| //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines malloc/free checker, which checks for potential memory |
| // leaks, double free, and use-after-free problems. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ClangSACheckers.h" |
| #include "InterCheckerAPI.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" |
| #include "clang/StaticAnalyzer/Core/Checker.h" |
| #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "AllocationState.h" |
| #include <climits> |
| #include <utility> |
| |
| using namespace clang; |
| using namespace ento; |
| |
| namespace { |
| |
| // Used to check correspondence between allocators and deallocators. |
| enum AllocationFamily { |
| AF_None, |
| AF_Malloc, |
| AF_CXXNew, |
| AF_CXXNewArray, |
| AF_IfNameIndex, |
| AF_Alloca, |
| AF_InnerBuffer |
| }; |
| |
| class RefState { |
| enum Kind { // Reference to allocated memory. |
| Allocated, |
| // Reference to zero-allocated memory. |
| AllocatedOfSizeZero, |
| // Reference to released/freed memory. |
| Released, |
| // The responsibility for freeing resources has transferred from |
| // this reference. A relinquished symbol should not be freed. |
| Relinquished, |
| // We are no longer guaranteed to have observed all manipulations |
| // of this pointer/memory. For example, it could have been |
| // passed as a parameter to an opaque function. |
| Escaped |
| }; |
| |
| const Stmt *S; |
| unsigned K : 3; // Kind enum, but stored as a bitfield. |
| unsigned Family : 29; // Rest of 32-bit word, currently just an allocation |
| // family. |
| |
| RefState(Kind k, const Stmt *s, unsigned family) |
| : S(s), K(k), Family(family) { |
| assert(family != AF_None); |
| } |
| public: |
| bool isAllocated() const { return K == Allocated; } |
| bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } |
| bool isReleased() const { return K == Released; } |
| bool isRelinquished() const { return K == Relinquished; } |
| bool isEscaped() const { return K == Escaped; } |
| AllocationFamily getAllocationFamily() const { |
| return (AllocationFamily)Family; |
| } |
| const Stmt *getStmt() const { return S; } |
| |
| bool operator==(const RefState &X) const { |
| return K == X.K && S == X.S && Family == X.Family; |
| } |
| |
| static RefState getAllocated(unsigned family, const Stmt *s) { |
| return RefState(Allocated, s, family); |
| } |
| static RefState getAllocatedOfSizeZero(const RefState *RS) { |
| return RefState(AllocatedOfSizeZero, RS->getStmt(), |
| RS->getAllocationFamily()); |
| } |
| static RefState getReleased(unsigned family, const Stmt *s) { |
| return RefState(Released, s, family); |
| } |
| static RefState getRelinquished(unsigned family, const Stmt *s) { |
| return RefState(Relinquished, s, family); |
| } |
| static RefState getEscaped(const RefState *RS) { |
| return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); |
| } |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const { |
| ID.AddInteger(K); |
| ID.AddPointer(S); |
| ID.AddInteger(Family); |
| } |
| |
| void dump(raw_ostream &OS) const { |
| switch (static_cast<Kind>(K)) { |
| #define CASE(ID) case ID: OS << #ID; break; |
| CASE(Allocated) |
| CASE(AllocatedOfSizeZero) |
| CASE(Released) |
| CASE(Relinquished) |
| CASE(Escaped) |
| } |
| } |
| |
| LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } |
| }; |
| |
| enum ReallocPairKind { |
| RPToBeFreedAfterFailure, |
| // The symbol has been freed when reallocation failed. |
| RPIsFreeOnFailure, |
| // The symbol does not need to be freed after reallocation fails. |
| RPDoNotTrackAfterFailure |
| }; |
| |
| /// \class ReallocPair |
| /// Stores information about the symbol being reallocated by a call to |
| /// 'realloc' to allow modeling failed reallocation later in the path. |
| struct ReallocPair { |
| // The symbol which realloc reallocated. |
| SymbolRef ReallocatedSym; |
| ReallocPairKind Kind; |
| |
| ReallocPair(SymbolRef S, ReallocPairKind K) : |
| ReallocatedSym(S), Kind(K) {} |
| void Profile(llvm::FoldingSetNodeID &ID) const { |
| ID.AddInteger(Kind); |
| ID.AddPointer(ReallocatedSym); |
| } |
| bool operator==(const ReallocPair &X) const { |
| return ReallocatedSym == X.ReallocatedSym && |
| Kind == X.Kind; |
| } |
| }; |
| |
| typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; |
| |
| class MallocChecker : public Checker<check::DeadSymbols, |
| check::PointerEscape, |
| check::ConstPointerEscape, |
| check::PreStmt<ReturnStmt>, |
| check::PreCall, |
| check::PostStmt<CallExpr>, |
| check::PostStmt<CXXNewExpr>, |
| check::NewAllocator, |
| check::PreStmt<CXXDeleteExpr>, |
| check::PostStmt<BlockExpr>, |
| check::PostObjCMessage, |
| check::Location, |
| eval::Assume> |
| { |
| public: |
| MallocChecker() |
| : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), |
| II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), |
| II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), |
| II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), |
| II_if_nameindex(nullptr), II_if_freenameindex(nullptr), |
| II_wcsdup(nullptr), II_win_wcsdup(nullptr), II_g_malloc(nullptr), |
| II_g_malloc0(nullptr), II_g_realloc(nullptr), II_g_try_malloc(nullptr), |
| II_g_try_malloc0(nullptr), II_g_try_realloc(nullptr), |
| II_g_free(nullptr), II_g_memdup(nullptr), II_g_malloc_n(nullptr), |
| II_g_malloc0_n(nullptr), II_g_realloc_n(nullptr), |
| II_g_try_malloc_n(nullptr), II_g_try_malloc0_n(nullptr), |
| II_g_try_realloc_n(nullptr) {} |
| |
| /// In pessimistic mode, the checker assumes that it does not know which |
| /// functions might free the memory. |
| enum CheckKind { |
| CK_MallocChecker, |
| CK_NewDeleteChecker, |
| CK_NewDeleteLeaksChecker, |
| CK_MismatchedDeallocatorChecker, |
| CK_NumCheckKinds |
| }; |
| |
| enum class MemoryOperationKind { |
| MOK_Allocate, |
| MOK_Free, |
| MOK_Any |
| }; |
| |
| DefaultBool IsOptimistic; |
| |
| DefaultBool ChecksEnabled[CK_NumCheckKinds]; |
| CheckName CheckNames[CK_NumCheckKinds]; |
| |
| void checkPreCall(const CallEvent &Call, CheckerContext &C) const; |
| void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; |
| void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; |
| void checkNewAllocator(const CXXNewExpr *NE, SVal Target, |
| CheckerContext &C) const; |
| void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; |
| void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; |
| void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; |
| void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; |
| void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; |
| ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, |
| bool Assumption) const; |
| void checkLocation(SVal l, bool isLoad, const Stmt *S, |
| CheckerContext &C) const; |
| |
| ProgramStateRef checkPointerEscape(ProgramStateRef State, |
| const InvalidatedSymbols &Escaped, |
| const CallEvent *Call, |
| PointerEscapeKind Kind) const; |
| ProgramStateRef checkConstPointerEscape(ProgramStateRef State, |
| const InvalidatedSymbols &Escaped, |
| const CallEvent *Call, |
| PointerEscapeKind Kind) const; |
| |
| void printState(raw_ostream &Out, ProgramStateRef State, |
| const char *NL, const char *Sep) const override; |
| |
| private: |
| mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_DoubleDelete; |
| mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_MismatchedDealloc; |
| mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; |
| mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, |
| *II_realloc, *II_calloc, *II_valloc, *II_reallocf, |
| *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, |
| *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, |
| *II_win_wcsdup, *II_g_malloc, *II_g_malloc0, |
| *II_g_realloc, *II_g_try_malloc, *II_g_try_malloc0, |
| *II_g_try_realloc, *II_g_free, *II_g_memdup, |
| *II_g_malloc_n, *II_g_malloc0_n, *II_g_realloc_n, |
| *II_g_try_malloc_n, *II_g_try_malloc0_n, |
| *II_g_try_realloc_n; |
| mutable Optional<uint64_t> KernelZeroFlagVal; |
| |
| void initIdentifierInfo(ASTContext &C) const; |
| |
| /// Determine family of a deallocation expression. |
| AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; |
| |
| /// Print names of allocators and deallocators. |
| /// |
| /// \returns true on success. |
| bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, |
| const Expr *E) const; |
| |
| /// Print expected name of an allocator based on the deallocator's |
| /// family derived from the DeallocExpr. |
| void printExpectedAllocName(raw_ostream &os, CheckerContext &C, |
| const Expr *DeallocExpr) const; |
| /// Print expected name of a deallocator based on the allocator's |
| /// family. |
| void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; |
| |
| ///@{ |
| /// Check if this is one of the functions which can allocate/reallocate memory |
| /// pointed to by one of its arguments. |
| bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; |
| bool isCMemFunction(const FunctionDecl *FD, |
| ASTContext &C, |
| AllocationFamily Family, |
| MemoryOperationKind MemKind) const; |
| bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; |
| ///@} |
| |
| /// Process C++ operator new()'s allocation, which is the part of C++ |
| /// new-expression that goes before the constructor. |
| void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, |
| SVal Target) const; |
| |
| /// Perform a zero-allocation check. |
| /// The optional \p RetVal parameter specifies the newly allocated pointer |
| /// value; if unspecified, the value of expression \p E is used. |
| ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, |
| const unsigned AllocationSizeArg, |
| ProgramStateRef State, |
| Optional<SVal> RetVal = None) const; |
| |
| ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, |
| const CallExpr *CE, |
| const OwnershipAttr* Att, |
| ProgramStateRef State) const; |
| static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, |
| const Expr *SizeEx, SVal Init, |
| ProgramStateRef State, |
| AllocationFamily Family = AF_Malloc); |
| static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, |
| SVal SizeEx, SVal Init, |
| ProgramStateRef State, |
| AllocationFamily Family = AF_Malloc); |
| |
| static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, |
| ProgramStateRef State, SVal Target); |
| |
| // Check if this malloc() for special flags. At present that means M_ZERO or |
| // __GFP_ZERO (in which case, treat it like calloc). |
| llvm::Optional<ProgramStateRef> |
| performKernelMalloc(const CallExpr *CE, CheckerContext &C, |
| const ProgramStateRef &State) const; |
| |
| /// Update the RefState to reflect the new memory allocation. |
| /// The optional \p RetVal parameter specifies the newly allocated pointer |
| /// value; if unspecified, the value of expression \p E is used. |
| static ProgramStateRef |
| MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, |
| AllocationFamily Family = AF_Malloc, |
| Optional<SVal> RetVal = None); |
| |
| ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, |
| const OwnershipAttr* Att, |
| ProgramStateRef State) const; |
| ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, |
| ProgramStateRef state, unsigned Num, |
| bool Hold, |
| bool &ReleasedAllocated, |
| bool ReturnsNullOnFailure = false) const; |
| ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, |
| const Expr *ParentExpr, |
| ProgramStateRef State, |
| bool Hold, |
| bool &ReleasedAllocated, |
| bool ReturnsNullOnFailure = false) const; |
| |
| ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, |
| bool FreesMemOnFailure, |
| ProgramStateRef State, |
| bool SuffixWithN = false) const; |
| static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, |
| const Expr *BlockBytes); |
| static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, |
| ProgramStateRef State); |
| |
| ///Check if the memory associated with this symbol was released. |
| bool isReleased(SymbolRef Sym, CheckerContext &C) const; |
| |
| bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; |
| |
| void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, |
| const Stmt *S) const; |
| |
| bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; |
| |
| /// Check if the function is known free memory, or if it is |
| /// "interesting" and should be modeled explicitly. |
| /// |
| /// \param [out] EscapingSymbol A function might not free memory in general, |
| /// but could be known to free a particular symbol. In this case, false is |
| /// returned and the single escaping symbol is returned through the out |
| /// parameter. |
| /// |
| /// We assume that pointers do not escape through calls to system functions |
