| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/base/cpu.h" |
| |
| #if defined(STARBOARD) |
| #include "starboard/cpu_features.h" |
| #endif |
| |
| #if V8_LIBC_MSVCRT |
| #include <intrin.h> // __cpuid() |
| #endif |
| #if V8_OS_LINUX |
| #include <linux/auxvec.h> // AT_HWCAP |
| #endif |
| #if V8_GLIBC_PREREQ(2, 16) |
| #include <sys/auxv.h> // getauxval() |
| #endif |
| #if V8_OS_QNX |
| #include <sys/syspage.h> // cpuinfo |
| #endif |
| #if V8_OS_LINUX && (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64) |
| #include <elf.h> |
| #endif |
| #if V8_OS_AIX |
| #include <sys/systemcfg.h> // _system_configuration |
| #ifndef POWER_8 |
| #define POWER_8 0x10000 |
| #endif |
| #ifndef POWER_9 |
| #define POWER_9 0x20000 |
| #endif |
| #endif |
| #if V8_OS_POSIX |
| #include <unistd.h> // sysconf() |
| #endif |
| |
| #include <ctype.h> |
| #include <limits.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| |
| #include "src/base/logging.h" |
| #include "src/base/platform/wrappers.h" |
| #if V8_OS_WIN |
| #include "src/base/win32-headers.h" // NOLINT |
| #endif |
| |
| namespace v8 { |
| namespace base { |
| |
| #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 |
| |
| // Define __cpuid() for non-MSVC libraries. |
| #if !V8_LIBC_MSVCRT |
| |
| static V8_INLINE void __cpuid(int cpu_info[4], int info_type) { |
| // Clear ecx to align with __cpuid() of MSVC: |
| // https://msdn.microsoft.com/en-us/library/hskdteyh.aspx |
| #if defined(__i386__) && defined(__pic__) |
| // Make sure to preserve ebx, which contains the pointer |
| // to the GOT in case we're generating PIC. |
| __asm__ volatile( |
| "mov %%ebx, %%edi\n\t" |
| "cpuid\n\t" |
| "xchg %%edi, %%ebx\n\t" |
| : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), |
| "=d"(cpu_info[3]) |
| : "a"(info_type), "c"(0)); |
| #else |
| __asm__ volatile("cpuid \n\t" |
| : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), |
| "=d"(cpu_info[3]) |
| : "a"(info_type), "c"(0)); |
| #endif // defined(__i386__) && defined(__pic__) |
| } |
| |
| #endif // !V8_LIBC_MSVCRT |
| |
| #elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 || V8_HOST_ARCH_MIPS || \ |
| V8_HOST_ARCH_MIPS64 |
| |
| #if V8_OS_LINUX |
| |
| #if V8_HOST_ARCH_ARM |
| |
| // See <uapi/asm/hwcap.h> kernel header. |
| /* |
| * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP |
| */ |
| #define HWCAP_SWP (1 << 0) |
| #define HWCAP_HALF (1 << 1) |
| #define HWCAP_THUMB (1 << 2) |
| #define HWCAP_26BIT (1 << 3) /* Play it safe */ |
| #define HWCAP_FAST_MULT (1 << 4) |
| #define HWCAP_FPA (1 << 5) |
| #define HWCAP_VFP (1 << 6) |
| #define HWCAP_EDSP (1 << 7) |
| #define HWCAP_JAVA (1 << 8) |
| #define HWCAP_IWMMXT (1 << 9) |
| #define HWCAP_CRUNCH (1 << 10) |
| #define HWCAP_THUMBEE (1 << 11) |
| #define HWCAP_NEON (1 << 12) |
| #define HWCAP_VFPv3 (1 << 13) |
| #define HWCAP_VFPv3D16 (1 << 14) /* also set for VFPv4-D16 */ |
| #define HWCAP_TLS (1 << 15) |
| #define HWCAP_VFPv4 (1 << 16) |
| #define HWCAP_IDIVA (1 << 17) |
| #define HWCAP_IDIVT (1 << 18) |
| #define HWCAP_VFPD32 (1 << 19) /* set if VFP has 32 regs (not 16) */ |
| #define HWCAP_IDIV (HWCAP_IDIVA | HWCAP_IDIVT) |
| #define HWCAP_LPAE (1 << 20) |
| |
| #endif // V8_HOST_ARCH_ARM |
| |
| #if V8_HOST_ARCH_ARM64 |
| |
| // See <uapi/asm/hwcap.h> kernel header. |
| /* |
| * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP |
| */ |
| #define HWCAP_FP (1 << 0) |
| #define HWCAP_ASIMD (1 << 1) |
| #define HWCAP_EVTSTRM (1 << 2) |
| #define HWCAP_AES (1 << 3) |
| #define HWCAP_PMULL (1 << 4) |
| #define HWCAP_SHA1 (1 << 5) |
| #define HWCAP_SHA2 (1 << 6) |
| #define HWCAP_CRC32 (1 << 7) |
| #define HWCAP_ATOMICS (1 << 8) |
| #define HWCAP_FPHP (1 << 9) |
| #define HWCAP_ASIMDHP (1 << 10) |
| #define HWCAP_CPUID (1 << 11) |
| #define HWCAP_ASIMDRDM (1 << 12) |
| #define HWCAP_JSCVT (1 << 13) |
| #define HWCAP_FCMA (1 << 14) |
| #define HWCAP_LRCPC (1 << 15) |
| #define HWCAP_DCPOP (1 << 16) |
| #define HWCAP_SHA3 (1 << 17) |
| #define HWCAP_SM3 (1 << 18) |
| #define HWCAP_SM4 (1 << 19) |
| #define HWCAP_ASIMDDP (1 << 20) |
| #define HWCAP_SHA512 (1 << 21) |
| #define HWCAP_SVE (1 << 22) |
| #define HWCAP_ASIMDFHM (1 << 23) |
| #define HWCAP_DIT (1 << 24) |
| #define HWCAP_USCAT (1 << 25) |
| #define HWCAP_ILRCPC (1 << 26) |
| #define HWCAP_FLAGM (1 << 27) |
| #define HWCAP_SSBS (1 << 28) |
| #define HWCAP_SB (1 << 29) |
| #define HWCAP_PACA (1 << 30) |
| #define HWCAP_PACG (1UL << 31) |
| |
| #endif // V8_HOST_ARCH_ARM64 |
| |
| #if V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 |
| |
| static uint32_t ReadELFHWCaps() { |
| uint32_t result = 0; |
| #if V8_GLIBC_PREREQ(2, 16) |
| result = static_cast<uint32_t>(getauxval(AT_HWCAP)); |
| #else |
| // Read the ELF HWCAP flags by parsing /proc/self/auxv. |
| FILE* fp = base::Fopen("/proc/self/auxv", "r"); |
| if (fp != nullptr) { |
| struct { |
| uint32_t tag; |
| uint32_t value; |
| } entry; |
| for (;;) { |
| size_t n = fread(&entry, sizeof(entry), 1, fp); |
| if (n == 0 || (entry.tag == 0 && entry.value == 0)) { |
| break; |
| } |
| if (entry.tag == AT_HWCAP) { |
| result = entry.value; |
| break; |
| } |
| } |
| base::Fclose(fp); |
| } |
| #endif |
| return result; |
| } |
| |
| #endif // V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 |
| |
| #if V8_HOST_ARCH_MIPS |
| int __detect_fp64_mode(void) { |
| double result = 0; |
| // Bit representation of (double)1 is 0x3FF0000000000000. |
| __asm__ volatile( |
| ".set push\n\t" |
| ".set noreorder\n\t" |
| ".set oddspreg\n\t" |
| "lui $t0, 0x3FF0\n\t" |
| "ldc1 $f0, %0\n\t" |
| "mtc1 $t0, $f1\n\t" |
| "sdc1 $f0, %0\n\t" |
| ".set pop\n\t" |
| : "+m"(result) |
| : |
| : "t0", "$f0", "$f1", "memory"); |
| |
| return !(result == 1); |
| } |
| |
| |
| int __detect_mips_arch_revision(void) { |
| // TODO(dusmil): Do the specific syscall as soon as it is implemented in mips |
| // kernel. |
| uint32_t result = 0; |
| __asm__ volatile( |
| "move $v0, $zero\n\t" |
| // Encoding for "addi $v0, $v0, 1" on non-r6, |
| // which is encoding for "bovc $v0, %v0, 1" on r6. |
| // Use machine code directly to avoid compilation errors with different |
| // toolchains and maintain compatibility. |
| ".word 0x20420001\n\t" |
| "sw $v0, %0\n\t" |
| : "=m"(result) |
| : |
| : "v0", "memory"); |
| // Result is 0 on r6 architectures, 1 on other architecture revisions. |
| // Fall-back to the least common denominator which is mips32 revision 1. |
| return result ? 1 : 6; |
| } |
| #endif // V8_HOST_ARCH_MIPS |
| |
| // Extract the information exposed by the kernel via /proc/cpuinfo. |
| class CPUInfo final { |
| public: |
| CPUInfo() : datalen_(0) { |
| // Get the size of the cpuinfo file by reading it until the end. This is |
