| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/execution/frames.h" |
| |
| #include <memory> |
| #include <sstream> |
| |
| #include "src/base/bits.h" |
| #include "src/codegen/interface-descriptors.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/codegen/safepoint-table.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/execution/frames-inl.h" |
| #include "src/execution/vm-state-inl.h" |
| #include "src/ic/ic-stats.h" |
| #include "src/logging/counters.h" |
| #include "src/objects/code.h" |
| #include "src/objects/slots.h" |
| #include "src/objects/smi.h" |
| #include "src/objects/visitors.h" |
| #include "src/snapshot/embedded/embedded-data.h" |
| #include "src/strings/string-stream.h" |
| #include "src/wasm/wasm-code-manager.h" |
| #include "src/wasm/wasm-engine.h" |
| #include "src/wasm/wasm-objects-inl.h" |
| #include "src/zone/zone-containers.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ = |
| nullptr; |
| |
| namespace { |
| |
| Address AddressOf(const StackHandler* handler) { |
| Address raw = handler->address(); |
| #ifdef V8_USE_ADDRESS_SANITIZER |
| // ASan puts C++-allocated StackHandler markers onto its fake stack. |
| // We work around that by storing the real stack address in the "padding" |
| // field. StackHandlers allocated from generated code have 0 as padding. |
| Address padding = |
| base::Memory<Address>(raw + StackHandlerConstants::kPaddingOffset); |
| if (padding != 0) return padding; |
| #endif |
| return raw; |
| } |
| |
| } // namespace |
| |
| // Iterator that supports traversing the stack handlers of a |
| // particular frame. Needs to know the top of the handler chain. |
| class StackHandlerIterator { |
| public: |
| StackHandlerIterator(const StackFrame* frame, StackHandler* handler) |
| : limit_(frame->fp()), handler_(handler) { |
| // Make sure the handler has already been unwound to this frame. |
| DCHECK(frame->sp() <= AddressOf(handler)); |
| // For CWasmEntry frames, the handler was registered by the last C++ |
| // frame (Execution::CallWasm), so even though its address is already |
| // beyond the limit, we know we always want to unwind one handler. |
| if (frame->type() == StackFrame::C_WASM_ENTRY) { |
| handler_ = handler_->next(); |
| } |
| } |
| |
| StackHandler* handler() const { return handler_; } |
| |
| bool done() { return handler_ == nullptr || AddressOf(handler_) > limit_; } |
| void Advance() { |
| DCHECK(!done()); |
| handler_ = handler_->next(); |
| } |
| |
| private: |
| const Address limit_; |
| StackHandler* handler_; |
| }; |
| |
| // ------------------------------------------------------------------------- |
| |
| #define INITIALIZE_SINGLETON(type, field) field##_(this), |
| StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate, |
| bool can_access_heap_objects) |
| : isolate_(isolate), |
| STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(nullptr), |
| handler_(nullptr), |
| can_access_heap_objects_(can_access_heap_objects) {} |
| #undef INITIALIZE_SINGLETON |
| |
| StackFrameIterator::StackFrameIterator(Isolate* isolate) |
| : StackFrameIterator(isolate, isolate->thread_local_top()) {} |
| |
| StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t) |
| : StackFrameIteratorBase(isolate, true) { |
| Reset(t); |
| } |
| |
| void StackFrameIterator::Advance() { |
| DCHECK(!done()); |
| // Compute the state of the calling frame before restoring |
| // callee-saved registers and unwinding handlers. This allows the |
| // frame code that computes the caller state to access the top |
| // handler and the value of any callee-saved register if needed. |
| StackFrame::State state; |
| StackFrame::Type type = frame_->GetCallerState(&state); |
| |
| // Unwind handlers corresponding to the current frame. |
| StackHandlerIterator it(frame_, handler_); |
| while (!it.done()) it.Advance(); |
| handler_ = it.handler(); |
| |
| // Advance to the calling frame. |
| frame_ = SingletonFor(type, &state); |
| |
| // When we're done iterating over the stack frames, the handler |
| // chain must have been completely unwound. |
| DCHECK(!done() || handler_ == nullptr); |
| } |
| |
| void StackFrameIterator::Reset(ThreadLocalTop* top) { |
| StackFrame::State state; |
| StackFrame::Type type = |
| ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); |
| handler_ = StackHandler::FromAddress(Isolate::handler(top)); |
| frame_ = SingletonFor(type, &state); |
| } |
| |
| StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type, |
| StackFrame::State* state) { |
| StackFrame* result = SingletonFor(type); |
| DCHECK((!result) == (type == StackFrame::NONE)); |
| if (result) result->state_ = *state; |
| return result; |
| } |
| |
| StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) { |
| #define FRAME_TYPE_CASE(type, field) \ |
| case StackFrame::type: \ |
| return &field##_; |
| |
| switch (type) { |
| case StackFrame::NONE: |
| return nullptr; |
| STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) |
| default: |
| break; |
| } |
| return nullptr; |
| |
| #undef FRAME_TYPE_CASE |
| } |
| |
| // ------------------------------------------------------------------------- |
| |
| void TypedFrameWithJSLinkage::Iterate(RootVisitor* v) const { |
| IterateExpressions(v); |
| IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); |
| } |
| |
| // ------------------------------------------------------------------------- |
| |
| void JavaScriptFrameIterator::Advance() { |
| do { |
| iterator_.Advance(); |
| } while (!iterator_.done() && !iterator_.frame()->is_java_script()); |
| } |
| |
| // ------------------------------------------------------------------------- |
| |
| StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate) |
| : iterator_(isolate) { |
| if (!done() && !IsValidFrame(iterator_.frame())) Advance(); |
| } |
| |
| StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate, |
| StackFrameId id) |
| : StackTraceFrameIterator(isolate) { |
| while (!done() && frame()->id() != id) Advance(); |
| } |
| |
| void StackTraceFrameIterator::Advance() { |
| do { |
| iterator_.Advance(); |
| } while (!done() && !IsValidFrame(iterator_.frame())); |
| } |
| |
| int StackTraceFrameIterator::FrameFunctionCount() const { |
| DCHECK(!done()); |
| if (!iterator_.frame()->is_optimized()) return 1; |
| std::vector<SharedFunctionInfo> infos; |
| OptimizedFrame::cast(iterator_.frame())->GetFunctions(&infos); |
| return static_cast<int>(infos.size()); |
| } |
| |
| bool StackTraceFrameIterator::IsValidFrame(StackFrame* frame) const { |
| if (frame->is_java_script()) { |
| JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame); |
| if (!js_frame->function().IsJSFunction()) return false; |
| return js_frame->function().shared().IsSubjectToDebugging(); |
| } |
| // Apart from JavaScript frames, only Wasm frames are valid. |
| return frame->is_wasm(); |
| } |
| |
| // ------------------------------------------------------------------------- |
| |
| namespace { |
| |
| bool IsInterpreterFramePc(Isolate* isolate, Address pc, |
| StackFrame::State* state) { |
| Code interpreter_entry_trampoline = |
| isolate->builtins()->builtin(Builtins::kInterpreterEntryTrampoline); |
| Code interpreter_bytecode_advance = |
| isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeAdvance); |
| Code interpreter_bytecode_dispatch = |
| isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeDispatch); |
| |
| if (interpreter_entry_trampoline.contains(pc) || |
| interpreter_bytecode_advance.contains(pc) || |
| interpreter_bytecode_dispatch.contains(pc)) { |
| return true; |
| } else if (FLAG_interpreted_frames_native_stack) { |
| intptr_t marker = Memory<intptr_t>( |
| state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); |
| MSAN_MEMORY_IS_INITIALIZED( |
| state->fp + StandardFrameConstants::kFunctionOffset, |
| kSystemPointerSize); |
| Object maybe_function = Object( |
| Memory<Address>(state->fp + StandardFrameConstants::kFunctionOffset)); |
| // There's no need to run a full ContainsSlow if we know the frame can't be |
| // an InterpretedFrame, so we do these fast checks first |
| if (StackFrame::IsTypeMarker(marker) || maybe_function.IsSmi()) { |
| return false; |
| } else if (!isolate->heap()->InSpaceSlow(pc, CODE_SPACE)) { |
| return false; |
| } |
| interpreter_entry_trampoline = |
| isolate->heap()->GcSafeFindCodeForInnerPointer(pc); |
| return interpreter_entry_trampoline.is_interpreter_trampoline_builtin(); |
| } else { |
| return false; |
| } |
| } |
| |
| } // namespace |
| |
| bool SafeStackFrameIterator::IsNoFrameBytecodeHandlerPc(Isolate* isolate, |
| Address pc, |
| Address fp) const { |
| // Return false for builds with non-embedded bytecode handlers. |
| if (Isolate::CurrentEmbeddedBlobCode() == nullptr) return false; |
| |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| if (pc < d.InstructionStartOfBytecodeHandlers() || |
| pc >= d.InstructionEndOfBytecodeHandlers()) { |
| // Not a bytecode handler pc address. |
| return false; |
| } |
| |
| if (!IsValidStackAddress(fp + |
| CommonFrameConstants::kContextOrFrameTypeOffset)) { |
| return false; |
| } |
| |
| // Check if top stack frame is a bytecode handler stub frame. |
| MSAN_MEMORY_IS_INITIALIZED( |
| fp + CommonFrameConstants::kContextOrFrameTypeOffset, kSystemPointerSize); |
| intptr_t marker = |
| Memory<intptr_t>(fp + CommonFrameConstants::kContextOrFrameTypeOffset); |
| if (StackFrame::IsTypeMarker(marker) && |
| StackFrame::MarkerToType(marker) == StackFrame::STUB) { |
| // Bytecode handler built a frame. |
| return false; |
| } |
| return true; |
| } |
| |
| SafeStackFrameIterator::SafeStackFrameIterator(Isolate* isolate, Address pc, |
| Address fp, Address sp, |
| Address lr, Address js_entry_sp) |
| : StackFrameIteratorBase(isolate, false), |
| low_bound_(sp), |
| high_bound_(js_entry_sp), |
| top_frame_type_(StackFrame::NONE), |
| top_context_address_(kNullAddress), |
| external_callback_scope_(isolate->external_callback_scope()), |
| top_link_register_(lr) { |
| StackFrame::State state; |
| StackFrame::Type type; |
| ThreadLocalTop* top = isolate->thread_local_top(); |
| bool advance_frame = true; |
| |
| Address fast_c_fp = isolate->isolate_data()->fast_c_call_caller_fp(); |
| uint8_t stack_is_iterable = isolate->isolate_data()->stack_is_iterable(); |
| if (!stack_is_iterable) { |
| frame_ = nullptr; |
| return; |
| } |
| // 'Fast C calls' are a special type of C call where we call directly from JS |
| // to C without an exit frame inbetween. The CEntryStub is responsible for |
| // setting Isolate::c_entry_fp, meaning that it won't be set for fast C calls. |
| // To keep the stack iterable, we store the FP and PC of the caller of the |
| // fast C call on the isolate. This is guaranteed to be the topmost JS frame, |
| // because fast C calls cannot call back into JS. We start iterating the stack |
| // from this topmost JS frame. |
| if (fast_c_fp) { |
| DCHECK_NE(kNullAddress, isolate->isolate_data()->fast_c_call_caller_pc()); |
| type = StackFrame::Type::OPTIMIZED; |
| top_frame_type_ = type; |
| state.fp = fast_c_fp; |
| state.sp = sp; |
| state.pc_address = isolate->isolate_data()->fast_c_call_caller_pc_address(); |
| advance_frame = false; |