| /// not handled by this checker. |
| bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, |
| ProgramStateRef State, |
| SymbolRef &EscapingSymbol) const; |
| |
| // Implementation of the checkPointerEscape callabcks. |
| ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, |
| const InvalidatedSymbols &Escaped, |
| const CallEvent *Call, |
| PointerEscapeKind Kind, |
| bool(*CheckRefState)(const RefState*)) const; |
| |
| ///@{ |
| /// Tells if a given family/call/symbol is tracked by the current checker. |
| /// Sets CheckKind to the kind of the checker responsible for this |
| /// family/call/symbol. |
| Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, |
| bool IsALeakCheck = false) const; |
| Optional<CheckKind> getCheckIfTracked(CheckerContext &C, |
| const Stmt *AllocDeallocStmt, |
| bool IsALeakCheck = false) const; |
| Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, |
| bool IsALeakCheck = false) const; |
| ///@} |
| static bool SummarizeValue(raw_ostream &os, SVal V); |
| static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); |
| void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, |
| const Expr *DeallocExpr) const; |
| void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, |
| SourceRange Range) const; |
| void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, |
| const Expr *DeallocExpr, const RefState *RS, |
| SymbolRef Sym, bool OwnershipTransferred) const; |
| void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, |
| const Expr *DeallocExpr, |
| const Expr *AllocExpr = nullptr) const; |
| void ReportUseAfterFree(CheckerContext &C, SourceRange Range, |
| SymbolRef Sym) const; |
| void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, |
| SymbolRef Sym, SymbolRef PrevSym) const; |
| |
| void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; |
| |
| void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, |
| SymbolRef Sym) const; |
| |
| void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, |
| SourceRange Range, const Expr *FreeExpr) const; |
| |
| /// Find the location of the allocation for Sym on the path leading to the |
| /// exploded node N. |
| LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, |
| CheckerContext &C) const; |
| |
| void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; |
| |
| /// The bug visitor which allows us to print extra diagnostics along the |
| /// BugReport path. For example, showing the allocation site of the leaked |
| /// region. |
| class MallocBugVisitor final : public BugReporterVisitor { |
| protected: |
| enum NotificationMode { |
| Normal, |
| ReallocationFailed |
| }; |
| |
| // The allocated region symbol tracked by the main analysis. |
| SymbolRef Sym; |
| |
| // The mode we are in, i.e. what kind of diagnostics will be emitted. |
| NotificationMode Mode; |
| |
| // A symbol from when the primary region should have been reallocated. |
| SymbolRef FailedReallocSymbol; |
| |
| // A C++ destructor stack frame in which memory was released. Used for |
| // miscellaneous false positive suppression. |
| const StackFrameContext *ReleaseDestructorLC; |
| |
| bool IsLeak; |
| |
| public: |
| MallocBugVisitor(SymbolRef S, bool isLeak = false) |
| : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), |
| ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} |
| |
| static void *getTag() { |
| static int Tag = 0; |
| return &Tag; |
| } |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const override { |
| ID.AddPointer(getTag()); |
| ID.AddPointer(Sym); |
| } |
| |
| inline bool isAllocated(const RefState *S, const RefState *SPrev, |
| const Stmt *Stmt) { |
| // Did not track -> allocated. Other state (released) -> allocated. |
| return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && |
| (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && |
| (!SPrev || !(SPrev->isAllocated() || |
| SPrev->isAllocatedOfSizeZero()))); |
| } |
| |
| inline bool isReleased(const RefState *S, const RefState *SPrev, |
| const Stmt *Stmt) { |
| // Did not track -> released. Other state (allocated) -> released. |
| // The statement associated with the release might be missing. |
| bool IsReleased = (S && S->isReleased()) && |
| (!SPrev || !SPrev->isReleased()); |
| assert(!IsReleased || |
| (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || |
| (!Stmt && S->getAllocationFamily() == AF_InnerBuffer)); |
| return IsReleased; |
| } |
| |
| inline bool isRelinquished(const RefState *S, const RefState *SPrev, |
| const Stmt *Stmt) { |
| // Did not track -> relinquished. Other state (allocated) -> relinquished. |
| return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || |
| isa<ObjCPropertyRefExpr>(Stmt)) && |
| (S && S->isRelinquished()) && |
| (!SPrev || !SPrev->isRelinquished())); |
| } |
| |
| inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, |
| const Stmt *Stmt) { |
| // If the expression is not a call, and the state change is |
| // released -> allocated, it must be the realloc return value |
| // check. If we have to handle more cases here, it might be cleaner just |
| // to track this extra bit in the state itself. |
| return ((!Stmt || !isa<CallExpr>(Stmt)) && |
| (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && |
| (SPrev && !(SPrev->isAllocated() || |
| SPrev->isAllocatedOfSizeZero()))); |
| } |
| |
| std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, |
| const ExplodedNode *PrevN, |
| BugReporterContext &BRC, |
| BugReport &BR) override; |
| |
| std::shared_ptr<PathDiagnosticPiece> |
| getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, |
| BugReport &BR) override { |
| if (!IsLeak) |
| return nullptr; |
| |
| PathDiagnosticLocation L = |
| PathDiagnosticLocation::createEndOfPath(EndPathNode, |
| BRC.getSourceManager()); |
| // Do not add the statement itself as a range in case of leak. |
| return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), |
| false); |
| } |
| |
| private: |
| class StackHintGeneratorForReallocationFailed |
| : public StackHintGeneratorForSymbol { |
| public: |
| StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) |
| : StackHintGeneratorForSymbol(S, M) {} |
| |
| std::string getMessageForArg(const Expr *ArgE, |
| unsigned ArgIndex) override { |
| // Printed parameters start at 1, not 0. |
| ++ArgIndex; |
| |
| SmallString<200> buf; |
| llvm::raw_svector_ostream os(buf); |
| |
| os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) |
| << " parameter failed"; |
| |
| return os.str(); |
| } |
| |
| std::string getMessageForReturn(const CallExpr *CallExpr) override { |
| return "Reallocation of returned value failed"; |
| } |
| }; |
| }; |
| }; |
| } // end anonymous namespace |
| |
| REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) |
| REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) |
| REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) |
| |
| // A map from the freed symbol to the symbol representing the return value of |
| // the free function. |
| REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) |
| |
| namespace { |
| class StopTrackingCallback final : public SymbolVisitor { |
| ProgramStateRef state; |
| public: |
| StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} |
| ProgramStateRef getState() const { return state; } |
| |
| bool VisitSymbol(SymbolRef sym) override { |
| state = state->remove<RegionState>(sym); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { |
| if (II_malloc) |
| return; |
| II_alloca = &Ctx.Idents.get("alloca"); |
| II_malloc = &Ctx.Idents.get("malloc"); |
| II_free = &Ctx.Idents.get("free"); |
| II_realloc = &Ctx.Idents.get("realloc"); |
| II_reallocf = &Ctx.Idents.get("reallocf"); |
| II_calloc = &Ctx.Idents.get("calloc"); |
| II_valloc = &Ctx.Idents.get("valloc"); |
| II_strdup = &Ctx.Idents.get("strdup"); |
| II_strndup = &Ctx.Idents.get("strndup"); |
| II_wcsdup = &Ctx.Idents.get("wcsdup"); |
| II_kmalloc = &Ctx.Idents.get("kmalloc"); |
| II_if_nameindex = &Ctx.Idents.get("if_nameindex"); |
| II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); |
| |
| //MSVC uses `_`-prefixed instead, so we check for them too. |
| II_win_strdup = &Ctx.Idents.get("_strdup"); |
| II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); |
| II_win_alloca = &Ctx.Idents.get("_alloca"); |
| |
| // Glib |
| II_g_malloc = &Ctx.Idents.get("g_malloc"); |
| II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); |
| II_g_realloc = &Ctx.Idents.get("g_realloc"); |
| II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); |
| II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); |
| II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); |
| II_g_free = &Ctx.Idents.get("g_free"); |
| II_g_memdup = &Ctx.Idents.get("g_memdup"); |
| II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); |
| II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); |
| II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); |
| II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); |
| II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); |
| II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); |
| } |
| |
| bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { |
| if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) |
| return true; |
| |
| if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) |
| return true; |
| |
| if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) |
| return true; |
| |
| if (isStandardNewDelete(FD, C)) |
| return true; |
| |
| return false; |
| } |
| |
| bool MallocChecker::isCMemFunction(const FunctionDecl *FD, |
| ASTContext &C, |
| AllocationFamily Family, |
| MemoryOperationKind MemKind) const { |
| if (!FD) |
| return false; |
| |
| bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || |
| MemKind == MemoryOperationKind::MOK_Free); |
| bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || |
| MemKind == MemoryOperationKind::MOK_Allocate); |
| |
| if (FD->getKind() == Decl::Function) { |
| const IdentifierInfo *FunI = FD->getIdentifier(); |
| initIdentifierInfo(C); |
| |
| if (Family == AF_Malloc && CheckFree) { |
| if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || |
| FunI == II_g_free) |
| return true; |
| } |
| |
| if (Family == AF_Malloc && CheckAlloc) { |
| if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || |
| FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || |
| FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || |
| FunI == II_win_wcsdup || FunI == II_kmalloc || |
| FunI == II_g_malloc || FunI == II_g_malloc0 || |
| FunI == II_g_realloc || FunI == II_g_try_malloc || |
| FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || |
| FunI == II_g_memdup || FunI == II_g_malloc_n || |
| FunI == II_g_malloc0_n || FunI == II_g_realloc_n || |
| FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || |
| FunI == II_g_try_realloc_n) |
| return true; |
| } |
| |
| if (Family == AF_IfNameIndex && CheckFree) { |
| if (FunI == II_if_freenameindex) |
| return true; |
| } |
| |
| if (Family == AF_IfNameIndex && CheckAlloc) { |
| if (FunI == II_if_nameindex) |
| return true; |
| } |
| |
| if (Family == AF_Alloca && CheckAlloc) { |
| if (FunI == II_alloca || FunI == II_win_alloca) |
| return true; |
| } |
| } |
| |
| if (Family != AF_Malloc) |
| return false; |
| |
| if (IsOptimistic && FD->hasAttrs()) { |
| for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { |
| OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); |
| if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { |
| if (CheckFree) |
| return true; |
| } else if (OwnKind == OwnershipAttr::Returns) { |
| if (CheckAlloc) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // Tells if the callee is one of the following: |
| // 1) A global non-placement new/delete operator function. |
| // 2) A global placement operator function with the single placement argument |
| // of type std::nothrow_t. |
| bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, |
| ASTContext &C) const { |
| if (!FD) |
| return false; |
| |
| OverloadedOperatorKind Kind = FD->getOverloadedOperator(); |
| if (Kind != OO_New && Kind != OO_Array_New && |
| Kind != OO_Delete && Kind != OO_Array_Delete) |
| return false; |
| |
| // Skip all operator new/delete methods. |
| if (isa<CXXMethodDecl>(FD)) |
| return false; |
| |
| // Return true if tested operator is a standard placement nothrow operator. |
| if (FD->getNumParams() == 2) { |
| QualType T = FD->getParamDecl(1)->getType(); |
| if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) |
| return II->getName().equals("nothrow_t"); |
| } |
| |
| // Skip placement operators. |
| if (FD->getNumParams() != 1 || FD->isVariadic()) |