| // required because files under /proc do not always return a valid size |
| // when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed. |
| static const char PATHNAME[] = "/proc/cpuinfo"; |
| FILE* fp = base::Fopen(PATHNAME, "r"); |
| if (fp != nullptr) { |
| for (;;) { |
| char buffer[256]; |
| size_t n = fread(buffer, 1, sizeof(buffer), fp); |
| if (n == 0) { |
| break; |
| } |
| datalen_ += n; |
| } |
| base::Fclose(fp); |
| } |
| |
| // Read the contents of the cpuinfo file. |
| data_ = new char[datalen_ + 1]; |
| fp = base::Fopen(PATHNAME, "r"); |
| if (fp != nullptr) { |
| for (size_t offset = 0; offset < datalen_; ) { |
| size_t n = fread(data_ + offset, 1, datalen_ - offset, fp); |
| if (n == 0) { |
| break; |
| } |
| offset += n; |
| } |
| base::Fclose(fp); |
| } |
| |
| // Zero-terminate the data. |
| data_[datalen_] = '\0'; |
| } |
| |
| ~CPUInfo() { |
| delete[] data_; |
| } |
| |
| // Extract the content of a the first occurrence of a given field in |
| // the content of the cpuinfo file and return it as a heap-allocated |
| // string that must be freed by the caller using delete[]. |
| // Return nullptr if not found. |
| char* ExtractField(const char* field) const { |
| DCHECK_NOT_NULL(field); |
| |
| // Look for first field occurrence, and ensure it starts the line. |
| size_t fieldlen = strlen(field); |
| char* p = data_; |
| for (;;) { |
| p = strstr(p, field); |
| if (p == nullptr) { |
| return nullptr; |
| } |
| if (p == data_ || p[-1] == '\n') { |
| break; |
| } |
| p += fieldlen; |
| } |
| |
| // Skip to the first colon followed by a space. |
| p = strchr(p + fieldlen, ':'); |
| if (p == nullptr || !isspace(p[1])) { |
| return nullptr; |
| } |
| p += 2; |
| |
| // Find the end of the line. |
| char* q = strchr(p, '\n'); |
| if (q == nullptr) { |
| q = data_ + datalen_; |
| } |
| |
| // Copy the line into a heap-allocated buffer. |
| size_t len = q - p; |
| char* result = new char[len + 1]; |
| if (result != nullptr) { |
| memcpy(result, p, len); |
| result[len] = '\0'; |
| } |
| return result; |
| } |
| |
| private: |
| char* data_; |
| size_t datalen_; |
| }; |
| |
| // Checks that a space-separated list of items contains one given 'item'. |
| static bool HasListItem(const char* list, const char* item) { |
| ssize_t item_len = strlen(item); |
| const char* p = list; |
| if (p != nullptr) { |
| while (*p != '\0') { |
| // Skip whitespace. |
| while (isspace(*p)) ++p; |
| |
| // Find end of current list item. |
| const char* q = p; |
| while (*q != '\0' && !isspace(*q)) ++q; |
| |
| if (item_len == q - p && memcmp(p, item, item_len) == 0) { |
| return true; |
| } |
| |
| // Skip to next item. |
| p = q; |
| } |
| } |
| return false; |
| } |
| |
| #endif // V8_OS_LINUX |
| |
| #endif // V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 || |
| // V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64 |
| |
| #if defined(STARBOARD) |
| |
| bool CPU::StarboardDetectCPU() { |
| SbCPUFeatures features; |
| if (!SbCPUFeaturesGet(&features)) { |
| return false; |
| } |
| architecture_ = features.arm.architecture_generation; |
| switch (features.architecture) { |
| case kSbCPUFeaturesArchitectureArm: |
| case kSbCPUFeaturesArchitectureArm64: |
| has_neon_ = features.arm.has_neon; |
| has_thumb2_ = features.arm.has_thumb2; |
| has_vfp_ = features.arm.has_vfp; |