| } else if (IsValidTop(top)) { |
| type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); |
| top_frame_type_ = type; |
| } else if (IsValidStackAddress(fp)) { |
| DCHECK_NE(fp, kNullAddress); |
| state.fp = fp; |
| state.sp = sp; |
| state.pc_address = StackFrame::ResolveReturnAddressLocation( |
| reinterpret_cast<Address*>(CommonFrame::ComputePCAddress(fp))); |
| |
| // If the current PC is in a bytecode handler, the top stack frame isn't |
| // the bytecode handler's frame and the top of stack or link register is a |
| // return address into the interpreter entry trampoline, then we are likely |
| // in a bytecode handler with elided frame. In that case, set the PC |
| // properly and make sure we do not drop the frame. |
| bool is_no_frame_bytecode_handler = false; |
| if (IsNoFrameBytecodeHandlerPc(isolate, pc, fp)) { |
| Address* tos_location = nullptr; |
| if (top_link_register_) { |
| tos_location = &top_link_register_; |
| } else if (IsValidStackAddress(sp)) { |
| MSAN_MEMORY_IS_INITIALIZED(sp, kSystemPointerSize); |
| tos_location = reinterpret_cast<Address*>(sp); |
| } |
| |
| if (IsInterpreterFramePc(isolate, *tos_location, &state)) { |
| state.pc_address = tos_location; |
| is_no_frame_bytecode_handler = true; |
| advance_frame = false; |
| } |
| } |
| |
| // StackFrame::ComputeType will read both kContextOffset and kMarkerOffset, |
| // we check only that kMarkerOffset is within the stack bounds and do |
| // compile time check that kContextOffset slot is pushed on the stack before |
| // kMarkerOffset. |
| STATIC_ASSERT(StandardFrameConstants::kFunctionOffset < |
| StandardFrameConstants::kContextOffset); |
| Address frame_marker = fp + StandardFrameConstants::kFunctionOffset; |
| if (IsValidStackAddress(frame_marker)) { |
| if (is_no_frame_bytecode_handler) { |
| type = StackFrame::INTERPRETED; |
| } else { |
| type = StackFrame::ComputeType(this, &state); |
| } |
| top_frame_type_ = type; |
| MSAN_MEMORY_IS_INITIALIZED( |
| fp + CommonFrameConstants::kContextOrFrameTypeOffset, |
| kSystemPointerSize); |
| Address type_or_context_address = |
| Memory<Address>(fp + CommonFrameConstants::kContextOrFrameTypeOffset); |
| if (!StackFrame::IsTypeMarker(type_or_context_address)) |
| top_context_address_ = type_or_context_address; |
| } else { |
| // Mark the frame as OPTIMIZED if we cannot determine its type. |
| // We chose OPTIMIZED rather than INTERPRETED because it's closer to |
| // the original value of StackFrame::JAVA_SCRIPT here, in that JAVA_SCRIPT |
| // referred to full-codegen frames (now removed from the tree), and |
| // OPTIMIZED refers to turbofan frames, both of which are generated |
| // code. INTERPRETED frames refer to bytecode. |
| // The frame anyways will be skipped. |
| type = StackFrame::OPTIMIZED; |
| // Top frame is incomplete so we cannot reliably determine its type. |
| top_frame_type_ = StackFrame::NONE; |
| } |
| } else { |
| return; |
| } |
| frame_ = SingletonFor(type, &state); |
| if (advance_frame && frame_) Advance(); |
| } |
| |
| bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const { |
| Address c_entry_fp = Isolate::c_entry_fp(top); |
| if (!IsValidExitFrame(c_entry_fp)) return false; |
| // There should be at least one JS_ENTRY stack handler. |
| Address handler = Isolate::handler(top); |
| if (handler == kNullAddress) return false; |
| // Check that there are no js frames on top of the native frames. |
| return c_entry_fp < handler; |
| } |
| |
| void SafeStackFrameIterator::AdvanceOneFrame() { |
| DCHECK(!done()); |
| StackFrame* last_frame = frame_; |
| Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); |
| // Before advancing to the next stack frame, perform pointer validity tests. |
| if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) { |
| frame_ = nullptr; |
| return; |
| } |
| |
| // Advance to the previous frame. |
| StackFrame::State state; |
| StackFrame::Type type = frame_->GetCallerState(&state); |
| frame_ = SingletonFor(type, &state); |
| if (!frame_) return; |
| |
| // Check that we have actually moved to the previous frame in the stack. |
| if (frame_->sp() <= last_sp || frame_->fp() <= last_fp) { |
| frame_ = nullptr; |
| } |
| } |
| |
| bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const { |
| return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); |
| } |
| |
| bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) { |
| StackFrame::State state; |
| if (frame->is_entry() || frame->is_construct_entry()) { |
| // See EntryFrame::GetCallerState. It computes the caller FP address |
| // and calls ExitFrame::GetStateForFramePointer on it. We need to be |
| // sure that caller FP address is valid. |
| Address caller_fp = |
| Memory<Address>(frame->fp() + EntryFrameConstants::kCallerFPOffset); |
| if (!IsValidExitFrame(caller_fp)) return false; |
| } else if (frame->is_arguments_adaptor()) { |
| // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that |
| // the number of arguments is stored on stack as Smi. We need to check |
| // that it really an Smi. |
| Object number_of_args = |
| reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->GetExpression(0); |
| if (!number_of_args.IsSmi()) { |
| return false; |
| } |
| } |
| frame->ComputeCallerState(&state); |
| return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) && |
| SingletonFor(frame->GetCallerState(&state)) != nullptr; |
| } |
| |
| bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const { |
| if (!IsValidStackAddress(fp)) return false; |
| Address sp = ExitFrame::ComputeStackPointer(fp); |
| if (!IsValidStackAddress(sp)) return false; |
| StackFrame::State state; |
| ExitFrame::FillState(fp, sp, &state); |
| MSAN_MEMORY_IS_INITIALIZED(state.pc_address, sizeof(state.pc_address)); |
| return *state.pc_address != kNullAddress; |
| } |
| |
| void SafeStackFrameIterator::Advance() { |
| while (true) { |
| AdvanceOneFrame(); |
| if (done()) break; |
| ExternalCallbackScope* last_callback_scope = nullptr; |
| while (external_callback_scope_ != nullptr && |
| external_callback_scope_->scope_address() < frame_->fp()) { |
| // As long as the setup of a frame is not atomic, we may happen to be |
| // in an interval where an ExternalCallbackScope is already created, |
| // but the frame is not yet entered. So we are actually observing |
| // the previous frame. |
| // Skip all the ExternalCallbackScope's that are below the current fp. |
| last_callback_scope = external_callback_scope_; |
| external_callback_scope_ = external_callback_scope_->previous(); |
| } |
| if (frame_->is_java_script() || frame_->is_wasm() || |
| frame_->is_wasm_to_js() || frame_->is_js_to_wasm()) { |
| break; |
| } |
| if (frame_->is_exit() || frame_->is_builtin_exit()) { |
| // Some of the EXIT frames may have ExternalCallbackScope allocated on |
| // top of them. In that case the scope corresponds to the first EXIT |
| // frame beneath it. There may be other EXIT frames on top of the |
| // ExternalCallbackScope, just skip them as we cannot collect any useful |
| // information about them. |
| if (last_callback_scope) { |
| frame_->state_.pc_address = |
| last_callback_scope->callback_entrypoint_address(); |
| } |
| break; |
| } |
| } |
| } |
| |
| // ------------------------------------------------------------------------- |
| |
| namespace { |
| Code GetContainingCode(Isolate* isolate, Address pc) { |
| return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code; |
| } |
| } // namespace |
| |
| Code StackFrame::LookupCode() const { |
| Code result = GetContainingCode(isolate(), pc()); |
| DCHECK_GE(pc(), result.InstructionStart()); |
| DCHECK_LT(pc(), result.InstructionEnd()); |
| return result; |
| } |
| |
| void StackFrame::IteratePc(RootVisitor* v, Address* pc_address, |
| Address* constant_pool_address, Code holder) { |
| Address old_pc = ReadPC(pc_address); |
| DCHECK(ReadOnlyHeap::Contains(holder) || |
| holder.GetHeap()->GcSafeCodeContains(holder, old_pc)); |
| unsigned pc_offset = |
| static_cast<unsigned>(old_pc - holder.InstructionStart()); |
| Object code = holder; |
| v->VisitRootPointer(Root::kTop, nullptr, FullObjectSlot(&code)); |
| if (code == holder) return; |
| holder = Code::unchecked_cast(code); |
| Address pc = holder.InstructionStart() + pc_offset; |
| // TODO(v8:10026): avoid replacing a signed pointer. |
| PointerAuthentication::ReplacePC(pc_address, pc, kSystemPointerSize); |
| if (FLAG_enable_embedded_constant_pool && constant_pool_address) { |
| *constant_pool_address = holder.constant_pool(); |
| } |
| } |
| |
| void StackFrame::SetReturnAddressLocationResolver( |
| ReturnAddressLocationResolver resolver) { |
| DCHECK_NULL(return_address_location_resolver_); |
| return_address_location_resolver_ = resolver; |
| } |
| |
| StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator, |
| State* state) { |
| DCHECK_NE(state->fp, kNullAddress); |
| |
| MSAN_MEMORY_IS_INITIALIZED( |
| state->fp + CommonFrameConstants::kContextOrFrameTypeOffset, |
| kSystemPointerSize); |
| intptr_t marker = Memory<intptr_t>( |
| state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); |
| Address pc = StackFrame::ReadPC(state->pc_address); |
| if (!iterator->can_access_heap_objects_) { |
| // TODO(titzer): "can_access_heap_objects" is kind of bogus. It really |
| // means that we are being called from the profiler, which can interrupt |
| // the VM with a signal at any arbitrary instruction, with essentially |
| // anything on the stack. So basically none of these checks are 100% |
| // reliable. |
| MSAN_MEMORY_IS_INITIALIZED( |
| state->fp + StandardFrameConstants::kFunctionOffset, |
| kSystemPointerSize); |
| Object maybe_function = Object( |
| Memory<Address>(state->fp + StandardFrameConstants::kFunctionOffset)); |
| if (!StackFrame::IsTypeMarker(marker)) { |
| if (maybe_function.IsSmi()) { |
| return NATIVE; |
| } else if (IsInterpreterFramePc(iterator->isolate(), pc, state)) { |
| return INTERPRETED; |
| } else { |
| return OPTIMIZED; |
| } |
| } |
| } else { |
| // If the {pc} does not point into WebAssembly code we can rely on the |
| // returned {wasm_code} to be null and fall back to {GetContainingCode}. |
| wasm::WasmCodeRefScope code_ref_scope; |
| wasm::WasmCode* wasm_code = |
| iterator->isolate()->wasm_engine()->code_manager()->LookupCode(pc); |
| if (wasm_code != nullptr) { |
| switch (wasm_code->kind()) { |
| case wasm::WasmCode::kFunction: |
| return WASM; |
| case wasm::WasmCode::kWasmToCapiWrapper: |
| return WASM_EXIT; |
| case wasm::WasmCode::kWasmToJsWrapper: |
| return WASM_TO_JS; |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| // Look up the code object to figure out the type of the stack frame. |
| Code code_obj = GetContainingCode(iterator->isolate(), pc); |
| if (!code_obj.is_null()) { |
| switch (code_obj.kind()) { |
| case CodeKind::BUILTIN: |
| if (StackFrame::IsTypeMarker(marker)) break; |
| if (code_obj.is_interpreter_trampoline_builtin()) { |
| return INTERPRETED; |
| } |
| if (code_obj.is_turbofanned()) { |
| // TODO(bmeurer): We treat frames for BUILTIN Code objects as |
| // OptimizedFrame for now (all the builtins with JavaScript |
| // linkage are actually generated with TurboFan currently, so |