| return false; |
| |
| // One of the standard new/new[]/delete/delete[] non-placement operators. |
| return true; |
| } |
| |
| llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( |
| const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { |
| // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: |
| // |
| // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); |
| // |
| // One of the possible flags is M_ZERO, which means 'give me back an |
| // allocation which is already zeroed', like calloc. |
| |
| // 2-argument kmalloc(), as used in the Linux kernel: |
| // |
| // void *kmalloc(size_t size, gfp_t flags); |
| // |
| // Has the similar flag value __GFP_ZERO. |
| |
| // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some |
| // code could be shared. |
| |
| ASTContext &Ctx = C.getASTContext(); |
| llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); |
| |
| if (!KernelZeroFlagVal.hasValue()) { |
| if (OS == llvm::Triple::FreeBSD) |
| KernelZeroFlagVal = 0x0100; |
| else if (OS == llvm::Triple::NetBSD) |
| KernelZeroFlagVal = 0x0002; |
| else if (OS == llvm::Triple::OpenBSD) |
| KernelZeroFlagVal = 0x0008; |
| else if (OS == llvm::Triple::Linux) |
| // __GFP_ZERO |
| KernelZeroFlagVal = 0x8000; |
| else |
| // FIXME: We need a more general way of getting the M_ZERO value. |
| // See also: O_CREAT in UnixAPIChecker.cpp. |
| |
| // Fall back to normal malloc behavior on platforms where we don't |
| // know M_ZERO. |
| return None; |
| } |
| |
| // We treat the last argument as the flags argument, and callers fall-back to |
| // normal malloc on a None return. This works for the FreeBSD kernel malloc |
| // as well as Linux kmalloc. |
| if (CE->getNumArgs() < 2) |
| return None; |
| |
| const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); |
| const SVal V = C.getSVal(FlagsEx); |
| if (!V.getAs<NonLoc>()) { |
| // The case where 'V' can be a location can only be due to a bad header, |
| // so in this case bail out. |
| return None; |
| } |
| |
| NonLoc Flags = V.castAs<NonLoc>(); |
| NonLoc ZeroFlag = C.getSValBuilder() |
| .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) |
| .castAs<NonLoc>(); |
| SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, |
| Flags, ZeroFlag, |
| FlagsEx->getType()); |
| if (MaskedFlagsUC.isUnknownOrUndef()) |
| return None; |
| DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); |
| |
| // Check if maskedFlags is non-zero. |
| ProgramStateRef TrueState, FalseState; |
| std::tie(TrueState, FalseState) = State->assume(MaskedFlags); |
| |
| // If M_ZERO is set, treat this like calloc (initialized). |
| if (TrueState && !FalseState) { |
| SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); |
| return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); |
| } |
| |
| return None; |
| } |
| |
| SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, |
| const Expr *BlockBytes) { |
| SValBuilder &SB = C.getSValBuilder(); |
| SVal BlocksVal = C.getSVal(Blocks); |
| SVal BlockBytesVal = C.getSVal(BlockBytes); |
| ProgramStateRef State = C.getState(); |
| SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, |
| SB.getContext().getSizeType()); |
| return TotalSize; |
| } |
| |
| void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { |
| if (C.wasInlined) |
| return; |
| |
| const FunctionDecl *FD = C.getCalleeDecl(CE); |
| if (!FD) |
| return; |
| |
| ProgramStateRef State = C.getState(); |
| bool ReleasedAllocatedMemory = false; |
| |
| if (FD->getKind() == Decl::Function) { |
| initIdentifierInfo(C.getASTContext()); |
| IdentifierInfo *FunI = FD->getIdentifier(); |
| |
| if (FunI == II_malloc || FunI == II_g_malloc || FunI == II_g_try_malloc) { |
| if (CE->getNumArgs() < 1) |
| return; |
| if (CE->getNumArgs() < 3) { |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); |
| if (CE->getNumArgs() == 1) |
| State = ProcessZeroAllocation(C, CE, 0, State); |
| } else if (CE->getNumArgs() == 3) { |
| llvm::Optional<ProgramStateRef> MaybeState = |
| performKernelMalloc(CE, C, State); |
| if (MaybeState.hasValue()) |
| State = MaybeState.getValue(); |
| else |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); |
| } |
| } else if (FunI == II_kmalloc) { |
| if (CE->getNumArgs() < 1) |
| return; |
| llvm::Optional<ProgramStateRef> MaybeState = |
| performKernelMalloc(CE, C, State); |
| if (MaybeState.hasValue()) |
| State = MaybeState.getValue(); |
| else |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); |
| } else if (FunI == II_valloc) { |
| if (CE->getNumArgs() < 1) |
| return; |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); |
| State = ProcessZeroAllocation(C, CE, 0, State); |
| } else if (FunI == II_realloc || FunI == II_g_realloc || |
| FunI == II_g_try_realloc) { |
| State = ReallocMemAux(C, CE, false, State); |
| State = ProcessZeroAllocation(C, CE, 1, State); |
| } else if (FunI == II_reallocf) { |
| State = ReallocMemAux(C, CE, true, State); |
| State = ProcessZeroAllocation(C, CE, 1, State); |
| } else if (FunI == II_calloc) { |
| State = CallocMem(C, CE, State); |
| State = ProcessZeroAllocation(C, CE, 0, State); |
| State = ProcessZeroAllocation(C, CE, 1, State); |
| } else if (FunI == II_free || FunI == II_g_free) { |
| State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); |
| } else if (FunI == II_strdup || FunI == II_win_strdup || |
| FunI == II_wcsdup || FunI == II_win_wcsdup) { |
| State = MallocUpdateRefState(C, CE, State); |
| } else if (FunI == II_strndup) { |
| State = MallocUpdateRefState(C, CE, State); |
| } else if (FunI == II_alloca || FunI == II_win_alloca) { |
| if (CE->getNumArgs() < 1) |
| return; |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, |
| AF_Alloca); |
| State = ProcessZeroAllocation(C, CE, 0, State); |
| } else if (isStandardNewDelete(FD, C.getASTContext())) { |
| // Process direct calls to operator new/new[]/delete/delete[] functions |
| // as distinct from new/new[]/delete/delete[] expressions that are |
| // processed by the checkPostStmt callbacks for CXXNewExpr and |
| // CXXDeleteExpr. |
| OverloadedOperatorKind K = FD->getOverloadedOperator(); |
| if (K == OO_New) { |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, |
| AF_CXXNew); |
| State = ProcessZeroAllocation(C, CE, 0, State); |
| } |
| else if (K == OO_Array_New) { |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, |
| AF_CXXNewArray); |
| State = ProcessZeroAllocation(C, CE, 0, State); |
| } |
| else if (K == OO_Delete || K == OO_Array_Delete) |
| State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); |
| else |
| llvm_unreachable("not a new/delete operator"); |
| } else if (FunI == II_if_nameindex) { |
| // Should we model this differently? We can allocate a fixed number of |
| // elements with zeros in the last one. |
| State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, |
| AF_IfNameIndex); |
| } else if (FunI == II_if_freenameindex) { |
| State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); |
| } else if (FunI == II_g_malloc0 || FunI == II_g_try_malloc0) { |
| if (CE->getNumArgs() < 1) |
| return; |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); |
| State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); |
| State = ProcessZeroAllocation(C, CE, 0, State); |
| } else if (FunI == II_g_memdup) { |
| if (CE->getNumArgs() < 2) |
| return; |
| State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); |
| State = ProcessZeroAllocation(C, CE, 1, State); |
| } else if (FunI == II_g_malloc_n || FunI == II_g_try_malloc_n || |
| FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { |
| if (CE->getNumArgs() < 2) |
| return; |
| SVal Init = UndefinedVal(); |
| if (FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { |
| SValBuilder &SB = C.getSValBuilder(); |
| Init = SB.makeZeroVal(SB.getContext().CharTy); |
| } |
| SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); |
| State = MallocMemAux(C, CE, TotalSize, Init, State); |
| State = ProcessZeroAllocation(C, CE, 0, State); |
| State = ProcessZeroAllocation(C, CE, 1, State); |
| } else if (FunI == II_g_realloc_n || FunI == II_g_try_realloc_n) { |
| if (CE->getNumArgs() < 3) |
| return; |
| State = ReallocMemAux(C, CE, false, State, true); |
| State = ProcessZeroAllocation(C, CE, 1, State); |
| State = ProcessZeroAllocation(C, CE, 2, State); |
| } |
| } |
| |
| if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { |
| // Check all the attributes, if there are any. |
| // There can be multiple of these attributes. |
| if (FD->hasAttrs()) |
| for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { |
| switch (I->getOwnKind()) { |
| case OwnershipAttr::Returns: |
| State = MallocMemReturnsAttr(C, CE, I, State); |
| break; |
| case OwnershipAttr::Takes: |
| case OwnershipAttr::Holds: |
| State = FreeMemAttr(C, CE, I, State); |
| break; |
| } |
| } |
| } |
| C.addTransition(State); |
| } |
| |
| // Performs a 0-sized allocations check. |
| ProgramStateRef MallocChecker::ProcessZeroAllocation( |
| CheckerContext &C, const Expr *E, const unsigned AllocationSizeArg, |
| ProgramStateRef State, Optional<SVal> RetVal) const { |
| if (!State) |
| return nullptr; |
| |
| if (!RetVal) |
| RetVal = C.getSVal(E); |
| |
| const Expr *Arg = nullptr; |
| |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| Arg = CE->getArg(AllocationSizeArg); |
| } |
| else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { |
| if (NE->isArray()) |
| Arg = NE->getArraySize(); |
| else |
| return State; |
| } |
| else |
| llvm_unreachable("not a CallExpr or CXXNewExpr"); |
| |
| assert(Arg); |
| |
| Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); |
| |
| if (!DefArgVal) |
| return State; |
| |
| // Check if the allocation size is 0. |
| ProgramStateRef TrueState, FalseState; |
| SValBuilder &SvalBuilder = C.getSValBuilder(); |
| DefinedSVal Zero = |
| SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); |
| |
| std::tie(TrueState, FalseState) = |
| State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); |
| |
| if (TrueState && !FalseState) { |
| SymbolRef Sym = RetVal->getAsLocSymbol(); |
| if (!Sym) |
| return State; |
| |
| const RefState *RS = State->get<RegionState>(Sym); |
| if (RS) { |
| if (RS->isAllocated()) |
| return TrueState->set<RegionState>(Sym, |
| RefState::getAllocatedOfSizeZero(RS)); |
| else |
| return State; |
| } else { |
| // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as |
| // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not |
| // tracked. Add zero-reallocated Sym to the state to catch references |
| // to zero-allocated memory. |
| return TrueState->add<ReallocSizeZeroSymbols>(Sym); |
| } |
| } |
| |
| // Assume the value is non-zero going forward. |
| assert(FalseState); |
| return FalseState; |
| } |
| |
| static QualType getDeepPointeeType(QualType T) { |
| QualType Result = T, PointeeType = T->getPointeeType(); |
| while (!PointeeType.isNull()) { |
| Result = PointeeType; |
| PointeeType = PointeeType->getPointeeType(); |
| } |
| return Result; |
| } |
| |
| static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { |
| |
| const CXXConstructExpr *ConstructE = NE->getConstructExpr(); |
| if (!ConstructE) |
| return false; |
| |
| if (!NE->getAllocatedType()->getAsCXXRecordDecl()) |
| return false; |
| |
| const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); |
| |
| // Iterate over the constructor parameters. |
| for (const auto *CtorParam : CtorD->parameters()) { |
| |
| QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); |
| if (CtorParamPointeeT.isNull()) |
| continue; |
| |
| CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); |
| |
| if (CtorParamPointeeT->getAsCXXRecordDecl()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void MallocChecker::processNewAllocation(const CXXNewExpr *NE, |
| CheckerContext &C, |
| SVal Target) const { |
| if (NE->getNumPlacementArgs()) |
| for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), |
| E = NE->placement_arg_end(); I != E; ++I) |
| if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) |
| checkUseAfterFree(Sym, C, *I); |
| |
| if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) |
| return; |
| |
| ParentMap &PM = C.getLocationContext()->getParentMap(); |
| if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) |
| return; |
| |
| ProgramStateRef State = C.getState(); |
| // The return value from operator new is bound to a specified initialization |
| // value (if any) and we don't want to loose this value. So we call |
| // MallocUpdateRefState() instead of MallocMemAux() which breakes the |
| // existing binding. |
| State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray |
| : AF_CXXNew, Target); |
| State = addExtentSize(C, NE, State, Target); |
| State = ProcessZeroAllocation(C, NE, 0, State, Target); |
| C.addTransition(State); |
| } |
| |
| void MallocChecker::checkPostStmt(const CXXNewExpr *NE, |
| CheckerContext &C) const { |
| if (!C.getAnalysisManager().getAnalyzerOptions().mayInlineCXXAllocator()) |
| processNewAllocation(NE, C, C.getSVal(NE)); |
| } |
| |
| void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, |
| CheckerContext &C) const { |
| if (!C.wasInlined) |
| processNewAllocation(NE, C, Target); |
| } |
| |
| // Sets the extent value of the MemRegion allocated by |
| // new expression NE to its size in Bytes. |
| // |
| ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, |
| const CXXNewExpr *NE, |
| ProgramStateRef State, |
| SVal Target) { |
| if (!State) |
| return nullptr; |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| SVal ElementCount; |
| const SubRegion *Region; |
| if (NE->isArray()) { |
| const Expr *SizeExpr = NE->getArraySize(); |
| ElementCount = C.getSVal(SizeExpr); |
| // Store the extent size for the (symbolic)region |
| // containing the elements. |
| Region = Target.getAsRegion() |
| ->getAs<SubRegion>() |
| ->StripCasts() |
| ->getAs<SubRegion>(); |
| } else { |
| ElementCount = svalBuilder.makeIntVal(1, true); |
| Region = Target.getAsRegion()->getAs<SubRegion>(); |
| } |
| assert(Region); |
| |
| // Set the region's extent equal to the Size in Bytes. |
| QualType ElementType = NE->getAllocatedType(); |
| ASTContext &AstContext = C.getASTContext(); |
| CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); |
| |
| if (ElementCount.getAs<NonLoc>()) { |
| DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); |
| // size in Bytes = ElementCount*TypeSize |
| SVal SizeInBytes = svalBuilder.evalBinOpNN( |
| State, BO_Mul, ElementCount.castAs<NonLoc>(), |
| svalBuilder.makeArrayIndex(TypeSize.getQuantity()), |
| svalBuilder.getArrayIndexType()); |
| DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( |
| State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); |
| State = State->assume(extentMatchesSize, true); |
| } |
| return State; |
| } |
| |
| void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, |
| CheckerContext &C) const { |
| |
| if (!ChecksEnabled[CK_NewDeleteChecker]) |
| if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) |
| checkUseAfterFree(Sym, C, DE->getArgument()); |
| |
| if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) |
| return; |
| |
| ProgramStateRef State = C.getState(); |
| bool ReleasedAllocated; |
| State = FreeMemAux(C, DE->getArgument(), DE, State, |
| /*Hold*/false, ReleasedAllocated); |
| |
| C.addTransition(State); |
| } |
| |
| static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { |
| // If the first selector piece is one of the names below, assume that the |
| // object takes ownership of the memory, promising to eventually deallocate it |
| // with free(). |
| // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; |
| // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) |
| StringRef FirstSlot = Call.getSelector().getNameForSlot(0); |
| return FirstSlot == "dataWithBytesNoCopy" || |
| FirstSlot == "initWithBytesNoCopy" || |
| FirstSlot == "initWithCharactersNoCopy"; |
| } |
| |
| static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { |
| Selector S = Call.getSelector(); |
| |
| // FIXME: We should not rely on fully-constrained symbols being folded. |
| for (unsigned i = 1; i < S.getNumArgs(); ++i) |
| if (S.getNameForSlot(i).equals("freeWhenDone")) |
| return !Call.getArgSVal(i).isZeroConstant(); |
| |
| return None; |
| } |
| |
| void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, |
| CheckerContext &C) const { |
| if (C.wasInlined) |
| return; |
| |
| if (!isKnownDeallocObjCMethodName(Call)) |
| return; |
| |
| if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) |
| if (!*FreeWhenDone) |
| return; |
| |
| bool ReleasedAllocatedMemory; |
| ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), |
| Call.getOriginExpr(), C.getState(), |
| /*Hold=*/true, ReleasedAllocatedMemory, |
| /*RetNullOnFailure=*/true); |
| |
| C.addTransition(State); |
| } |
| |
| ProgramStateRef |
| MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, |
| const OwnershipAttr *Att, |
| ProgramStateRef State) const { |
| if (!State) |
| return nullptr; |
| |
| if (Att->getModule() != II_malloc) |
| return nullptr; |
| |
| OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); |
| if (I != E) { |
| return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), |
| State); |
| } |
| return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); |
| } |
| |
| ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, |
| const CallExpr *CE, |
| const Expr *SizeEx, SVal Init, |
| ProgramStateRef State, |
| AllocationFamily Family) { |
| if (!State) |
| return nullptr; |
| |
| return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); |
| } |
| |
| ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, |
| const CallExpr *CE, |
| SVal Size, SVal Init, |
| ProgramStateRef State, |
| AllocationFamily Family) { |
| if (!State) |
| return nullptr; |
| |
| // We expect the malloc functions to return a pointer. |
| if (!Loc::isLocType(CE->getType())) |
| return nullptr; |
| |
| // Bind the return value to the symbolic value from the heap region. |
| // TODO: We could rewrite post visit to eval call; 'malloc' does not have |
| // side effects other than what we model here. |
| unsigned Count = C.blockCount(); |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); |
| DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) |
| .castAs<DefinedSVal>(); |
| State = State->BindExpr(CE, C.getLocationContext(), RetVal); |
| |
| // Fill the region with the initialization value. |
| State = State->bindDefaultInitial(RetVal, Init, LCtx); |
| |
| // Set the region's extent equal to the Size parameter. |
| const SymbolicRegion *R = |
| dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); |
| if (!R) |
| return nullptr; |
| if (Optional<DefinedOrUnknownSVal> DefinedSize = |
| Size.getAs<DefinedOrUnknownSVal>()) { |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); |
| DefinedOrUnknownSVal extentMatchesSize = |
| svalBuilder.evalEQ(State, Extent, *DefinedSize); |
| |
| State = State->assume(extentMatchesSize, true); |
| assert(State); |
| } |
| |
| return MallocUpdateRefState(C, CE, State, Family); |
| } |
| |
| ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, |
| const Expr *E, |
| ProgramStateRef State, |
| AllocationFamily Family, |
| Optional<SVal> RetVal) { |
| if (!State) |
| return nullptr; |
| |
| // Get the return value. |
| if (!RetVal) |
| RetVal = C.getSVal(E); |
| |
| // We expect the malloc functions to return a pointer. |
| if (!RetVal->getAs<Loc>()) |
| return nullptr; |
| |
| SymbolRef Sym = RetVal->getAsLocSymbol(); |
| // This is a return value of a function that was not inlined, such as malloc() |
| // or new(). We've checked that in the caller. Therefore, it must be a symbol. |
| assert(Sym); |
| |
| // Set the symbol's state to Allocated. |
| return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); |
| } |
| |
| ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, |
| const CallExpr *CE, |
| const OwnershipAttr *Att, |
| ProgramStateRef State) const { |
| if (!State) |
| return nullptr; |
| |
| if (Att->getModule() != II_malloc) |
| return nullptr; |
| |
| bool ReleasedAllocated = false; |
| |
| for (const auto &Arg : Att->args()) { |
| ProgramStateRef StateI = FreeMemAux( |
| C, CE, State, Arg.getASTIndex(), |
| Att->getOwnKind() == OwnershipAttr::Holds, ReleasedAllocated); |
| if (StateI) |
| State = StateI; |
| } |
| return State; |
| } |
| |
| ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, |
| const CallExpr *CE, |
| ProgramStateRef State, |
| unsigned Num, |
| bool Hold, |
| bool &ReleasedAllocated, |
| bool ReturnsNullOnFailure) const { |
| if (!State) |
| return nullptr; |
| |
| if (CE->getNumArgs() < (Num + 1)) |
| return nullptr; |
| |
| return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, |
| ReleasedAllocated, ReturnsNullOnFailure); |
| } |
| |
| /// Checks if the previous call to free on the given symbol failed - if free |
| /// failed, returns true. Also, returns the corresponding return value symbol. |
| static bool didPreviousFreeFail(ProgramStateRef State, |
| SymbolRef Sym, SymbolRef &RetStatusSymbol) { |
| const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); |
| if (Ret) { |
| assert(*Ret && "We should not store the null return symbol"); |
| ConstraintManager &CMgr = State->getConstraintManager(); |
| ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); |
| RetStatusSymbol = *Ret; |
| return FreeFailed.isConstrainedTrue(); |
| } |
| return false; |
| } |
| |
| AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, |
| const Stmt *S) const { |
| if (!S) |
| return AF_None; |
| |
| if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { |
| const FunctionDecl *FD = C.getCalleeDecl(CE); |
| |
| if (!FD) |
| FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); |
| |
| ASTContext &Ctx = C.getASTContext(); |
| |
| if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) |
| return AF_Malloc; |
| |
| if (isStandardNewDelete(FD, Ctx)) { |
| OverloadedOperatorKind Kind = FD->getOverloadedOperator(); |
| if (Kind == OO_New || Kind == OO_Delete) |
| return AF_CXXNew; |
| else if (Kind == OO_Array_New || Kind == OO_Array_Delete) |
| return AF_CXXNewArray; |
| } |
| |
| if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) |
| return AF_IfNameIndex; |
| |
| if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) |
| return AF_Alloca; |
| |
| return AF_None; |
| } |
| |
| if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) |
| return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; |
| |
| if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) |
| return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; |
| |
| if (isa<ObjCMessageExpr>(S)) |
| return AF_Malloc; |
| |
| return AF_None; |
| } |
| |
| bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, |
| const Expr *E) const { |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| // FIXME: This doesn't handle indirect calls. |
| const FunctionDecl *FD = CE->getDirectCallee(); |
| if (!FD) |
| return false; |
| |
| os << *FD; |
| if (!FD->isOverloadedOperator()) |
| os << "()"; |
| return true; |
| } |
| |
| if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { |
| if (Msg->isInstanceMessage()) |
| os << "-"; |
| else |
| os << "+"; |
| Msg->getSelector().print(os); |
| return true; |
| } |
| |
| if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { |
| os << "'" |
| << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) |
| << "'"; |
| return true; |
| } |
| |
| if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { |
| os << "'" |
| << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) |
| << "'"; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, |
| const Expr *E) const { |
| AllocationFamily Family = getAllocationFamily(C, E); |
| |
| switch(Family) { |
| case AF_Malloc: os << "malloc()"; return; |
| case AF_CXXNew: os << "'new'"; return; |
| case AF_CXXNewArray: os << "'new[]'"; return; |
| case AF_IfNameIndex: os << "'if_nameindex()'"; return; |
| case AF_InnerBuffer: os << "container-specific allocator"; return; |
| case AF_Alloca: |
| case AF_None: llvm_unreachable("not a deallocation expression"); |
| } |
| } |
| |
| void MallocChecker::printExpectedDeallocName(raw_ostream &os, |
| AllocationFamily Family) const { |
| switch(Family) { |
| case AF_Malloc: os << "free()"; return; |
| case AF_CXXNew: os << "'delete'"; return; |
| case AF_CXXNewArray: os << "'delete[]'"; return; |
| case AF_IfNameIndex: os << "'if_freenameindex()'"; return; |
| case AF_InnerBuffer: os << "container-specific deallocator"; return; |
| case AF_Alloca: |
| case AF_None: llvm_unreachable("suspicious argument"); |
| } |
| } |
| |
| ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, |
| const Expr *ArgExpr, |
| const Expr *ParentExpr, |
| ProgramStateRef State, |
| bool Hold, |
| bool &ReleasedAllocated, |
| bool ReturnsNullOnFailure) const { |
| |
| if (!State) |
| return nullptr; |
| |
| SVal ArgVal = C.getSVal(ArgExpr); |
| if (!ArgVal.getAs<DefinedOrUnknownSVal>()) |
| return nullptr; |
| DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); |
| |
| // Check for null dereferences. |
| if (!location.getAs<Loc>()) |
| return nullptr; |
| |
| // The explicit NULL case, no operation is performed. |