| has_vfp3_ = features.arm.has_vfp3; |
| has_vfp3_d32_ = features.arm.has_vfp3_d32; |
| has_idiva_ = features.arm.has_idiva; |
| break; |
| case kSbCPUFeaturesArchitectureX86: |
| case kSbCPUFeaturesArchitectureX86_64: |
| // Following flags are mandatory for V8 |
| has_cmov_ = features.x86.has_cmov; |
| has_sse2_ = features.x86.has_sse2; |
| // These flags are optional |
| has_sse3_ = features.x86.has_sse3; |
| has_ssse3_ = features.x86.has_ssse3; |
| has_sse41_ = features.x86.has_sse41; |
| has_sahf_ = features.x86.has_sahf; |
| has_avx_ = features.x86.has_avx; |
| has_fma3_ = features.x86.has_fma3; |
| has_bmi1_ = features.x86.has_bmi1; |
| has_bmi2_ = features.x86.has_bmi2; |
| has_lzcnt_ = features.x86.has_lzcnt; |
| has_popcnt_ = features.x86.has_popcnt; |
| break; |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| #endif |
| |
| CPU::CPU() |
| : stepping_(0), |
| model_(0), |
| ext_model_(0), |
| family_(0), |
| ext_family_(0), |
| type_(0), |
| implementer_(0), |
| architecture_(0), |
| variant_(-1), |
| part_(0), |
| icache_line_size_(UNKNOWN_CACHE_LINE_SIZE), |
| dcache_line_size_(UNKNOWN_CACHE_LINE_SIZE), |
| has_fpu_(false), |
| has_cmov_(false), |
| has_sahf_(false), |
| has_mmx_(false), |
| has_sse_(false), |
| has_sse2_(false), |
| has_sse3_(false), |
| has_ssse3_(false), |
| has_sse41_(false), |
| has_sse42_(false), |
| is_atom_(false), |
| has_osxsave_(false), |
| has_avx_(false), |
| has_fma3_(false), |
| has_bmi1_(false), |
| has_bmi2_(false), |
| has_lzcnt_(false), |
| has_popcnt_(false), |
| has_idiva_(false), |
| has_neon_(false), |
| has_thumb2_(false), |
| has_vfp_(false), |
| has_vfp3_(false), |
| has_vfp3_d32_(false), |
| has_jscvt_(false), |
| is_fp64_mode_(false), |
| has_non_stop_time_stamp_counter_(false), |
| has_msa_(false) { |
| memcpy(vendor_, "Unknown", 8); |
| |
| #if defined(STARBOARD) |
| if (StarboardDetectCPU()) { |
| return; |
| } |
| #endif |
| |
| #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 |
| int cpu_info[4]; |
| |
| // __cpuid with an InfoType argument of 0 returns the number of |
| // valid Ids in CPUInfo[0] and the CPU identification string in |
| // the other three array elements. The CPU identification string is |
| // not in linear order. The code below arranges the information |
| // in a human readable form. The human readable order is CPUInfo[1] | |
| // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped |
| // before using memcpy to copy these three array elements to cpu_string. |
| __cpuid(cpu_info, 0); |
| unsigned num_ids = cpu_info[0]; |
| std::swap(cpu_info[2], cpu_info[3]); |
| memcpy(vendor_, cpu_info + 1, 12); |
| vendor_[12] = '\0'; |
| |
| // Interpret CPU feature information. |
| if (num_ids > 0) { |
| __cpuid(cpu_info, 1); |
| stepping_ = cpu_info[0] & 0xF; |
| model_ = ((cpu_info[0] >> 4) & 0xF) + ((cpu_info[0] >> 12) & 0xF0); |
| family_ = (cpu_info[0] >> 8) & 0xF; |
| type_ = (cpu_info[0] >> 12) & 0x3; |
| ext_model_ = (cpu_info[0] >> 16) & 0xF; |
| ext_family_ = (cpu_info[0] >> 20) & 0xFF; |
| has_fpu_ = (cpu_info[3] & 0x00000001) != 0; |
| has_cmov_ = (cpu_info[3] & 0x00008000) != 0; |
| has_mmx_ = (cpu_info[3] & 0x00800000) != 0; |
| has_sse_ = (cpu_info[3] & 0x02000000) != 0; |
| has_sse2_ = (cpu_info[3] & 0x04000000) != 0; |
| has_sse3_ = (cpu_info[2] & 0x00000001) != 0; |
| has_ssse3_ = (cpu_info[2] & 0x00000200) != 0; |