| // this is sound). |
| return OPTIMIZED; |
| } |
| return BUILTIN; |
| case CodeKind::TURBOFAN: |
| case CodeKind::NATIVE_CONTEXT_INDEPENDENT: |
| case CodeKind::TURBOPROP: |
| return OPTIMIZED; |
| case CodeKind::JS_TO_WASM_FUNCTION: |
| return JS_TO_WASM; |
| case CodeKind::JS_TO_JS_FUNCTION: |
| return STUB; |
| case CodeKind::C_WASM_ENTRY: |
| return C_WASM_ENTRY; |
| case CodeKind::WASM_TO_JS_FUNCTION: |
| return WASM_TO_JS; |
| case CodeKind::WASM_FUNCTION: |
| case CodeKind::WASM_TO_CAPI_FUNCTION: |
| // Never appear as on-heap {Code} objects. |
| UNREACHABLE(); |
| default: |
| // All other types should have an explicit marker |
| break; |
| } |
| } else { |
| return NATIVE; |
| } |
| } |
| } |
| DCHECK(StackFrame::IsTypeMarker(marker)); |
| StackFrame::Type candidate = StackFrame::MarkerToType(marker); |
| switch (candidate) { |
| case ENTRY: |
| case CONSTRUCT_ENTRY: |
| case EXIT: |
| case BUILTIN_CONTINUATION: |
| case JAVA_SCRIPT_BUILTIN_CONTINUATION: |
| case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: |
| case BUILTIN_EXIT: |
| case STUB: |
| case INTERNAL: |
| case CONSTRUCT: |
| case ARGUMENTS_ADAPTOR: |
| case WASM_TO_JS: |
| case WASM: |
| case WASM_COMPILE_LAZY: |
| case WASM_EXIT: |
| case WASM_DEBUG_BREAK: |
| case JS_TO_WASM: |
| return candidate; |
| case OPTIMIZED: |
| case INTERPRETED: |
| default: |
| // Unoptimized and optimized JavaScript frames, including |
| // interpreted frames, should never have a StackFrame::Type |
| // marker. If we find one, we're likely being called from the |
| // profiler in a bogus stack frame. |
| return NATIVE; |
| } |
| } |
| |
| #ifdef DEBUG |
| bool StackFrame::can_access_heap_objects() const { |
| return iterator_->can_access_heap_objects_; |
| } |
| #endif |
| |
| StackFrame::Type StackFrame::GetCallerState(State* state) const { |
| ComputeCallerState(state); |
| return ComputeType(iterator_, state); |
| } |
| |
| Address CommonFrame::GetCallerStackPointer() const { |
| return fp() + CommonFrameConstants::kCallerSPOffset; |
| } |
| |
| void NativeFrame::ComputeCallerState(State* state) const { |
| state->sp = caller_sp(); |
| state->fp = Memory<Address>(fp() + CommonFrameConstants::kCallerFPOffset); |
| state->pc_address = ResolveReturnAddressLocation( |
| reinterpret_cast<Address*>(fp() + CommonFrameConstants::kCallerPCOffset)); |
| state->callee_pc_address = nullptr; |
| state->constant_pool_address = nullptr; |
| } |
| |
| Code EntryFrame::unchecked_code() const { |
| return isolate()->heap()->builtin(Builtins::kJSEntry); |
| } |
| |
| void EntryFrame::ComputeCallerState(State* state) const { |
| GetCallerState(state); |
| } |
| |
| StackFrame::Type EntryFrame::GetCallerState(State* state) const { |
| const int offset = EntryFrameConstants::kCallerFPOffset; |
| Address fp = Memory<Address>(this->fp() + offset); |
| return ExitFrame::GetStateForFramePointer(fp, state); |
| } |
| |
| StackFrame::Type CWasmEntryFrame::GetCallerState(State* state) const { |
| const int offset = CWasmEntryFrameConstants::kCEntryFPOffset; |
| Address fp = Memory<Address>(this->fp() + offset); |
| return ExitFrame::GetStateForFramePointer(fp, state); |
| } |
| |
| Code ConstructEntryFrame::unchecked_code() const { |
| return isolate()->heap()->builtin(Builtins::kJSConstructEntry); |
| } |
| |
| void ExitFrame::ComputeCallerState(State* state) const { |
| // Set up the caller state. |
| state->sp = caller_sp(); |
| state->fp = Memory<Address>(fp() + ExitFrameConstants::kCallerFPOffset); |
| state->pc_address = ResolveReturnAddressLocation( |
| reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset)); |
| state->callee_pc_address = nullptr; |
| if (FLAG_enable_embedded_constant_pool) { |
| state->constant_pool_address = reinterpret_cast<Address*>( |
| fp() + ExitFrameConstants::kConstantPoolOffset); |
| } |
| } |
| |
| void ExitFrame::Iterate(RootVisitor* v) const { |
| // The arguments are traversed as part of the expression stack of |
| // the calling frame. |
| IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); |
| } |
| |
| StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { |
| if (fp == 0) return NONE; |
| StackFrame::Type type = ComputeFrameType(fp); |
| Address sp = (type == WASM_EXIT) ? WasmExitFrame::ComputeStackPointer(fp) |
| : ExitFrame::ComputeStackPointer(fp); |
| FillState(fp, sp, state); |
| DCHECK_NE(*state->pc_address, kNullAddress); |
| return type; |
| } |
| |
| StackFrame::Type ExitFrame::ComputeFrameType(Address fp) { |
| // Distinguish between between regular and builtin exit frames. |
| // Default to EXIT in all hairy cases (e.g., when called from profiler). |
| const int offset = ExitFrameConstants::kFrameTypeOffset; |
| Object marker(Memory<Address>(fp + offset)); |
| |
| if (!marker.IsSmi()) { |
| return EXIT; |
| } |
| |
| intptr_t marker_int = bit_cast<intptr_t>(marker); |
| |
| StackFrame::Type frame_type = static_cast<StackFrame::Type>(marker_int >> 1); |
| if (frame_type == EXIT || frame_type == BUILTIN_EXIT || |
| frame_type == WASM_EXIT) { |
| return frame_type; |
| } |
| |
| return EXIT; |
| } |
| |
| Address ExitFrame::ComputeStackPointer(Address fp) { |
| MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset, |
| kSystemPointerSize); |
| return Memory<Address>(fp + ExitFrameConstants::kSPOffset); |
| } |
| |
| Address WasmExitFrame::ComputeStackPointer(Address fp) { |
| // For WASM_EXIT frames, {sp} is only needed for finding the PC slot, |
| // everything else is handled via safepoint information. |
| Address sp = fp + WasmExitFrameConstants::kWasmInstanceOffset; |
| DCHECK_EQ(sp - 1 * kPCOnStackSize, |
| fp + WasmExitFrameConstants::kCallingPCOffset); |
| return sp; |
| } |
| |
| void ExitFrame::FillState(Address fp, Address sp, State* state) { |
| state->sp = sp; |
| state->fp = fp; |
| state->pc_address = ResolveReturnAddressLocation( |
| reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize)); |
| state->callee_pc_address = nullptr; |
| // The constant pool recorded in the exit frame is not associated |
| // with the pc in this state (the return address into a C entry |
| // stub). ComputeCallerState will retrieve the constant pool |
| // together with the associated caller pc. |
| state->constant_pool_address = nullptr; |
| } |
| |
| JSFunction BuiltinExitFrame::function() const { |
| return JSFunction::cast(target_slot_object()); |
| } |
| |
| Object BuiltinExitFrame::receiver() const { return receiver_slot_object(); } |
| |
| bool BuiltinExitFrame::IsConstructor() const { |
| return !new_target_slot_object().IsUndefined(isolate()); |
| } |
| |
| Object BuiltinExitFrame::GetParameter(int i) const { |
| DCHECK(i >= 0 && i < ComputeParametersCount()); |
| int offset = |
| BuiltinExitFrameConstants::kFirstArgumentOffset + i * kSystemPointerSize; |
| return Object(Memory<Address>(fp() + offset)); |
| } |
| |
| int BuiltinExitFrame::ComputeParametersCount() const { |
| Object argc_slot = argc_slot_object(); |
| DCHECK(argc_slot.IsSmi()); |
| // Argc also counts the receiver, target, new target, and argc itself as args, |
| // therefore the real argument count is argc - 4. |
| int argc = Smi::ToInt(argc_slot) - 4; |
| DCHECK_GE(argc, 0); |
| return argc; |
| } |
| |
| namespace { |
| void PrintIndex(StringStream* accumulator, StackFrame::PrintMode mode, |
| int index) { |
| accumulator->Add((mode == StackFrame::OVERVIEW) ? "%5d: " : "[%d]: ", index); |
| } |
| |
| const char* StringForStackFrameType(StackFrame::Type type) { |
| switch (type) { |
| #define CASE(value, name) \ |
| case StackFrame::value: \ |
| return #name; |
| STACK_FRAME_TYPE_LIST(CASE) |
| #undef CASE |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } // namespace |
| |
| void StackFrame::Print(StringStream* accumulator, PrintMode mode, |
| int index) const { |
| DisallowHeapAllocation no_gc; |
| PrintIndex(accumulator, mode, index); |
| accumulator->Add(StringForStackFrameType(type())); |
| accumulator->Add(" [pc: %p]\n", reinterpret_cast<void*>(pc())); |
| } |
| |
| void BuiltinExitFrame::Print(StringStream* accumulator, PrintMode mode, |
| int index) const { |
| DisallowHeapAllocation no_gc; |
| Object receiver = this->receiver(); |
| JSFunction function = this->function(); |
| |
| accumulator->PrintSecurityTokenIfChanged(function); |
| PrintIndex(accumulator, mode, index); |
| accumulator->Add("builtin exit frame: "); |
| Code code; |
| if (IsConstructor()) accumulator->Add("new "); |
| accumulator->PrintFunction(function, receiver, &code); |
| |
| accumulator->Add("(this=%o", receiver); |
| |
| // Print the parameters. |
| int parameters_count = ComputeParametersCount(); |
| for (int i = 0; i < parameters_count; i++) { |
| accumulator->Add(",%o", GetParameter(i)); |
| } |
| |
| accumulator->Add(")\n\n"); |
| } |
| |
| Address CommonFrame::GetExpressionAddress(int n) const { |
| const int offset = StandardFrameConstants::kExpressionsOffset; |
| return fp() + offset - n * kSystemPointerSize; |
| } |
| |
| Address InterpretedFrame::GetExpressionAddress(int n) const { |
| const int offset = InterpreterFrameConstants::kExpressionsOffset; |
| return fp() + offset - n * kSystemPointerSize; |
| } |
| |
| Object CommonFrame::context() const { |
| return ReadOnlyRoots(isolate()).undefined_value(); |
| } |
| |
| int CommonFrame::position() const { |
| AbstractCode code = AbstractCode::cast(LookupCode()); |
| int code_offset = static_cast<int>(pc() - code.InstructionStart()); |
| return code.SourcePosition(code_offset); |
| } |
| |
| int CommonFrame::ComputeExpressionsCount() const { |
| Address base = GetExpressionAddress(0); |
| Address limit = sp() - kSystemPointerSize; |
| DCHECK(base >= limit); // stack grows downwards |
| // Include register-allocated locals in number of expressions. |
| return static_cast<int>((base - limit) / kSystemPointerSize); |
| } |
| |
| void CommonFrame::ComputeCallerState(State* state) const { |
| state->sp = caller_sp(); |
| state->fp = caller_fp(); |
| state->pc_address = ResolveReturnAddressLocation( |
| reinterpret_cast<Address*>(ComputePCAddress(fp()))); |
| state->callee_fp = fp(); |
| state->callee_pc_address = pc_address(); |
| state->constant_pool_address = |
| reinterpret_cast<Address*>(ComputeConstantPoolAddress(fp())); |
| } |
| |
| void CommonFrame::Summarize(std::vector<FrameSummary>* functions) const { |
| // This should only be called on frames which override this method. |
| UNREACHABLE(); |
| } |
| |
| void CommonFrame::IterateCompiledFrame(RootVisitor* v) const { |
| // Make sure that we're not doing "safe" stack frame iteration. We cannot |
| // possibly find pointers in optimized frames in that state. |
| DCHECK(can_access_heap_objects()); |
| |
| // Find the code and compute the safepoint information. |
| Address inner_pointer = pc(); |
| const wasm::WasmCode* wasm_code = |
| isolate()->wasm_engine()->code_manager()->LookupCode(inner_pointer); |
| SafepointEntry safepoint_entry; |
| uint32_t stack_slots; |
| Code code; |
| bool has_tagged_params = false; |
| uint32_t tagged_parameter_slots = 0; |
| if (wasm_code != nullptr) { |
| SafepointTable table(wasm_code); |
| safepoint_entry = table.FindEntry(inner_pointer); |
| stack_slots = wasm_code->stack_slots(); |
