| // Copyright 2012 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // Utilities for building and looking up Huffman trees. |
| // |
| // Author: Urvang Joshi (urvang@google.com) |
| |
| #if defined(STARBOARD) |
| #include "starboard/log.h" |
| #include "starboard/memory.h" |
| #else |
| #include <assert.h> |
| #include <stdlib.h> |
| #endif |
| |
| #include "./huffman.h" |
| #include "../utils/utils.h" |
| #include "../webp/format_constants.h" |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| #define NON_EXISTENT_SYMBOL (-1) |
| |
| static void TreeNodeInit(HuffmanTreeNode* const node) { |
| node->children_ = -1; // means: 'unassigned so far' |
| } |
| |
| static int NodeIsEmpty(const HuffmanTreeNode* const node) { |
| return (node->children_ < 0); |
| } |
| |
| static int IsFull(const HuffmanTree* const tree) { |
| return (tree->num_nodes_ == tree->max_nodes_); |
| } |
| |
| static void AssignChildren(HuffmanTree* const tree, |
| HuffmanTreeNode* const node) { |
| HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_; |
| node->children_ = (int)(children - node); |
| SB_DCHECK(children - node == (int)(children - node)); |
| tree->num_nodes_ += 2; |
| TreeNodeInit(children + 0); |
| TreeNodeInit(children + 1); |
| } |
| |
| static int TreeInit(HuffmanTree* const tree, int num_leaves) { |
| SB_DCHECK(tree != NULL); |
| if (num_leaves == 0) return 0; |
| // We allocate maximum possible nodes in the tree at once. |
| // Note that a Huffman tree is a full binary tree; and in a full binary tree |
| // with L leaves, the total number of nodes N = 2 * L - 1. |
| tree->max_nodes_ = 2 * num_leaves - 1; |
| tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc((uint64_t)tree->max_nodes_, |
| sizeof(*tree->root_)); |
| if (tree->root_ == NULL) return 0; |
| TreeNodeInit(tree->root_); // Initialize root. |
| tree->num_nodes_ = 1; |
| return 1; |
| } |
| |
| void HuffmanTreeRelease(HuffmanTree* const tree) { |
| if (tree != NULL) { |
| SbMemoryDeallocate(tree->root_); |
| tree->root_ = NULL; |
| tree->max_nodes_ = 0; |
| tree->num_nodes_ = 0; |
| } |
| } |
| |
| int HuffmanCodeLengthsToCodes(const int* const code_lengths, |
| int code_lengths_size, int* const huff_codes) { |
| int symbol; |
| int code_len; |
| int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
| int curr_code; |
| int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
| int max_code_length = 0; |
| |
| SB_DCHECK(code_lengths != NULL); |
| SB_DCHECK(code_lengths_size > 0); |
| SB_DCHECK(huff_codes != NULL); |
| |
| // Calculate max code length. |
| for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| if (code_lengths[symbol] > max_code_length) { |
| max_code_length = code_lengths[symbol]; |
| } |
| } |
| if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0; |
| |
| // Calculate code length histogram. |
| for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| ++code_length_hist[code_lengths[symbol]]; |
| } |
| code_length_hist[0] = 0; |
| |
| // Calculate the initial values of 'next_codes' for each code length. |
| // next_codes[code_len] denotes the code to be assigned to the next symbol |
| // of code length 'code_len'. |
| curr_code = 0; |
| next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist. |
| for (code_len = 1; code_len <= max_code_length; ++code_len) { |
| curr_code = (curr_code + code_length_hist[code_len - 1]) << 1; |
| next_codes[code_len] = curr_code; |
| } |
| |
| // Get symbols. |
| for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| if (code_lengths[symbol] > 0) { |