| has_sse41_ = (cpu_info[2] & 0x00080000) != 0; |
| has_sse42_ = (cpu_info[2] & 0x00100000) != 0; |
| has_popcnt_ = (cpu_info[2] & 0x00800000) != 0; |
| has_osxsave_ = (cpu_info[2] & 0x08000000) != 0; |
| has_avx_ = (cpu_info[2] & 0x10000000) != 0; |
| has_fma3_ = (cpu_info[2] & 0x00001000) != 0; |
| |
| if (family_ == 0x6) { |
| switch (model_) { |
| case 0x1C: // SLT |
| case 0x26: |
| case 0x36: |
| case 0x27: |
| case 0x35: |
| case 0x37: // SLM |
| case 0x4A: |
| case 0x4D: |
| case 0x4C: // AMT |
| case 0x6E: |
| is_atom_ = true; |
| } |
| } |
| } |
| |
| // There are separate feature flags for VEX-encoded GPR instructions. |
| if (num_ids >= 7) { |
| __cpuid(cpu_info, 7); |
| has_bmi1_ = (cpu_info[1] & 0x00000008) != 0; |
| has_bmi2_ = (cpu_info[1] & 0x00000100) != 0; |
| } |
| |
| // Query extended IDs. |
| __cpuid(cpu_info, 0x80000000); |
| unsigned num_ext_ids = cpu_info[0]; |
| |
| // Interpret extended CPU feature information. |
| if (num_ext_ids > 0x80000000) { |
| __cpuid(cpu_info, 0x80000001); |
| has_lzcnt_ = (cpu_info[2] & 0x00000020) != 0; |
| // SAHF must be probed in long mode. |
| has_sahf_ = (cpu_info[2] & 0x00000001) != 0; |
| } |
| |
| // Check if CPU has non stoppable time stamp counter. |
| const unsigned parameter_containing_non_stop_time_stamp_counter = 0x80000007; |
| if (num_ext_ids >= parameter_containing_non_stop_time_stamp_counter) { |
| __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter); |
| has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0; |
| } |
| |
| #elif V8_HOST_ARCH_ARM |
| |
| #if V8_OS_LINUX |
| |
| CPUInfo cpu_info; |
| |
| // Extract implementor from the "CPU implementer" field. |
| char* implementer = cpu_info.ExtractField("CPU implementer"); |
| if (implementer != nullptr) { |
| char* end; |
| implementer_ = strtol(implementer, &end, 0); |
| if (end == implementer) { |
| implementer_ = 0; |
| } |
| delete[] implementer; |
| } |
| |
| char* variant = cpu_info.ExtractField("CPU variant"); |
| if (variant != nullptr) { |
| char* end; |
| variant_ = strtol(variant, &end, 0); |
| if (end == variant) { |
| variant_ = -1; |
| } |
| delete[] variant; |
| } |
| |
| // Extract part number from the "CPU part" field. |
| char* part = cpu_info.ExtractField("CPU part"); |
| if (part != nullptr) { |
| char* end; |
| part_ = strtol(part, &end, 0); |
| if (end == part) { |
| part_ = 0; |
| } |
| delete[] part; |
| } |
| |
| // Extract architecture from the "CPU Architecture" field. |
| // The list is well-known, unlike the the output of |
| // the 'Processor' field which can vary greatly. |
| // See the definition of the 'proc_arch' array in |
| // $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in |
| // same file. |
| char* architecture = cpu_info.ExtractField("CPU architecture"); |
| if (architecture != nullptr) { |
| char* end; |
| architecture_ = strtol(architecture, &end, 10); |
| if (end == architecture) { |
| // Kernels older than 3.18 report "CPU architecture: AArch64" on ARMv8. |
| if (strcmp(architecture, "AArch64") == 0) { |
| architecture_ = 8; |
| } else { |
| architecture_ = 0; |
| } |
| } |
| delete[] architecture; |
| |
| // Unfortunately, it seems that certain ARMv6-based CPUs |
| // report an incorrect architecture number of 7! |
| // |
| // See http://code.google.com/p/android/issues/detail?id=10812 |
| // |