| has_tagged_params = wasm_code->kind() != wasm::WasmCode::kFunction && |
| wasm_code->kind() != wasm::WasmCode::kWasmToCapiWrapper; |
| tagged_parameter_slots = wasm_code->tagged_parameter_slots(); |
| } else { |
| InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = |
| isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); |
| if (!entry->safepoint_entry.is_valid()) { |
| entry->safepoint_entry = entry->code.GetSafepointEntry(inner_pointer); |
| DCHECK(entry->safepoint_entry.is_valid()); |
| } else { |
| DCHECK(entry->safepoint_entry.Equals( |
| entry->code.GetSafepointEntry(inner_pointer))); |
| } |
| |
| code = entry->code; |
| safepoint_entry = entry->safepoint_entry; |
| stack_slots = code.stack_slots(); |
| has_tagged_params = code.has_tagged_params(); |
| } |
| uint32_t slot_space = stack_slots * kSystemPointerSize; |
| |
| // Determine the fixed header and spill slot area size. |
| int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp; |
| intptr_t marker = |
| Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); |
| bool typed_frame = StackFrame::IsTypeMarker(marker); |
| if (typed_frame) { |
| StackFrame::Type candidate = StackFrame::MarkerToType(marker); |
| switch (candidate) { |
| case ENTRY: |
| case CONSTRUCT_ENTRY: |
| case EXIT: |
| case BUILTIN_CONTINUATION: |
| case JAVA_SCRIPT_BUILTIN_CONTINUATION: |
| case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: |
| case BUILTIN_EXIT: |
| case ARGUMENTS_ADAPTOR: |
| case STUB: |
| case INTERNAL: |
| case CONSTRUCT: |
| case JS_TO_WASM: |
| case C_WASM_ENTRY: |
| case WASM_DEBUG_BREAK: |
| frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp; |
| break; |
| case WASM_TO_JS: |
| case WASM: |
| case WASM_COMPILE_LAZY: |
| frame_header_size = WasmFrameConstants::kFixedFrameSizeFromFp; |
| break; |
| case WASM_EXIT: |
| // The last value in the frame header is the calling PC, which should |
| // not be visited. |
| static_assert(WasmExitFrameConstants::kFixedSlotCountFromFp == |
| WasmFrameConstants::kFixedSlotCountFromFp + 1, |
| "WasmExitFrame has one slot more than WasmFrame"); |
| frame_header_size = WasmFrameConstants::kFixedFrameSizeFromFp; |
| break; |
| case OPTIMIZED: |
| case INTERPRETED: |
| case BUILTIN: |
| // These frame types have a context, but they are actually stored |
| // in the place on the stack that one finds the frame type. |
| UNREACHABLE(); |
| break; |
| case NATIVE: |
| case NONE: |
| case NUMBER_OF_TYPES: |
| case MANUAL: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| slot_space -= |
| (frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp); |
| |
| FullObjectSlot frame_header_base(&Memory<Address>(fp() - frame_header_size)); |
| FullObjectSlot frame_header_limit( |
| &Memory<Address>(fp() - StandardFrameConstants::kCPSlotSize)); |
| FullObjectSlot parameters_base(&Memory<Address>(sp())); |
| FullObjectSlot parameters_limit(frame_header_base.address() - slot_space); |
| |
| // Visit the rest of the parameters if they are tagged. |
| if (has_tagged_params) { |
| v->VisitRootPointers(Root::kTop, nullptr, parameters_base, |
| parameters_limit); |
| } |
| |
| // Visit pointer spill slots and locals. |
| uint8_t* safepoint_bits = safepoint_entry.bits(); |
| for (unsigned index = 0; index < stack_slots; index++) { |
| int byte_index = index >> kBitsPerByteLog2; |
| int bit_index = index & (kBitsPerByte - 1); |
| if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) { |
| FullObjectSlot spill_slot = parameters_limit + index; |
| #ifdef V8_COMPRESS_POINTERS |
| // Spill slots may contain compressed values in which case the upper |
| // 32-bits will contain zeros. In order to simplify handling of such |
| // slots in GC we ensure that the slot always contains full value. |
| |
| // The spill slot may actually contain weak references so we load/store |
| // values using spill_slot.location() in order to avoid dealing with |
| // FullMaybeObjectSlots here. |
| Tagged_t compressed_value = static_cast<Tagged_t>(*spill_slot.location()); |
| if (!HAS_SMI_TAG(compressed_value)) { |
| // We don't need to update smi values. |
| *spill_slot.location() = |
| DecompressTaggedPointer(isolate(), compressed_value); |
| } |
| #endif |
| v->VisitRootPointer(Root::kTop, nullptr, spill_slot); |
| } |
| } |
| |
| // Visit tagged parameters that have been passed to the function of this |
| // frame. Conceptionally these parameters belong to the parent frame. However, |
| // the exact count is only known by this frame (in the presence of tail calls, |
| // this information cannot be derived from the call site). |
| if (tagged_parameter_slots > 0) { |
| FullObjectSlot tagged_parameter_base(&Memory<Address>(caller_sp())); |
| FullObjectSlot tagged_parameter_limit = |
| tagged_parameter_base + tagged_parameter_slots; |
| |
| v->VisitRootPointers(Root::kTop, nullptr, tagged_parameter_base, |
| tagged_parameter_limit); |
| } |
| |
| // For the off-heap code cases, we can skip this. |
| if (!code.is_null()) { |
| // Visit the return address in the callee and incoming arguments. |
| IteratePc(v, pc_address(), constant_pool_address(), code); |
| } |
| |
| // If this frame has JavaScript ABI, visit the context (in stub and JS |
| // frames) and the function (in JS frames). If it has WebAssembly ABI, visit |
| // the instance object. |
| if (!typed_frame) { |
| // JavaScript ABI frames also contain arguments count value which is stored |
| // untagged, we don't need to visit it. |
| frame_header_base += 1; |
| } |
| v->VisitRootPointers(Root::kTop, nullptr, frame_header_base, |
| frame_header_limit); |
| } |
| |
| Code StubFrame::unchecked_code() const { |
| return isolate()->FindCodeObject(pc()); |
| } |
| |
| int StubFrame::LookupExceptionHandlerInTable() { |
| Code code = LookupCode(); |
| DCHECK(code.is_turbofanned()); |
| DCHECK_EQ(code.kind(), CodeKind::BUILTIN); |
| HandlerTable table(code); |
| int pc_offset = static_cast<int>(pc() - code.InstructionStart()); |
| return table.LookupReturn(pc_offset); |
| } |
| |
| void OptimizedFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); } |
| |
| void JavaScriptFrame::SetParameterValue(int index, Object value) const { |
| Memory<Address>(GetParameterSlot(index)) = value.ptr(); |
| } |
| |
| bool JavaScriptFrame::IsConstructor() const { |
| Address fp = caller_fp(); |
| if (has_adapted_arguments()) { |
| // Skip the arguments adaptor frame and look at the real caller. |
| fp = Memory<Address>(fp + StandardFrameConstants::kCallerFPOffset); |
| } |
| return IsConstructFrame(fp); |
| } |
| |
| bool JavaScriptFrame::HasInlinedFrames() const { |
| std::vector<SharedFunctionInfo> functions; |
| GetFunctions(&functions); |
| return functions.size() > 1; |
| } |
| |
| Code CommonFrameWithJSLinkage::unchecked_code() const { |
| return function().code(); |
| } |
| |
| int OptimizedFrame::ComputeParametersCount() const { |
| Code code = LookupCode(); |
| if (code.kind() == CodeKind::BUILTIN) { |
| return static_cast<int>( |
| Memory<intptr_t>(fp() + StandardFrameConstants::kArgCOffset)); |
| } else { |
| return JavaScriptFrame::ComputeParametersCount(); |
| } |
| } |
| |
| Address JavaScriptFrame::GetCallerStackPointer() const { |
| return fp() + StandardFrameConstants::kCallerSPOffset; |
| } |
| |
| void JavaScriptFrame::GetFunctions( |
| std::vector<SharedFunctionInfo>* functions) const { |
| DCHECK(functions->empty()); |
| functions->push_back(function().shared()); |
| } |
| |
| void JavaScriptFrame::GetFunctions( |
| std::vector<Handle<SharedFunctionInfo>>* functions) const { |
| DCHECK(functions->empty()); |
| std::vector<SharedFunctionInfo> raw_functions; |
| GetFunctions(&raw_functions); |
| for (const auto& raw_function : raw_functions) { |
| functions->push_back( |
| Handle<SharedFunctionInfo>(raw_function, function().GetIsolate())); |
| } |
| } |
| |
| bool CommonFrameWithJSLinkage::IsConstructor() const { |
| return IsConstructFrame(caller_fp()); |
| } |
| |
| void CommonFrameWithJSLinkage::Summarize( |
| std::vector<FrameSummary>* functions) const { |
| DCHECK(functions->empty()); |
| Code code = LookupCode(); |
| int offset = static_cast<int>(pc() - code.InstructionStart()); |
| Handle<AbstractCode> abstract_code(AbstractCode::cast(code), isolate()); |
| Handle<FixedArray> params = GetParameters(); |
| FrameSummary::JavaScriptFrameSummary summary( |
| isolate(), receiver(), function(), *abstract_code, offset, |
| IsConstructor(), *params); |
| functions->push_back(summary); |
| } |
| |
| JSFunction JavaScriptFrame::function() const { |
| return JSFunction::cast(function_slot_object()); |
| } |
| |
| Object JavaScriptFrame::unchecked_function() const { |
| // During deoptimization of an optimized function, we may have yet to |
| // materialize some closures on the stack. The arguments marker object |
| // marks this case. |
| DCHECK(function_slot_object().IsJSFunction() || |
| ReadOnlyRoots(isolate()).arguments_marker() == function_slot_object()); |
| return function_slot_object(); |
| } |
| |
| Object CommonFrameWithJSLinkage::receiver() const { return GetParameter(-1); } |
| |
| Object JavaScriptFrame::context() const { |
| const int offset = StandardFrameConstants::kContextOffset; |
| Object maybe_result(Memory<Address>(fp() + offset)); |
| DCHECK(!maybe_result.IsSmi()); |
| return maybe_result; |
| } |
| |
| Script JavaScriptFrame::script() const { |
| return Script::cast(function().shared().script()); |
| } |
| |
| int CommonFrameWithJSLinkage::LookupExceptionHandlerInTable( |
| int* stack_depth, HandlerTable::CatchPrediction* prediction) { |
| DCHECK(!LookupCode().has_handler_table()); |
| DCHECK(!LookupCode().is_optimized_code()); |
| return -1; |
| } |
| |
| void JavaScriptFrame::PrintFunctionAndOffset(JSFunction function, |
| AbstractCode code, int code_offset, |
| FILE* file, |
| bool print_line_number) { |
| PrintF(file, "%s", CodeKindIsOptimizedJSFunction(code.kind()) ? "*" : "~"); |
| function.PrintName(file); |
| PrintF(file, "+%d", code_offset); |
| if (print_line_number) { |
| SharedFunctionInfo shared = function.shared(); |
| int source_pos = code.SourcePosition(code_offset); |
| Object maybe_script = shared.script(); |
| if (maybe_script.IsScript()) { |
| Script script = Script::cast(maybe_script); |
| int line = script.GetLineNumber(source_pos) + 1; |
| Object script_name_raw = script.name(); |
| if (script_name_raw.IsString()) { |
| String script_name = String::cast(script.name()); |
| std::unique_ptr<char[]> c_script_name = |
| script_name.ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); |
| PrintF(file, " at %s:%d", c_script_name.get(), line); |
| } else { |
| PrintF(file, " at <unknown>:%d", line); |
| } |
| } else { |
| PrintF(file, " at <unknown>:<unknown>"); |
| } |
| } |
| } |
| |
| void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args, |
| bool print_line_number) { |
| // constructor calls |
| DisallowHeapAllocation no_allocation; |
| JavaScriptFrameIterator it(isolate); |
| while (!it.done()) { |
| if (it.frame()->is_java_script()) { |
| JavaScriptFrame* frame = it.frame(); |
| if (frame->IsConstructor()) PrintF(file, "new "); |
| JSFunction function = frame->function(); |
| int code_offset = 0; |
