blob: baed91eaad6674aed5ad9ce92dc1a8774bd855da [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/debug/thread_heap_usage_tracker.h"
#include <map>
#include "base/allocator/allocator_shim.h"
#include "base/allocator/buildflags.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_MACOSX)
#include "base/allocator/allocator_interception_mac.h"
#include "starboard/memory.h"
#endif
namespace base {
namespace debug {
namespace {
class TestingThreadHeapUsageTracker : public ThreadHeapUsageTracker {
public:
using ThreadHeapUsageTracker::DisableHeapTrackingForTesting;
using ThreadHeapUsageTracker::EnsureTLSInitialized;
using ThreadHeapUsageTracker::GetDispatchForTesting;
};
// A fixture class that allows testing the AllocatorDispatch associated with
// the ThreadHeapUsageTracker class in isolation against a mocked
// underlying
// heap implementation.
class ThreadHeapUsageTrackerTest : public testing::Test {
public:
using AllocatorDispatch = base::allocator::AllocatorDispatch;
static const size_t kAllocationPadding;
enum SizeFunctionKind {
EXACT_SIZE_FUNCTION,
PADDING_SIZE_FUNCTION,
ZERO_SIZE_FUNCTION,
};
ThreadHeapUsageTrackerTest() : size_function_kind_(EXACT_SIZE_FUNCTION) {
EXPECT_EQ(nullptr, g_self);
g_self = this;
}
~ThreadHeapUsageTrackerTest() override {
EXPECT_EQ(this, g_self);
g_self = nullptr;
}
void set_size_function_kind(SizeFunctionKind kind) {
size_function_kind_ = kind;
}
void SetUp() override {
TestingThreadHeapUsageTracker::EnsureTLSInitialized();
dispatch_under_test_ =
TestingThreadHeapUsageTracker::GetDispatchForTesting();
ASSERT_EQ(nullptr, dispatch_under_test_->next);
dispatch_under_test_->next = &g_mock_dispatch;
}
void TearDown() override {
ASSERT_EQ(&g_mock_dispatch, dispatch_under_test_->next);
dispatch_under_test_->next = nullptr;
}
void* MockMalloc(size_t size) {
return dispatch_under_test_->alloc_function(dispatch_under_test_, size,
nullptr);
}
void* MockCalloc(size_t n, size_t size) {
return dispatch_under_test_->alloc_zero_initialized_function(
dispatch_under_test_, n, size, nullptr);
}
void* MockAllocAligned(size_t alignment, size_t size) {
return dispatch_under_test_->alloc_aligned_function(
dispatch_under_test_, alignment, size, nullptr);
}
void* MockRealloc(void* address, size_t size) {
return dispatch_under_test_->realloc_function(dispatch_under_test_, address,
size, nullptr);
}
void MockFree(void* address) {
dispatch_under_test_->free_function(dispatch_under_test_, address, nullptr);
}
size_t MockGetSizeEstimate(void* address) {
return dispatch_under_test_->get_size_estimate_function(
dispatch_under_test_, address, nullptr);
}
private:
void RecordAlloc(void* address, size_t size) {
if (address != nullptr)
allocation_size_map_[address] = size;
}
void DeleteAlloc(void* address) {
if (address != nullptr)
EXPECT_EQ(1U, allocation_size_map_.erase(address));
}
size_t GetSizeEstimate(void* address) {
auto it = allocation_size_map_.find(address);
if (it == allocation_size_map_.end())
return 0;
size_t ret = it->second;
switch (size_function_kind_) {
case EXACT_SIZE_FUNCTION:
break;
case PADDING_SIZE_FUNCTION:
ret += kAllocationPadding;
break;
case ZERO_SIZE_FUNCTION:
ret = 0;
break;
}
return ret;
}
static void* OnAllocFn(const AllocatorDispatch* self,
size_t size,
void* context) {
EXPECT_EQ(&g_mock_dispatch, self);
void* ret = SbMemoryAllocate(size);
g_self->RecordAlloc(ret, size);
return ret;
}
static void* OnAllocZeroInitializedFn(const AllocatorDispatch* self,
size_t n,
size_t size,
void* context) {
EXPECT_EQ(&g_mock_dispatch, self);
void* ret = calloc(n, size);
g_self->RecordAlloc(ret, n * size);
return ret;
}
static void* OnAllocAlignedFn(const AllocatorDispatch* self,
size_t alignment,
size_t size,
void* context) {
EXPECT_EQ(&g_mock_dispatch, self);
// This is a cheat as it doesn't return aligned allocations. This has the
// advantage of working for all platforms for this test.
