| // Copyright 2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Flags: --allow-natives-syntax |
| |
| // Test fast div and mod. |
| |
| function divmod(div_func, mod_func, x, y) { |
| var div_answer = (div_func)(x); |
| assertEquals(x / y, div_answer, x + "/" + y); |
| var mod_answer = (mod_func)(x); |
| assertEquals(x % y, mod_answer, x + "%" + y); |
| var minus_div_answer = (div_func)(-x); |
| assertEquals(-x / y, minus_div_answer, "-" + x + "/" + y); |
| var minus_mod_answer = (mod_func)(-x); |
| assertEquals(-x % y, minus_mod_answer, "-" + x + "%" + y); |
| } |
| |
| |
| function run_tests_for(divisor) { |
| print("(function(left) { return left / " + divisor + "; })"); |
| var div_func = this.eval("(function(left) { return left / " + divisor + "; })"); |
| var mod_func = this.eval("(function(left) { return left % " + divisor + "; })"); |
| var exp; |
| // Strange number test. |
| divmod(div_func, mod_func, 0, divisor); |
| divmod(div_func, mod_func, 1 / 0, divisor); |
| // Floating point number test. |
| for (exp = -1024; exp <= 1024; exp += 8) { |
| divmod(div_func, mod_func, Math.pow(2, exp), divisor); |
| divmod(div_func, mod_func, 0.9999999 * Math.pow(2, exp), divisor); |
| divmod(div_func, mod_func, 1.0000001 * Math.pow(2, exp), divisor); |
| } |
| // Integer number test. |
| for (exp = 0; exp <= 32; exp++) { |
| divmod(div_func, mod_func, 1 << exp, divisor); |
| divmod(div_func, mod_func, (1 << exp) + 1, divisor); |
| divmod(div_func, mod_func, (1 << exp) - 1, divisor); |
| } |
| divmod(div_func, mod_func, Math.floor(0x1fffffff / 3), divisor); |
| divmod(div_func, mod_func, Math.floor(-0x20000000 / 3), divisor); |
| } |
| |
| |
| var divisors = [ |
| 0, |
| 1, |
| 2, |
| 3, |
| 4, |
| 5, |
| 6, |
| 7, |
| 8, |
| 9, |
| 10, |
| 0x1000000, |
| 0x40000000, |
| 12, |
| 60, |
| 100, |
| 1000 * 60 * 60 * 24]; |
| |
| for (var i = 0; i < divisors.length; i++) { |
| run_tests_for(divisors[i]); |
| } |
| |
| // Test extreme corner cases of modulo. |
| |
| // Computes the modulo by slow but lossless operations. |
| function compute_mod(dividend, divisor) { |
| // Return NaN if either operand is NaN, if divisor is 0 or |
| // dividend is an infinity. Return dividend if divisor is an infinity. |
| if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; } |
| var sign = 1; |
| if (dividend < 0) { dividend = -dividend; sign = -1; } |
| if (dividend == Infinity) { return NaN; } |
| if (divisor < 0) { divisor = -divisor; } |
| if (divisor == Infinity) { return sign * dividend; } |
| function rec_mod(a, b) { |
| // Subtracts maximal possible multiplum of b from a. |
| if (a >= b) { |
| a = rec_mod(a, 2 * b); |
| if (a >= b) { a -= b; } |
| } |
| return a; |
| } |
| return sign * rec_mod(dividend, divisor); |
| } |
| |
| (function () { |
| var large_non_smi = 1234567891234.12245; |
| var small_non_smi = 43.2367243; |
| var repeating_decimal = 0.3; |
| var finite_decimal = 0.5; |
| var smi = 43; |
| var power_of_two = 64; |
| var min_normal = Number.MIN_VALUE * Math.pow(2, 52); |
| var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1); |
| |
| // All combinations of NaN, Infinity, normal, denormal and zero. |
| var example_numbers = [ |
| NaN, |
| 0, |
| |
| // Due to a bug in fmod(), modulos involving denormals |
| // return the wrong result for glibc <= 2.16. |
| // Details: http://sourceware.org/bugzilla/show_bug.cgi?id=14048 |
| |
| Number.MIN_VALUE, |
| 3 * Number.MIN_VALUE, |
| max_denormal, |
| |
| min_normal, |
| repeating_decimal, |
| finite_decimal, |
| smi, |
| power_of_two, |
| small_non_smi, |
| large_non_smi, |
| Number.MAX_VALUE, |
| Infinity |
| ]; |
| |
| function doTest(a, b) { |
| var exp = compute_mod(a, b); |
| var act = a % b; |
| assertEquals(exp, act, a + " % " + b); |
| } |
| |
| for (var i = 0; i < example_numbers.length; i++) { |
| for (var j = 0; j < example_numbers.length; j++) { |
| var a = example_numbers[i]; |
| var b = example_numbers[j]; |
