blob: f9bbef6ecaee4ad755a5efd76872219705aaffff [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// An Interval<T> is a data structure used to represent a contiguous, mutable
// range over an ordered type T. Supported operations include testing a value to
// see whether it is included in the interval, comparing two intervals, and
// performing their union, intersection, and difference. For the purposes of
// this library, an "ordered type" is any type that induces a total order on its
// values via its less-than operator (operator<()). Examples of such types are
// basic arithmetic types like int and double as well as class types like
// string.
//
// An Interval<T> is represented using the usual C++ STL convention, namely as
// the half-open interval [min, max). A point p is considered to be contained in
// the interval iff p >= min && p < max. One consequence of this definition is
// that for any non-empty interval, min is contained in the interval but max is
// not. There is no canonical representation for the empty interval; rather, any
// interval where max <= min is regarded as empty. As a consequence, two empty
// intervals will still compare as equal despite possibly having different
// underlying min() or max() values. Also beware of the terminology used here:
// the library uses the terms "min" and "max" rather than "begin" and "end" as
// is conventional for the STL.
//
// T is required to be default- and copy-constructable, to have an assignment
// operator, and the full complement of comparison operators (<, <=, ==, !=, >=,
// >). A difference operator (operator-()) is required if Interval<T>::Length
// is used.
//
// For equality comparisons, Interval<T> supports an Equals() method and an
// operator==() which delegates to it. Two intervals are considered equal if
// either they are both empty or if their corresponding min and max fields
// compare equal. For ordered comparisons, Interval<T> also provides the
// comparator Interval<T>::Less and an operator<() which delegates to it.
// Unfortunately this comparator is currently buggy because its behavior is
// inconsistent with Equals(): two empty ranges with different representations
// may be regarded as equivalent by Equals() but regarded as different by
// the comparator. Bug 9240050 has been created to address this.
//
// This class is thread-compatible if T is thread-compatible. (See
// go/thread-compatible).
//
// Examples:
// Interval<int> r1(0, 100); // The interval [0, 100).
// EXPECT_TRUE(r1.Contains(0));
// EXPECT_TRUE(r1.Contains(50));
// EXPECT_FALSE(r1.Contains(100)); // 100 is just outside the interval.
//
// Interval<int> r2(50, 150); // The interval [50, 150).
// EXPECT_TRUE(r1.Intersects(r2));
// EXPECT_FALSE(r1.Contains(r2));
// EXPECT_TRUE(r1.IntersectWith(r2)); // Mutates r1.
// EXPECT_EQ(Interval<int>(50, 100), r1); // r1 is now [50, 100).
//
// Interval<int> r3(1000, 2000); // The interval [1000, 2000).
// EXPECT_TRUE(r1.IntersectWith(r3)); // Mutates r1.
// EXPECT_TRUE(r1.Empty()); // Now r1 is empty.
// EXPECT_FALSE(r1.Contains(r1.min())); // e.g. doesn't contain its own min.
#ifndef NET_BASE_INTERVAL_H_
#define NET_BASE_INTERVAL_H_
#include <algorithm>
#include <functional>
#include <ostream>
#include <string>
#include <utility>
#include <vector>
#include "starboard/types.h"
namespace net {
template <typename T>
class Interval {
private:
// TODO(rtenneti): Implement after suupport for std::decay.
#if 0
// Type trait for deriving the return type for Interval::Length. If
// operator-() is not defined for T, then the return type is void. This makes
// the signature for Length compile so that the class can be used for such T,
// but code that calls Length would still generate a compilation error.
template <typename U>
class DiffTypeOrVoid {
private:
template <typename V>
static auto f(const V* v) -> decltype(*v - *v);
template <typename V>
static void f(...);
public:
using type = typename std::decay<decltype(f<U>(0))>::type;
};
#endif
public:
// Compatibility alias.
using Less = std::less<Interval>;
// Construct an Interval representing an empty interval.
Interval() : min_(), max_() {}
// Construct an Interval representing the interval [min, max). If min < max,
// the constructed object will represent the non-empty interval containing all
// values from min up to (but not including) max. On the other hand, if min >=
// max, the constructed object will represent the empty interval.
Interval(const T& min, const T& max) : min_(min), max_(max) {}
const T& min() const { return min_; }
const T& max() const { return max_; }
void SetMin(const T& t) { min_ = t; }
void SetMax(const T& t) { max_ = t; }
void Set(const T& min, const T& max) {
SetMin(min);
SetMax(max);
}
void Clear() { *this = {}; }
void CopyFrom(const Interval& i) { *this = i; }
bool Equals(const Interval& i) const { return *this == i; }
bool Empty() const { return min() >= max(); }
// Returns the length of this interval. The value returned is zero if
// IsEmpty() is true; otherwise the value returned is max() - min().
const T Length() const { return (min_ >= max_ ? min_ : max_) - min_; }
// Returns true iff t >= min() && t < max().
bool Contains(const T& t) const { return min() <= t && max() > t; }
// Returns true iff *this and i are non-empty, and *this includes i. "*this
// includes i" means that for all t, if i.Contains(t) then this->Contains(t).