void* ret = SbMemoryAllocate(size);
g_self->RecordAlloc(ret, size);
return ret;
}
static void* OnReallocFn(const AllocatorDispatch* self,
void* address,
size_t size,
void* context) {
EXPECT_EQ(&g_mock_dispatch, self);
g_self->DeleteAlloc(address);
void* ret = SbMemoryReallocate(address, size);
g_self->RecordAlloc(ret, size);
return ret;
}
static void OnFreeFn(const AllocatorDispatch* self,
void* address,
void* context) {
EXPECT_EQ(&g_mock_dispatch, self);
g_self->DeleteAlloc(address);
SbMemoryDeallocate(address);
}
static size_t OnGetSizeEstimateFn(const AllocatorDispatch* self,
void* address,
void* context) {
EXPECT_EQ(&g_mock_dispatch, self);
return g_self->GetSizeEstimate(address);
}
using AllocationSizeMap = std::map<void*, size_t>;
SizeFunctionKind size_function_kind_;
AllocationSizeMap allocation_size_map_;
AllocatorDispatch* dispatch_under_test_;
static base::allocator::AllocatorDispatch g_mock_dispatch;
static ThreadHeapUsageTrackerTest* g_self;
};
const size_t ThreadHeapUsageTrackerTest::kAllocationPadding = 23;
ThreadHeapUsageTrackerTest* ThreadHeapUsageTrackerTest::g_self = nullptr;
base::allocator::AllocatorDispatch ThreadHeapUsageTrackerTest::g_mock_dispatch =
{
&ThreadHeapUsageTrackerTest::OnAllocFn, // alloc_function
&ThreadHeapUsageTrackerTest::
OnAllocZeroInitializedFn, // alloc_zero_initialized_function
&ThreadHeapUsageTrackerTest::
OnAllocAlignedFn, // alloc_aligned_function
&ThreadHeapUsageTrackerTest::OnReallocFn, // realloc_function
&ThreadHeapUsageTrackerTest::OnFreeFn, // free_function
&ThreadHeapUsageTrackerTest::
OnGetSizeEstimateFn, // get_size_estimate_function
nullptr, // batch_malloc
nullptr, // batch_free
nullptr, // free_definite_size_function
nullptr, // next
};
} // namespace
TEST_F(ThreadHeapUsageTrackerTest, SimpleUsageWithExactSizeFunction) {
set_size_function_kind(EXACT_SIZE_FUNCTION);
ThreadHeapUsageTracker usage_tracker;
usage_tracker.Start();
ThreadHeapUsage u1 = ThreadHeapUsageTracker::GetUsageSnapshot();
EXPECT_EQ(0U, u1.alloc_ops);
EXPECT_EQ(0U, u1.alloc_bytes);
EXPECT_EQ(0U, u1.alloc_overhead_bytes);
EXPECT_EQ(0U, u1.free_ops);
EXPECT_EQ(0U, u1.free_bytes);
EXPECT_EQ(0U, u1.max_allocated_bytes);
const size_t kAllocSize = 1029U;
void* ptr = MockMalloc(kAllocSize);
MockFree(ptr);
usage_tracker.Stop(false);
ThreadHeapUsage u2 = usage_tracker.usage();