| ProgramStateRef notNullState, nullState; |
| std::tie(notNullState, nullState) = State->assume(location); |
| if (nullState && !notNullState) |
| return nullptr; |
| |
| // Unknown values could easily be okay |
| // Undefined values are handled elsewhere |
| if (ArgVal.isUnknownOrUndef()) |
| return nullptr; |
| |
| const MemRegion *R = ArgVal.getAsRegion(); |
| |
| // Nonlocs can't be freed, of course. |
| // Non-region locations (labels and fixed addresses) also shouldn't be freed. |
| if (!R) { |
| ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); |
| return nullptr; |
| } |
| |
| R = R->StripCasts(); |
| |
| // Blocks might show up as heap data, but should not be free()d |
| if (isa<BlockDataRegion>(R)) { |
| ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); |
| return nullptr; |
| } |
| |
| const MemSpaceRegion *MS = R->getMemorySpace(); |
| |
| // Parameters, locals, statics, globals, and memory returned by |
| // __builtin_alloca() shouldn't be freed. |
| if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { |
| // FIXME: at the time this code was written, malloc() regions were |
| // represented by conjured symbols, which are all in UnknownSpaceRegion. |
| // This means that there isn't actually anything from HeapSpaceRegion |
| // that should be freed, even though we allow it here. |
| // Of course, free() can work on memory allocated outside the current |
| // function, so UnknownSpaceRegion is always a possibility. |
| // False negatives are better than false positives. |
| |
| if (isa<AllocaRegion>(R)) |
| ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); |
| else |
| ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); |
| |
| return nullptr; |
| } |
| |
| const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); |
| // Various cases could lead to non-symbol values here. |
| // For now, ignore them. |
| if (!SrBase) |
| return nullptr; |
| |
| SymbolRef SymBase = SrBase->getSymbol(); |
| const RefState *RsBase = State->get<RegionState>(SymBase); |
| SymbolRef PreviousRetStatusSymbol = nullptr; |
| |
| if (RsBase) { |
| |
| // Memory returned by alloca() shouldn't be freed. |
| if (RsBase->getAllocationFamily() == AF_Alloca) { |
| ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); |
| return nullptr; |
| } |
| |
| // Check for double free first. |
| if ((RsBase->isReleased() || RsBase->isRelinquished()) && |
| !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { |
| ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), |
| SymBase, PreviousRetStatusSymbol); |
| return nullptr; |
| |
| // If the pointer is allocated or escaped, but we are now trying to free it, |
| // check that the call to free is proper. |
| } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || |
| RsBase->isEscaped()) { |
| |
| // Check if an expected deallocation function matches the real one. |
| bool DeallocMatchesAlloc = |
| RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); |
| if (!DeallocMatchesAlloc) { |
| ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), |
| ParentExpr, RsBase, SymBase, Hold); |
| return nullptr; |
| } |
| |
| // Check if the memory location being freed is the actual location |
| // allocated, or an offset. |
| RegionOffset Offset = R->getAsOffset(); |
| if (Offset.isValid() && |
| !Offset.hasSymbolicOffset() && |
| Offset.getOffset() != 0) { |
| const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); |
| ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, |
| AllocExpr); |
| return nullptr; |
| } |
| } |
| } |
| |
| if (SymBase->getType()->isFunctionPointerType()) { |
| ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); |
| return nullptr; |
| } |
| |
| ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || |
| RsBase->isAllocatedOfSizeZero()); |
| |
| // Clean out the info on previous call to free return info. |
| State = State->remove<FreeReturnValue>(SymBase); |
| |
| // Keep track of the return value. If it is NULL, we will know that free |
| // failed. |
| if (ReturnsNullOnFailure) { |
| SVal RetVal = C.getSVal(ParentExpr); |
| SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); |
| if (RetStatusSymbol) { |
| C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); |
| State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); |
| } |
| } |
| |
| AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() |
| : getAllocationFamily(C, ParentExpr); |
| // Normal free. |
| if (Hold) |
| return State->set<RegionState>(SymBase, |
| RefState::getRelinquished(Family, |
| ParentExpr)); |
| |
| return State->set<RegionState>(SymBase, |
| RefState::getReleased(Family, ParentExpr)); |
| } |
| |
| Optional<MallocChecker::CheckKind> |
| MallocChecker::getCheckIfTracked(AllocationFamily Family, |
| bool IsALeakCheck) const { |
| switch (Family) { |
| case AF_Malloc: |
| case AF_Alloca: |
| case AF_IfNameIndex: { |
| if (ChecksEnabled[CK_MallocChecker]) |
| return CK_MallocChecker; |
| |
| return Optional<MallocChecker::CheckKind>(); |
| } |
| case AF_CXXNew: |
| case AF_CXXNewArray: |
| // FIXME: Add new CheckKind for AF_InnerBuffer. |
| case AF_InnerBuffer: { |
| if (IsALeakCheck) { |
| if (ChecksEnabled[CK_NewDeleteLeaksChecker]) |
| return CK_NewDeleteLeaksChecker; |
| } |
| else { |
| if (ChecksEnabled[CK_NewDeleteChecker]) |
| return CK_NewDeleteChecker; |
| } |
| return Optional<MallocChecker::CheckKind>(); |
| } |
| case AF_None: { |
| llvm_unreachable("no family"); |
| } |
| } |
| llvm_unreachable("unhandled family"); |
| } |
| |
| Optional<MallocChecker::CheckKind> |
| MallocChecker::getCheckIfTracked(CheckerContext &C, |
| const Stmt *AllocDeallocStmt, |
| bool IsALeakCheck) const { |
| return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), |
| IsALeakCheck); |
| } |
| |
| Optional<MallocChecker::CheckKind> |
| MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, |
| bool IsALeakCheck) const { |
| if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) |
| return CK_MallocChecker; |
| |
| const RefState *RS = C.getState()->get<RegionState>(Sym); |
| assert(RS); |
| return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); |
| } |
| |
| bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { |
| if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) |
| os << "an integer (" << IntVal->getValue() << ")"; |
| else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) |
| os << "a constant address (" << ConstAddr->getValue() << ")"; |
| else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) |
| os << "the address of the label '" << Label->getLabel()->getName() << "'"; |
| else |
| return false; |
| |
| return true; |
| } |
| |
| bool MallocChecker::SummarizeRegion(raw_ostream &os, |
| const MemRegion *MR) { |
| switch (MR->getKind()) { |
| case MemRegion::FunctionCodeRegionKind: { |
| const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); |
| if (FD) |
| os << "the address of the function '" << *FD << '\''; |
| else |
| os << "the address of a function"; |
| return true; |
| } |
| case MemRegion::BlockCodeRegionKind: |
| os << "block text"; |
| return true; |
| case MemRegion::BlockDataRegionKind: |
| // FIXME: where the block came from? |
| os << "a block"; |
| return true; |
| default: { |
| const MemSpaceRegion *MS = MR->getMemorySpace(); |
| |
| if (isa<StackLocalsSpaceRegion>(MS)) { |
| const VarRegion *VR = dyn_cast<VarRegion>(MR); |
| const VarDecl *VD; |
| if (VR) |
| VD = VR->getDecl(); |
| else |
| VD = nullptr; |
| |
| if (VD) |
| os << "the address of the local variable '" << VD->getName() << "'"; |
| else |
| os << "the address of a local stack variable"; |
| return true; |
| } |
| |
| if (isa<StackArgumentsSpaceRegion>(MS)) { |
| const VarRegion *VR = dyn_cast<VarRegion>(MR); |
| const VarDecl *VD; |
| if (VR) |
| VD = VR->getDecl(); |
| else |
| VD = nullptr; |
| |
| if (VD) |
| os << "the address of the parameter '" << VD->getName() << "'"; |
| else |
| os << "the address of a parameter"; |
| return true; |
| } |
| |
| if (isa<GlobalsSpaceRegion>(MS)) { |
| const VarRegion *VR = dyn_cast<VarRegion>(MR); |
| const VarDecl *VD; |
| if (VR) |
| VD = VR->getDecl(); |
| else |
| VD = nullptr; |
| |
| if (VD) { |
| if (VD->isStaticLocal()) |
| os << "the address of the static variable '" << VD->getName() << "'"; |
| else |
| os << "the address of the global variable '" << VD->getName() << "'"; |
| } else |
| os << "the address of a global variable"; |
| return true; |
| } |
| |
| return false; |
| } |
| } |
| } |
| |
| void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, |
| SourceRange Range, |
| const Expr *DeallocExpr) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = |
| getCheckIfTracked(C, DeallocExpr); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_BadFree[*CheckKind]) |
| BT_BadFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Bad free", categories::MemoryError)); |
| |
| SmallString<100> buf; |
| llvm::raw_svector_ostream os(buf); |
| |
| const MemRegion *MR = ArgVal.getAsRegion(); |
| while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) |
| MR = ER->getSuperRegion(); |
| |
| os << "Argument to "; |
| if (!printAllocDeallocName(os, C, DeallocExpr)) |
| os << "deallocator"; |
| |
| os << " is "; |
| bool Summarized = MR ? SummarizeRegion(os, MR) |
| : SummarizeValue(os, ArgVal); |
| if (Summarized) |
| os << ", which is not memory allocated by "; |
| else |
| os << "not memory allocated by "; |
| |
| printExpectedAllocName(os, C, DeallocExpr); |
| |
| auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); |
| R->markInteresting(MR); |
| R->addRange(Range); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, |
| SourceRange Range) const { |
| |
| Optional<MallocChecker::CheckKind> CheckKind; |
| |
| if (ChecksEnabled[CK_MallocChecker]) |
| CheckKind = CK_MallocChecker; |
| else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) |
| CheckKind = CK_MismatchedDeallocatorChecker; |
| else |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_FreeAlloca[*CheckKind]) |
| BT_FreeAlloca[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); |
| |
| auto R = llvm::make_unique<BugReport>( |
| *BT_FreeAlloca[*CheckKind], |
| "Memory allocated by alloca() should not be deallocated", N); |
| R->markInteresting(ArgVal.getAsRegion()); |
| R->addRange(Range); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, |
| SourceRange Range, |
| const Expr *DeallocExpr, |
| const RefState *RS, |
| SymbolRef Sym, |
| bool OwnershipTransferred) const { |
| |
| if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_MismatchedDealloc) |
| BT_MismatchedDealloc.reset( |
| new BugType(CheckNames[CK_MismatchedDeallocatorChecker], |
| "Bad deallocator", categories::MemoryError)); |
| |
| SmallString<100> buf; |
| llvm::raw_svector_ostream os(buf); |
| |
| const Expr *AllocExpr = cast<Expr>(RS->getStmt()); |
| SmallString<20> AllocBuf; |
| llvm::raw_svector_ostream AllocOs(AllocBuf); |
| SmallString<20> DeallocBuf; |
| llvm::raw_svector_ostream DeallocOs(DeallocBuf); |
| |
| if (OwnershipTransferred) { |
| if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) |
| os << DeallocOs.str() << " cannot"; |
| else |
| os << "Cannot"; |
| |
| os << " take ownership of memory"; |
| |
| if (printAllocDeallocName(AllocOs, C, AllocExpr)) |
| os << " allocated by " << AllocOs.str(); |
| } else { |
| os << "Memory"; |
| if (printAllocDeallocName(AllocOs, C, AllocExpr)) |
| os << " allocated by " << AllocOs.str(); |
| |
| os << " should be deallocated by "; |
| printExpectedDeallocName(os, RS->getAllocationFamily()); |
| |
| if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) |
| os << ", not " << DeallocOs.str(); |
| } |
| |
| auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); |
| R->markInteresting(Sym); |
| R->addRange(Range); |
| R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, |
| SourceRange Range, const Expr *DeallocExpr, |
| const Expr *AllocExpr) const { |
| |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = |
| getCheckIfTracked(C, AllocExpr); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| ExplodedNode *N = C.generateErrorNode(); |
| if (!N) |
| return; |
| |
| if (!BT_OffsetFree[*CheckKind]) |
| BT_OffsetFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Offset free", categories::MemoryError)); |
| |
| SmallString<100> buf; |
| llvm::raw_svector_ostream os(buf); |
| SmallString<20> AllocNameBuf; |
| llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); |
| |
| const MemRegion *MR = ArgVal.getAsRegion(); |
| assert(MR && "Only MemRegion based symbols can have offset free errors"); |
| |
| RegionOffset Offset = MR->getAsOffset(); |
| assert((Offset.isValid() && |