// Note the unintuitive consequence of this definition: this method always
// returns false when i is the empty interval.
bool Contains(const Interval& i) const {
return !Empty() && !i.Empty() && min() <= i.min() && max() >= i.max();
}
// Returns true iff there exists some point t for which this->Contains(t) &&
// i.Contains(t) evaluates to true, i.e. if the intersection is non-empty.
bool Intersects(const Interval& i) const {
return !Empty() && !i.Empty() && min() < i.max() && max() > i.min();
}
// Returns true iff there exists some point t for which this->Contains(t) &&
// i.Contains(t) evaluates to true, i.e. if the intersection is non-empty.
// Furthermore, if the intersection is non-empty and the intersection pointer
// is not null, this method stores the calculated intersection in
// *intersection.
bool Intersects(const Interval& i, Interval* out) const;
// Sets *this to be the intersection of itself with i. Returns true iff
// *this was modified.
bool IntersectWith(const Interval& i);
// Calculates the smallest interval containing both *this i, and updates *this
// to represent that interval, and returns true iff *this was modified.
bool SpanningUnion(const Interval& i);
// Determines the difference between two intervals as in
// Difference(Interval&, vector*), but stores the results directly in out
// parameters rather than dynamically allocating an Interval* and appending
// it to a vector. If two results are generated, the one with the smaller
// value of min() will be stored in *lo and the other in *hi. Otherwise (if
// fewer than two results are generated), unused arguments will be set to the
// empty interval (it is possible that *lo will be empty and *hi non-empty).
// The method returns true iff the intersection of *this and i is non-empty.
bool Difference(const Interval& i, Interval* lo, Interval* hi) const;
friend bool operator==(const Interval& a, const Interval& b) {
bool ae = a.Empty();
bool be = b.Empty();
if (ae && be)
return true; // All empties are equal.
if (ae != be)
return false; // Empty cannot equal nonempty.
return a.min() == b.min() && a.max() == b.max();
}
friend bool operator!=(const Interval& a, const Interval& b) {
return !(a == b);
}
// Defines a comparator which can be used to induce an order on Intervals, so
// that, for example, they can be stored in an ordered container such as
// std::set. The ordering is arbitrary, but does provide the guarantee that,
// for non-empty intervals X and Y, if X contains Y, then X <= Y.
// TODO(kosak): The current implementation of this comparator has a problem
// because the ordering it induces is inconsistent with that of Equals(). In
// particular, this comparator does not properly consider all empty intervals
// equivalent. Bug b/9240050 has been created to track this.
friend bool operator<(const Interval& a, const Interval& b) {
return a.min() < b.min() || (a.min() == b.min() && a.max() > b.max());
}
friend std::ostream& operator<<(std::ostream& out, const Interval& i) {
return out << "[" << i.min() << ", " << i.max() << ")";
}
private:
T min_; // Inclusive lower bound.
T max_; // Exclusive upper bound.
};
//==============================================================================
// Implementation details: Clients can stop reading here.
template <typename T>
bool Interval<T>::Intersects(const Interval& i, Interval* out) const {
if (!Intersects(i))
return false;
if (out != nullptr) {
*out = Interval(std::max(min(), i.min()), std::min(max(), i.max()));
}
return true;
}
template <typename T>
bool Interval<T>::IntersectWith(const Interval& i) {
if (Empty())
return false;
bool modified = false;
if (i.min() > min()) {
SetMin(i.min());
modified = true;
}
if (i.max() < max()) {
SetMax(i.max());
modified = true;
}
return modified;
}
template <typename T>
bool Interval<T>::SpanningUnion(const Interval& i) {
if (i.Empty())
return false;
if (Empty()) {
*this = i;
return true;
}
bool modified = false;
if (i.min() < min()) {
SetMin(i.min());
modified = true;
}
if (i.max() > max()) {
SetMax(i.max());
modified = true;
}
return modified;
}
template <typename T>
bool Interval<T>::Difference(const Interval& i,
Interval* lo,
Interval* hi) const {
// Initialize *lo and *hi to empty
*lo = {};
*hi = {};
if (Empty())
return false;
if (i.Empty()) {
*lo = *this;
return false;
}
if (min() < i.max() && min() >= i.min() && max() > i.max()) {
// [------ this ------)
// [------ i ------)
// [-- result ---)
*hi = Interval(i.max(), max());
return true;
}
if (max() > i.min() && max() <= i.max() && min() < i.min()) {
// [------ this ------)
// [------ i ------)
// [- result -)
*lo = Interval(min(), i.min());
return true;
}
if (min() < i.min() && max() > i.max()) {
// [------- this --------)
// [---- i ----)
// [ R1 ) [ R2 )
// There are two results: R1 and R2.
*lo = Interval(min(), i.min());
*hi = Interval(i.max(), max());
return true;
}
if (min() >= i.min() && max() <= i.max()) {
// [--- this ---)
// [------ i --------)
// Intersection is <this>, so difference yields the empty interval.
return true;
}
*lo = *this; // No intersection.
return false;
}
} // namespace net
#endif // NET_BASE_INTERVAL_H_