| // We try to correct this by looking at the 'elf_platform' |
| // field reported by the 'Processor' field, which is of the |
| // form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for |
| // an ARMv6-one. For example, the Raspberry Pi is one popular |
| // ARMv6 device that reports architecture 7. |
| if (architecture_ == 7) { |
| char* processor = cpu_info.ExtractField("Processor"); |
| if (HasListItem(processor, "(v6l)")) { |
| architecture_ = 6; |
| } |
| delete[] processor; |
| } |
| |
| // elf_platform moved to the model name field in Linux v3.8. |
| if (architecture_ == 7) { |
| char* processor = cpu_info.ExtractField("model name"); |
| if (HasListItem(processor, "(v6l)")) { |
| architecture_ = 6; |
| } |
| delete[] processor; |
| } |
| } |
| |
| // Try to extract the list of CPU features from ELF hwcaps. |
| uint32_t hwcaps = ReadELFHWCaps(); |
| if (hwcaps != 0) { |
| has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0; |
| has_neon_ = (hwcaps & HWCAP_NEON) != 0; |
| has_vfp_ = (hwcaps & HWCAP_VFP) != 0; |
| has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0; |
| has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 || |
| (hwcaps & HWCAP_VFPD32) != 0)); |
| } else { |
| // Try to fallback to "Features" CPUInfo field. |
| char* features = cpu_info.ExtractField("Features"); |
| has_idiva_ = HasListItem(features, "idiva"); |
| has_neon_ = HasListItem(features, "neon"); |
| has_thumb2_ = HasListItem(features, "thumb2"); |
| has_vfp_ = HasListItem(features, "vfp"); |
| if (HasListItem(features, "vfpv3d16")) { |
| has_vfp3_ = true; |
| } else if (HasListItem(features, "vfpv3")) { |
| has_vfp3_ = true; |
| has_vfp3_d32_ = true; |
| } |
| delete[] features; |
| } |
| |
| // Some old kernels will report vfp not vfpv3. Here we make an attempt |
| // to detect vfpv3 by checking for vfp *and* neon, since neon is only |
| // available on architectures with vfpv3. Checking neon on its own is |
| // not enough as it is possible to have neon without vfp. |
| if (has_vfp_ && has_neon_) { |
| has_vfp3_ = true; |
| } |
| |
| // VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6. |
| if (architecture_ < 7 && has_vfp3_) { |
| architecture_ = 7; |
| } |
| |
| // ARMv7 implies Thumb2. |
| if (architecture_ >= 7) { |
| has_thumb2_ = true; |
| } |
| |
| // The earliest architecture with Thumb2 is ARMv6T2. |
| if (has_thumb2_ && architecture_ < 6) { |
| architecture_ = 6; |
| } |
| |
| // We don't support any FPUs other than VFP. |
| has_fpu_ = has_vfp_; |
| |
| #elif V8_OS_QNX |
| |
| uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags; |
| if (cpu_flags & ARM_CPU_FLAG_V7) { |
| architecture_ = 7; |
| has_thumb2_ = true; |
| } else if (cpu_flags & ARM_CPU_FLAG_V6) { |
| architecture_ = 6; |
| // QNX doesn't say if Thumb2 is available. |
| // Assume false for the architectures older than ARMv7. |
| } |
| DCHECK_GE(architecture_, 6); |
| has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0; |
| has_vfp_ = has_fpu_; |
| if (cpu_flags & ARM_CPU_FLAG_NEON) { |
| has_neon_ = true; |
| has_vfp3_ = has_vfp_; |
| #ifdef ARM_CPU_FLAG_VFP_D32 |
| has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0; |
| #endif |
| } |
| has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0; |
| |
| #endif // V8_OS_LINUX |
| |
| #elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64 |
| |
| // Simple detection of FPU at runtime for Linux. |