EXPECT_EQ(1U, u2.alloc_ops);
EXPECT_EQ(kAllocSize, u2.alloc_bytes);
EXPECT_EQ(0U, u2.alloc_overhead_bytes);
EXPECT_EQ(1U, u2.free_ops);
EXPECT_EQ(kAllocSize, u2.free_bytes);
EXPECT_EQ(kAllocSize, u2.max_allocated_bytes);
}
TEST_F(ThreadHeapUsageTrackerTest, SimpleUsageWithPaddingSizeFunction) {
set_size_function_kind(PADDING_SIZE_FUNCTION);
ThreadHeapUsageTracker usage_tracker;
usage_tracker.Start();
ThreadHeapUsage u1 = ThreadHeapUsageTracker::GetUsageSnapshot();
EXPECT_EQ(0U, u1.alloc_ops);
EXPECT_EQ(0U, u1.alloc_bytes);
EXPECT_EQ(0U, u1.alloc_overhead_bytes);
EXPECT_EQ(0U, u1.free_ops);
EXPECT_EQ(0U, u1.free_bytes);
EXPECT_EQ(0U, u1.max_allocated_bytes);
const size_t kAllocSize = 1029U;
void* ptr = MockMalloc(kAllocSize);
MockFree(ptr);
usage_tracker.Stop(false);
ThreadHeapUsage u2 = usage_tracker.usage();
EXPECT_EQ(1U, u2.alloc_ops);
EXPECT_EQ(kAllocSize + kAllocationPadding, u2.alloc_bytes);
EXPECT_EQ(kAllocationPadding, u2.alloc_overhead_bytes);
EXPECT_EQ(1U, u2.free_ops);
EXPECT_EQ(kAllocSize + kAllocationPadding, u2.free_bytes);
EXPECT_EQ(kAllocSize + kAllocationPadding, u2.max_allocated_bytes);
}
TEST_F(ThreadHeapUsageTrackerTest, SimpleUsageWithZeroSizeFunction) {
set_size_function_kind(ZERO_SIZE_FUNCTION);
ThreadHeapUsageTracker usage_tracker;
usage_tracker.Start();
ThreadHeapUsage u1 = ThreadHeapUsageTracker::GetUsageSnapshot();
EXPECT_EQ(0U, u1.alloc_ops);
EXPECT_EQ(0U, u1.alloc_bytes);
EXPECT_EQ(0U, u1.alloc_overhead_bytes);
EXPECT_EQ(0U, u1.free_ops);
EXPECT_EQ(0U, u1.free_bytes);
EXPECT_EQ(0U, u1.max_allocated_bytes);
const size_t kAllocSize = 1029U;
void* ptr = MockMalloc(kAllocSize);
MockFree(ptr);
usage_tracker.Stop(false);
ThreadHeapUsage u2 = usage_tracker.usage();
// With a get-size function that returns zero, there's no way to get the size
// of an allocation that's being freed, hence the shim can't tally freed bytes
// nor the high-watermark allocated bytes.
EXPECT_EQ(1U, u2.alloc_ops);
EXPECT_EQ(kAllocSize, u2.alloc_bytes);
EXPECT_EQ(0U, u2.alloc_overhead_bytes);
EXPECT_EQ(1U, u2.free_ops);
EXPECT_EQ(0U, u2.free_bytes);
EXPECT_EQ(0U, u2.max_allocated_bytes);
}
TEST_F(ThreadHeapUsageTrackerTest, ReallocCorrectlyTallied) {
const size_t kAllocSize = 237U;
{
ThreadHeapUsageTracker usage_tracker;
usage_tracker.Start();
// Reallocating nullptr should count as a single alloc.