| !Offset.hasSymbolicOffset() && |
| Offset.getOffset() != 0) && |
| "Only symbols with a valid offset can have offset free errors"); |
| |
| int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); |
| |
| os << "Argument to "; |
| if (!printAllocDeallocName(os, C, DeallocExpr)) |
| os << "deallocator"; |
| os << " is offset by " |
| << offsetBytes |
| << " " |
| << ((abs(offsetBytes) > 1) ? "bytes" : "byte") |
| << " from the start of "; |
| if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) |
| os << "memory allocated by " << AllocNameOs.str(); |
| else |
| os << "allocated memory"; |
| |
| auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); |
| R->markInteresting(MR->getBaseRegion()); |
| R->addRange(Range); |
| C.emitReport(std::move(R)); |
| } |
| |
| void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, |
| SymbolRef Sym) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_UseFree[*CheckKind]) |
| BT_UseFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); |
| |
| auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], |
| "Use of memory after it is freed", N); |
| |
| R->markInteresting(Sym); |
| R->addRange(Range); |
| R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); |
| |
| const RefState *RS = C.getState()->get<RegionState>(Sym); |
| if (RS->getAllocationFamily() == AF_InnerBuffer) |
| R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); |
| |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, |
| bool Released, SymbolRef Sym, |
| SymbolRef PrevSym) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_DoubleFree[*CheckKind]) |
| BT_DoubleFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Double free", categories::MemoryError)); |
| |
| auto R = llvm::make_unique<BugReport>( |
| *BT_DoubleFree[*CheckKind], |
| (Released ? "Attempt to free released memory" |
| : "Attempt to free non-owned memory"), |
| N); |
| R->addRange(Range); |
| R->markInteresting(Sym); |
| if (PrevSym) |
| R->markInteresting(PrevSym); |
| R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { |
| |
| if (!ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_DoubleDelete) |
| BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], |
| "Double delete", |
| categories::MemoryError)); |
| |
| auto R = llvm::make_unique<BugReport>( |
| *BT_DoubleDelete, "Attempt to delete released memory", N); |
| |
| R->markInteresting(Sym); |
| R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, |
| SourceRange Range, |
| SymbolRef Sym) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
| |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_UseZerroAllocated[*CheckKind]) |
| BT_UseZerroAllocated[*CheckKind].reset( |
| new BugType(CheckNames[*CheckKind], "Use of zero allocated", |
| categories::MemoryError)); |
| |
| auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], |
| "Use of zero-allocated memory", N); |
| |
| R->addRange(Range); |
| if (Sym) { |
| R->markInteresting(Sym); |
| R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); |
| } |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, |
| SourceRange Range, |
| const Expr *FreeExpr) const { |
| if (!ChecksEnabled[CK_MallocChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_BadFree[*CheckKind]) |
| BT_BadFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Bad free", categories::MemoryError)); |
| |
| SmallString<100> Buf; |
| llvm::raw_svector_ostream Os(Buf); |
| |
| const MemRegion *MR = ArgVal.getAsRegion(); |
| while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) |
| MR = ER->getSuperRegion(); |
| |
| Os << "Argument to "; |
| if (!printAllocDeallocName(Os, C, FreeExpr)) |
| Os << "deallocator"; |
| |
| Os << " is a function pointer"; |
| |
| auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N); |
| R->markInteresting(MR); |
| R->addRange(Range); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, |
| const CallExpr *CE, |
| bool FreesOnFail, |
| ProgramStateRef State, |
| bool SuffixWithN) const { |
| if (!State) |
| return nullptr; |
| |
| if (SuffixWithN && CE->getNumArgs() < 3) |
| return nullptr; |
| else if (CE->getNumArgs() < 2) |
| return nullptr; |
| |
| const Expr *arg0Expr = CE->getArg(0); |
| SVal Arg0Val = C.getSVal(arg0Expr); |
| if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) |
| return nullptr; |
| DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); |
| |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| |
| DefinedOrUnknownSVal PtrEQ = |
| svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); |
| |
| // Get the size argument. |
| const Expr *Arg1 = CE->getArg(1); |
| |
| // Get the value of the size argument. |
| SVal TotalSize = C.getSVal(Arg1); |
| if (SuffixWithN) |
| TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); |
| if (!TotalSize.getAs<DefinedOrUnknownSVal>()) |
| return nullptr; |
| |
| // Compare the size argument to 0. |
| DefinedOrUnknownSVal SizeZero = |
| svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), |
| svalBuilder.makeIntValWithPtrWidth(0, false)); |
| |
| ProgramStateRef StatePtrIsNull, StatePtrNotNull; |
| std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); |
| ProgramStateRef StateSizeIsZero, StateSizeNotZero; |
| std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); |
| // We only assume exceptional states if they are definitely true; if the |
| // state is under-constrained, assume regular realloc behavior. |
| bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; |
| bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; |
| |
| // If the ptr is NULL and the size is not 0, the call is equivalent to |
| // malloc(size). |
| if (PrtIsNull && !SizeIsZero) { |
| ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, |
| UndefinedVal(), StatePtrIsNull); |
| return stateMalloc; |
| } |
| |
| if (PrtIsNull && SizeIsZero) |
| return State; |
| |
| // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). |
| assert(!PrtIsNull); |
| SymbolRef FromPtr = arg0Val.getAsSymbol(); |
| SVal RetVal = C.getSVal(CE); |
| SymbolRef ToPtr = RetVal.getAsSymbol(); |
| if (!FromPtr || !ToPtr) |
| return nullptr; |
| |
| bool ReleasedAllocated = false; |
| |
| // If the size is 0, free the memory. |
| if (SizeIsZero) |
| if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, |
| false, ReleasedAllocated)){ |
| // The semantics of the return value are: |
| // If size was equal to 0, either NULL or a pointer suitable to be passed |
| // to free() is returned. We just free the input pointer and do not add |
| // any constrains on the output pointer. |
| return stateFree; |
| } |
| |
| // Default behavior. |
| if (ProgramStateRef stateFree = |
| FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { |
| |
| ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, |
| UnknownVal(), stateFree); |
| if (!stateRealloc) |
| return nullptr; |
| |
| ReallocPairKind Kind = RPToBeFreedAfterFailure; |
| if (FreesOnFail) |
| Kind = RPIsFreeOnFailure; |
| else if (!ReleasedAllocated) |
| Kind = RPDoNotTrackAfterFailure; |
| |
| // Record the info about the reallocated symbol so that we could properly |
| // process failed reallocation. |
| stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, |
| ReallocPair(FromPtr, Kind)); |
| // The reallocated symbol should stay alive for as long as the new symbol. |
| C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); |
| return stateRealloc; |
| } |
| return nullptr; |
| } |
| |
| ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, |
| ProgramStateRef State) { |
| if (!State) |
| return nullptr; |
| |
| if (CE->getNumArgs() < 2) |
| return nullptr; |
| |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); |
| SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); |
| |
| return MallocMemAux(C, CE, TotalSize, zeroVal, State); |
| } |
| |
| LeakInfo |
| MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, |
| CheckerContext &C) const { |
| const LocationContext *LeakContext = N->getLocationContext(); |
| // Walk the ExplodedGraph backwards and find the first node that referred to |
| // the tracked symbol. |
| const ExplodedNode *AllocNode = N; |
| const MemRegion *ReferenceRegion = nullptr; |
| |
| while (N) { |
| ProgramStateRef State = N->getState(); |
| if (!State->get<RegionState>(Sym)) |
| break; |
| |
| // Find the most recent expression bound to the symbol in the current |
| // context. |
| if (!ReferenceRegion) { |
| if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { |
| SVal Val = State->getSVal(MR); |
| if (Val.getAsLocSymbol() == Sym) { |
| const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); |
| // Do not show local variables belonging to a function other than |
| // where the error is reported. |
| if (!VR || |
| (VR->getStackFrame() == LeakContext->getStackFrame())) |
| ReferenceRegion = MR; |
| } |
| } |
| } |
| |
| // Allocation node, is the last node in the current or parent context in |
| // which the symbol was tracked. |
| const LocationContext *NContext = N->getLocationContext(); |
| if (NContext == LeakContext || |
| NContext->isParentOf(LeakContext)) |
| AllocNode = N; |
| N = N->pred_empty() ? nullptr : *(N->pred_begin()); |
| } |
| |
| return LeakInfo(AllocNode, ReferenceRegion); |
| } |
| |
| void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, |
| CheckerContext &C) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteLeaksChecker]) |
| return; |
| |
| const RefState *RS = C.getState()->get<RegionState>(Sym); |
| assert(RS && "cannot leak an untracked symbol"); |
| AllocationFamily Family = RS->getAllocationFamily(); |
| |
| if (Family == AF_Alloca) |
| return; |
| |
| Optional<MallocChecker::CheckKind> |
| CheckKind = getCheckIfTracked(Family, true); |
| |
| if (!CheckKind.hasValue()) |
| return; |
| |
| assert(N); |
| if (!BT_Leak[*CheckKind]) { |
| BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", |
| categories::MemoryError)); |
| // Leaks should not be reported if they are post-dominated by a sink: |
| // (1) Sinks are higher importance bugs. |
| // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending |
| // with __noreturn functions such as assert() or exit(). We choose not |
| // to report leaks on such paths. |
| BT_Leak[*CheckKind]->setSuppressOnSink(true); |
| } |
| |
| // Most bug reports are cached at the location where they occurred. |
| // With leaks, we want to unique them by the location where they were |
| // allocated, and only report a single path. |
| PathDiagnosticLocation LocUsedForUniqueing; |
| const ExplodedNode *AllocNode = nullptr; |
| const MemRegion *Region = nullptr; |
| std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); |
| |
| const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); |
| if (AllocationStmt) |
| LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, |
| C.getSourceManager(), |
| AllocNode->getLocationContext()); |
| |
| SmallString<200> buf; |
| llvm::raw_svector_ostream os(buf); |
| if (Region && Region->canPrintPretty()) { |
| os << "Potential leak of memory pointed to by "; |
| Region->printPretty(os); |
| } else { |
| os << "Potential memory leak"; |
| } |
| |
| auto R = llvm::make_unique<BugReport>( |
| *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, |
| AllocNode->getLocationContext()->getDecl()); |
| R->markInteresting(Sym); |
| R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); |
| C.emitReport(std::move(R)); |
| } |
| |
| void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, |
| CheckerContext &C) const |
| { |
| if (!SymReaper.hasDeadSymbols()) |
| return; |
| |
| ProgramStateRef state = C.getState(); |
| RegionStateTy RS = state->get<RegionState>(); |
| RegionStateTy::Factory &F = state->get_context<RegionState>(); |
| |
| SmallVector<SymbolRef, 2> Errors; |
| for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { |
| if (SymReaper.isDead(I->first)) { |
| if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) |
| Errors.push_back(I->first); |
| // Remove the dead symbol from the map. |
| RS = F.remove(RS, I->first); |
| |
| } |
| } |
| |
| // Cleanup the Realloc Pairs Map. |
| ReallocPairsTy RP = state->get<ReallocPairs>(); |
| for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { |
| if (SymReaper.isDead(I->first) || |
| SymReaper.isDead(I->second.ReallocatedSym)) { |
| state = state->remove<ReallocPairs>(I->first); |
| } |
| } |
| |
| // Cleanup the FreeReturnValue Map. |
| FreeReturnValueTy FR = state->get<FreeReturnValue>(); |
| for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { |
| if (SymReaper.isDead(I->first) || |
| SymReaper.isDead(I->second)) { |
| state = state->remove<FreeReturnValue>(I->first); |
| } |
| } |
| |