| if (frame->is_interpreted()) { |
| InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame); |
| code_offset = iframe->GetBytecodeOffset(); |
| } else { |
| Code code = frame->unchecked_code(); |
| code_offset = static_cast<int>(frame->pc() - code.InstructionStart()); |
| } |
| PrintFunctionAndOffset(function, function.abstract_code(), code_offset, |
| file, print_line_number); |
| if (print_args) { |
| // function arguments |
| // (we are intentionally only printing the actually |
| // supplied parameters, not all parameters required) |
| PrintF(file, "(this="); |
| frame->receiver().ShortPrint(file); |
| const int length = frame->ComputeParametersCount(); |
| for (int i = 0; i < length; i++) { |
| PrintF(file, ", "); |
| frame->GetParameter(i).ShortPrint(file); |
| } |
| PrintF(file, ")"); |
| } |
| break; |
| } |
| it.Advance(); |
| } |
| } |
| |
| void JavaScriptFrame::CollectFunctionAndOffsetForICStats(JSFunction function, |
| AbstractCode code, |
| int code_offset) { |
| auto ic_stats = ICStats::instance(); |
| ICInfo& ic_info = ic_stats->Current(); |
| SharedFunctionInfo shared = function.shared(); |
| |
| ic_info.function_name = ic_stats->GetOrCacheFunctionName(function); |
| ic_info.script_offset = code_offset; |
| |
| int source_pos = code.SourcePosition(code_offset); |
| Object maybe_script = shared.script(); |
| if (maybe_script.IsScript()) { |
| Script script = Script::cast(maybe_script); |
| ic_info.line_num = script.GetLineNumber(source_pos) + 1; |
| ic_info.column_num = script.GetColumnNumber(source_pos); |
| ic_info.script_name = ic_stats->GetOrCacheScriptName(script); |
| } |
| } |
| |
| Object CommonFrameWithJSLinkage::GetParameter(int index) const { |
| return Object(Memory<Address>(GetParameterSlot(index))); |
| } |
| |
| int CommonFrameWithJSLinkage::ComputeParametersCount() const { |
| DCHECK(can_access_heap_objects() && |
| isolate()->heap()->gc_state() == Heap::NOT_IN_GC); |
| return function().shared().internal_formal_parameter_count(); |
| } |
| |
| #ifdef V8_NO_ARGUMENTS_ADAPTOR |
| int JavaScriptFrame::GetActualArgumentCount() const { |
| return static_cast<int>( |
| Memory<intptr_t>(fp() + StandardFrameConstants::kArgCOffset)); |
| } |
| #endif |
| |
| Handle<FixedArray> CommonFrameWithJSLinkage::GetParameters() const { |
| if (V8_LIKELY(!FLAG_detailed_error_stack_trace)) { |
| return isolate()->factory()->empty_fixed_array(); |
| } |
| int param_count = ComputeParametersCount(); |
| Handle<FixedArray> parameters = |
| isolate()->factory()->NewFixedArray(param_count); |
| for (int i = 0; i < param_count; i++) { |
| parameters->set(i, GetParameter(i)); |
| } |
| |
| return parameters; |
| } |
| |
| JSFunction JavaScriptBuiltinContinuationFrame::function() const { |
| const int offset = BuiltinContinuationFrameConstants::kFunctionOffset; |
| return JSFunction::cast(Object(base::Memory<Address>(fp() + offset))); |
| } |
| |
| int JavaScriptBuiltinContinuationFrame::ComputeParametersCount() const { |
| // Assert that the first allocatable register is also the argument count |
| // register. |
| DCHECK_EQ(RegisterConfiguration::Default()->GetAllocatableGeneralCode(0), |
| kJavaScriptCallArgCountRegister.code()); |
| Object argc_object( |
| Memory<Address>(fp() + BuiltinContinuationFrameConstants::kArgCOffset)); |
| return Smi::ToInt(argc_object); |
| } |
| |
| intptr_t JavaScriptBuiltinContinuationFrame::GetSPToFPDelta() const { |
| Address height_slot = |
| fp() + BuiltinContinuationFrameConstants::kFrameSPtoFPDeltaAtDeoptimize; |
| intptr_t height = Smi::ToInt(Smi(Memory<Address>(height_slot))); |
| return height; |
| } |
| |
| Object JavaScriptBuiltinContinuationFrame::context() const { |
| return Object(Memory<Address>( |
| fp() + BuiltinContinuationFrameConstants::kBuiltinContextOffset)); |
| } |
| |
| void JavaScriptBuiltinContinuationWithCatchFrame::SetException( |
| Object exception) { |
| int argc = ComputeParametersCount(); |
| Address exception_argument_slot = |
| fp() + BuiltinContinuationFrameConstants::kFixedFrameSizeAboveFp + |
| (argc - 1) * kSystemPointerSize; |
| |
| // Only allow setting exception if previous value was the hole. |
| CHECK_EQ(ReadOnlyRoots(isolate()).the_hole_value(), |
| Object(Memory<Address>(exception_argument_slot))); |
| Memory<Address>(exception_argument_slot) = exception.ptr(); |
| } |
| |
| FrameSummary::JavaScriptFrameSummary::JavaScriptFrameSummary( |
| Isolate* isolate, Object receiver, JSFunction function, |
| AbstractCode abstract_code, int code_offset, bool is_constructor, |
| FixedArray parameters) |
| : FrameSummaryBase(isolate, FrameSummary::JAVA_SCRIPT), |
| receiver_(receiver, isolate), |
| function_(function, isolate), |
| abstract_code_(abstract_code, isolate), |
| code_offset_(code_offset), |
| is_constructor_(is_constructor), |
| parameters_(parameters, isolate) { |
| DCHECK(abstract_code.IsBytecodeArray() || |
| !CodeKindIsOptimizedJSFunction(Code::cast(abstract_code).kind())); |
| } |
| |
| void FrameSummary::EnsureSourcePositionsAvailable() { |
| if (IsJavaScript()) { |
| java_script_summary_.EnsureSourcePositionsAvailable(); |
| } |
| } |
| |
| bool FrameSummary::AreSourcePositionsAvailable() const { |
| if (IsJavaScript()) { |
| return java_script_summary_.AreSourcePositionsAvailable(); |
| } |
| return true; |
| } |
| |
| void FrameSummary::JavaScriptFrameSummary::EnsureSourcePositionsAvailable() { |
| Handle<SharedFunctionInfo> shared(function()->shared(), isolate()); |
| SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate(), shared); |
| } |
| |
| bool FrameSummary::JavaScriptFrameSummary::AreSourcePositionsAvailable() const { |
| return !FLAG_enable_lazy_source_positions || |
| function()->shared().GetBytecodeArray().HasSourcePositionTable(); |
| } |
| |
| bool FrameSummary::JavaScriptFrameSummary::is_subject_to_debugging() const { |
| return function()->shared().IsSubjectToDebugging(); |
| } |
| |
| int FrameSummary::JavaScriptFrameSummary::SourcePosition() const { |
| return abstract_code()->SourcePosition(code_offset()); |
| } |
| |
| int FrameSummary::JavaScriptFrameSummary::SourceStatementPosition() const { |
| return abstract_code()->SourceStatementPosition(code_offset()); |
| } |
| |
| Handle<Object> FrameSummary::JavaScriptFrameSummary::script() const { |
| return handle(function_->shared().script(), isolate()); |
| } |
| |
| Handle<String> FrameSummary::JavaScriptFrameSummary::FunctionName() const { |
| return JSFunction::GetDebugName(function_); |
| } |
| |
| Handle<Context> FrameSummary::JavaScriptFrameSummary::native_context() const { |
| return handle(function_->context().native_context(), isolate()); |
| } |
| |
| FrameSummary::WasmFrameSummary::WasmFrameSummary( |
| Isolate* isolate, Handle<WasmInstanceObject> instance, wasm::WasmCode* code, |
| int code_offset, bool at_to_number_conversion) |
| : FrameSummaryBase(isolate, WASM), |
| wasm_instance_(instance), |
| at_to_number_conversion_(at_to_number_conversion), |
| code_(code), |
| code_offset_(code_offset) {} |
| |
| Handle<Object> FrameSummary::WasmFrameSummary::receiver() const { |
| return wasm_instance_->GetIsolate()->global_proxy(); |
| } |
| |
| uint32_t FrameSummary::WasmFrameSummary::function_index() const { |
| return code()->index(); |
| } |
| |
| int FrameSummary::WasmFrameSummary::byte_offset() const { |
| return code_->GetSourcePositionBefore(code_offset()); |
| } |
| |
| int FrameSummary::WasmFrameSummary::SourcePosition() const { |
| const wasm::WasmModule* module = wasm_instance()->module_object().module(); |
| return GetSourcePosition(module, function_index(), byte_offset(), |
| at_to_number_conversion()); |
| } |
| |
| Handle<Script> FrameSummary::WasmFrameSummary::script() const { |
| return handle(wasm_instance()->module_object().script(), |
| wasm_instance()->GetIsolate()); |
| } |
| |
| Handle<String> FrameSummary::WasmFrameSummary::FunctionName() const { |
| Handle<WasmModuleObject> module_object(wasm_instance()->module_object(), |
| isolate()); |
| return WasmModuleObject::GetFunctionName(isolate(), module_object, |
| function_index()); |
| } |
| |
| Handle<Context> FrameSummary::WasmFrameSummary::native_context() const { |
| return handle(wasm_instance()->native_context(), isolate()); |
| } |
| |
| FrameSummary::~FrameSummary() { |
| #define FRAME_SUMMARY_DESTR(kind, type, field, desc) \ |
| case kind: \ |
| field.~type(); \ |
| break; |
| switch (base_.kind()) { |
| FRAME_SUMMARY_VARIANTS(FRAME_SUMMARY_DESTR) |
| default: |
| UNREACHABLE(); |
| } |
| #undef FRAME_SUMMARY_DESTR |
| } |
| |
| FrameSummary FrameSummary::GetTop(const CommonFrame* frame) { |
| std::vector<FrameSummary> frames; |
| frame->Summarize(&frames); |
| DCHECK_LT(0, frames.size()); |
| return frames.back(); |
| } |
| |
| FrameSummary FrameSummary::GetBottom(const CommonFrame* frame) { |
| return Get(frame, 0); |
| } |
| |
| FrameSummary FrameSummary::GetSingle(const CommonFrame* frame) { |
| std::vector<FrameSummary> frames; |
| frame->Summarize(&frames); |
| DCHECK_EQ(1, frames.size()); |
| return frames.front(); |
| } |
| |
| FrameSummary FrameSummary::Get(const CommonFrame* frame, int index) { |
| DCHECK_LE(0, index); |
| std::vector<FrameSummary> frames; |
| frame->Summarize(&frames); |
| DCHECK_GT(frames.size(), index); |
| return frames[index]; |
| } |
| |
| #define FRAME_SUMMARY_DISPATCH(ret, name) \ |
| ret FrameSummary::name() const { \ |
| switch (base_.kind()) { \ |
| case JAVA_SCRIPT: \ |
| return java_script_summary_.name(); \ |
| case WASM: \ |
| return wasm_summary_.name(); \ |
| default: \ |
| UNREACHABLE(); \ |
| } \ |
| } |
| |
| FRAME_SUMMARY_DISPATCH(Handle<Object>, receiver) |
| FRAME_SUMMARY_DISPATCH(int, code_offset) |
| FRAME_SUMMARY_DISPATCH(bool, is_constructor) |
| FRAME_SUMMARY_DISPATCH(bool, is_subject_to_debugging) |
| FRAME_SUMMARY_DISPATCH(Handle<Object>, script) |
| FRAME_SUMMARY_DISPATCH(int, SourcePosition) |
| FRAME_SUMMARY_DISPATCH(int, SourceStatementPosition) |
| FRAME_SUMMARY_DISPATCH(Handle<String>, FunctionName) |
| FRAME_SUMMARY_DISPATCH(Handle<Context>, native_context) |
| |
| #undef FRAME_SUMMARY_DISPATCH |
| |
| void OptimizedFrame::Summarize(std::vector<FrameSummary>* frames) const { |
| DCHECK(frames->empty()); |
| DCHECK(is_optimized()); |
| |
| // Delegate to JS frame in absence of turbofan deoptimization. |
| // TODO(turbofan): Revisit once we support deoptimization across the board. |
| Code code = LookupCode(); |
| if (code.kind() == CodeKind::BUILTIN) { |
| return JavaScriptFrame::Summarize(frames); |
| } |
| |
| int deopt_index = Safepoint::kNoDeoptimizationIndex; |
| DeoptimizationData const data = GetDeoptimizationData(&deopt_index); |
| if (deopt_index == Safepoint::kNoDeoptimizationIndex) { |
| CHECK(data.is_null()); |
| FATAL("Missing deoptimization information for OptimizedFrame::Summarize."); |
| } |
| |
| // Prepare iteration over translation. Note that the below iteration might |
| // materialize objects without storing them back to the Isolate, this will |
| // lead to objects being re-materialized again for each summary. |
| TranslatedState translated(this); |
| translated.Prepare(fp()); |
| |
| // We create the summary in reverse order because the frames |