void* ptr = MockRealloc(nullptr, kAllocSize);
ThreadHeapUsage usage = ThreadHeapUsageTracker::GetUsageSnapshot();
EXPECT_EQ(1U, usage.alloc_ops);
EXPECT_EQ(kAllocSize, usage.alloc_bytes);
EXPECT_EQ(0U, usage.alloc_overhead_bytes);
EXPECT_EQ(0U, usage.free_ops);
EXPECT_EQ(0U, usage.free_bytes);
EXPECT_EQ(kAllocSize, usage.max_allocated_bytes);
// Reallocating a valid pointer to a zero size should count as a single
// free.
ptr = MockRealloc(ptr, 0U);
usage_tracker.Stop(false);
EXPECT_EQ(1U, usage_tracker.usage().alloc_ops);
EXPECT_EQ(kAllocSize, usage_tracker.usage().alloc_bytes);
EXPECT_EQ(0U, usage_tracker.usage().alloc_overhead_bytes);
EXPECT_EQ(1U, usage_tracker.usage().free_ops);
EXPECT_EQ(kAllocSize, usage_tracker.usage().free_bytes);
EXPECT_EQ(kAllocSize, usage_tracker.usage().max_allocated_bytes);
// Realloc to zero size may or may not return a nullptr - make sure to
// free the zero-size alloc in the latter case.
if (ptr != nullptr)
MockFree(ptr);
}
{
ThreadHeapUsageTracker usage_tracker;
usage_tracker.Start();
void* ptr = MockMalloc(kAllocSize);
ThreadHeapUsage usage = ThreadHeapUsageTracker::GetUsageSnapshot();
EXPECT_EQ(1U, usage.alloc_ops);
// Now try reallocating a valid pointer to a larger size, this should count
// as one free and one alloc.
const size_t kLargerAllocSize = kAllocSize + 928U;
ptr = MockRealloc(ptr, kLargerAllocSize);
usage_tracker.Stop(false);
EXPECT_EQ(2U, usage_tracker.usage().alloc_ops);
EXPECT_EQ(kAllocSize + kLargerAllocSize, usage_tracker.usage().alloc_bytes);
EXPECT_EQ(0U, usage_tracker.usage().alloc_overhead_bytes);
EXPECT_EQ(1U, usage_tracker.usage().free_ops);
EXPECT_EQ(kAllocSize, usage_tracker.usage().free_bytes);
EXPECT_EQ(kLargerAllocSize, usage_tracker.usage().max_allocated_bytes);
MockFree(ptr);
}
}
TEST_F(ThreadHeapUsageTrackerTest, NestedMaxWorks) {
ThreadHeapUsageTracker usage_tracker;
usage_tracker.Start();
const size_t kOuterAllocSize = 1029U;
void* ptr = MockMalloc(kOuterAllocSize);
MockFree(ptr);
EXPECT_EQ(kOuterAllocSize,
ThreadHeapUsageTracker::GetUsageSnapshot().max_allocated_bytes);
{
ThreadHeapUsageTracker inner_usage_tracker;
inner_usage_tracker.Start();
const size_t kInnerAllocSize = 673U;
ptr = MockMalloc(kInnerAllocSize);
MockFree(ptr);
inner_usage_tracker.Stop(false);
EXPECT_EQ(kInnerAllocSize, inner_usage_tracker.usage().max_allocated_bytes);
}
// The greater, outer allocation size should have been restored.
EXPECT_EQ(kOuterAllocSize,
ThreadHeapUsageTracker::GetUsageSnapshot().max_allocated_bytes);
const size_t kLargerInnerAllocSize = kOuterAllocSize + 673U;
{
ThreadHeapUsageTracker inner_usage_tracker;
inner_usage_tracker.Start();
ptr = MockMalloc(kLargerInnerAllocSize);
MockFree(ptr);
inner_usage_tracker.Stop(false);
EXPECT_EQ(kLargerInnerAllocSize,
inner_usage_tracker.usage().max_allocated_bytes);
}
// The greater, inner allocation size should have been preserved.