| // Generate leak node. |
| ExplodedNode *N = C.getPredecessor(); |
| if (!Errors.empty()) { |
| static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); |
| N = C.generateNonFatalErrorNode(C.getState(), &Tag); |
| if (N) { |
| for (SmallVectorImpl<SymbolRef>::iterator |
| I = Errors.begin(), E = Errors.end(); I != E; ++I) { |
| reportLeak(*I, N, C); |
| } |
| } |
| } |
| |
| C.addTransition(state->set<RegionState>(RS), N); |
| } |
| |
| void MallocChecker::checkPreCall(const CallEvent &Call, |
| CheckerContext &C) const { |
| |
| if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { |
| SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); |
| if (!Sym || checkDoubleDelete(Sym, C)) |
| return; |
| } |
| |
| // We will check for double free in the post visit. |
| if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { |
| const FunctionDecl *FD = FC->getDecl(); |
| if (!FD) |
| return; |
| |
| ASTContext &Ctx = C.getASTContext(); |
| if (ChecksEnabled[CK_MallocChecker] && |
| (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || |
| isCMemFunction(FD, Ctx, AF_IfNameIndex, |
| MemoryOperationKind::MOK_Free))) |
| return; |
| |
| if (ChecksEnabled[CK_NewDeleteChecker] && |
| isStandardNewDelete(FD, Ctx)) |
| return; |
| } |
| |
| // Check if the callee of a method is deleted. |
| if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { |
| SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); |
| if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) |
| return; |
| } |
| |
| // Check arguments for being used after free. |
| for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { |
| SVal ArgSVal = Call.getArgSVal(I); |
| if (ArgSVal.getAs<Loc>()) { |
| SymbolRef Sym = ArgSVal.getAsSymbol(); |
| if (!Sym) |
| continue; |
| if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) |
| return; |
| } |
| } |
| } |
| |
| void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { |
| const Expr *E = S->getRetValue(); |
| if (!E) |
| return; |
| |
| // Check if we are returning a symbol. |
| ProgramStateRef State = C.getState(); |
| SVal RetVal = C.getSVal(E); |
| SymbolRef Sym = RetVal.getAsSymbol(); |
| if (!Sym) |
| // If we are returning a field of the allocated struct or an array element, |
| // the callee could still free the memory. |
| // TODO: This logic should be a part of generic symbol escape callback. |
| if (const MemRegion *MR = RetVal.getAsRegion()) |
| if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) |
| if (const SymbolicRegion *BMR = |
| dyn_cast<SymbolicRegion>(MR->getBaseRegion())) |
| Sym = BMR->getSymbol(); |
| |
| // Check if we are returning freed memory. |
| if (Sym) |
| checkUseAfterFree(Sym, C, E); |
| } |
| |
| // TODO: Blocks should be either inlined or should call invalidate regions |
| // upon invocation. After that's in place, special casing here will not be |
| // needed. |
| void MallocChecker::checkPostStmt(const BlockExpr *BE, |
| CheckerContext &C) const { |
| |
| // Scan the BlockDecRefExprs for any object the retain count checker |
| // may be tracking. |
| if (!BE->getBlockDecl()->hasCaptures()) |
| return; |
| |
| ProgramStateRef state = C.getState(); |
| const BlockDataRegion *R = |
| cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); |
| |
| BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), |
| E = R->referenced_vars_end(); |
| |
| if (I == E) |
| return; |
| |
| SmallVector<const MemRegion*, 10> Regions; |
| const LocationContext *LC = C.getLocationContext(); |
| MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); |
| |
| for ( ; I != E; ++I) { |
| const VarRegion *VR = I.getCapturedRegion(); |
| if (VR->getSuperRegion() == R) { |
| VR = MemMgr.getVarRegion(VR->getDecl(), LC); |
| } |
| Regions.push_back(VR); |
| } |
| |
| state = |
| state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), |
| Regions.data() + Regions.size()).getState(); |
| C.addTransition(state); |
| } |
| |
| bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { |
| assert(Sym); |
| const RefState *RS = C.getState()->get<RegionState>(Sym); |
| return (RS && RS->isReleased()); |
| } |
| |
| bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, |
| const Stmt *S) const { |
| |
| if (isReleased(Sym, C)) { |
| ReportUseAfterFree(C, S->getSourceRange(), Sym); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, |
| const Stmt *S) const { |
| assert(Sym); |
| |
| if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { |
| if (RS->isAllocatedOfSizeZero()) |
| ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); |
| } |
| else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { |
| ReportUseZeroAllocated(C, S->getSourceRange(), Sym); |
| } |
| } |
| |
| bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { |
| |
| if (isReleased(Sym, C)) { |
| ReportDoubleDelete(C, Sym); |
| return true; |
| } |
| return false; |
| } |
| |
| // Check if the location is a freed symbolic region. |
| void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, |
| CheckerContext &C) const { |
| SymbolRef Sym = l.getLocSymbolInBase(); |
| if (Sym) { |
| checkUseAfterFree(Sym, C, S); |
| checkUseZeroAllocated(Sym, C, S); |
| } |
| } |
| |
| // If a symbolic region is assumed to NULL (or another constant), stop tracking |
| // it - assuming that allocation failed on this path. |
| ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, |
| SVal Cond, |
| bool Assumption) const { |
| RegionStateTy RS = state->get<RegionState>(); |
| for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { |
| // If the symbol is assumed to be NULL, remove it from consideration. |
| ConstraintManager &CMgr = state->getConstraintManager(); |
| ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); |
| if (AllocFailed.isConstrainedTrue()) |
| state = state->remove<RegionState>(I.getKey()); |
| } |
| |
| // Realloc returns 0 when reallocation fails, which means that we should |
| // restore the state of the pointer being reallocated. |
| ReallocPairsTy RP = state->get<ReallocPairs>(); |
| for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { |
| // If the symbol is assumed to be NULL, remove it from consideration. |
| ConstraintManager &CMgr = state->getConstraintManager(); |
| ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); |
| if (!AllocFailed.isConstrainedTrue()) |
| continue; |
| |
| SymbolRef ReallocSym = I.getData().ReallocatedSym; |
| if (const RefState *RS = state->get<RegionState>(ReallocSym)) { |
| if (RS->isReleased()) { |
| if (I.getData().Kind == RPToBeFreedAfterFailure) |
| state = state->set<RegionState>(ReallocSym, |
| RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); |
| else if (I.getData().Kind == RPDoNotTrackAfterFailure) |
| state = state->remove<RegionState>(ReallocSym); |
| else |
| assert(I.getData().Kind == RPIsFreeOnFailure); |
| } |
| } |
| state = state->remove<ReallocPairs>(I.getKey()); |
| } |
| |
| return state; |
| } |
| |
| bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( |
| const CallEvent *Call, |
| ProgramStateRef State, |
| SymbolRef &EscapingSymbol) const { |
| assert(Call); |
| EscapingSymbol = nullptr; |
| |
| // For now, assume that any C++ or block call can free memory. |
| // TODO: If we want to be more optimistic here, we'll need to make sure that |
| // regions escape to C++ containers. They seem to do that even now, but for |
| // mysterious reasons. |
| if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) |
| return true; |
| |
| // Check Objective-C messages by selector name. |
| if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { |
| // If it's not a framework call, or if it takes a callback, assume it |
| // can free memory. |
| if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) |
| return true; |
| |
| // If it's a method we know about, handle it explicitly post-call. |
| // This should happen before the "freeWhenDone" check below. |
| if (isKnownDeallocObjCMethodName(*Msg)) |
| return false; |
| |
| // If there's a "freeWhenDone" parameter, but the method isn't one we know |
| // about, we can't be sure that the object will use free() to deallocate the |
| // memory, so we can't model it explicitly. The best we can do is use it to |
| // decide whether the pointer escapes. |
| if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) |
| return *FreeWhenDone; |
| |
| // If the first selector piece ends with "NoCopy", and there is no |
| // "freeWhenDone" parameter set to zero, we know ownership is being |
| // transferred. Again, though, we can't be sure that the object will use |
| // free() to deallocate the memory, so we can't model it explicitly. |
| StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); |
| if (FirstSlot.endswith("NoCopy")) |
| return true; |
| |
| // If the first selector starts with addPointer, insertPointer, |
| // or replacePointer, assume we are dealing with NSPointerArray or similar. |
| // This is similar to C++ containers (vector); we still might want to check |
| // that the pointers get freed by following the container itself. |
| if (FirstSlot.startswith("addPointer") || |
| FirstSlot.startswith("insertPointer") || |
| FirstSlot.startswith("replacePointer") || |
| FirstSlot.equals("valueWithPointer")) { |
| return true; |
| } |
| |
| // We should escape receiver on call to 'init'. This is especially relevant |
| // to the receiver, as the corresponding symbol is usually not referenced |
| // after the call. |
| if (Msg->getMethodFamily() == OMF_init) { |
| EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); |
| return true; |
| } |
| |
| // Otherwise, assume that the method does not free memory. |
| // Most framework methods do not free memory. |
| return false; |
| } |
| |
| // At this point the only thing left to handle is straight function calls. |
| const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); |
| if (!FD) |
| return true; |
| |
| ASTContext &ASTC = State->getStateManager().getContext(); |
| |
| // If it's one of the allocation functions we can reason about, we model |
| // its behavior explicitly. |
| if (isMemFunction(FD, ASTC)) |
| return false; |
| |
| // If it's not a system call, assume it frees memory. |
| if (!Call->isInSystemHeader()) |
| return true; |
| |
| // White list the system functions whose arguments escape. |
| const IdentifierInfo *II = FD->getIdentifier(); |
| if (!II) |
| return true; |
| StringRef FName = II->getName(); |
| |
| // White list the 'XXXNoCopy' CoreFoundation functions. |
| // We specifically check these before |
| if (FName.endswith("NoCopy")) { |
| // Look for the deallocator argument. We know that the memory ownership |
| // is not transferred only if the deallocator argument is |
| // 'kCFAllocatorNull'. |
| for (unsigned i = 1; i < Call->getNumArgs(); ++i) { |
| const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); |
| if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { |
| StringRef DeallocatorName = DE->getFoundDecl()->getName(); |
| if (DeallocatorName == "kCFAllocatorNull") |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Associating streams with malloced buffers. The pointer can escape if |
| // 'closefn' is specified (and if that function does free memory), |
| // but it will not if closefn is not specified. |
| // Currently, we do not inspect the 'closefn' function (PR12101). |
| if (FName == "funopen") |
| if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) |
| return false; |
| |
| // Do not warn on pointers passed to 'setbuf' when used with std streams, |
| // these leaks might be intentional when setting the buffer for stdio. |
| // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer |
| if (FName == "setbuf" || FName =="setbuffer" || |
| FName == "setlinebuf" || FName == "setvbuf") { |
| if (Call->getNumArgs() >= 1) { |
| const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); |
| if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) |
| if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) |
| if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) |
| return true; |
| } |
| } |
| |
| // A bunch of other functions which either take ownership of a pointer or |
| // wrap the result up in a struct or object, meaning it can be freed later. |
| // (See RetainCountChecker.) Not all the parameters here are invalidated, |
| // but the Malloc checker cannot differentiate between them. The right way |
| // of doing this would be to implement a pointer escapes callback. |
| if (FName == "CGBitmapContextCreate" || |
| FName == "CGBitmapContextCreateWithData" || |
| FName == "CVPixelBufferCreateWithBytes" || |
| FName == "CVPixelBufferCreateWithPlanarBytes" || |
