReference::isolate_address(isolate)); | 
|  |  | 
|  | // Call Deoptimizer::New(). | 
|  | { | 
|  | AllowExternalCallThatCantCauseGC scope(masm); | 
|  | __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6); | 
|  | } | 
|  |  | 
|  | // Preserve "deoptimizer" object in register v0 and get the input | 
|  | // frame descriptor pointer to a1 (deoptimizer->input_); | 
|  | // Move deopt-obj to a0 for call to Deoptimizer::ComputeOutputFrames() below. | 
|  | __ mov(a0, v0); | 
|  | __ Ld(a1, MemOperand(v0, Deoptimizer::input_offset())); | 
|  |  | 
|  | // Copy core registers into FrameDescription::registers_[kNumRegisters]. | 
|  | DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters); | 
|  | for (int i = 0; i < kNumberOfRegisters; i++) { | 
|  | int offset = (i * kPointerSize) + FrameDescription::registers_offset(); | 
|  | if ((saved_regs & (1 << i)) != 0) { | 
|  | __ Ld(a2, MemOperand(sp, i * kPointerSize)); | 
|  | __ Sd(a2, MemOperand(a1, offset)); | 
|  | } else if (FLAG_debug_code) { | 
|  | __ li(a2, kDebugZapValue); | 
|  | __ Sd(a2, MemOperand(a1, offset)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int double_regs_offset = FrameDescription::double_registers_offset(); | 
|  | // Copy FPU registers to | 
|  | // double_registers_[DoubleRegister::kNumAllocatableRegisters] | 
|  | for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { | 
|  | int code = config->GetAllocatableDoubleCode(i); | 
|  | int dst_offset = code * kDoubleSize + double_regs_offset; | 
|  | int src_offset = code * kDoubleSize + kNumberOfRegisters * kPointerSize; | 
|  | __ Ldc1(f0, MemOperand(sp, src_offset)); | 
|  | __ Sdc1(f0, MemOperand(a1, dst_offset)); | 
|  | } | 
|  |  | 
|  | // Remove the saved registers from the stack. | 
|  | __ Daddu(sp, sp, Operand(kSavedRegistersAreaSize)); | 
|  |  | 
|  | // Compute a pointer to the unwinding limit in register a2; that is | 
|  | // the first stack slot not part of the input frame. | 
|  | __ Ld(a2, MemOperand(a1, FrameDescription::frame_size_offset())); | 
|  | __ Daddu(a2, a2, sp); | 
|  |  | 
|  | // Unwind the stack down to - but not including - the unwinding | 
|  | // limit and copy the contents of the activation frame to the input | 
|  | // frame description. | 
|  | __ Daddu(a3, a1, Operand(FrameDescription::frame_content_offset())); | 
|  | Label pop_loop; | 
|  | Label pop_loop_header; | 
|  | __ BranchShort(&pop_loop_header); | 
|  | __ bind(&pop_loop); | 
|  | __ pop(a4); | 
|  | __ Sd(a4, MemOperand(a3, 0)); | 
|  | __ daddiu(a3, a3, sizeof(uint64_t)); | 
|  | __ bind(&pop_loop_header); | 
|  | __ BranchShort(&pop_loop, ne, a2, Operand(sp)); | 
|  | // Compute the output frame in the deoptimizer. | 
|  | __ push(a0);  // Preserve deoptimizer object across call. | 
|  | // a0: deoptimizer object; a1: scratch. | 
|  | __ PrepareCallCFunction(1, a1); | 
|  | // Call Deoptimizer::ComputeOutputFrames(). | 
|  | { | 
|  | AllowExternalCallThatCantCauseGC scope(masm); | 
|  | __ CallCFunction(ExternalReference::compute_output_frames_function(), 1); | 
|  | } | 
|  | __ pop(a0);  // Restore deoptimizer object (class Deoptimizer). | 
|  |  | 
|  | __ Ld(sp, MemOperand(a0, Deoptimizer::caller_frame_top_offset())); | 
|  |  | 
|  | // Replace the current (input) frame with the output frames. | 
|  | Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; | 
|  | // Outer loop state: a4 = current "FrameDescription** output_", | 
|  | // a1 = one past the last FrameDescription**. | 
|  | __ Lw(a1, MemOperand(a0, Deoptimizer::output_count_offset())); | 
|  | __ Ld(a4, MemOperand(a0, Deoptimizer::output_offset()));  // a4 is output_. | 
|  | __ Dlsa(a1, a4, a1, kPointerSizeLog2); | 
|  | __ BranchShort(&outer_loop_header); | 
|  | __ bind(&outer_push_loop); | 
|  | // Inner loop state: a2 = current FrameDescription*, a3 = loop index. | 
|  | __ Ld(a2, MemOperand(a4, 0));  // output_[ix] | 
|  | __ Ld(a3, MemOperand(a2, FrameDescription::frame_size_offset())); | 
|  | __ BranchShort(&inner_loop_header); | 
|  | __ bind(&inner_push_loop); | 
|  | __ Dsubu(a3, a3, Operand(sizeof(uint64_t))); | 
|  | __ Daddu(a6, a2, Operand(a3)); | 
|  | __ Ld(a7, MemOperand(a6, FrameDescription::frame_content_offset())); | 
|  | __ push(a7); | 
|  | __ bind(&inner_loop_header); | 
|  | __ BranchShort(&inner_push_loop, ne, a3, Operand(zero_reg)); | 
|  |  | 
|  | __ Daddu(a4, a4, Operand(kPointerSize)); | 
|  | __ bind(&outer_loop_header); | 
|  | __ BranchShort(&outer_push_loop, lt, a4, Operand(a1)); | 
|  |  | 
|  | __ Ld(a1, MemOperand(a0, Deoptimizer::input_offset())); | 
|  | for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { | 
|  | int code = config->GetAllocatableDoubleCode(i); | 
|  | const DoubleRegister fpu_reg = DoubleRegister::from_code(code); | 
|  | int src_offset = code * kDoubleSize + double_regs_offset; | 
|  | __ Ldc1(fpu_reg, MemOperand(a1, src_offset)); | 
|  | } | 
|  |  | 
|  | // Push pc and continuation from the last output frame. | 
|  | __ Ld(a6, MemOperand(a2, FrameDescription::pc_offset())); | 
|  | __ push(a6); | 
|  | __ Ld(a6, MemOperand(a2, FrameDescription::continuation_offset())); | 
|  | __ push(a6); | 
|  |  | 
|  | // Technically restoring 'at' should work unless zero_reg is also restored | 
|  | // but it's safer to check for this. | 
|  | DCHECK(!(at.bit() & restored_regs)); | 
|  | // Restore the registers from the last output frame. | 
|  | __ mov(at, a2); | 
|  | for (int i = kNumberOfRegisters - 1; i >= 0; i--) { | 
|  | int offset = (i * kPointerSize) + FrameDescription::registers_offset(); | 
|  | if ((restored_regs & (1 << i)) != 0) { | 
|  | __ Ld(ToRegister(i), MemOperand(at, offset)); | 
|  | } | 
|  | } | 
|  |  | 
|  | __ pop(at);  // Get continuation, leave pc on stack. | 
|  | __ pop(ra); | 
|  | __ Jump(at); | 
|  | __ stop(); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) { | 
|  | Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) { | 
|  | Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) { | 
|  | Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout); | 
|  | } | 
|  |  | 
|  | void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) { | 
|  | Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy); | 
|  | } | 
|  |  | 
|  | #undef __ | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace v8 | 
|  |  | 
|  | #endif  // V8_TARGET_ARCH_MIPS64 |