EXPECT_EQ(kLargerInnerAllocSize,
ThreadHeapUsageTracker::GetUsageSnapshot().max_allocated_bytes);
// Now try the case with an outstanding net alloc size when entering the
// inner scope.
void* outer_ptr = MockMalloc(kOuterAllocSize);
EXPECT_EQ(kLargerInnerAllocSize,
ThreadHeapUsageTracker::GetUsageSnapshot().max_allocated_bytes);
{
ThreadHeapUsageTracker inner_usage_tracker;
inner_usage_tracker.Start();
ptr = MockMalloc(kLargerInnerAllocSize);
MockFree(ptr);
inner_usage_tracker.Stop(false);
EXPECT_EQ(kLargerInnerAllocSize,
inner_usage_tracker.usage().max_allocated_bytes);
}
// While the inner scope saw only the inner net outstanding allocation size,
// the outer scope saw both outstanding at the same time.
EXPECT_EQ(kOuterAllocSize + kLargerInnerAllocSize,
ThreadHeapUsageTracker::GetUsageSnapshot().max_allocated_bytes);
MockFree(outer_ptr);
// Test a net-negative scope.
ptr = MockMalloc(kLargerInnerAllocSize);
{
ThreadHeapUsageTracker inner_usage_tracker;
inner_usage_tracker.Start();
MockFree(ptr);
const size_t kInnerAllocSize = 1;
ptr = MockMalloc(kInnerAllocSize);
inner_usage_tracker.Stop(false);
// Since the scope is still net-negative, the max is clamped at zero.
EXPECT_EQ(0U, inner_usage_tracker.usage().max_allocated_bytes);
}
MockFree(ptr);
}
TEST_F(ThreadHeapUsageTrackerTest, NoStopImpliesInclusive) {
ThreadHeapUsageTracker usage_tracker;
usage_tracker.Start();
const size_t kOuterAllocSize = 1029U;
void* ptr = MockMalloc(kOuterAllocSize);
MockFree(ptr);
ThreadHeapUsage usage = ThreadHeapUsageTracker::GetUsageSnapshot();
EXPECT_EQ(kOuterAllocSize, usage.max_allocated_bytes);
const size_t kInnerLargerAllocSize = kOuterAllocSize + 673U;
{
ThreadHeapUsageTracker inner_usage_tracker;
inner_usage_tracker.Start();
// Make a larger allocation than the outer scope.
ptr = MockMalloc(kInnerLargerAllocSize);
MockFree(ptr);
// inner_usage_tracker goes out of scope without a Stop().
}
ThreadHeapUsage current = ThreadHeapUsageTracker::GetUsageSnapshot();
EXPECT_EQ(usage.alloc_ops + 1, current.alloc_ops);
EXPECT_EQ(usage.alloc_bytes + kInnerLargerAllocSize, current.alloc_bytes);
EXPECT_EQ(usage.free_ops + 1, current.free_ops);
EXPECT_EQ(usage.free_bytes + kInnerLargerAllocSize, current.free_bytes);
EXPECT_EQ(kInnerLargerAllocSize, current.max_allocated_bytes);
}
TEST_F(ThreadHeapUsageTrackerTest, ExclusiveScopesWork) {
ThreadHeapUsageTracker usage_tracker;
usage_tracker.Start();
const size_t kOuterAllocSize = 1029U;
void* ptr = MockMalloc(kOuterAllocSize);
MockFree(ptr);
ThreadHeapUsage usage = ThreadHeapUsageTracker::GetUsageSnapshot();
EXPECT_EQ(kOuterAllocSize, usage.max_allocated_bytes);
{
ThreadHeapUsageTracker inner_usage_tracker;
inner_usage_tracker.Start();
// Make a larger allocation than the outer scope.
ptr = MockMalloc(kOuterAllocSize + 673U);
MockFree(ptr);
// This tracker is exlusive, all activity should be private to this scope.