| huff_codes[symbol] = next_codes[code_lengths[symbol]]++; |
| } else { |
| huff_codes[symbol] = NON_EXISTENT_SYMBOL; |
| } |
| } |
| return 1; |
| } |
| |
| static int TreeAddSymbol(HuffmanTree* const tree, |
| int symbol, int code, int code_length) { |
| HuffmanTreeNode* node = tree->root_; |
| const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_; |
| while (code_length-- > 0) { |
| if (node >= max_node) { |
| return 0; |
| } |
| if (NodeIsEmpty(node)) { |
| if (IsFull(tree)) return 0; // error: too many symbols. |
| AssignChildren(tree, node); |
| } else if (HuffmanTreeNodeIsLeaf(node)) { |
| return 0; // leaf is already occupied. |
| } |
| node += node->children_ + ((code >> code_length) & 1); |
| } |
| if (NodeIsEmpty(node)) { |
| node->children_ = 0; // turn newly created node into a leaf. |
| } else if (!HuffmanTreeNodeIsLeaf(node)) { |
| return 0; // trying to assign a symbol to already used code. |
| } |
| node->symbol_ = symbol; // Add symbol in this node. |
| return 1; |
| } |
| |
| int HuffmanTreeBuildImplicit(HuffmanTree* const tree, |
| const int* const code_lengths, |
| int code_lengths_size) { |
| int symbol; |
| int num_symbols = 0; |
| int root_symbol = 0; |
| |
| SB_DCHECK(tree != NULL); |
| SB_DCHECK(code_lengths != NULL); |
| |
| // Find out number of symbols and the root symbol. |
| for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| if (code_lengths[symbol] > 0) { |
| // Note: code length = 0 indicates non-existent symbol. |
| ++num_symbols; |
| root_symbol = symbol; |
| } |
| } |
| |
| // Initialize the tree. Will fail for num_symbols = 0 |
| if (!TreeInit(tree, num_symbols)) return 0; |
| |
| // Build tree. |
| if (num_symbols == 1) { // Trivial case. |
| const int max_symbol = code_lengths_size; |
| if (root_symbol < 0 || root_symbol >= max_symbol) { |
| HuffmanTreeRelease(tree); |
| return 0; |
| } |
| return TreeAddSymbol(tree, root_symbol, 0, 0); |
| } else { // Normal case. |
| int ok = 0; |
| |
| // Get Huffman codes from the code lengths. |
| int* const codes = |
| (int*)WebPSafeMalloc((uint64_t)code_lengths_size, sizeof(*codes)); |
| if (codes == NULL) goto End; |
| |
| if (!HuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) { |
| goto End; |
| } |
| |
| // Add symbols one-by-one. |
| for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| if (code_lengths[symbol] > 0) { |
| if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) { |
| goto End; |
| } |
| } |
| } |
| ok = 1; |
| End: |
| SbMemoryDeallocate(codes); |
| ok = ok && IsFull(tree); |
| if (!ok) HuffmanTreeRelease(tree); |
| return ok; |
| } |
| } |
| |
| int HuffmanTreeBuildExplicit(HuffmanTree* const tree, |
| const int* const code_lengths, |
| const int* const codes, |
| const int* const symbols, int max_symbol, |
| int num_symbols) { |
| int ok = 0; |
| int i; |
| |
| SB_DCHECK(tree != NULL); |
| SB_DCHECK(code_lengths != NULL); |
| SB_DCHECK(codes != NULL); |
| SB_DCHECK(symbols != NULL); |
| |
| // Initialize the tree. Will fail if num_symbols = 0. |
| if (!TreeInit(tree, num_symbols)) return 0; |
| |
| // Add symbols one-by-one. |
| for (i = 0; i < num_symbols; ++i) { |
| if (codes[i] != NON_EXISTENT_SYMBOL) { |
| if (symbols[i] < 0 || symbols[i] >= max_symbol) { |
| goto End; |
| } |
| if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) { |
| goto End; |
| } |
| } |
| } |
| ok = 1; |
| End: |
| ok = ok && IsFull(tree); |
| if (!ok) HuffmanTreeRelease(tree); |
| return ok; |
| } |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } // extern "C" |
| #endif |