| // It is based on /proc/cpuinfo, which reveals hardware configuration |
| // to user-space applications. According to MIPS (early 2010), no similar |
| // facility is universally available on the MIPS architectures, |
| // so it's up to individual OSes to provide such. |
| CPUInfo cpu_info; |
| char* cpu_model = cpu_info.ExtractField("cpu model"); |
| has_fpu_ = HasListItem(cpu_model, "FPU"); |
| char* ASEs = cpu_info.ExtractField("ASEs implemented"); |
| has_msa_ = HasListItem(ASEs, "msa"); |
| delete[] cpu_model; |
| delete[] ASEs; |
| #ifdef V8_HOST_ARCH_MIPS |
| is_fp64_mode_ = __detect_fp64_mode(); |
| architecture_ = __detect_mips_arch_revision(); |
| #endif |
| |
| #elif V8_HOST_ARCH_ARM64 |
| #ifdef V8_OS_WIN |
| // Windows makes high-resolution thread timing information available in |
| // user-space. |
| has_non_stop_time_stamp_counter_ = true; |
| |
| #elif V8_OS_LINUX |
| // Try to extract the list of CPU features from ELF hwcaps. |
| uint32_t hwcaps = ReadELFHWCaps(); |
| if (hwcaps != 0) { |
| has_jscvt_ = (hwcaps & HWCAP_JSCVT) != 0; |
| } else { |
| // Try to fallback to "Features" CPUInfo field |
| CPUInfo cpu_info; |
| char* features = cpu_info.ExtractField("Features"); |
| has_jscvt_ = HasListItem(features, "jscvt"); |
| delete[] features; |
| } |
| #endif // V8_OS_WIN |
| |
| #elif V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64 |
| |
| #ifndef USE_SIMULATOR |
| #if V8_OS_LINUX |
| // Read processor info from /proc/self/auxv. |
| char* auxv_cpu_type = nullptr; |
| FILE* fp = base::Fopen("/proc/self/auxv", "r"); |
| if (fp != nullptr) { |
| #if V8_TARGET_ARCH_PPC64 |
| Elf64_auxv_t entry; |
| #else |
| Elf32_auxv_t entry; |
| #endif |
| for (;;) { |
| size_t n = fread(&entry, sizeof(entry), 1, fp); |
| if (n == 0 || entry.a_type == AT_NULL) { |
| break; |
| } |
| switch (entry.a_type) { |
| case AT_PLATFORM: |
| auxv_cpu_type = reinterpret_cast<char*>(entry.a_un.a_val); |
| break; |
| case AT_ICACHEBSIZE: |
| icache_line_size_ = entry.a_un.a_val; |
| break; |
| case AT_DCACHEBSIZE: |
| dcache_line_size_ = entry.a_un.a_val; |
| break; |
| } |
| } |
| base::Fclose(fp); |
| } |
| |
| part_ = -1; |
| if (auxv_cpu_type) { |
| if (strcmp(auxv_cpu_type, "power9") == 0) { |
| part_ = PPC_POWER9; |
| } else if (strcmp(auxv_cpu_type, "power8") == 0) { |
| part_ = PPC_POWER8; |
| } else if (strcmp(auxv_cpu_type, "power7") == 0) { |
| part_ = PPC_POWER7; |
| } else if (strcmp(auxv_cpu_type, "power6") == 0) { |
| part_ = PPC_POWER6; |
| } else if (strcmp(auxv_cpu_type, "power5") == 0) { |
| part_ = PPC_POWER5; |
| } else if (strcmp(auxv_cpu_type, "ppc970") == 0) { |
| part_ = PPC_G5; |
| } else if (strcmp(auxv_cpu_type, "ppc7450") == 0) { |
| part_ = PPC_G4; |
| } else if (strcmp(auxv_cpu_type, "pa6t") == 0) { |
| part_ = PPC_PA6T; |
| } |
| } |
| |
| #elif V8_OS_AIX |
| switch (_system_configuration.implementation) { |
| case POWER_9: |
| part_ = PPC_POWER9; |
| break; |
| case POWER_8: |
| part_ = PPC_POWER8; |
| break; |
| case POWER_7: |
| part_ = PPC_POWER7; |
| break; |
| case POWER_6: |
| part_ = PPC_POWER6; |
| break; |
| case POWER_5: |
| part_ = PPC_POWER5; |
| break; |
| } |
| #endif // V8_OS_AIX |
| #endif // !USE_SIMULATOR |
| #endif // V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64 |
| } |
| |
| } // namespace base |
| } // namespace v8 |