inner_usage_tracker.Stop(true);
}
ThreadHeapUsage current = ThreadHeapUsageTracker::GetUsageSnapshot();
EXPECT_EQ(usage.alloc_ops, current.alloc_ops);
EXPECT_EQ(usage.alloc_bytes, current.alloc_bytes);
EXPECT_EQ(usage.alloc_overhead_bytes, current.alloc_overhead_bytes);
EXPECT_EQ(usage.free_ops, current.free_ops);
EXPECT_EQ(usage.free_bytes, current.free_bytes);
EXPECT_EQ(usage.max_allocated_bytes, current.max_allocated_bytes);
}
TEST_F(ThreadHeapUsageTrackerTest, AllShimFunctionsAreProvided) {
const size_t kAllocSize = 100;
void* alloc = MockMalloc(kAllocSize);
size_t estimate = MockGetSizeEstimate(alloc);
ASSERT_TRUE(estimate == 0 || estimate >= kAllocSize);
MockFree(alloc);
alloc = MockCalloc(kAllocSize, 1);
estimate = MockGetSizeEstimate(alloc);
ASSERT_TRUE(estimate == 0 || estimate >= kAllocSize);
MockFree(alloc);
alloc = MockAllocAligned(1, kAllocSize);
estimate = MockGetSizeEstimate(alloc);
ASSERT_TRUE(estimate == 0 || estimate >= kAllocSize);
alloc = MockRealloc(alloc, kAllocSize);
estimate = MockGetSizeEstimate(alloc);
ASSERT_TRUE(estimate == 0 || estimate >= kAllocSize);
MockFree(alloc);
}
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
class ThreadHeapUsageShimTest : public testing::Test {
#if defined(OS_MACOSX)
void SetUp() override { allocator::InitializeAllocatorShim(); }
void TearDown() override { allocator::UninterceptMallocZonesForTesting(); }
#endif
};
TEST_F(ThreadHeapUsageShimTest, HooksIntoMallocWhenShimAvailable) {
ASSERT_FALSE(ThreadHeapUsageTracker::IsHeapTrackingEnabled());
ThreadHeapUsageTracker::EnableHeapTracking();
ASSERT_TRUE(ThreadHeapUsageTracker::IsHeapTrackingEnabled());
const size_t kAllocSize = 9993;
// This test verifies that the scoped heap data is affected by malloc &
// free only when the shim is available.
ThreadHeapUsageTracker usage_tracker;
usage_tracker.Start();
ThreadHeapUsage u1 = ThreadHeapUsageTracker::GetUsageSnapshot();
void* ptr = SbMemoryAllocate(kAllocSize);
// Prevent the compiler from optimizing out the malloc/free pair.
ASSERT_NE(nullptr, ptr);
ThreadHeapUsage u2 = ThreadHeapUsageTracker::GetUsageSnapshot();
SbMemoryDeallocate(ptr);
usage_tracker.Stop(false);
ThreadHeapUsage u3 = usage_tracker.usage();
// Verify that at least one allocation operation was recorded, and that free
// operations are at least monotonically growing.
EXPECT_LE(0U, u1.alloc_ops);
EXPECT_LE(u1.alloc_ops + 1, u2.alloc_ops);
EXPECT_LE(u1.alloc_ops + 1, u3.alloc_ops);
// Verify that at least the bytes above were recorded.
EXPECT_LE(u1.alloc_bytes + kAllocSize, u2.alloc_bytes);
// Verify that at least the one free operation above was recorded.
EXPECT_LE(u2.free_ops + 1, u3.free_ops);
TestingThreadHeapUsageTracker::DisableHeapTrackingForTesting();
ASSERT_FALSE(ThreadHeapUsageTracker::IsHeapTrackingEnabled());
}
#endif // BUILDFLAG(USE_ALLOCATOR_SHIM)
} // namespace debug
} // namespace base