| #include <glm/gtc/matrix_inverse.hpp> |
| #include <glm/gtc/epsilon.hpp> |
| |
| int test_affine() |
| { |
| int Error = 0; |
| |
| { |
| glm::mat3 const M( |
| 2.f, 0.f, 0.f, |
| 0.f, 2.f, 0.f, |
| 0.f, 0.f, 1.f); |
| glm::mat3 const A = glm::affineInverse(M); |
| glm::mat3 const I = glm::inverse(M); |
| glm::mat3 const R = glm::affineInverse(A); |
| |
| for(glm::length_t i = 0; i < A.length(); ++i) |
| { |
| Error += glm::all(glm::epsilonEqual(M[i], R[i], 0.01f)) ? 0 : 1; |
| Error += glm::all(glm::epsilonEqual(A[i], I[i], 0.01f)) ? 0 : 1; |
| } |
| } |
| |
| { |
| glm::mat4 const M( |
| 2.f, 0.f, 0.f, 0.f, |
| 0.f, 2.f, 0.f, 0.f, |
| 0.f, 0.f, 2.f, 0.f, |
| 0.f, 0.f, 0.f, 1.f); |
| glm::mat4 const A = glm::affineInverse(M); |
| glm::mat4 const I = glm::inverse(M); |
| glm::mat4 const R = glm::affineInverse(A); |
| |
| for(glm::length_t i = 0; i < A.length(); ++i) |
| { |
| Error += glm::all(glm::epsilonEqual(M[i], R[i], 0.01f)) ? 0 : 1; |
| Error += glm::all(glm::epsilonEqual(A[i], I[i], 0.01f)) ? 0 : 1; |
| } |
| } |
| |
| return Error; |
| } |
| |
| int main() |
| { |
| int Error = 0; |
| |
| Error += test_affine(); |
| |
| return Error; |
| } |