| // in the deoptimization translation are ordered bottom-to-top. |
| bool is_constructor = IsConstructor(); |
| for (auto it = translated.begin(); it != translated.end(); it++) { |
| if (it->kind() == TranslatedFrame::kInterpretedFunction || |
| it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation || |
| it->kind() == |
| TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) { |
| Handle<SharedFunctionInfo> shared_info = it->shared_info(); |
| |
| // The translation commands are ordered and the function is always |
| // at the first position, and the receiver is next. |
| TranslatedFrame::iterator translated_values = it->begin(); |
| |
| // Get or materialize the correct function in the optimized frame. |
| Handle<JSFunction> function = |
| Handle<JSFunction>::cast(translated_values->GetValue()); |
| translated_values++; |
| |
| // Get or materialize the correct receiver in the optimized frame. |
| Handle<Object> receiver = translated_values->GetValue(); |
| translated_values++; |
| |
| // Determine the underlying code object and the position within it from |
| // the translation corresponding to the frame type in question. |
| Handle<AbstractCode> abstract_code; |
| unsigned code_offset; |
| if (it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation || |
| it->kind() == |
| TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) { |
| code_offset = 0; |
| abstract_code = |
| handle(AbstractCode::cast(isolate()->builtins()->builtin( |
| Builtins::GetBuiltinFromBailoutId(it->node_id()))), |
| isolate()); |
| } else { |
| DCHECK_EQ(it->kind(), TranslatedFrame::kInterpretedFunction); |
| code_offset = it->node_id().ToInt(); // Points to current bytecode. |
| abstract_code = handle(shared_info->abstract_code(), isolate()); |
| } |
| |
| // Append full summary of the encountered JS frame. |
| Handle<FixedArray> params = GetParameters(); |
| FrameSummary::JavaScriptFrameSummary summary( |
| isolate(), *receiver, *function, *abstract_code, code_offset, |
| is_constructor, *params); |
| frames->push_back(summary); |
| is_constructor = false; |
| } else if (it->kind() == TranslatedFrame::kConstructStub) { |
| // The next encountered JS frame will be marked as a constructor call. |
| DCHECK(!is_constructor); |
| is_constructor = true; |
| } |
| } |
| } |
| |
| int OptimizedFrame::LookupExceptionHandlerInTable( |
| int* data, HandlerTable::CatchPrediction* prediction) { |
| // We cannot perform exception prediction on optimized code. Instead, we need |
| // to use FrameSummary to find the corresponding code offset in unoptimized |
| // code to perform prediction there. |
| DCHECK_NULL(prediction); |
| Code code = LookupCode(); |
| HandlerTable table(code); |
| int pc_offset = static_cast<int>(pc() - code.InstructionStart()); |
| DCHECK_NULL(data); // Data is not used and will not return a value. |
| |
| // When the return pc has been replaced by a trampoline there won't be |
| // a handler for this trampoline. Thus we need to use the return pc that |
| // _used to be_ on the stack to get the right ExceptionHandler. |
| if (CodeKindCanDeoptimize(code.kind()) && code.marked_for_deoptimization()) { |
| SafepointTable safepoints(code); |
| pc_offset = safepoints.find_return_pc(pc_offset); |
| } |
| return table.LookupReturn(pc_offset); |
| } |
| |
| DeoptimizationData OptimizedFrame::GetDeoptimizationData( |
| int* deopt_index) const { |
| DCHECK(is_optimized()); |
| |
| JSFunction opt_function = function(); |
| Code code = opt_function.code(); |
| |
| // The code object may have been replaced by lazy deoptimization. Fall |
| // back to a slow search in this case to find the original optimized |
| // code object. |
| if (!code.contains(pc())) { |
| code = isolate()->heap()->GcSafeFindCodeForInnerPointer(pc()); |
| } |
| DCHECK(!code.is_null()); |
| DCHECK(CodeKindCanDeoptimize(code.kind())); |
| |
| SafepointEntry safepoint_entry = code.GetSafepointEntry(pc()); |
| if (safepoint_entry.has_deoptimization_index()) { |
| *deopt_index = safepoint_entry.deoptimization_index(); |
| return DeoptimizationData::cast(code.deoptimization_data()); |
| } |
| *deopt_index = Safepoint::kNoDeoptimizationIndex; |
| return DeoptimizationData(); |
| } |
| |
| void OptimizedFrame::GetFunctions( |
| std::vector<SharedFunctionInfo>* functions) const { |
| DCHECK(functions->empty()); |
| DCHECK(is_optimized()); |
| |
| // Delegate to JS frame in absence of turbofan deoptimization. |
| // TODO(turbofan): Revisit once we support deoptimization across the board. |
| Code code = LookupCode(); |
| if (code.kind() == CodeKind::BUILTIN) { |
| return JavaScriptFrame::GetFunctions(functions); |
| } |
| |
| DisallowHeapAllocation no_gc; |
| int deopt_index = Safepoint::kNoDeoptimizationIndex; |
| DeoptimizationData const data = GetDeoptimizationData(&deopt_index); |
| DCHECK(!data.is_null()); |
| DCHECK_NE(Safepoint::kNoDeoptimizationIndex, deopt_index); |
| FixedArray const literal_array = data.LiteralArray(); |
| |
| TranslationIterator it(data.TranslationByteArray(), |
| data.TranslationIndex(deopt_index).value()); |
| Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next()); |
| DCHECK_EQ(Translation::BEGIN, opcode); |
| it.Next(); // Skip frame count. |
| int jsframe_count = it.Next(); |
| it.Next(); // Skip update feedback count. |
| |
| // We insert the frames in reverse order because the frames |
| // in the deoptimization translation are ordered bottom-to-top. |
| while (jsframe_count != 0) { |
| opcode = static_cast<Translation::Opcode>(it.Next()); |
| if (opcode == Translation::INTERPRETED_FRAME || |
| opcode == Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME || |
| opcode == |
| Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME) { |
| it.Next(); // Skip bailout id. |
| jsframe_count--; |
| |
| // The second operand of the frame points to the function. |
| Object shared = literal_array.get(it.Next()); |
| functions->push_back(SharedFunctionInfo::cast(shared)); |
| |
| // Skip over remaining operands to advance to the next opcode. |
| it.Skip(Translation::NumberOfOperandsFor(opcode) - 2); |
| } else { |
| // Skip over operands to advance to the next opcode. |
| it.Skip(Translation::NumberOfOperandsFor(opcode)); |
| } |
| } |
| } |
| |
| int OptimizedFrame::StackSlotOffsetRelativeToFp(int slot_index) { |
| return StandardFrameConstants::kCallerSPOffset - |
| ((slot_index + 1) * kSystemPointerSize); |
| } |
| |
| Object OptimizedFrame::StackSlotAt(int index) const { |
| return Object(Memory<Address>(fp() + StackSlotOffsetRelativeToFp(index))); |
| } |
| |
| int InterpretedFrame::position() const { |
| AbstractCode code = AbstractCode::cast(GetBytecodeArray()); |
| int code_offset = GetBytecodeOffset(); |
| return code.SourcePosition(code_offset); |
| } |
| |
| int InterpretedFrame::LookupExceptionHandlerInTable( |
| int* context_register, HandlerTable::CatchPrediction* prediction) { |
| HandlerTable table(GetBytecodeArray()); |
| return table.LookupRange(GetBytecodeOffset(), context_register, prediction); |
| } |
| |
| int InterpretedFrame::GetBytecodeOffset() const { |
| const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; |
| DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp, |
| InterpreterFrameConstants::kExpressionsOffset - |
| index * kSystemPointerSize); |
| int raw_offset = Smi::ToInt(GetExpression(index)); |
| return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag; |
| } |
| |
| int InterpretedFrame::GetBytecodeOffset(Address fp) { |
| const int offset = InterpreterFrameConstants::kExpressionsOffset; |
| const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; |
| DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp, |
| InterpreterFrameConstants::kExpressionsOffset - |
| index * kSystemPointerSize); |
| Address expression_offset = fp + offset - index * kSystemPointerSize; |
| int raw_offset = Smi::ToInt(Object(Memory<Address>(expression_offset))); |
| return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag; |
| } |
| |
| void InterpretedFrame::PatchBytecodeOffset(int new_offset) { |
| const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; |
| DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp, |
| InterpreterFrameConstants::kExpressionsOffset - |
| index * kSystemPointerSize); |
| int raw_offset = BytecodeArray::kHeaderSize - kHeapObjectTag + new_offset; |
| SetExpression(index, Smi::FromInt(raw_offset)); |
| } |
| |
| BytecodeArray InterpretedFrame::GetBytecodeArray() const { |
| const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex; |
| DCHECK_EQ(InterpreterFrameConstants::kBytecodeArrayFromFp, |
| InterpreterFrameConstants::kExpressionsOffset - |
| index * kSystemPointerSize); |
| return BytecodeArray::cast(GetExpression(index)); |
| } |
| |
| void InterpretedFrame::PatchBytecodeArray(BytecodeArray bytecode_array) { |
| const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex; |
| DCHECK_EQ(InterpreterFrameConstants::kBytecodeArrayFromFp, |
| InterpreterFrameConstants::kExpressionsOffset - |
| index * kSystemPointerSize); |
| SetExpression(index, bytecode_array); |
| } |
| |
| Object InterpretedFrame::ReadInterpreterRegister(int register_index) const { |
| const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex; |
| DCHECK_EQ(InterpreterFrameConstants::kRegisterFileFromFp, |
| InterpreterFrameConstants::kExpressionsOffset - |
| index * kSystemPointerSize); |
| return GetExpression(index + register_index); |
| } |
| |
| void InterpretedFrame::WriteInterpreterRegister(int register_index, |
| Object value) { |
| const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex; |
| DCHECK_EQ(InterpreterFrameConstants::kRegisterFileFromFp, |
| InterpreterFrameConstants::kExpressionsOffset - |
| index * kSystemPointerSize); |
| return SetExpression(index + register_index, value); |
| } |
| |
| void InterpretedFrame::Summarize(std::vector<FrameSummary>* functions) const { |
| DCHECK(functions->empty()); |
| Handle<AbstractCode> abstract_code(AbstractCode::cast(GetBytecodeArray()), |
| isolate()); |
| Handle<FixedArray> params = GetParameters(); |
| FrameSummary::JavaScriptFrameSummary summary( |
| isolate(), receiver(), function(), *abstract_code, GetBytecodeOffset(), |
| IsConstructor(), *params); |
| functions->push_back(summary); |
| } |
| |
| int ArgumentsAdaptorFrame::ComputeParametersCount() const { |
| const int offset = ArgumentsAdaptorFrameConstants::kLengthOffset; |
| return Smi::ToInt(Object(base::Memory<Address>(fp() + offset))); |
| } |
| |
| Code ArgumentsAdaptorFrame::unchecked_code() const { |
| return isolate()->builtins()->builtin(Builtins::kArgumentsAdaptorTrampoline); |
| } |
| |
| JSFunction BuiltinFrame::function() const { |
| const int offset = BuiltinFrameConstants::kFunctionOffset; |
| return JSFunction::cast(Object(base::Memory<Address>(fp() + offset))); |
| } |
| |
| int BuiltinFrame::ComputeParametersCount() const { |
| const int offset = BuiltinFrameConstants::kLengthOffset; |
| return Smi::ToInt(Object(base::Memory<Address>(fp() + offset))); |
| } |
| |
| Code InternalFrame::unchecked_code() const { return Code(); } |
| |
| void WasmFrame::Print(StringStream* accumulator, PrintMode mode, |
| int index) const { |