| FName == "OSAtomicEnqueue") { |
| return true; |
| } |
| |
| if (FName == "postEvent" && |
| FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { |
| return true; |
| } |
| |
| if (FName == "postEvent" && |
| FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { |
| return true; |
| } |
| |
| if (FName == "connectImpl" && |
| FD->getQualifiedNameAsString() == "QObject::connectImpl") { |
| return true; |
| } |
| |
| // Handle cases where we know a buffer's /address/ can escape. |
| // Note that the above checks handle some special cases where we know that |
| // even though the address escapes, it's still our responsibility to free the |
| // buffer. |
| if (Call->argumentsMayEscape()) |
| return true; |
| |
| // Otherwise, assume that the function does not free memory. |
| // Most system calls do not free the memory. |
| return false; |
| } |
| |
| static bool retTrue(const RefState *RS) { |
| return true; |
| } |
| |
| static bool checkIfNewOrNewArrayFamily(const RefState *RS) { |
| return (RS->getAllocationFamily() == AF_CXXNewArray || |
| RS->getAllocationFamily() == AF_CXXNew); |
| } |
| |
| ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, |
| const InvalidatedSymbols &Escaped, |
| const CallEvent *Call, |
| PointerEscapeKind Kind) const { |
| return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); |
| } |
| |
| ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, |
| const InvalidatedSymbols &Escaped, |
| const CallEvent *Call, |
| PointerEscapeKind Kind) const { |
| return checkPointerEscapeAux(State, Escaped, Call, Kind, |
| &checkIfNewOrNewArrayFamily); |
| } |
| |
| ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, |
| const InvalidatedSymbols &Escaped, |
| const CallEvent *Call, |
| PointerEscapeKind Kind, |
| bool(*CheckRefState)(const RefState*)) const { |
| // If we know that the call does not free memory, or we want to process the |
| // call later, keep tracking the top level arguments. |
| SymbolRef EscapingSymbol = nullptr; |
| if (Kind == PSK_DirectEscapeOnCall && |
| !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, |
| EscapingSymbol) && |
| !EscapingSymbol) { |
| return State; |
| } |
| |
| for (InvalidatedSymbols::const_iterator I = Escaped.begin(), |
| E = Escaped.end(); |
| I != E; ++I) { |
| SymbolRef sym = *I; |
| |
| if (EscapingSymbol && EscapingSymbol != sym) |
| continue; |
| |
| if (const RefState *RS = State->get<RegionState>(sym)) { |
| if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && |
| CheckRefState(RS)) { |
| State = State->remove<RegionState>(sym); |
| State = State->set<RegionState>(sym, RefState::getEscaped(RS)); |
| } |
| } |
| } |
| return State; |
| } |
| |
| static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, |
| ProgramStateRef prevState) { |
| ReallocPairsTy currMap = currState->get<ReallocPairs>(); |
| ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); |
| |
| for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); |
| I != E; ++I) { |
| SymbolRef sym = I.getKey(); |
| if (!currMap.lookup(sym)) |
| return sym; |
| } |
| |
| return nullptr; |
| } |
| |
| static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { |
| if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { |
| StringRef N = II->getName(); |
| if (N.contains_lower("ptr") || N.contains_lower("pointer")) { |
| if (N.contains_lower("ref") || N.contains_lower("cnt") || |
| N.contains_lower("intrusive") || N.contains_lower("shared")) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| std::shared_ptr<PathDiagnosticPiece> MallocChecker::MallocBugVisitor::VisitNode( |
| const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, |
| BugReport &BR) { |
| |
| ProgramStateRef state = N->getState(); |
| ProgramStateRef statePrev = PrevN->getState(); |
| |
| const RefState *RS = state->get<RegionState>(Sym); |
| const RefState *RSPrev = statePrev->get<RegionState>(Sym); |
| |
| const Stmt *S = PathDiagnosticLocation::getStmt(N); |
| // When dealing with containers, we sometimes want to give a note |
| // even if the statement is missing. |
| if (!S && (!RS || RS->getAllocationFamily() != AF_InnerBuffer)) |
| return nullptr; |
| |
| const LocationContext *CurrentLC = N->getLocationContext(); |
| |
| // If we find an atomic fetch_add or fetch_sub within the destructor in which |
| // the pointer was released (before the release), this is likely a destructor |
| // of a shared pointer. |
| // Because we don't model atomics, and also because we don't know that the |
| // original reference count is positive, we should not report use-after-frees |
| // on objects deleted in such destructors. This can probably be improved |
| // through better shared pointer modeling. |
| if (ReleaseDestructorLC) { |
| if (const auto *AE = dyn_cast<AtomicExpr>(S)) { |
| AtomicExpr::AtomicOp Op = AE->getOp(); |
| if (Op == AtomicExpr::AO__c11_atomic_fetch_add || |
| Op == AtomicExpr::AO__c11_atomic_fetch_sub) { |
| if (ReleaseDestructorLC == CurrentLC || |
| ReleaseDestructorLC->isParentOf(CurrentLC)) { |
| BR.markInvalid(getTag(), S); |
| } |
| } |
| } |
| } |
| |
| // FIXME: We will eventually need to handle non-statement-based events |
| // (__attribute__((cleanup))). |
| |
| // Find out if this is an interesting point and what is the kind. |
| StringRef Msg; |
| StackHintGeneratorForSymbol *StackHint = nullptr; |
| SmallString<256> Buf; |
| llvm::raw_svector_ostream OS(Buf); |
| |
| if (Mode == Normal) { |
| if (isAllocated(RS, RSPrev, S)) { |
| Msg = "Memory is allocated"; |
| StackHint = new StackHintGeneratorForSymbol(Sym, |
| "Returned allocated memory"); |
| } else if (isReleased(RS, RSPrev, S)) { |
| const auto Family = RS->getAllocationFamily(); |
| switch (Family) { |
| case AF_Alloca: |
| case AF_Malloc: |
| case AF_CXXNew: |
| case AF_CXXNewArray: |
| case AF_IfNameIndex: |
| Msg = "Memory is released"; |
| break; |
| case AF_InnerBuffer: { |
| OS << "Inner pointer invalidated by call to "; |
| if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { |
| OS << "destructor"; |
| } else { |
| OS << "'"; |
| const Stmt *S = RS->getStmt(); |
| if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { |
| OS << MemCallE->getMethodDecl()->getNameAsString(); |
| } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { |
| OS << OpCallE->getDirectCallee()->getNameAsString(); |
| } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { |
| auto &CEMgr = BRC.getStateManager().getCallEventManager(); |
| CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); |
| const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); |
| OS << (D ? D->getNameAsString() : "unknown"); |
| } |
| OS << "'"; |
| } |
| Msg = OS.str(); |
| break; |
| } |
| case AF_None: |
| llvm_unreachable("Unhandled allocation family!"); |
| } |
| StackHint = new StackHintGeneratorForSymbol(Sym, |
| "Returning; memory was released"); |
| |
| // See if we're releasing memory while inlining a destructor |
| // (or one of its callees). This turns on various common |
| // false positive suppressions. |
| bool FoundAnyDestructor = false; |
| for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { |
| if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { |
| if (isReferenceCountingPointerDestructor(DD)) { |
| // This immediately looks like a reference-counting destructor. |
| // We're bad at guessing the original reference count of the object, |
| // so suppress the report for now. |
| BR.markInvalid(getTag(), DD); |
| } else if (!FoundAnyDestructor) { |
| assert(!ReleaseDestructorLC && |
| "There can be only one release point!"); |
| // Suspect that it's a reference counting pointer destructor. |
| // On one of the next nodes might find out that it has atomic |
| // reference counting operations within it (see the code above), |
| // and if so, we'd conclude that it likely is a reference counting |
| // pointer destructor. |
| ReleaseDestructorLC = LC->getStackFrame(); |
| // It is unlikely that releasing memory is delegated to a destructor |
| // inside a destructor of a shared pointer, because it's fairly hard |
| // to pass the information that the pointer indeed needs to be |
| // released into it. So we're only interested in the innermost |
| // destructor. |
| FoundAnyDestructor = true; |
| } |
| } |
| } |
| } else if (isRelinquished(RS, RSPrev, S)) { |
| Msg = "Memory ownership is transferred"; |
| StackHint = new StackHintGeneratorForSymbol(Sym, ""); |
| } else if (isReallocFailedCheck(RS, RSPrev, S)) { |
| Mode = ReallocationFailed; |
| Msg = "Reallocation failed"; |
| StackHint = new StackHintGeneratorForReallocationFailed(Sym, |
| "Reallocation failed"); |
| |
| if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { |
| // Is it possible to fail two reallocs WITHOUT testing in between? |
| assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && |
| "We only support one failed realloc at a time."); |
| BR.markInteresting(sym); |
| FailedReallocSymbol = sym; |
| } |
| } |
| |
| // We are in a special mode if a reallocation failed later in the path. |
| } else if (Mode == ReallocationFailed) { |
| assert(FailedReallocSymbol && "No symbol to look for."); |
| |
| // Is this is the first appearance of the reallocated symbol? |
| if (!statePrev->get<RegionState>(FailedReallocSymbol)) { |
| // We're at the reallocation point. |
| Msg = "Attempt to reallocate memory"; |
| StackHint = new StackHintGeneratorForSymbol(Sym, |
| "Returned reallocated memory"); |
| FailedReallocSymbol = nullptr; |
| Mode = Normal; |
| } |
| } |
| |
| if (Msg.empty()) |
| return nullptr; |
| assert(StackHint); |
| |
| // Generate the extra diagnostic. |
| PathDiagnosticLocation Pos; |
| if (!S) { |
| assert(RS->getAllocationFamily() == AF_InnerBuffer); |
| auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); |
| if (!PostImplCall) |
| return nullptr; |
| Pos = PathDiagnosticLocation(PostImplCall->getLocation(), |
| BRC.getSourceManager()); |
| } else { |
| Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), |
| N->getLocationContext()); |
| } |
| |
| return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); |
| } |
| |
| void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, |
| const char *NL, const char *Sep) const { |
| |
| RegionStateTy RS = State->get<RegionState>(); |
| |
| if (!RS.isEmpty()) { |
| Out << Sep << "MallocChecker :" << NL; |
| for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { |
| const RefState *RefS = State->get<RegionState>(I.getKey()); |
| AllocationFamily Family = RefS->getAllocationFamily(); |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); |
| if (!CheckKind.hasValue()) |
| CheckKind = getCheckIfTracked(Family, true); |
| |
| I.getKey()->dumpToStream(Out); |
| Out << " : "; |
| I.getData().dump(Out); |
| if (CheckKind.hasValue()) |
| Out << " (" << CheckNames[*CheckKind].getName() << ")"; |
| Out << NL; |
| } |
| } |
| } |
| |
| namespace clang { |
| namespace ento { |
| namespace allocation_state { |
| |
| ProgramStateRef |
| markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { |
| AllocationFamily Family = AF_InnerBuffer; |
| return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); |
| } |
| |
| } // end namespace allocation_state |
| } // end namespace ento |
| } // end namespace clang |
| |
| void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { |
| registerCStringCheckerBasic(mgr); |
| MallocChecker *checker = mgr.registerChecker<MallocChecker>(); |
| checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( |
| "Optimistic", false, checker); |
| checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; |
| checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = |
| mgr.getCurrentCheckName(); |
| // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete |
| // checker. |
| if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) { |
| checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; |
| // FIXME: This does not set the correct name, but without this workaround |
| // no name will be set at all. |
| checker->CheckNames[MallocChecker::CK_NewDeleteChecker] = |
| mgr.getCurrentCheckName(); |
| } |
| } |
| |
| #define REGISTER_CHECKER(name) \ |
| void ento::register##name(CheckerManager &mgr) { \ |
| registerCStringCheckerBasic(mgr); \ |
| MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ |
| checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ |
| "Optimistic", false, checker); \ |
| checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ |
| checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ |
| } |
| |
| REGISTER_CHECKER(MallocChecker) |
| REGISTER_CHECKER(NewDeleteChecker) |
| REGISTER_CHECKER(MismatchedDeallocatorChecker) |