| doTest(a,b); |
| doTest(-a,b); |
| doTest(a,-b); |
| doTest(-a,-b); |
| } |
| } |
| })(); |
| |
| |
| (function () { |
| // Edge cases |
| var zero = 0; |
| var minsmi32 = -0x40000000; |
| var minsmi64 = -0x80000000; |
| var somenum = 3532; |
| assertEquals(-0, zero / -1, "0 / -1"); |
| assertEquals(1, minsmi32 / -0x40000000, "minsmi/minsmi-32"); |
| assertEquals(1, minsmi64 / -0x80000000, "minsmi/minsmi-64"); |
| assertEquals(somenum, somenum % -0x40000000, "%minsmi-32"); |
| assertEquals(somenum, somenum % -0x80000000, "%minsmi-64"); |
| })(); |
| |
| |
| // Side-effect-free expressions containing bit operations use |
| // an optimized compiler with int32 values. Ensure that modulus |
| // produces negative zeros correctly. |
| function negative_zero_modulus_test() { |
| var x = 4; |
| var y = -4; |
| x = x + x - x; |
| y = y + y - y; |
| var z = (y | y | y | y) % x; |
| assertEquals(-1 / 0, 1 / z); |
| z = (x | x | x | x) % x; |
| assertEquals(1 / 0, 1 / z); |
| z = (y | y | y | y) % y; |
| assertEquals(-1 / 0, 1 / z); |
| z = (x | x | x | x) % y; |
| assertEquals(1 / 0, 1 / z); |
| } |
| |
| negative_zero_modulus_test(); |
| |
| |
| function lithium_integer_mod() { |
| var left_operands = [ |
| 0, |
| 305419896, // 0x12345678 |
| ]; |
| |
| // Test the standard lithium code for modulo opeartions. |
| var mod_func; |
| for (var i = 0; i < left_operands.length; i++) { |
| for (var j = 0; j < divisors.length; j++) { |
| mod_func = this.eval("(function(left) { return left % " + divisors[j]+ "; })"); |
| assertEquals((mod_func)(left_operands[i]), left_operands[i] % divisors[j]); |
| assertEquals((mod_func)(-left_operands[i]), -left_operands[i] % divisors[j]); |
| } |
| } |
| |
| var results_powers_of_two = [ |
| // 0 |
| [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
| // 305419896 == 0x12345678 |
| [0, 0, 0, 8, 24, 56, 120, 120, 120, 632, 1656, 1656, 5752, 5752, 22136, 22136, 22136, 22136, 284280, 284280, 1332856, 3430008, 3430008, 3430008, 3430008, 36984440, 36984440, 36984440, 305419896, 305419896, 305419896], |
| ]; |
| |
| // Test the lithium code for modulo operations with a variable power of two |
| // right hand side operand. |
| for (var i = 0; i < left_operands.length; i++) { |
| for (var j = 0; j < 31; j++) { |
| assertEquals(results_powers_of_two[i][j], left_operands[i] % (2 << j)); |
| assertEquals(results_powers_of_two[i][j], left_operands[i] % -(2 << j)); |
| assertEquals(-results_powers_of_two[i][j], -left_operands[i] % (2 << j)); |
| assertEquals(-results_powers_of_two[i][j], -left_operands[i] % -(2 << j)); |
| } |
| } |
| |
| // Test the lithium code for modulo operations with a constant power of two |
| // right hand side operand. |
| for (var i = 0; i < left_operands.length; i++) { |
| // With positive left hand side operand. |
| assertEquals(results_powers_of_two[i][0], left_operands[i] % -(2 << 0)); |
| assertEquals(results_powers_of_two[i][1], left_operands[i] % (2 << 1)); |
| assertEquals(results_powers_of_two[i][2], left_operands[i] % -(2 << 2)); |
| assertEquals(results_powers_of_two[i][3], left_operands[i] % (2 << 3)); |
| assertEquals(results_powers_of_two[i][4], left_operands[i] % -(2 << 4)); |
| assertEquals(results_powers_of_two[i][5], left_operands[i] % (2 << 5)); |
| assertEquals(results_powers_of_two[i][6], left_operands[i] % -(2 << 6)); |
| assertEquals(results_powers_of_two[i][7], left_operands[i] % (2 << 7)); |
| assertEquals(results_powers_of_two[i][8], left_operands[i] % -(2 << 8)); |
| assertEquals(results_powers_of_two[i][9], left_operands[i] % (2 << 9)); |
| assertEquals(results_powers_of_two[i][10], left_operands[i] % -(2 << 10)); |
| assertEquals(results_powers_of_two[i][11], left_operands[i] % (2 << 11)); |
| assertEquals(results_powers_of_two[i][12], left_operands[i] % -(2 << 12)); |
| assertEquals(results_powers_of_two[i][13], left_operands[i] % (2 << 13)); |
| assertEquals(results_powers_of_two[i][14], left_operands[i] % -(2 << 14)); |
