blob: f4959ae03b97226126c768883027eb62cefb2e91 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_stream_sequencer.h"
#include <algorithm>
#include <limits>
#include "base/logging.h"
#include "net/quic/reliable_quic_stream.h"
using std::min;
using std::numeric_limits;
namespace net {
QuicStreamSequencer::QuicStreamSequencer(ReliableQuicStream* quic_stream)
: stream_(quic_stream),
num_bytes_consumed_(0),
max_frame_memory_(numeric_limits<size_t>::max()),
close_offset_(numeric_limits<QuicStreamOffset>::max()),
half_close_(true) {
}
QuicStreamSequencer::QuicStreamSequencer(size_t max_frame_memory,
ReliableQuicStream* quic_stream)
: stream_(quic_stream),
num_bytes_consumed_(0),
max_frame_memory_(max_frame_memory),
close_offset_(numeric_limits<QuicStreamOffset>::max()),
half_close_(true) {
if (max_frame_memory < kMaxPacketSize) {
LOG(DFATAL) << "Setting max frame memory to " << max_frame_memory
<< ". Some frames will be impossible to handle.";
}
}
QuicStreamSequencer::~QuicStreamSequencer() {
}
bool QuicStreamSequencer::WillAcceptStreamFrame(
const QuicStreamFrame& frame) const {
size_t data_len = frame.data.size();
DCHECK_LE(data_len, max_frame_memory_);
QuicStreamOffset byte_offset = frame.offset;
if (byte_offset < num_bytes_consumed_ ||
frames_.find(byte_offset) != frames_.end()) {
return false;
}
if (data_len > max_frame_memory_) {
// We're never going to buffer this frame and we can't pass it up.
// The stream might only consume part of it and we'd need a partial ack.
//
// Ideally this should never happen, as we check that
// max_frame_memory_ > kMaxPacketSize and lower levels should reject
// frames larger than that.
return false;
}
if (byte_offset + data_len - num_bytes_consumed_ > max_frame_memory_) {
// We can buffer this but not right now. Toss it.
// It might be worth trying an experiment where we try best-effort buffering
return false;
}
return true;
}
bool QuicStreamSequencer::OnStreamFrame(const QuicStreamFrame& frame) {
if (!WillAcceptStreamFrame(frame)) {
// This should not happen, as WillAcceptFrame should be called before
// OnStreamFrame. Error handling should be done by the caller.
return false;
}
QuicStreamOffset byte_offset = frame.offset;
const char* data = frame.data.data();
size_t data_len = frame.data.size();
if (byte_offset == num_bytes_consumed_) {
DVLOG(1) << "Processing byte offset " << byte_offset;
size_t bytes_consumed = stream_->ProcessData(data, data_len);
num_bytes_consumed_ += bytes_consumed;
if (MaybeCloseStream()) {
return true;
}
if (bytes_consumed > data_len) {
stream_->Close(QUIC_SERVER_ERROR_PROCESSING_STREAM);
return false;
} else if (bytes_consumed == data_len) {
FlushBufferedFrames();
return true; // it's safe to ack this frame.
} else {
// Set ourselves up to buffer what's left
data_len -= bytes_consumed;
data += bytes_consumed;
byte_offset += bytes_consumed;
}
}
DVLOG(1) << "Buffering packet at offset " << byte_offset;
frames_.insert(make_pair(byte_offset, string(data, data_len)));
return true;
}
void QuicStreamSequencer::CloseStreamAtOffset(QuicStreamOffset offset,
bool half_close) {
const QuicStreamOffset kMaxOffset = numeric_limits<QuicStreamOffset>::max();
// If we have a scheduled termination or close, any new offset should match
// it.
if (close_offset_ != kMaxOffset && offset != close_offset_) {
stream_->Close(QUIC_MULTIPLE_TERMINATION_OFFSETS);
return;
}
close_offset_ = offset;
// Full close overrides half close.
if (half_close == false) {
half_close_ = false;
}
MaybeCloseStream();
}
bool QuicStreamSequencer::MaybeCloseStream() {
if (IsHalfClosed()) {
DVLOG(1) << "Passing up termination, as we've processed "
<< num_bytes_consumed_ << " of " << close_offset_
<< " bytes.";
// Technically it's an error if num_bytes_consumed isn't exactly
// equal, but error handling seems silly at this point.
stream_->TerminateFromPeer(half_close_);
return true;
}
return false;
}
bool QuicStreamSequencer::HasBytesToRead() const {
FrameMap::const_iterator it = frames_.begin();
return it != frames_.end() && it->first == num_bytes_consumed_;
}
bool QuicStreamSequencer::IsHalfClosed() const {
return num_bytes_consumed_ >= close_offset_;
}
bool QuicStreamSequencer::IsClosed() const {
return num_bytes_consumed_ >= close_offset_ && half_close_ == false;
}
void QuicStreamSequencer::FlushBufferedFrames() {
FrameMap::iterator it = frames_.find(num_bytes_consumed_);
while (it != frames_.end()) {
DVLOG(1) << "Flushing buffered packet at offset " << it->first;
string* data = &it->second;
size_t bytes_consumed = stream_->ProcessData(data->c_str(), data->size());
num_bytes_consumed_ += bytes_consumed;
if (MaybeCloseStream()) {
return;
}
if (bytes_consumed > data->size()) {
stream_->Close(QUIC_SERVER_ERROR_PROCESSING_STREAM); // Programming error
return;
} else if (bytes_consumed == data->size()) {
frames_.erase(it);
it = frames_.find(num_bytes_consumed_);
} else {
string new_data = it->second.substr(bytes_consumed);
frames_.erase(it);
frames_.insert(make_pair(num_bytes_consumed_, new_data));
return;
}
}
}
} // namespace net