| PrintIndex(accumulator, mode, index); |
| accumulator->Add("WASM ["); |
| accumulator->PrintName(script().name()); |
| Address instruction_start = isolate() |
| ->wasm_engine() |
| ->code_manager() |
| ->LookupCode(pc()) |
| ->instruction_start(); |
| Vector<const uint8_t> raw_func_name = |
| module_object().GetRawFunctionName(function_index()); |
| const int kMaxPrintedFunctionName = 64; |
| char func_name[kMaxPrintedFunctionName + 1]; |
| int func_name_len = std::min(kMaxPrintedFunctionName, raw_func_name.length()); |
| memcpy(func_name, raw_func_name.begin(), func_name_len); |
| func_name[func_name_len] = '\0'; |
| int pos = position(); |
| const wasm::WasmModule* module = wasm_instance().module_object().module(); |
| int func_index = function_index(); |
| int func_code_offset = module->functions[func_index].code.offset(); |
| accumulator->Add("], function #%u ('%s'), pc=%p (+0x%x), pos=%d (+%d)\n", |
| func_index, func_name, reinterpret_cast<void*>(pc()), |
| static_cast<int>(pc() - instruction_start), pos, |
| pos - func_code_offset); |
| if (mode != OVERVIEW) accumulator->Add("\n"); |
| } |
| |
| Code WasmFrame::unchecked_code() const { |
| return isolate()->FindCodeObject(pc()); |
| } |
| |
| wasm::WasmCode* WasmFrame::wasm_code() const { |
| return isolate()->wasm_engine()->code_manager()->LookupCode(pc()); |
| } |
| |
| WasmInstanceObject WasmFrame::wasm_instance() const { |
| const int offset = WasmFrameConstants::kWasmInstanceOffset; |
| Object instance(Memory<Address>(fp() + offset)); |
| return WasmInstanceObject::cast(instance); |
| } |
| |
| wasm::NativeModule* WasmFrame::native_module() const { |
| return module_object().native_module(); |
| } |
| |
| WasmModuleObject WasmFrame::module_object() const { |
| return wasm_instance().module_object(); |
| } |
| |
| uint32_t WasmFrame::function_index() const { |
| return FrameSummary::GetSingle(this).AsWasm().function_index(); |
| } |
| |
| Script WasmFrame::script() const { return module_object().script(); } |
| |
| int WasmFrame::position() const { |
| wasm::WasmCodeRefScope code_ref_scope; |
| const wasm::WasmModule* module = wasm_instance().module_object().module(); |
| return GetSourcePosition(module, function_index(), byte_offset(), |
| at_to_number_conversion()); |
| } |
| |
| int WasmFrame::byte_offset() const { |
| wasm::WasmCode* code = wasm_code(); |
| int offset = static_cast<int>(pc() - code->instruction_start()); |
| return code->GetSourcePositionBefore(offset); |
| } |
| |
| bool WasmFrame::is_inspectable() const { |
| wasm::WasmCodeRefScope code_ref_scope; |
| return wasm_code()->is_inspectable(); |
| } |
| |
| Object WasmFrame::context() const { return wasm_instance().native_context(); } |
| |
| void WasmFrame::Summarize(std::vector<FrameSummary>* functions) const { |
| DCHECK(functions->empty()); |
| // The {WasmCode*} escapes this scope via the {FrameSummary}, which is fine, |
| // since this code object is part of our stack. |
| wasm::WasmCodeRefScope code_ref_scope; |
| wasm::WasmCode* code = wasm_code(); |
| int offset = static_cast<int>(pc() - code->instruction_start()); |
| Handle<WasmInstanceObject> instance(wasm_instance(), isolate()); |
| FrameSummary::WasmFrameSummary summary(isolate(), instance, code, offset, |
| at_to_number_conversion()); |
| functions->push_back(summary); |
| } |
| |
| bool WasmFrame::at_to_number_conversion() const { |
| // Check whether our callee is a WASM_TO_JS frame, and this frame is at the |
| // ToNumber conversion call. |
| wasm::WasmCode* code = |
| callee_pc() != kNullAddress |
| ? isolate()->wasm_engine()->code_manager()->LookupCode(callee_pc()) |
| : nullptr; |
| if (!code || code->kind() != wasm::WasmCode::kWasmToJsWrapper) return false; |
| int offset = static_cast<int>(callee_pc() - code->instruction_start()); |
| int pos = code->GetSourcePositionBefore(offset); |
| // The imported call has position 0, ToNumber has position 1. |
| // If there is no source position available, this is also not a ToNumber call. |
| DCHECK(pos == wasm::kNoCodePosition || pos == 0 || pos == 1); |
| return pos == 1; |
| } |
| |
| int WasmFrame::LookupExceptionHandlerInTable() { |
| wasm::WasmCode* code = |
| isolate()->wasm_engine()->code_manager()->LookupCode(pc()); |
| if (!code->IsAnonymous() && code->handler_table_size() > 0) { |
| HandlerTable table(code); |
| int pc_offset = static_cast<int>(pc() - code->instruction_start()); |
| return table.LookupReturn(pc_offset); |
| } |
| return -1; |
| } |
| |
| void WasmDebugBreakFrame::Iterate(RootVisitor* v) const { |
| // Nothing to iterate here. This will change once we support references in |
| // Liftoff. |
| } |
| |
| void WasmDebugBreakFrame::Print(StringStream* accumulator, PrintMode mode, |
| int index) const { |
| PrintIndex(accumulator, mode, index); |
| accumulator->Add("WASM DEBUG BREAK"); |
| if (mode != OVERVIEW) accumulator->Add("\n"); |
| } |
| |
| void JsToWasmFrame::Iterate(RootVisitor* v) const { |
| Code code = GetContainingCode(isolate(), pc()); |
| // GenericJSToWasmWrapper stack layout |
| // ------+-----------------+---------------------- |
| // | return addr | |
| // fp |- - - - - - - - -| -------------------| |
| // | fp | | |
| // fp-p |- - - - - - - - -| | |
| // | frame marker | | no GC scan |
| // fp-2p |- - - - - - - - -| | |
| // | scan_count | | |
| // fp-3p |- - - - - - - - -| -------------------| |
| // | .... | <- spill_slot_limit | |
| // | spill slots | | GC scan scan_count slots |
| // | .... | <- spill_slot_base--| |
| // |- - - - - - - - -| | |
| if (code.is_null() || !code.is_builtin() || |
| code.builtin_index() != Builtins::kGenericJSToWasmWrapper) { |
| // If it's not the GenericJSToWasmWrapper, then it's the TurboFan compiled |
| // specific wrapper. So we have to call IterateCompiledFrame. |
| IterateCompiledFrame(v); |
| return; |
| } |
| // The [fp - 2*kSystemPointerSize] on the stack is a value indicating how |
| // many values should be scanned from the top. |
| intptr_t scan_count = |
| *reinterpret_cast<intptr_t*>(fp() - 2 * kSystemPointerSize); |
| |
| FullObjectSlot spill_slot_base(&Memory<Address>(sp())); |
| FullObjectSlot spill_slot_limit( |
| &Memory<Address>(sp() + scan_count * kSystemPointerSize)); |
| v->VisitRootPointers(Root::kTop, nullptr, spill_slot_base, spill_slot_limit); |
| } |
| |
| WasmInstanceObject WasmCompileLazyFrame::wasm_instance() const { |
| return WasmInstanceObject::cast(*wasm_instance_slot()); |
| } |
| |
| FullObjectSlot WasmCompileLazyFrame::wasm_instance_slot() const { |
| const int offset = WasmCompileLazyFrameConstants::kWasmInstanceOffset; |
| return FullObjectSlot(&Memory<Address>(fp() + offset)); |
| } |
| |
| void WasmCompileLazyFrame::Iterate(RootVisitor* v) const { |
| const int header_size = WasmCompileLazyFrameConstants::kFixedFrameSizeFromFp; |
| FullObjectSlot base(&Memory<Address>(sp())); |
| FullObjectSlot limit(&Memory<Address>(fp() - header_size)); |
| v->VisitRootPointers(Root::kTop, nullptr, base, limit); |
| v->VisitRootPointer(Root::kTop, nullptr, wasm_instance_slot()); |
| } |
| |
| namespace { |
| |
| void PrintFunctionSource(StringStream* accumulator, SharedFunctionInfo shared, |
| Code code) { |
| if (FLAG_max_stack_trace_source_length != 0 && !code.is_null()) { |
| std::ostringstream os; |
| os << "--------- s o u r c e c o d e ---------\n" |
| << SourceCodeOf(shared, FLAG_max_stack_trace_source_length) |
| << "\n-----------------------------------------\n"; |
| accumulator->Add(os.str().c_str()); |
| } |
| } |
| |
| } // namespace |
| |
| void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode, |
| int index) const { |
| Handle<SharedFunctionInfo> shared = handle(function().shared(), isolate()); |
| SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate(), shared); |
| |
| DisallowHeapAllocation no_gc; |
| Object receiver = this->receiver(); |
| JSFunction function = this->function(); |
| |
| accumulator->PrintSecurityTokenIfChanged(function); |
| PrintIndex(accumulator, mode, index); |
| PrintFrameKind(accumulator); |
| Code code; |
| if (IsConstructor()) accumulator->Add("new "); |
| accumulator->PrintFunction(function, receiver, &code); |
| accumulator->Add(" [%p]", function); |
| |
| // Get scope information for nicer output, if possible. If code is nullptr, or |
| // doesn't contain scope info, scope_info will return 0 for the number of |
| // parameters, stack local variables, context local variables, stack slots, |
| // or context slots. |
| ScopeInfo scope_info = shared->scope_info(); |
| Object script_obj = shared->script(); |
| if (script_obj.IsScript()) { |
| Script script = Script::cast(script_obj); |
| accumulator->Add(" ["); |
| accumulator->PrintName(script.name()); |
| |
| if (is_interpreted()) { |
| const InterpretedFrame* iframe = |
| reinterpret_cast<const InterpretedFrame*>(this); |
| BytecodeArray bytecodes = iframe->GetBytecodeArray(); |
| int offset = iframe->GetBytecodeOffset(); |
| int source_pos = AbstractCode::cast(bytecodes).SourcePosition(offset); |
| int line = script.GetLineNumber(source_pos) + 1; |
| accumulator->Add(":%d] [bytecode=%p offset=%d]", line, |
| reinterpret_cast<void*>(bytecodes.ptr()), offset); |
| } else { |
| int function_start_pos = shared->StartPosition(); |
| int line = script.GetLineNumber(function_start_pos) + 1; |
| accumulator->Add(":~%d] [pc=%p]", line, reinterpret_cast<void*>(pc())); |
| } |
| } |
| |
| accumulator->Add("(this=%o", receiver); |
| |
| // Print the parameters. |
| int parameters_count = ComputeParametersCount(); |
| for (int i = 0; i < parameters_count; i++) { |
| accumulator->Add(","); |
| accumulator->Add("%o", GetParameter(i)); |
| } |
| |
| accumulator->Add(")"); |
| if (mode == OVERVIEW) { |
| accumulator->Add("\n"); |
| return; |
| } |
| if (is_optimized()) { |
| accumulator->Add(" {\n// optimized frame\n"); |
| PrintFunctionSource(accumulator, *shared, code); |
| accumulator->Add("}\n"); |
| return; |
| } |
| accumulator->Add(" {\n"); |
| |
| // Compute the number of locals and expression stack elements. |
| int heap_locals_count = scope_info.ContextLocalCount(); |
| int expressions_count = ComputeExpressionsCount(); |
| |
| // Try to get hold of the context of this frame. |
| Context context; |
| if (this->context().IsContext()) { |
| context = Context::cast(this->context()); |
| while (context.IsWithContext()) { |
| context = context.previous(); |
| DCHECK(!context.is_null()); |
| } |
| } |
| |
| // Print heap-allocated local variables. |
| if (heap_locals_count > 0) { |
| accumulator->Add(" // heap-allocated locals\n"); |
| } |
| for (int i = 0; i < heap_locals_count; i++) { |
| accumulator->Add(" var "); |
| accumulator->PrintName(scope_info.ContextLocalName(i)); |
| accumulator->Add(" = "); |
| if (!context.is_null()) { |
| int index = Context::MIN_CONTEXT_SLOTS + i; |
| if (index < context.length()) { |
| accumulator->Add("%o", context.get(index)); |
| } else { |
| accumulator->Add( |
| "// warning: missing context slot - inconsistent frame?"); |
| } |
| } else { |
| accumulator->Add("// warning: no context found - inconsistent frame?"); |
| } |
| accumulator->Add("\n"); |
| } |
| |
| // Print the expression stack. |
| if (0 < expressions_count) { |