| assertEquals(results_powers_of_two[i][15], left_operands[i] % (2 << 15)); |
| assertEquals(results_powers_of_two[i][16], left_operands[i] % -(2 << 16)); |
| assertEquals(results_powers_of_two[i][17], left_operands[i] % (2 << 17)); |
| assertEquals(results_powers_of_two[i][18], left_operands[i] % -(2 << 18)); |
| assertEquals(results_powers_of_two[i][19], left_operands[i] % (2 << 19)); |
| assertEquals(results_powers_of_two[i][20], left_operands[i] % -(2 << 20)); |
| assertEquals(results_powers_of_two[i][21], left_operands[i] % (2 << 21)); |
| assertEquals(results_powers_of_two[i][22], left_operands[i] % -(2 << 22)); |
| assertEquals(results_powers_of_two[i][23], left_operands[i] % (2 << 23)); |
| assertEquals(results_powers_of_two[i][24], left_operands[i] % -(2 << 24)); |
| assertEquals(results_powers_of_two[i][25], left_operands[i] % (2 << 25)); |
| assertEquals(results_powers_of_two[i][26], left_operands[i] % -(2 << 26)); |
| assertEquals(results_powers_of_two[i][27], left_operands[i] % (2 << 27)); |
| assertEquals(results_powers_of_two[i][28], left_operands[i] % -(2 << 28)); |
| assertEquals(results_powers_of_two[i][29], left_operands[i] % (2 << 29)); |
| assertEquals(results_powers_of_two[i][30], left_operands[i] % -(2 << 30)); |
| // With negative left hand side operand. |
| assertEquals(-results_powers_of_two[i][0], -left_operands[i] % -(2 << 0)); |
| assertEquals(-results_powers_of_two[i][1], -left_operands[i] % (2 << 1)); |
| assertEquals(-results_powers_of_two[i][2], -left_operands[i] % -(2 << 2)); |
| assertEquals(-results_powers_of_two[i][3], -left_operands[i] % (2 << 3)); |
| assertEquals(-results_powers_of_two[i][4], -left_operands[i] % -(2 << 4)); |
| assertEquals(-results_powers_of_two[i][5], -left_operands[i] % (2 << 5)); |
| assertEquals(-results_powers_of_two[i][6], -left_operands[i] % -(2 << 6)); |
| assertEquals(-results_powers_of_two[i][7], -left_operands[i] % (2 << 7)); |
| assertEquals(-results_powers_of_two[i][8], -left_operands[i] % -(2 << 8)); |
| assertEquals(-results_powers_of_two[i][9], -left_operands[i] % (2 << 9)); |
| assertEquals(-results_powers_of_two[i][10], -left_operands[i] % -(2 << 10)); |
| assertEquals(-results_powers_of_two[i][11], -left_operands[i] % (2 << 11)); |
| assertEquals(-results_powers_of_two[i][12], -left_operands[i] % -(2 << 12)); |
| assertEquals(-results_powers_of_two[i][13], -left_operands[i] % (2 << 13)); |
| assertEquals(-results_powers_of_two[i][14], -left_operands[i] % -(2 << 14)); |
| assertEquals(-results_powers_of_two[i][15], -left_operands[i] % (2 << 15)); |
| assertEquals(-results_powers_of_two[i][16], -left_operands[i] % -(2 << 16)); |
| assertEquals(-results_powers_of_two[i][17], -left_operands[i] % (2 << 17)); |
| assertEquals(-results_powers_of_two[i][18], -left_operands[i] % -(2 << 18)); |
| assertEquals(-results_powers_of_two[i][19], -left_operands[i] % (2 << 19)); |
| assertEquals(-results_powers_of_two[i][20], -left_operands[i] % -(2 << 20)); |
| assertEquals(-results_powers_of_two[i][21], -left_operands[i] % (2 << 21)); |
| assertEquals(-results_powers_of_two[i][22], -left_operands[i] % -(2 << 22)); |
| assertEquals(-results_powers_of_two[i][23], -left_operands[i] % (2 << 23)); |
| assertEquals(-results_powers_of_two[i][24], -left_operands[i] % -(2 << 24)); |
| assertEquals(-results_powers_of_two[i][25], -left_operands[i] % (2 << 25)); |
| assertEquals(-results_powers_of_two[i][26], -left_operands[i] % -(2 << 26)); |
| assertEquals(-results_powers_of_two[i][27], -left_operands[i] % (2 << 27)); |
| assertEquals(-results_powers_of_two[i][28], -left_operands[i] % -(2 << 28)); |
| assertEquals(-results_powers_of_two[i][29], -left_operands[i] % (2 << 29)); |
| assertEquals(-results_powers_of_two[i][30], -left_operands[i] % -(2 << 30)); |
| } |
| |
| } |
| |
| lithium_integer_mod(); |
| %OptimizeFunctionOnNextCall(lithium_integer_mod) |
| lithium_integer_mod(); |