blob: 21d841af5fc0d7794e6c74750e99d55ef8003d2b [file] [log] [blame]
/*
* Copyright 2017 Google Inc. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nb/bidirectional_fit_reuse_allocator.h"
#include "nb/fixed_no_free_allocator.h"
#include "nb/pointer_arithmetic.h"
#include "nb/scoped_ptr.h"
#include "nb/starboard_aligned_memory_deleter.h"
#include "starboard/configuration.h"
#include "starboard/types.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
class BidirectionalFitReuseAllocatorTest : public ::testing::Test {
public:
static const int kBufferSize = 1 * 1024 * 1024;
BidirectionalFitReuseAllocatorTest() { ResetAllocator(); }
protected:
void ResetAllocator(std::size_t initial_capacity = 0,
std::size_t small_allocation_threshold = 0,
std::size_t allocation_increment = 0) {
buffer_.reset(static_cast<uint8_t*>(
SbMemoryAllocateAligned(nb::Allocator::kMinAlignment, kBufferSize)));
nb::scoped_ptr<nb::FixedNoFreeAllocator> fallback_allocator(
new nb::FixedNoFreeAllocator(buffer_.get(), kBufferSize));
allocator_.reset(new nb::BidirectionalFitReuseAllocator(
fallback_allocator.get(), initial_capacity, small_allocation_threshold,
allocation_increment));
fallback_allocator_.swap(fallback_allocator);
}
std::unique_ptr<uint8_t, nb::AlignedMemoryDeleter> buffer_;
nb::scoped_ptr<nb::FixedNoFreeAllocator> fallback_allocator_;
nb::scoped_ptr<nb::BidirectionalFitReuseAllocator> allocator_;
};
} // namespace
TEST_F(BidirectionalFitReuseAllocatorTest, AlignmentCheck) {
const std::size_t kAlignments[] = {4, 16, 256, 32768};
const std::size_t kBlockSizes[] = {4, 97, 256, 65201};
for (int i = 0; i < SB_ARRAY_SIZE(kAlignments); ++i) {
for (int j = 0; j < SB_ARRAY_SIZE(kBlockSizes); ++j) {
void* p = allocator_->Allocate(kBlockSizes[j], kAlignments[i]);
EXPECT_TRUE(p != NULL);
EXPECT_EQ(nb::IsAligned(p, kAlignments[i]), true);
allocator_->Free(p);
}
}
}
// Check that the reuse allocator actually merges adjacent free blocks.
TEST_F(BidirectionalFitReuseAllocatorTest, FreeBlockMergingLeft) {
const std::size_t kBlockSizes[] = {156, 16475};
const std::size_t kAlignment = 4;
void* blocks[] = {NULL, NULL};
blocks[0] = allocator_->Allocate(kBlockSizes[0], kAlignment);
blocks[1] = allocator_->Allocate(kBlockSizes[1], kAlignment);
// In an empty allocator we expect first alloc to be < second.
EXPECT_LT(reinterpret_cast<uintptr_t>(blocks[0]),
reinterpret_cast<uintptr_t>(blocks[1]));
allocator_->Free(blocks[0]);
allocator_->Free(blocks[1]);
// Should have merged blocks 1 with block 0.
void* test_p =
allocator_->Allocate(kBlockSizes[0] + kBlockSizes[1], kAlignment);
EXPECT_EQ(test_p, blocks[0]);
allocator_->Free(test_p);
}
TEST_F(BidirectionalFitReuseAllocatorTest, FreeBlockMergingRight) {
const std::size_t kBlockSizes[] = {156, 202, 354};
const std::size_t kAlignment = 4;
void* blocks[] = {NULL, NULL, NULL};
blocks[0] = allocator_->Allocate(kBlockSizes[0], kAlignment);
blocks[1] = allocator_->Allocate(kBlockSizes[1], kAlignment);
blocks[2] = allocator_->Allocate(kBlockSizes[2], kAlignment);
// In an empty allocator we expect first alloc to be < second.
EXPECT_LT(reinterpret_cast<uintptr_t>(blocks[1]),
reinterpret_cast<uintptr_t>(blocks[2]));
allocator_->Free(blocks[2]);
allocator_->Free(blocks[1]);
// Should have merged block 1 with block 2.
void* test_p =
allocator_->Allocate(kBlockSizes[1] + kBlockSizes[2], kAlignment);
EXPECT_EQ(test_p, blocks[1]);
allocator_->Free(test_p);
allocator_->Free(blocks[0]);
}
TEST_F(BidirectionalFitReuseAllocatorTest, InitialCapacity) {
const std::size_t kInitialCapacity = kBufferSize / 2;
ResetAllocator(kInitialCapacity);
EXPECT_GE(fallback_allocator_->GetAllocated(), kInitialCapacity);
}
TEST_F(BidirectionalFitReuseAllocatorTest, AllocationIncrement) {
const std::size_t kAllocationIncrement = kBufferSize / 2;
ResetAllocator(0, 0, kAllocationIncrement);
void* p = allocator_->Allocate(1, 1);
EXPECT_TRUE(p != NULL);
allocator_->Free(p);
EXPECT_GE(fallback_allocator_->GetAllocated(), kAllocationIncrement);
}
TEST_F(BidirectionalFitReuseAllocatorTest, FallbackBlockMerge) {
void* p = allocator_->Allocate(kBufferSize, 1);
EXPECT_TRUE(p != NULL);
allocator_->Free(p);
ResetAllocator();
p = allocator_->Allocate(kBufferSize / 2, 1);
EXPECT_TRUE(p != NULL);
allocator_->Free(p);
p = allocator_->Allocate(kBufferSize, 1);
EXPECT_TRUE(p != NULL);
allocator_->Free(p);
}
TEST_F(BidirectionalFitReuseAllocatorTest, AllocationsWithThreshold) {
const std::size_t kSmallAllocationThreshold = 1024;
ResetAllocator(kBufferSize, kSmallAllocationThreshold, 0);
void* small_allocation_1 =
allocator_->Allocate(kSmallAllocationThreshold - 1, 1);
EXPECT_TRUE(small_allocation_1 != NULL);
void* large_allocation_1 =
allocator_->Allocate(kSmallAllocationThreshold + 1, 1);
EXPECT_TRUE(large_allocation_1 != NULL);
// According to the spec of BidirectionalFitReuseAllocator, any memory block
// whose size is equal to the threshold is allocated from the back.
void* small_allocation_2 = allocator_->Allocate(kSmallAllocationThreshold, 1);
EXPECT_TRUE(small_allocation_2 != NULL);
void* small_allocation_3 = allocator_->Allocate(1, 1);
EXPECT_TRUE(small_allocation_3 != NULL);
// Large allocations are allocated from the front, small allocations are
// allocated from the back.
EXPECT_LT(reinterpret_cast<uintptr_t>(large_allocation_1),
reinterpret_cast<uintptr_t>(small_allocation_3));
EXPECT_LT(reinterpret_cast<uintptr_t>(small_allocation_3),
reinterpret_cast<uintptr_t>(small_allocation_2));
EXPECT_LT(reinterpret_cast<uintptr_t>(small_allocation_2),
reinterpret_cast<uintptr_t>(small_allocation_1));
allocator_->Free(small_allocation_1);
allocator_->Free(small_allocation_2);
allocator_->Free(large_allocation_1);
}