| accumulator->Add(" // expression stack (top to bottom)\n"); |
| } |
| for (int i = expressions_count - 1; i >= 0; i--) { |
| accumulator->Add(" [%02d] : %o\n", i, GetExpression(i)); |
| } |
| |
| PrintFunctionSource(accumulator, *shared, code); |
| |
| accumulator->Add("}\n\n"); |
| } |
| |
| void ArgumentsAdaptorFrame::Print(StringStream* accumulator, PrintMode mode, |
| int index) const { |
| int actual = ComputeParametersCount(); |
| int expected = -1; |
| JSFunction function = this->function(); |
| expected = function.shared().internal_formal_parameter_count(); |
| |
| PrintIndex(accumulator, mode, index); |
| accumulator->Add("arguments adaptor frame: %d->%d", actual, expected); |
| if (mode == OVERVIEW) { |
| accumulator->Add("\n"); |
| return; |
| } |
| accumulator->Add(" {\n"); |
| |
| // Print actual arguments. |
| if (actual > 0) accumulator->Add(" // actual arguments\n"); |
| for (int i = 0; i < actual; i++) { |
| accumulator->Add(" [%02d] : %o", i, GetParameter(i)); |
| if (expected != -1 && i >= expected) { |
| accumulator->Add(" // not passed to callee"); |
| } |
| accumulator->Add("\n"); |
| } |
| |
| accumulator->Add("}\n\n"); |
| } |
| |
| void EntryFrame::Iterate(RootVisitor* v) const { |
| IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); |
| } |
| |
| void CommonFrame::IterateExpressions(RootVisitor* v) const { |
| const int last_object_offset = StandardFrameConstants::kLastObjectOffset; |
| intptr_t marker = |
| Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); |
| FullObjectSlot base(&Memory<Address>(sp())); |
| FullObjectSlot limit(&Memory<Address>(fp() + last_object_offset) + 1); |
| if (StackFrame::IsTypeMarker(marker)) { |
| v->VisitRootPointers(Root::kTop, nullptr, base, limit); |
| } else { |
| // The frame contains the actual argument count (intptr) that should not be |
| // visited. |
| FullObjectSlot argc( |
| &Memory<Address>(fp() + StandardFrameConstants::kArgCOffset)); |
| v->VisitRootPointers(Root::kTop, nullptr, base, argc); |
| v->VisitRootPointers(Root::kTop, nullptr, argc + 1, limit); |
| } |
| } |
| |
| void JavaScriptFrame::Iterate(RootVisitor* v) const { |
| IterateExpressions(v); |
| IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); |
| } |
| |
| void InternalFrame::Iterate(RootVisitor* v) const { |
| Code code = LookupCode(); |
| IteratePc(v, pc_address(), constant_pool_address(), code); |
| // Internal frames typically do not receive any arguments, hence their stack |
| // only contains tagged pointers. |
| // We are misusing the has_tagged_params flag here to tell us whether |
| // the full stack frame contains only tagged pointers or only raw values. |
| // This is used for the WasmCompileLazy builtin, where we actually pass |
| // untagged arguments and also store untagged values on the stack. |
| if (code.has_tagged_params()) IterateExpressions(v); |
| } |
| |
| // ------------------------------------------------------------------------- |
| |
| namespace { |
| |
| uint32_t PcAddressForHashing(Isolate* isolate, Address address) { |
| if (InstructionStream::PcIsOffHeap(isolate, address)) { |
| // Ensure that we get predictable hashes for addresses in embedded code. |
| return EmbeddedData::FromBlob(isolate).AddressForHashing(address); |
| } |
| return ObjectAddressForHashing(address); |
| } |
| |
| } // namespace |
| |
| InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* |
| InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) { |
| isolate_->counters()->pc_to_code()->Increment(); |
| DCHECK(base::bits::IsPowerOfTwo(kInnerPointerToCodeCacheSize)); |
| uint32_t hash = |
| ComputeUnseededHash(PcAddressForHashing(isolate_, inner_pointer)); |
| uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1); |
| InnerPointerToCodeCacheEntry* entry = cache(index); |
| if (entry->inner_pointer == inner_pointer) { |
| isolate_->counters()->pc_to_code_cached()->Increment(); |
| DCHECK(entry->code == |
| isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer)); |
| } else { |
| // Because this code may be interrupted by a profiling signal that |
| // also queries the cache, we cannot update inner_pointer before the code |
| // has been set. Otherwise, we risk trying to use a cache entry before |
| // the code has been computed. |
| entry->code = |
| isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer); |
| entry->safepoint_entry.Reset(); |
| entry->inner_pointer = inner_pointer; |
| } |
| return entry; |
| } |
| |
| // Frame layout helper class implementation. |
| // ------------------------------------------------------------------------- |
| |
| namespace { |
| |
| int ArgumentPaddingSlots(int arg_count) { |
| return ShouldPadArguments(arg_count) ? 1 : 0; |
| } |
| |
| // Some architectures need to push padding together with the TOS register |
| // in order to maintain stack alignment. |
| constexpr int TopOfStackRegisterPaddingSlots() { return kPadArguments ? 1 : 0; } |
| |
| bool BuiltinContinuationModeIsWithCatch(BuiltinContinuationMode mode) { |
| switch (mode) { |
| case BuiltinContinuationMode::STUB: |
| case BuiltinContinuationMode::JAVASCRIPT: |
| return false; |
| case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH: |
| case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION: |
| return true; |
| } |
| UNREACHABLE(); |
| } |
| |
| } // namespace |
| |
| InterpretedFrameInfo::InterpretedFrameInfo(int parameters_count_with_receiver, |
| int translation_height, |
| bool is_topmost, bool pad_arguments, |
| FrameInfoKind frame_info_kind) { |
| const int locals_count = translation_height; |
| |
| register_stack_slot_count_ = |
| InterpreterFrameConstants::RegisterStackSlotCount(locals_count); |
| |
| static constexpr int kTheAccumulator = 1; |
| static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots(); |
| int maybe_additional_slots = |
| (is_topmost || frame_info_kind == FrameInfoKind::kConservative) |
| ? (kTheAccumulator + kTopOfStackPadding) |
| : 0; |
| frame_size_in_bytes_without_fixed_ = |
| (register_stack_slot_count_ + maybe_additional_slots) * |
| kSystemPointerSize; |
| |
| // The 'fixed' part of the frame consists of the incoming parameters and |
| // the part described by InterpreterFrameConstants. This will include |
| // argument padding, when needed. |
| const int parameter_padding_slots = |
| pad_arguments ? ArgumentPaddingSlots(parameters_count_with_receiver) : 0; |
| const int fixed_frame_size = |
| InterpreterFrameConstants::kFixedFrameSize + |
| (parameters_count_with_receiver + parameter_padding_slots) * |
| kSystemPointerSize; |
| frame_size_in_bytes_ = frame_size_in_bytes_without_fixed_ + fixed_frame_size; |
| } |
| |
| ArgumentsAdaptorFrameInfo::ArgumentsAdaptorFrameInfo(int translation_height) { |
| // Note: This is according to the Translation's notion of 'parameters' which |
| // differs to that of the SharedFunctionInfo, e.g. by including the receiver. |
| const int parameters_count = translation_height; |
| frame_size_in_bytes_without_fixed_ = |
| (parameters_count + ArgumentPaddingSlots(parameters_count)) * |
| kSystemPointerSize; |
| frame_size_in_bytes_ = frame_size_in_bytes_without_fixed_ + |
| ArgumentsAdaptorFrameConstants::kFixedFrameSize; |
| } |
| |
| ConstructStubFrameInfo::ConstructStubFrameInfo(int translation_height, |
| bool is_topmost, |
| FrameInfoKind frame_info_kind) { |
| // Note: This is according to the Translation's notion of 'parameters' which |
| // differs to that of the SharedFunctionInfo, e.g. by including the receiver. |
| const int parameters_count = translation_height; |
| |
| // If the construct frame appears to be topmost we should ensure that the |
| // value of result register is preserved during continuation execution. |
| // We do this here by "pushing" the result of the constructor function to |
| // the top of the reconstructed stack and popping it in |
| // {Builtins::kNotifyDeoptimized}. |
| |
| static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots(); |
| static constexpr int kTheResult = 1; |
| const int argument_padding = ArgumentPaddingSlots(parameters_count); |
| |
| const int adjusted_height = |
| (is_topmost || frame_info_kind == FrameInfoKind::kConservative) |
| ? parameters_count + argument_padding + kTheResult + |
| kTopOfStackPadding |
| : parameters_count + argument_padding; |
| frame_size_in_bytes_without_fixed_ = adjusted_height * kSystemPointerSize; |
| frame_size_in_bytes_ = frame_size_in_bytes_without_fixed_ + |
| ConstructFrameConstants::kFixedFrameSize; |
| } |
| |
| BuiltinContinuationFrameInfo::BuiltinContinuationFrameInfo( |
| int translation_height, |
| const CallInterfaceDescriptor& continuation_descriptor, |
| const RegisterConfiguration* register_config, bool is_topmost, |
| DeoptimizeKind deopt_kind, BuiltinContinuationMode continuation_mode, |
| FrameInfoKind frame_info_kind) { |
| const bool is_conservative = frame_info_kind == FrameInfoKind::kConservative; |
| |
| // Note: This is according to the Translation's notion of 'parameters' which |
| // differs to that of the SharedFunctionInfo, e.g. by including the receiver. |
| const int parameters_count = translation_height; |
| frame_has_result_stack_slot_ = |
| !is_topmost || deopt_kind == DeoptimizeKind::kLazy; |
| const int result_slot_count = |
| (frame_has_result_stack_slot_ || is_conservative) ? 1 : 0; |
| |
| const int exception_slot_count = |
| (BuiltinContinuationModeIsWithCatch(continuation_mode) || is_conservative) |
| ? 1 |
| : 0; |
| |
| const int allocatable_register_count = |
| register_config->num_allocatable_general_registers(); |
| const int padding_slot_count = |
| BuiltinContinuationFrameConstants::PaddingSlotCount( |
| allocatable_register_count); |
| |
| const int register_parameter_count = |
| continuation_descriptor.GetRegisterParameterCount(); |
| translated_stack_parameter_count_ = |
| parameters_count - register_parameter_count; |
| stack_parameter_count_ = translated_stack_parameter_count_ + |
| result_slot_count + exception_slot_count; |
| const int stack_param_pad_count = |
| ArgumentPaddingSlots(stack_parameter_count_); |
| |
| // If the builtins frame appears to be topmost we should ensure that the |
| // value of result register is preserved during continuation execution. |
| // We do this here by "pushing" the result of callback function to the |
| // top of the reconstructed stack and popping it in |
| // {Builtins::kNotifyDeoptimized}. |
| static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots(); |
| static constexpr int kTheResult = 1; |
| const int push_result_count = |
| (is_topmost || is_conservative) ? kTheResult + kTopOfStackPadding : 0; |
| |
| frame_size_in_bytes_ = |
| kSystemPointerSize * (stack_parameter_count_ + stack_param_pad_count + |
| allocatable_register_count + padding_slot_count + |
| push_result_count) + |
| BuiltinContinuationFrameConstants::kFixedFrameSize; |
| |
| frame_size_in_bytes_above_fp_ = |
| kSystemPointerSize * (allocatable_register_count + padding_slot_count + |
| push_result_count) + |
| (BuiltinContinuationFrameConstants::kFixedFrameSize - |
| BuiltinContinuationFrameConstants::kFixedFrameSizeAboveFp); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |