| // The following is adapted from fdlibm (http://www.netlib.org/fdlibm). |
| // |
| // ==================================================== |
| // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| // |
| // Developed at SunSoft, a Sun Microsystems, Inc. business. |
| // Permission to use, copy, modify, and distribute this |
| // software is freely granted, provided that this notice |
| // is preserved. |
| // ==================================================== |
| // |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2016 the V8 project authors. All rights reserved. |
| |
| #include "src/base/ieee754.h" |
| |
| #include <cmath> |
| #include <limits> |
| |
| #include "src/base/build_config.h" |
| #include "src/base/macros.h" |
| #include "src/base/overflowing-math.h" |
| |
| namespace v8 { |
| namespace base { |
| namespace ieee754 { |
| |
| namespace { |
| |
| /* Disable "potential divide by 0" warning in Visual Studio compiler. */ |
| |
| #if V8_CC_MSVC |
| |
| #pragma warning(disable : 4723) |
| |
| #endif |
| |
| /* |
| * The original fdlibm code used statements like: |
| * n0 = ((*(int*)&one)>>29)^1; * index of high word * |
| * ix0 = *(n0+(int*)&x); * high word of x * |
| * ix1 = *((1-n0)+(int*)&x); * low word of x * |
| * to dig two 32 bit words out of the 64 bit IEEE floating point |
| * value. That is non-ANSI, and, moreover, the gcc instruction |
| * scheduler gets it wrong. We instead use the following macros. |
| * Unlike the original code, we determine the endianness at compile |
| * time, not at run time; I don't see much benefit to selecting |
| * endianness at run time. |
| */ |
| |
| /* Get two 32 bit ints from a double. */ |
| |
| #define EXTRACT_WORDS(ix0, ix1, d) \ |
| do { \ |
| uint64_t bits = bit_cast<uint64_t>(d); \ |
| (ix0) = bits >> 32; \ |
| (ix1) = bits & 0xFFFFFFFFu; \ |
| } while (false) |
| |
| /* Get the more significant 32 bit int from a double. */ |
| |
| #define GET_HIGH_WORD(i, d) \ |
| do { \ |
| uint64_t bits = bit_cast<uint64_t>(d); \ |
| (i) = bits >> 32; \ |
| } while (false) |
| |
| /* Get the less significant 32 bit int from a double. */ |
| |
| #define GET_LOW_WORD(i, d) \ |
| do { \ |
| uint64_t bits = bit_cast<uint64_t>(d); \ |
| (i) = bits & 0xFFFFFFFFu; \ |
| } while (false) |
| |
| /* Set a double from two 32 bit ints. */ |
| |
| #define INSERT_WORDS(d, ix0, ix1) \ |
| do { \ |
| uint64_t bits = 0; \ |
| bits |= static_cast<uint64_t>(ix0) << 32; \ |
| bits |= static_cast<uint32_t>(ix1); \ |
| (d) = bit_cast<double>(bits); \ |
| } while (false) |
| |
| /* Set the more significant 32 bits of a double from an int. */ |
| |
| #define SET_HIGH_WORD(d, v) \ |
| do { \ |
| uint64_t bits = bit_cast<uint64_t>(d); \ |
| bits &= 0x0000'0000'FFFF'FFFF; \ |
| bits |= static_cast<uint64_t>(v) << 32; \ |
| (d) = bit_cast<double>(bits); \ |
| } while (false) |
| |
| /* Set the less significant 32 bits of a double from an int. */ |
| |
| #define SET_LOW_WORD(d, v) \ |
| do { \ |
| uint64_t bits = bit_cast<uint64_t>(d); \ |
| bits &= 0xFFFF'FFFF'0000'0000; \ |
| bits |= static_cast<uint32_t>(v); \ |
| (d) = bit_cast<double>(bits); \ |
| } while (false) |
| |
| int32_t __ieee754_rem_pio2(double x, double* y) V8_WARN_UNUSED_RESULT; |
| double __kernel_cos(double x, double y) V8_WARN_UNUSED_RESULT; |
| int __kernel_rem_pio2(double* x, double* y, int e0, int nx, int prec, |
| const int32_t* ipio2) V8_WARN_UNUSED_RESULT; |
| double __kernel_sin(double x, double y, int iy) V8_WARN_UNUSED_RESULT; |
| |
| /* __ieee754_rem_pio2(x,y) |
| * |
| * return the remainder of x rem pi/2 in y[0]+y[1] |
| * use __kernel_rem_pio2() |
| */ |
| int32_t __ieee754_rem_pio2(double x, double *y) { |
| /* |
| * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi |
| */ |
| static const int32_t two_over_pi[] = { |
| 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, |
| 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, |
| 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, |
| 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, |
| 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, |
| 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, |
| 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, |
| 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, |
| 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, |
| 0x73A8C9, 0x60E27B, 0xC08C6B, |
| }; |
| |
| static const int32_t npio2_hw[] = { |
| 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, |
| 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, |
| 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, |
| 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, |
| 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, |
| 0x404858EB, 0x404921FB, |
| }; |
| |
| /* |
| * invpio2: 53 bits of 2/pi |
| * pio2_1: first 33 bit of pi/2 |
| * pio2_1t: pi/2 - pio2_1 |
| * pio2_2: second 33 bit of pi/2 |
| * pio2_2t: pi/2 - (pio2_1+pio2_2) |
| * pio2_3: third 33 bit of pi/2 |
| * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) |
| */ |
| |
| static const double |
| zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
| half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
| two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
| invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
| pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ |
| pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ |
| pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ |
| pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ |
| pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ |
| pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ |
| |
| double z, w, t, r, fn; |
| double tx[3]; |
| int32_t e0, i, j, nx, n, ix, hx; |
| uint32_t low; |
| |
| z = 0; |
| GET_HIGH_WORD(hx, x); /* high word of x */ |
| ix = hx & 0x7FFFFFFF; |
| if (ix <= 0x3FE921FB) { /* |x| ~<= pi/4 , no need for reduction */ |
| y[0] = x; |
| y[1] = 0; |
| return 0; |
| } |
| if (ix < 0x4002D97C) { /* |x| < 3pi/4, special case with n=+-1 */ |
| if (hx > 0) { |
| z = x - pio2_1; |
| if (ix != 0x3FF921FB) { /* 33+53 bit pi is good enough */ |
| y[0] = z - pio2_1t; |
| y[1] = (z - y[0]) - pio2_1t; |
| } else { /* near pi/2, use 33+33+53 bit pi */ |
| z -= pio2_2; |
| y[0] = z - pio2_2t; |
| y[1] = (z - y[0]) - pio2_2t; |
| } |
| return 1; |
| } else { /* negative x */ |
| z = x + pio2_1; |
| if (ix != 0x3FF921FB) { /* 33+53 bit pi is good enough */ |
| y[0] = z + pio2_1t; |
| y[1] = (z - y[0]) + pio2_1t; |
| } else { /* near pi/2, use 33+33+53 bit pi */ |
| z += pio2_2; |
| y[0] = z + pio2_2t; |
| y[1] = (z - y[0]) + pio2_2t; |
| } |
| return -1; |
| } |
| } |
| if (ix <= 0x413921FB) { /* |x| ~<= 2^19*(pi/2), medium size */ |
| t = fabs(x); |
| n = static_cast<int32_t>(t * invpio2 + half); |
| fn = static_cast<double>(n); |
| r = t - fn * pio2_1; |
| w = fn * pio2_1t; /* 1st round good to 85 bit */ |
| if (n < 32 && ix != npio2_hw[n - 1]) { |
| y[0] = r - w; /* quick check no cancellation */ |
| } else { |
| uint32_t high; |
| j = ix >> 20; |
| y[0] = r - w; |
| GET_HIGH_WORD(high, y[0]); |
| i = j - ((high >> 20) & 0x7FF); |
| if (i > 16) { /* 2nd iteration needed, good to 118 */ |
| t = r; |
| w = fn * pio2_2; |
| r = t - w; |
| w = fn * pio2_2t - ((t - r) - w); |
| y[0] = r - w; |
| GET_HIGH_WORD(high, y[0]); |
| i = j - ((high >> 20) & 0x7FF); |
| if (i > 49) { /* 3rd iteration need, 151 bits acc */ |
| t = r; /* will cover all possible cases */ |
| w = fn * pio2_3; |
| r = t - w; |
| w = fn * pio2_3t - ((t - r) - w); |
| y[0] = r - w; |
| } |
| } |
| } |
| y[1] = (r - y[0]) - w; |
| if (hx < 0) { |
| y[0] = -y[0]; |
| y[1] = -y[1]; |
| return -n; |
| } else { |
| return n; |
| } |
| } |
| /* |
| * all other (large) arguments |
| */ |
| if (ix >= 0x7FF00000) { /* x is inf or NaN */ |
| y[0] = y[1] = x - x; |
| return 0; |
| } |
| /* set z = scalbn(|x|,ilogb(x)-23) */ |
| GET_LOW_WORD(low, x); |
| SET_LOW_WORD(z, low); |
| e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */ |
| SET_HIGH_WORD(z, ix - static_cast<int32_t>(static_cast<uint32_t>(e0) << 20)); |
| for (i = 0; i < 2; i++) { |
| tx[i] = static_cast<double>(static_cast<int32_t>(z)); |
| z = (z - tx[i]) * two24; |
| } |
| tx[2] = z; |
| nx = 3; |
| while (tx[nx - 1] == zero) nx--; /* skip zero term */ |
| n = __kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi); |
| if (hx < 0) { |
| y[0] = -y[0]; |
| y[1] = -y[1]; |
| return -n; |
| } |
| return n; |
| } |
| |
| /* __kernel_cos( x, y ) |
| * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
| * Input x is assumed to be bounded by ~pi/4 in magnitude. |
| * Input y is the tail of x. |
| * |
| * Algorithm |
| * 1. Since cos(-x) = cos(x), we need only to consider positive x. |
| * 2. if x < 2^-27 (hx<0x3E400000 0), return 1 with inexact if x!=0. |
| * 3. cos(x) is approximated by a polynomial of degree 14 on |
| * [0,pi/4] |
| * 4 14 |
| * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
| * where the remez error is |
| * |
| * | 2 4 6 8 10 12 14 | -58 |
| * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
| * | | |
| * |
| * 4 6 8 10 12 14 |
| * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
| * cos(x) = 1 - x*x/2 + r |
| * since cos(x+y) ~ cos(x) - sin(x)*y |
| * ~ cos(x) - x*y, |
| * a correction term is necessary in cos(x) and hence |
| * cos(x+y) = 1 - (x*x/2 - (r - x*y)) |
| * For better accuracy when x > 0.3, let qx = |x|/4 with |
| * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
| * Then |
| * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). |
| * Note that 1-qx and (x*x/2-qx) is EXACT here, and the |
| * magnitude of the latter is at least a quarter of x*x/2, |
| * thus, reducing the rounding error in the subtraction. |
| */ |
| V8_INLINE double __kernel_cos(double x, double y) { |
| static const double |
| one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
| C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ |
| C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ |
| C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ |
| C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ |
| C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ |
| C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ |
| |
| double a, iz, z, r, qx; |
| int32_t ix; |
| GET_HIGH_WORD(ix, x); |
| ix &= 0x7FFFFFFF; /* ix = |x|'s high word*/ |
| if (ix < 0x3E400000) { /* if x < 2**27 */ |
| if (static_cast<int>(x) == 0) return one; /* generate inexact */ |
| } |
| z = x * x; |
| r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6))))); |
| if (ix < 0x3FD33333) { /* if |x| < 0.3 */ |
| return one - (0.5 * z - (z * r - x * y)); |
| } else { |
| if (ix > 0x3FE90000) { /* x > 0.78125 */ |
| qx = 0.28125; |
| } else { |
| INSERT_WORDS(qx, ix - 0x00200000, 0); /* x/4 */ |
| } |
| iz = 0.5 * z - qx; |
| a = one - qx; |
| return a - (iz - (z * r - x * y)); |
| } |
| } |
| |
| /* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
| * double x[],y[]; int e0,nx,prec; int ipio2[]; |
| * |
| * __kernel_rem_pio2 return the last three digits of N with |
| * y = x - N*pi/2 |
| * so that |y| < pi/2. |
| * |
| * The method is to compute the integer (mod 8) and fraction parts of |
| * (2/pi)*x without doing the full multiplication. In general we |
| * skip the part of the product that are known to be a huge integer ( |
| * more accurately, = 0 mod 8 ). Thus the number of operations are |
| * independent of the exponent of the input. |
| * |
| * (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
| * |
| * Input parameters: |
| * x[] The input value (must be positive) is broken into nx |
| * pieces of 24-bit integers in double precision format. |
| * x[i] will be the i-th 24 bit of x. The scaled exponent |
| * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
| * match x's up to 24 bits. |
| * |
| * Example of breaking a double positive z into x[0]+x[1]+x[2]: |
| * e0 = ilogb(z)-23 |
| * z = scalbn(z,-e0) |
| * for i = 0,1,2 |
| * x[i] = floor(z) |
| * z = (z-x[i])*2**24 |
| * |
| * |
| * y[] output result in an array of double precision numbers. |
| * The dimension of y[] is: |
| * 24-bit precision 1 |
| * 53-bit precision 2 |
| * 64-bit precision 2 |
| * 113-bit precision 3 |
| * The actual value is the sum of them. Thus for 113-bit |
| * precison, one may have to do something like: |
| * |
| * long double t,w,r_head, r_tail; |
| * t = (long double)y[2] + (long double)y[1]; |
| * w = (long double)y[0]; |
| * r_head = t+w; |
| * r_tail = w - (r_head - t); |
| * |
| * e0 The exponent of x[0] |
| * |
| * nx dimension of x[] |
| * |
| * prec an integer indicating the precision: |
| * 0 24 bits (single) |
| * 1 53 bits (double) |
| * 2 64 bits (extended) |
| * 3 113 bits (quad) |
| * |
| * ipio2[] |
| * integer array, contains the (24*i)-th to (24*i+23)-th |
| * bit of 2/pi after binary point. The corresponding |
| * floating value is |
| * |
| * ipio2[i] * 2^(-24(i+1)). |
| * |
| * External function: |
| * double scalbn(), floor(); |
| * |
| * |
| * Here is the description of some local variables: |
| * |
| * jk jk+1 is the initial number of terms of ipio2[] needed |
| * in the computation. The recommended value is 2,3,4, |
| * 6 for single, double, extended,and quad. |
| * |
| * jz local integer variable indicating the number of |
| * terms of ipio2[] used. |
| * |
| * jx nx - 1 |
| * |
| * jv index for pointing to the suitable ipio2[] for the |
| * computation. In general, we want |
| * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
| * is an integer. Thus |
| * e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
| * Hence jv = max(0,(e0-3)/24). |
| * |
| * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
| * |
| * q[] double array with integral value, representing the |
| * 24-bits chunk of the product of x and 2/pi. |
| * |
| * q0 the corresponding exponent of q[0]. Note that the |
| * exponent for q[i] would be q0-24*i. |
| * |
| * PIo2[] double precision array, obtained by cutting pi/2 |
| * into 24 bits chunks. |
| * |
| * f[] ipio2[] in floating point |
| * |
| * iq[] integer array by breaking up q[] in 24-bits chunk. |
| * |
| * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
| * |
| * ih integer. If >0 it indicates q[] is >= 0.5, hence |
| * it also indicates the *sign* of the result. |
| * |
| */ |
| int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, |
| const int32_t *ipio2) { |
| /* Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| */ |
| static const int init_jk[] = {2, 3, 4, 6}; /* initial value for jk */ |
| |
| static const double PIo2[] = { |
| 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
| 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
| 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
| 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
| 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
| 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
| 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
| 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
| }; |
| |
| static const double |
| zero = 0.0, |
| one = 1.0, |
| two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
| twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
| |
| int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; |
| double z, fw, f[20], fq[20], q[20]; |
| |
| /* initialize jk*/ |
| jk = init_jk[prec]; |
| jp = jk; |
| |
| /* determine jx,jv,q0, note that 3>q0 */ |
| jx = nx - 1; |
| jv = (e0 - 3) / 24; |
| if (jv < 0) jv = 0; |
| q0 = e0 - 24 * (jv + 1); |
| |
| /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
| j = jv - jx; |
| m = jx + jk; |
| for (i = 0; i <= m; i++, j++) { |
| f[i] = (j < 0) ? zero : static_cast<double>(ipio2[j]); |
| } |
| |
| /* compute q[0],q[1],...q[jk] */ |
| for (i = 0; i <= jk; i++) { |
| for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; |
| q[i] = fw; |
| } |
| |
| jz = jk; |
| recompute: |
| /* distill q[] into iq[] reversingly */ |
| for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { |
| fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); |
| iq[i] = static_cast<int32_t>(z - two24 * fw); |
| z = q[j - 1] + fw; |
| } |
| |
| /* compute n */ |
| z = scalbn(z, q0); /* actual value of z */ |
| z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */ |
| n = static_cast<int32_t>(z); |
| z -= static_cast<double>(n); |
| ih = 0; |
| if (q0 > 0) { /* need iq[jz-1] to determine n */ |
| i = (iq[jz - 1] >> (24 - q0)); |
| n += i; |
| iq[jz - 1] -= i << (24 - q0); |
| ih = iq[jz - 1] >> (23 - q0); |
| } else if (q0 == 0) { |
| ih = iq[jz - 1] >> 23; |
| } else if (z >= 0.5) { |
| ih = 2; |
| } |
| |
| if (ih > 0) { /* q > 0.5 */ |
| n += 1; |
| carry = 0; |
| for (i = 0; i < jz; i++) { /* compute 1-q */ |
| j = iq[i]; |
| if (carry == 0) { |
| if (j != 0) { |
| carry = 1; |
| iq[i] = 0x1000000 - j; |
| } |
| } else { |
| iq[i] = 0xFFFFFF - j; |
| } |
| } |
| if (q0 > 0) { /* rare case: chance is 1 in 12 */ |
| switch (q0) { |
| case 1: |
| iq[jz - 1] &= 0x7FFFFF; |
| break; |
| case 2: |
| iq[jz - 1] &= 0x3FFFFF; |
| break; |
| } |
| } |
| if (ih == 2) { |
| z = one - z; |
| if (carry != 0) z -= scalbn(one, q0); |
| } |
| } |
| |
| /* check if recomputation is needed */ |
| if (z == zero) { |
| j = 0; |
| for (i = jz - 1; i >= jk; i--) j |= iq[i]; |
| if (j == 0) { /* need recomputation */ |
| for (k = 1; jk >= k && iq[jk - k] == 0; k++) { |
| /* k = no. of terms needed */ |
| } |
| |
| for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */ |
| f[jx + i] = ipio2[jv + i]; |
| for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; |
| q[i] = fw; |
| } |
| jz += k; |
| goto recompute; |
| } |
| } |
| |
| /* chop off zero terms */ |
| if (z == 0.0) { |
| jz -= 1; |
| q0 -= 24; |
| while (iq[jz] == 0) { |
| jz--; |
| q0 -= 24; |
| } |
| } else { /* break z into 24-bit if necessary */ |
| z = scalbn(z, -q0); |
| if (z >= two24) { |
| fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); |
| iq[jz] = z - two24 * fw; |
| jz += 1; |
| q0 += 24; |
| iq[jz] = fw; |
| } else { |
| iq[jz] = z; |
| } |
| } |
| |
| /* convert integer "bit" chunk to floating-point value */ |
| fw = scalbn(one, q0); |
| for (i = jz; i >= 0; i--) { |
| q[i] = fw * iq[i]; |
| fw *= twon24; |
| } |
| |
| /* compute PIo2[0,...,jp]*q[jz,...,0] */ |
| for (i = jz; i >= 0; i--) { |
| for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) fw += PIo2[k] * q[i + k]; |
| fq[jz - i] = fw; |
| } |
| |
| /* compress fq[] into y[] */ |
| switch (prec) { |
| case 0: |
| fw = 0.0; |
| for (i = jz; i >= 0; i--) fw += fq[i]; |
| y[0] = (ih == 0) ? fw : -fw; |
| break; |
| case 1: |
| case 2: |
| fw = 0.0; |
| for (i = jz; i >= 0; i--) fw += fq[i]; |
| y[0] = (ih == 0) ? fw : -fw; |
| fw = fq[0] - fw; |
| for (i = 1; i <= jz; i++) fw += fq[i]; |
| y[1] = (ih == 0) ? fw : -fw; |
| break; |
| case 3: /* painful */ |
| for (i = jz; i > 0; i--) { |
| fw = fq[i - 1] + fq[i]; |
| fq[i] += fq[i - 1] - fw; |
| fq[i - 1] = fw; |
| } |
| for (i = jz; i > 1; i--) { |
| fw = fq[i - 1] + fq[i]; |
| fq[i] += fq[i - 1] - fw; |
| fq[i - 1] = fw; |
| } |
| for (fw = 0.0, i = jz; i >= 2; i--) fw += fq[i]; |
| if (ih == 0) { |
| y[0] = fq[0]; |
| y[1] = fq[1]; |
| y[2] = fw; |
| } else { |
| y[0] = -fq[0]; |
| y[1] = -fq[1]; |
| y[2] = -fw; |
| } |
| } |
| return n & 7; |
| } |
| |
| /* __kernel_sin( x, y, iy) |
| * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| * Input x is assumed to be bounded by ~pi/4 in magnitude. |
| * Input y is the tail of x. |
| * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). |
| * |
| * Algorithm |
| * 1. Since sin(-x) = -sin(x), we need only to consider positive x. |
| * 2. if x < 2^-27 (hx<0x3E400000 0), return x with inexact if x!=0. |
| * 3. sin(x) is approximated by a polynomial of degree 13 on |
| * [0,pi/4] |
| * 3 13 |
| * sin(x) ~ x + S1*x + ... + S6*x |
| * where |
| * |
| * |sin(x) 2 4 6 8 10 12 | -58 |
| * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
| * | x | |
| * |
| * 4. sin(x+y) = sin(x) + sin'(x')*y |
| * ~ sin(x) + (1-x*x/2)*y |
| * For better accuracy, let |
| * 3 2 2 2 2 |
| * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) |
| * then 3 2 |
| * sin(x) = x + (S1*x + (x *(r-y/2)+y)) |
| */ |
| V8_INLINE double __kernel_sin(double x, double y, int iy) { |
| static const double |
| half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
| S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ |
| S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ |
| S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ |
| S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ |
| S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ |
| S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ |
| |
| double z, r, v; |
| int32_t ix; |
| GET_HIGH_WORD(ix, x); |
| ix &= 0x7FFFFFFF; /* high word of x */ |
| if (ix < 0x3E400000) { /* |x| < 2**-27 */ |
| if (static_cast<int>(x) == 0) return x; |
| } /* generate inexact */ |
| z = x * x; |
| v = z * x; |
| r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6))); |
| if (iy == 0) { |
| return x + v * (S1 + z * r); |
| } else { |
| return x - ((z * (half * y - v * r) - y) - v * S1); |
| } |
| } |
| |
| /* __kernel_tan( x, y, k ) |
| * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| * Input x is assumed to be bounded by ~pi/4 in magnitude. |
| * Input y is the tail of x. |
| * Input k indicates whether tan (if k=1) or |
| * -1/tan (if k= -1) is returned. |
| * |
| * Algorithm |
| * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
| * 2. if x < 2^-28 (hx<0x3E300000 0), return x with inexact if x!=0. |
| * 3. tan(x) is approximated by a odd polynomial of degree 27 on |
| * [0,0.67434] |
| * 3 27 |
| * tan(x) ~ x + T1*x + ... + T13*x |
| * where |
| * |
| * |tan(x) 2 4 26 | -59.2 |
| * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
| * | x | |
| * |
| * Note: tan(x+y) = tan(x) + tan'(x)*y |
| * ~ tan(x) + (1+x*x)*y |
| * Therefore, for better accuracy in computing tan(x+y), let |
| * 3 2 2 2 2 |
| * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
| * then |
| * 3 2 |
| * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
| * |
| * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
| * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
| * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
| */ |
| double __kernel_tan(double x, double y, int iy) { |
| static const double xxx[] = { |
| 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ |
| 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ |
| 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ |
| 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ |
| 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ |
| 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ |
| 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ |
| 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ |
| 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ |
| 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ |
| 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ |
| -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ |
| 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ |
| /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ |
| /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ |
| /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ |
| }; |
| #define one xxx[13] |
| #define pio4 xxx[14] |
| #define pio4lo xxx[15] |
| #define T xxx |
| |
| double z, r, v, w, s; |
| int32_t ix, hx; |
| |
| GET_HIGH_WORD(hx, x); /* high word of x */ |
| ix = hx & 0x7FFFFFFF; /* high word of |x| */ |
| if (ix < 0x3E300000) { /* x < 2**-28 */ |
| if (static_cast<int>(x) == 0) { /* generate inexact */ |
| uint32_t low; |
| GET_LOW_WORD(low, x); |
| if (((ix | low) | (iy + 1)) == 0) { |
| return one / fabs(x); |
| } else { |
| if (iy == 1) { |
| return x; |
| } else { /* compute -1 / (x+y) carefully */ |
| double a, t; |
| |
| z = w = x + y; |
| SET_LOW_WORD(z, 0); |
| v = y - (z - x); |
| t = a = -one / w; |
| SET_LOW_WORD(t, 0); |
| s = one + t * z; |
| return t + a * (s + t * v); |
| } |
| } |
| } |
| } |
| if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ |
| if (hx < 0) { |
| x = -x; |
| y = -y; |
| } |
| z = pio4 - x; |
| w = pio4lo - y; |
| x = z + w; |
| y = 0.0; |
| } |
| z = x * x; |
| w = z * z; |
| /* |
| * Break x^5*(T[1]+x^2*T[2]+...) into |
| * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
| * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
| */ |
| r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11])))); |
| v = z * |
| (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12]))))); |
| s = z * x; |
| r = y + z * (s * (r + v) + y); |
| r += T[0] * s; |
| w = x + r; |
| if (ix >= 0x3FE59428) { |
| v = iy; |
| return (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r))); |
| } |
| if (iy == 1) { |
| return w; |
| } else { |
| /* |
| * if allow error up to 2 ulp, simply return |
| * -1.0 / (x+r) here |
| */ |
| /* compute -1.0 / (x+r) accurately */ |
| double a, t; |
| z = w; |
| SET_LOW_WORD(z, 0); |
| v = r - (z - x); /* z+v = r+x */ |
| t = a = -1.0 / w; /* a = -1.0/w */ |
| SET_LOW_WORD(t, 0); |
| s = 1.0 + t * z; |
| return t + a * (s + t * v); |
| } |
| |
| #undef one |
| #undef pio4 |
| #undef pio4lo |
| #undef T |
| } |
| |
| } // namespace |
| |
| /* acos(x) |
| * Method : |
| * acos(x) = pi/2 - asin(x) |
| * acos(-x) = pi/2 + asin(x) |
| * For |x|<=0.5 |
| * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) |
| * For x>0.5 |
| * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) |
| * = 2asin(sqrt((1-x)/2)) |
| * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) |
| * = 2f + (2c + 2s*z*R(z)) |
| * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term |
| * for f so that f+c ~ sqrt(z). |
| * For x<-0.5 |
| * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) |
| * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) |
| * |
| * Special cases: |
| * if x is NaN, return x itself; |
| * if |x|>1, return NaN with invalid signal. |
| * |
| * Function needed: sqrt |
| */ |
| double acos(double x) { |
| static const double |
| one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
| pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
| pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
| pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
| pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
| pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
| pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
| pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
| pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
| pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
| qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
| qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
| qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
| qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
| |
| double z, p, q, r, w, s, c, df; |
| int32_t hx, ix; |
| GET_HIGH_WORD(hx, x); |
| ix = hx & 0x7FFFFFFF; |
| if (ix >= 0x3FF00000) { /* |x| >= 1 */ |
| uint32_t lx; |
| GET_LOW_WORD(lx, x); |
| if (((ix - 0x3FF00000) | lx) == 0) { /* |x|==1 */ |
| if (hx > 0) |
| return 0.0; /* acos(1) = 0 */ |
| else |
| return pi + 2.0 * pio2_lo; /* acos(-1)= pi */ |
| } |
| return std::numeric_limits<double>::signaling_NaN(); // acos(|x|>1) is NaN |
| } |
| if (ix < 0x3FE00000) { /* |x| < 0.5 */ |
| if (ix <= 0x3C600000) return pio2_hi + pio2_lo; /*if|x|<2**-57*/ |
| z = x * x; |
| p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); |
| q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); |
| r = p / q; |
| return pio2_hi - (x - (pio2_lo - x * r)); |
| } else if (hx < 0) { /* x < -0.5 */ |
| z = (one + x) * 0.5; |
| p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); |
| q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); |
| s = sqrt(z); |
| r = p / q; |
| w = r * s - pio2_lo; |
| return pi - 2.0 * (s + w); |
| } else { /* x > 0.5 */ |
| z = (one - x) * 0.5; |
| s = sqrt(z); |
| df = s; |
| SET_LOW_WORD(df, 0); |
| c = (z - df * df) / (s + df); |
| p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); |
| q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); |
| r = p / q; |
| w = r * s + c; |
| return 2.0 * (df + w); |
| } |
| } |
| |
| /* acosh(x) |
| * Method : |
| * Based on |
| * acosh(x) = log [ x + sqrt(x*x-1) ] |
| * we have |
| * acosh(x) := log(x)+ln2, if x is large; else |
| * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else |
| * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. |
| * |
| * Special cases: |
| * acosh(x) is NaN with signal if x<1. |
| * acosh(NaN) is NaN without signal. |
| */ |
| double acosh(double x) { |
| static const double |
| one = 1.0, |
| ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ |
| double t; |
| int32_t hx; |
| uint32_t lx; |
| EXTRACT_WORDS(hx, lx, x); |
| if (hx < 0x3FF00000) { /* x < 1 */ |
| return std::numeric_limits<double>::signaling_NaN(); |
| } else if (hx >= 0x41B00000) { /* x > 2**28 */ |
| if (hx >= 0x7FF00000) { /* x is inf of NaN */ |
| return x + x; |
| } else { |
| return log(x) + ln2; /* acosh(huge)=log(2x) */ |
| } |
| } else if (((hx - 0x3FF00000) | lx) == 0) { |
| return 0.0; /* acosh(1) = 0 */ |
| } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ |
| t = x * x; |
| return log(2.0 * x - one / (x + sqrt(t - one))); |
| } else { /* 1<x<2 */ |
| t = x - one; |
| return log1p(t + sqrt(2.0 * t + t * t)); |
| } |
| } |
| |
| /* asin(x) |
| * Method : |
| * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
| * we approximate asin(x) on [0,0.5] by |
| * asin(x) = x + x*x^2*R(x^2) |
| * where |
| * R(x^2) is a rational approximation of (asin(x)-x)/x^3 |
| * and its remez error is bounded by |
| * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) |
| * |
| * For x in [0.5,1] |
| * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
| * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
| * then for x>0.98 |
| * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
| * For x<=0.98, let pio4_hi = pio2_hi/2, then |
| * f = hi part of s; |
| * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
| * and |
| * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
| * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
| * |
| * Special cases: |
| * if x is NaN, return x itself; |
| * if |x|>1, return NaN with invalid signal. |
| */ |
| double asin(double x) { |
| static const double |
| one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
| huge = 1.000e+300, |
| pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
| pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
| pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
| /* coefficient for R(x^2) */ |
| pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
| pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
| pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
| pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
| pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
| pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
| qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
| qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
| qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
| qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
| |
| double t, w, p, q, c, r, s; |
| int32_t hx, ix; |
| |
| t = 0; |
| GET_HIGH_WORD(hx, x); |
| ix = hx & 0x7FFFFFFF; |
| if (ix >= 0x3FF00000) { /* |x|>= 1 */ |
| uint32_t lx; |
| GET_LOW_WORD(lx, x); |
| if (((ix - 0x3FF00000) | lx) == 0) { /* asin(1)=+-pi/2 with inexact */ |
| return x * pio2_hi + x * pio2_lo; |
| } |
| return std::numeric_limits<double>::signaling_NaN(); // asin(|x|>1) is NaN |
| } else if (ix < 0x3FE00000) { /* |x|<0.5 */ |
| if (ix < 0x3E400000) { /* if |x| < 2**-27 */ |
| if (huge + x > one) return x; /* return x with inexact if x!=0*/ |
| } else { |
| t = x * x; |
| } |
| p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); |
| q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); |
| w = p / q; |
| return x + x * w; |
| } |
| /* 1> |x|>= 0.5 */ |
| w = one - fabs(x); |
| t = w * 0.5; |
| p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); |
| q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); |
| s = sqrt(t); |
| if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */ |
| w = p / q; |
| t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); |
| } else { |
| w = s; |
| SET_LOW_WORD(w, 0); |
| c = (t - w * w) / (s + w); |
| r = p / q; |
| p = 2.0 * s * r - (pio2_lo - 2.0 * c); |
| q = pio4_hi - 2.0 * w; |
| t = pio4_hi - (p - q); |
| } |
| if (hx > 0) |
| return t; |
| else |
| return -t; |
| } |
| /* asinh(x) |
| * Method : |
| * Based on |
| * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] |
| * we have |
| * asinh(x) := x if 1+x*x=1, |
| * := sign(x)*(log(x)+ln2)) for large |x|, else |
| * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else |
| * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) |
| */ |
| double asinh(double x) { |
| static const double |
| one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
| ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
| huge = 1.00000000000000000000e+300; |
| |
| double t, w; |
| int32_t hx, ix; |
| GET_HIGH_WORD(hx, x); |
| ix = hx & 0x7FFFFFFF; |
| if (ix >= 0x7FF00000) return x + x; /* x is inf or NaN */ |
| if (ix < 0x3E300000) { /* |x|<2**-28 */ |
| if (huge + x > one) return x; /* return x inexact except 0 */ |
| } |
| if (ix > 0x41B00000) { /* |x| > 2**28 */ |
| w = log(fabs(x)) + ln2; |
| } else if (ix > 0x40000000) { /* 2**28 > |x| > 2.0 */ |
| t = fabs(x); |
| w = log(2.0 * t + one / (sqrt(x * x + one) + t)); |
| } else { /* 2.0 > |x| > 2**-28 */ |
| t = x * x; |
| w = log1p(fabs(x) + t / (one + sqrt(one + t))); |
| } |
| if (hx > 0) { |
| return w; |
| } else { |
| return -w; |
| } |
| } |
| |
| /* atan(x) |
| * Method |
| * 1. Reduce x to positive by atan(x) = -atan(-x). |
| * 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
| * is further reduced to one of the following intervals and the |
| * arctangent of t is evaluated by the corresponding formula: |
| * |
| * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
| * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
| * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
| * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
| * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| */ |
| double atan(double x) { |
| static const double atanhi[] = { |
| 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
| 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
| 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
| 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
| }; |
| |
| static const double atanlo[] = { |
| 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
| 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
| 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
| 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
| }; |
| |
| static const double aT[] = { |
| 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
| -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
| 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
| -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
| 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
| -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
| 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
| -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
| 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
| -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
| 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
| }; |
| |
| static const double one = 1.0, huge = 1.0e300; |
| |
| double w, s1, s2, z; |
| int32_t ix, hx, id; |
| |
| GET_HIGH_WORD(hx, x); |
| ix = hx & 0x7FFFFFFF; |
| if (ix >= 0x44100000) { /* if |x| >= 2^66 */ |
| uint32_t low; |
| GET_LOW_WORD(low, x); |
| if (ix > 0x7FF00000 || (ix == 0x7FF00000 && (low != 0))) |
| return x + x; /* NaN */ |
| if (hx > 0) |
| return atanhi[3] + *const_cast<volatile double*>(&atanlo[3]); |
| else |
| return -atanhi[3] - *const_cast<volatile double*>(&atanlo[3]); |
| } |
| if (ix < 0x3FDC0000) { /* |x| < 0.4375 */ |
| if (ix < 0x3E400000) { /* |x| < 2^-27 */ |
| if (huge + x > one) return x; /* raise inexact */ |
| } |
| id = -1; |
| } else { |
| x = fabs(x); |
| if (ix < 0x3FF30000) { /* |x| < 1.1875 */ |
| if (ix < 0x3FE60000) { /* 7/16 <=|x|<11/16 */ |
| id = 0; |
| x = (2.0 * x - one) / (2.0 + x); |
| } else { /* 11/16<=|x|< 19/16 */ |
| id = 1; |
| x = (x - one) / (x + one); |
| } |
| } else { |
| if (ix < 0x40038000) { /* |x| < 2.4375 */ |
| id = 2; |
| x = (x - 1.5) / (one + 1.5 * x); |
| } else { /* 2.4375 <= |x| < 2^66 */ |
| id = 3; |
| x = -1.0 / x; |
| } |
| } |
| } |
| /* end of argument reduction */ |
| z = x * x; |
| w = z * z; |
| /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ |
| s1 = z * (aT[0] + |
| w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10]))))); |
| s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9])))); |
| if (id < 0) { |
| return x - x * (s1 + s2); |
| } else { |
| z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x); |
| return (hx < 0) ? -z : z; |
| } |
| } |
| |
| /* atan2(y,x) |
| * Method : |
| * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). |
| * 2. Reduce x to positive by (if x and y are unexceptional): |
| * ARG (x+iy) = arctan(y/x) ... if x > 0, |
| * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, |
| * |
| * Special cases: |
| * |
| * ATAN2((anything), NaN ) is NaN; |
| * ATAN2(NAN , (anything) ) is NaN; |
| * ATAN2(+-0, +(anything but NaN)) is +-0 ; |
| * ATAN2(+-0, -(anything but NaN)) is +-pi ; |
| * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; |
| * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; |
| * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; |
| * ATAN2(+-INF,+INF ) is +-pi/4 ; |
| * ATAN2(+-INF,-INF ) is +-3pi/4; |
| * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| */ |
| double atan2(double y, double x) { |
| static volatile double tiny = 1.0e-300; |
| static const double |
| zero = 0.0, |
| pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ |
| pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ |
| pi = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */ |
| static volatile double pi_lo = |
| 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ |
| |
| double z; |
| int32_t k, m, hx, hy, ix, iy; |
| uint32_t lx, ly; |
| |
| EXTRACT_WORDS(hx, lx, x); |
| ix = hx & 0x7FFFFFFF; |
| EXTRACT_WORDS(hy, ly, y); |
| iy = hy & 0x7FFFFFFF; |
| if (((ix | ((lx | NegateWithWraparound<int32_t>(lx)) >> 31)) > 0x7FF00000) || |
| ((iy | ((ly | NegateWithWraparound<int32_t>(ly)) >> 31)) > 0x7FF00000)) { |
| return x + y; /* x or y is NaN */ |
| } |
| if ((SubWithWraparound(hx, 0x3FF00000) | lx) == 0) { |
| return atan(y); /* x=1.0 */ |
| } |
| m = ((hy >> 31) & 1) | ((hx >> 30) & 2); /* 2*sign(x)+sign(y) */ |
| |
| /* when y = 0 */ |
| if ((iy | ly) == 0) { |
| switch (m) { |
| case 0: |
| case 1: |
| return y; /* atan(+-0,+anything)=+-0 */ |
| case 2: |
| return pi + tiny; /* atan(+0,-anything) = pi */ |
| case 3: |
| return -pi - tiny; /* atan(-0,-anything) =-pi */ |
| } |
| } |
| /* when x = 0 */ |
| if ((ix | lx) == 0) return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; |
| |
| /* when x is INF */ |
| if (ix == 0x7FF00000) { |
| if (iy == 0x7FF00000) { |
| switch (m) { |
| case 0: |
| return pi_o_4 + tiny; /* atan(+INF,+INF) */ |
| case 1: |
| return -pi_o_4 - tiny; /* atan(-INF,+INF) */ |
| case 2: |
| return 3.0 * pi_o_4 + tiny; /*atan(+INF,-INF)*/ |
| case 3: |
| return -3.0 * pi_o_4 - tiny; /*atan(-INF,-INF)*/ |
| } |
| } else { |
| switch (m) { |
| case 0: |
| return zero; /* atan(+...,+INF) */ |
| case 1: |
| return -zero; /* atan(-...,+INF) */ |
| case 2: |
| return pi + tiny; /* atan(+...,-INF) */ |
| case 3: |
| return -pi - tiny; /* atan(-...,-INF) */ |
| } |
| } |
| } |
| /* when y is INF */ |
| if (iy == 0x7FF00000) return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; |
| |
| /* compute y/x */ |
| k = (iy - ix) >> 20; |
| if (k > 60) { /* |y/x| > 2**60 */ |
| z = pi_o_2 + 0.5 * pi_lo; |
| m &= 1; |
| } else if (hx < 0 && k < -60) { |
| z = 0.0; /* 0 > |y|/x > -2**-60 */ |
| } else { |
| z = atan(fabs(y / x)); /* safe to do y/x */ |
| } |
| switch (m) { |
| case 0: |
| return z; /* atan(+,+) */ |
| case 1: |
| return -z; /* atan(-,+) */ |
| case 2: |
| return pi - (z - pi_lo); /* atan(+,-) */ |
| default: /* case 3 */ |
| return (z - pi_lo) - pi; /* atan(-,-) */ |
| } |
| } |
| |
| /* cos(x) |
| * Return cosine function of x. |
| * |
| * kernel function: |
| * __kernel_sin ... sine function on [-pi/4,pi/4] |
| * __kernel_cos ... cosine function on [-pi/4,pi/4] |
| * __ieee754_rem_pio2 ... argument reduction routine |
| * |
| * Method. |
| * Let S,C and T denote the sin, cos and tan respectively on |
| * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
| * in [-pi/4 , +pi/4], and let n = k mod 4. |
| * We have |
| * |
| * n sin(x) cos(x) tan(x) |
| * ---------------------------------------------------------- |
| * 0 S C T |
| * 1 C -S -1/T |
| * 2 -S -C T |
| * 3 -C S -1/T |
| * ---------------------------------------------------------- |
| * |
| * Special cases: |
| * Let trig be any of sin, cos, or tan. |
| * trig(+-INF) is NaN, with signals; |
| * trig(NaN) is that NaN; |
| * |
| * Accuracy: |
| * TRIG(x) returns trig(x) nearly rounded |
| */ |
| double cos(double x) { |
| double y[2], z = 0.0; |
| int32_t n, ix; |
| |
| /* High word of x. */ |
| GET_HIGH_WORD(ix, x); |
| |
| /* |x| ~< pi/4 */ |
| ix &= 0x7FFFFFFF; |
| if (ix <= 0x3FE921FB) { |
| return __kernel_cos(x, z); |
| } else if (ix >= 0x7FF00000) { |
| /* cos(Inf or NaN) is NaN */ |
| return x - x; |
| } else { |
| /* argument reduction needed */ |
| n = __ieee754_rem_pio2(x, y); |
| switch (n & 3) { |
| case 0: |
| return __kernel_cos(y[0], y[1]); |
| case 1: |
| return -__kernel_sin(y[0], y[1], 1); |
| case 2: |
| return -__kernel_cos(y[0], y[1]); |
| default: |
| return __kernel_sin(y[0], y[1], 1); |
| } |
| } |
| } |
| |
| /* exp(x) |
| * Returns the exponential of x. |
| * |
| * Method |
| * 1. Argument reduction: |
| * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
| * Given x, find r and integer k such that |
| * |
| * x = k*ln2 + r, |r| <= 0.5*ln2. |
| * |
| * Here r will be represented as r = hi-lo for better |
| * accuracy. |
| * |
| * 2. Approximation of exp(r) by a special rational function on |
| * the interval [0,0.34658]: |
| * Write |
| * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
| * We use a special Remes algorithm on [0,0.34658] to generate |
| * a polynomial of degree 5 to approximate R. The maximum error |
| * of this polynomial approximation is bounded by 2**-59. In |
| * other words, |
| * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
| * (where z=r*r, and the values of P1 to P5 are listed below) |
| * and |
| * | 5 | -59 |
| * | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
| * | | |
| * The computation of exp(r) thus becomes |
| * 2*r |
| * exp(r) = 1 + ------- |
| * R - r |
| * r*R1(r) |
| * = 1 + r + ----------- (for better accuracy) |
| * 2 - R1(r) |
| * where |
| * 2 4 10 |
| * R1(r) = r - (P1*r + P2*r + ... + P5*r ). |
| * |
| * 3. Scale back to obtain exp(x): |
| * From step 1, we have |
| * exp(x) = 2^k * exp(r) |
| * |
| * Special cases: |
| * exp(INF) is INF, exp(NaN) is NaN; |
| * exp(-INF) is 0, and |
| * for finite argument, only exp(0)=1 is exact. |
| * |
| * Accuracy: |
| * according to an error analysis, the error is always less than |
| * 1 ulp (unit in the last place). |
| * |
| * Misc. info. |
| * For IEEE double |
| * if x > 7.09782712893383973096e+02 then exp(x) overflow |
| * if x < -7.45133219101941108420e+02 then exp(x) underflow |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| */ |
| double exp(double x) { |
| static const double |
| one = 1.0, |
| halF[2] = {0.5, -0.5}, |
| o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
| u_threshold = -7.45133219101941108420e+02, /* 0xC0874910, 0xD52D3051 */ |
| ln2HI[2] = {6.93147180369123816490e-01, /* 0x3FE62E42, 0xFEE00000 */ |
| -6.93147180369123816490e-01}, /* 0xBFE62E42, 0xFEE00000 */ |
| ln2LO[2] = {1.90821492927058770002e-10, /* 0x3DEA39EF, 0x35793C76 */ |
| -1.90821492927058770002e-10}, /* 0xBDEA39EF, 0x35793C76 */ |
| invln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE */ |
| P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
| P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
| P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
| P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
| P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
| E = 2.718281828459045; /* 0x4005BF0A, 0x8B145769 */ |
| |
| static volatile double |
| huge = 1.0e+300, |
| twom1000 = 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ |
| two1023 = 8.988465674311579539e307; /* 0x1p1023 */ |
| |
| double y, hi = 0.0, lo = 0.0, c, t, twopk; |
| int32_t k = 0, xsb; |
| uint32_t hx; |
| |
| GET_HIGH_WORD(hx, x); |
| xsb = (hx >> 31) & 1; /* sign bit of x */ |
| hx &= 0x7FFFFFFF; /* high word of |x| */ |
| |
| /* filter out non-finite argument */ |
| if (hx >= 0x40862E42) { /* if |x|>=709.78... */ |
| if (hx >= 0x7FF00000) { |
| uint32_t lx; |
| GET_LOW_WORD(lx, x); |
| if (((hx & 0xFFFFF) | lx) != 0) |
| return x + x; /* NaN */ |
| else |
| return (xsb == 0) ? x : 0.0; /* exp(+-inf)={inf,0} */ |
| } |
| if (x > o_threshold) return huge * huge; /* overflow */ |
| if (x < u_threshold) return twom1000 * twom1000; /* underflow */ |
| } |
| |
| /* argument reduction */ |
| if (hx > 0x3FD62E42) { /* if |x| > 0.5 ln2 */ |
| if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
| /* TODO(rtoy): We special case exp(1) here to return the correct |
| * value of E, as the computation below would get the last bit |
| * wrong. We should probably fix the algorithm instead. |
| */ |
| if (x == 1.0) return E; |
| hi = x - ln2HI[xsb]; |
| lo = ln2LO[xsb]; |
| k = 1 - xsb - xsb; |
| } else { |
| k = static_cast<int>(invln2 * x + halF[xsb]); |
| t = k; |
| hi = x - t * ln2HI[0]; /* t*ln2HI is exact here */ |
| lo = t * ln2LO[0]; |
| } |
| x = hi - lo; |
| } else if (hx < 0x3E300000) { /* when |x|<2**-28 */ |
| if (huge + x > one) return one + x; /* trigger inexact */ |
| } else { |
| k = 0; |
| } |
| |
| /* x is now in primary range */ |
| t = x * x; |
| if (k >= -1021) { |
| INSERT_WORDS( |
| twopk, |
| 0x3FF00000 + static_cast<int32_t>(static_cast<uint32_t>(k) << 20), 0); |
| } else { |
| INSERT_WORDS(twopk, 0x3FF00000 + (static_cast<uint32_t>(k + 1000) << 20), |
| 0); |
| } |
| c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); |
| if (k == 0) { |
| return one - ((x * c) / (c - 2.0) - x); |
| } else { |
| y = one - ((lo - (x * c) / (2.0 - c)) - hi); |
| } |
| if (k >= -1021) { |
| if (k == 1024) return y * 2.0 * two1023; |
| return y * twopk; |
| } else { |
| return y * twopk * twom1000; |
| } |
| } |
| |
| /* |
| * Method : |
| * 1.Reduced x to positive by atanh(-x) = -atanh(x) |
| * 2.For x>=0.5 |
| * 1 2x x |
| * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) |
| * 2 1 - x 1 - x |
| * |
| * For x<0.5 |
| * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) |
| * |
| * Special cases: |
| * atanh(x) is NaN if |x| > 1 with signal; |
| * atanh(NaN) is that NaN with no signal; |
| * atanh(+-1) is +-INF with signal. |
| * |
| */ |
| double atanh(double x) { |
| static const double one = 1.0, huge = 1e300; |
| static const double zero = 0.0; |
| |
| double t; |
| int32_t hx, ix; |
| uint32_t lx; |
| EXTRACT_WORDS(hx, lx, x); |
| ix = hx & 0x7FFFFFFF; |
| if ((ix | ((lx | NegateWithWraparound<int32_t>(lx)) >> 31)) > 0x3FF00000) { |
| /* |x|>1 */ |
| return std::numeric_limits<double>::signaling_NaN(); |
| } |
| if (ix == 0x3FF00000) { |
| return x > 0 ? std::numeric_limits<double>::infinity() |
| : -std::numeric_limits<double>::infinity(); |
| } |
| if (ix < 0x3E300000 && (huge + x) > zero) return x; /* x<2**-28 */ |
| SET_HIGH_WORD(x, ix); |
| if (ix < 0x3FE00000) { /* x < 0.5 */ |
| t = x + x; |
| t = 0.5 * log1p(t + t * x / (one - x)); |
| } else { |
| t = 0.5 * log1p((x + x) / (one - x)); |
| } |
| if (hx >= 0) |
| return t; |
| else |
| return -t; |
| } |
| |
| /* log(x) |
| * Return the logrithm of x |
| * |
| * Method : |
| * 1. Argument Reduction: find k and f such that |
| * x = 2^k * (1+f), |
| * where sqrt(2)/2 < 1+f < sqrt(2) . |
| * |
| * 2. Approximation of log(1+f). |
| * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
| * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
| * = 2s + s*R |
| * We use a special Reme algorithm on [0,0.1716] to generate |
| * a polynomial of degree 14 to approximate R The maximum error |
| * of this polynomial approximation is bounded by 2**-58.45. In |
| * other words, |
| * 2 4 6 8 10 12 14 |
| * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
| * (the values of Lg1 to Lg7 are listed in the program) |
| * and |
| * | 2 14 | -58.45 |
| * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
| * | | |
| * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
| * In order to guarantee error in log below 1ulp, we compute log |
| * by |
| * log(1+f) = f - s*(f - R) (if f is not too large) |
| * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
| * |
| * 3. Finally, log(x) = k*ln2 + log(1+f). |
| * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
| * Here ln2 is split into two floating point number: |
| * ln2_hi + ln2_lo, |
| * where n*ln2_hi is always exact for |n| < 2000. |
| * |
| * Special cases: |
| * log(x) is NaN with signal if x < 0 (including -INF) ; |
| * log(+INF) is +INF; log(0) is -INF with signal; |
| * log(NaN) is that NaN with no signal. |
| * |
| * Accuracy: |
| * according to an error analysis, the error is always less than |
| * 1 ulp (unit in the last place). |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| */ |
| double log(double x) { |
| static const double /* -- */ |
| ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
| ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
| two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
| Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| |
| static const double zero = 0.0; |
| |
| double hfsq, f, s, z, R, w, t1, t2, dk; |
| int32_t k, hx, i, j; |
| uint32_t lx; |
| |
| EXTRACT_WORDS(hx, lx, x); |
| |
| k = 0; |
| if (hx < 0x00100000) { /* x < 2**-1022 */ |
| if (((hx & 0x7FFFFFFF) | lx) == 0) { |
| return -std::numeric_limits<double>::infinity(); /* log(+-0)=-inf */ |
| } |
| if (hx < 0) { |
| return std::numeric_limits<double>::signaling_NaN(); /* log(-#) = NaN */ |
| } |
| k -= 54; |
| x *= two54; /* subnormal number, scale up x */ |
| GET_HIGH_WORD(hx, x); |
| } |
| if (hx >= 0x7FF00000) return x + x; |
| k += (hx >> 20) - 1023; |
| hx &= 0x000FFFFF; |
| i = (hx + 0x95F64) & 0x100000; |
| SET_HIGH_WORD(x, hx | (i ^ 0x3FF00000)); /* normalize x or x/2 */ |
| k += (i >> 20); |
| f = x - 1.0; |
| if ((0x000FFFFF & (2 + hx)) < 3) { /* -2**-20 <= f < 2**-20 */ |
| if (f == zero) { |
| if (k == 0) { |
| return zero; |
| } else { |
| dk = static_cast<double>(k); |
| return dk * ln2_hi + dk * ln2_lo; |
| } |
| } |
| R = f * f * (0.5 - 0.33333333333333333 * f); |
| if (k == 0) { |
| return f - R; |
| } else { |
| dk = static_cast<double>(k); |
| return dk * ln2_hi - ((R - dk * ln2_lo) - f); |
| } |
| } |
| s = f / (2.0 + f); |
| dk = static_cast<double>(k); |
| z = s * s; |
| i = hx - 0x6147A; |
| w = z * z; |
| j = 0x6B851 - hx; |
| t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); |
| t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); |
| i |= j; |
| R = t2 + t1; |
| if (i > 0) { |
| hfsq = 0.5 * f * f; |
| if (k == 0) |
| return f - (hfsq - s * (hfsq + R)); |
| else |
| return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f); |
| } else { |
| if (k == 0) |
| return f - s * (f - R); |
| else |
| return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f); |
| } |
| } |
| |
| /* double log1p(double x) |
| * |
| * Method : |
| * 1. Argument Reduction: find k and f such that |
| * 1+x = 2^k * (1+f), |
| * where sqrt(2)/2 < 1+f < sqrt(2) . |
| * |
| * Note. If k=0, then f=x is exact. However, if k!=0, then f |
| * may not be representable exactly. In that case, a correction |
| * term is need. Let u=1+x rounded. Let c = (1+x)-u, then |
| * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |
| * and add back the correction term c/u. |
| * (Note: when x > 2**53, one can simply return log(x)) |
| * |
| * 2. Approximation of log1p(f). |
| * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
| * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
| * = 2s + s*R |
| * We use a special Reme algorithm on [0,0.1716] to generate |
| * a polynomial of degree 14 to approximate R The maximum error |
| * of this polynomial approximation is bounded by 2**-58.45. In |
| * other words, |
| * 2 4 6 8 10 12 14 |
| * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s |
| * (the values of Lp1 to Lp7 are listed in the program) |
| * and |
| * | 2 14 | -58.45 |
| * | Lp1*s +...+Lp7*s - R(z) | <= 2 |
| * | | |
| * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
| * In order to guarantee error in log below 1ulp, we compute log |
| * by |
| * log1p(f) = f - (hfsq - s*(hfsq+R)). |
| * |
| * 3. Finally, log1p(x) = k*ln2 + log1p(f). |
| * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
| * Here ln2 is split into two floating point number: |
| * ln2_hi + ln2_lo, |
| * where n*ln2_hi is always exact for |n| < 2000. |
| * |
| * Special cases: |
| * log1p(x) is NaN with signal if x < -1 (including -INF) ; |
| * log1p(+INF) is +INF; log1p(-1) is -INF with signal; |
| * log1p(NaN) is that NaN with no signal. |
| * |
| * Accuracy: |
| * according to an error analysis, the error is always less than |
| * 1 ulp (unit in the last place). |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| * |
| * Note: Assuming log() return accurate answer, the following |
| * algorithm can be used to compute log1p(x) to within a few ULP: |
| * |
| * u = 1+x; |
| * if(u==1.0) return x ; else |
| * return log(u)*(x/(u-1.0)); |
| * |
| * See HP-15C Advanced Functions Handbook, p.193. |
| */ |
| double log1p(double x) { |
| static const double /* -- */ |
| ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
| ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
| two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
| Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| |
| static const double zero = 0.0; |
| |
| double hfsq, f, c, s, z, R, u; |
| int32_t k, hx, hu, ax; |
| |
| GET_HIGH_WORD(hx, x); |
| ax = hx & 0x7FFFFFFF; |
| |
| k = 1; |
| if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */ |
| if (ax >= 0x3FF00000) { /* x <= -1.0 */ |
| if (x == -1.0) |
| return -std::numeric_limits<double>::infinity(); /* log1p(-1)=+inf */ |
| else |
| return std::numeric_limits<double>::signaling_NaN(); // log1p(x<-1)=NaN |
| } |
| if (ax < 0x3E200000) { /* |x| < 2**-29 */ |
| if (two54 + x > zero /* raise inexact */ |
| && ax < 0x3C900000) /* |x| < 2**-54 */ |
| return x; |
| else |
| return x - x * x * 0.5; |
| } |
| if (hx > 0 || hx <= static_cast<int32_t>(0xBFD2BEC4)) { |
| k = 0; |
| f = x; |
| hu = 1; |
| } /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ |
| } |
| if (hx >= 0x7FF00000) return x + x; |
| if (k != 0) { |
| if (hx < 0x43400000) { |
| u = 1.0 + x; |
| GET_HIGH_WORD(hu, u); |
| k = (hu >> 20) - 1023; |
| c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */ |
| c /= u; |
| } else { |
| u = x; |
| GET_HIGH_WORD(hu, u); |
| k = (hu >> 20) - 1023; |
| c = 0; |
| } |
| hu &= 0x000FFFFF; |
| /* |
| * The approximation to sqrt(2) used in thresholds is not |
| * critical. However, the ones used above must give less |
| * strict bounds than the one here so that the k==0 case is |
| * never reached from here, since here we have committed to |
| * using the correction term but don't use it if k==0. |
| */ |
| if (hu < 0x6A09E) { /* u ~< sqrt(2) */ |
| SET_HIGH_WORD(u, hu | 0x3FF00000); /* normalize u */ |
| } else { |
| k += 1; |
| SET_HIGH_WORD(u, hu | 0x3FE00000); /* normalize u/2 */ |
| hu = (0x00100000 - hu) >> 2; |
| } |
| f = u - 1.0; |
| } |
| hfsq = 0.5 * f * f; |
| if (hu == 0) { /* |f| < 2**-20 */ |
| if (f == zero) { |
| if (k == 0) { |
| return zero; |
| } else { |
| c += k * ln2_lo; |
| return k * ln2_hi + c; |
| } |
| } |
| R = hfsq * (1.0 - 0.66666666666666666 * f); |
| if (k == 0) |
| return f - R; |
| else |
| return k * ln2_hi - ((R - (k * ln2_lo + c)) - f); |
| } |
| s = f / (2.0 + f); |
| z = s * s; |
| R = z * (Lp1 + |
| z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7)))))); |
| if (k == 0) |
| return f - (hfsq - s * (hfsq + R)); |
| else |
| return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); |
| } |
| |
| /* |
| * k_log1p(f): |
| * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)]. |
| * |
| * The following describes the overall strategy for computing |
| * logarithms in base e. The argument reduction and adding the final |
| * term of the polynomial are done by the caller for increased accuracy |
| * when different bases are used. |
| * |
| * Method : |
| * 1. Argument Reduction: find k and f such that |
| * x = 2^k * (1+f), |
| * where sqrt(2)/2 < 1+f < sqrt(2) . |
| * |
| * 2. Approximation of log(1+f). |
| * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
| * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
| * = 2s + s*R |
| * We use a special Reme algorithm on [0,0.1716] to generate |
| * a polynomial of degree 14 to approximate R The maximum error |
| * of this polynomial approximation is bounded by 2**-58.45. In |
| * other words, |
| * 2 4 6 8 10 12 14 |
| * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
| * (the values of Lg1 to Lg7 are listed in the program) |
| * and |
| * | 2 14 | -58.45 |
| * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
| * | | |
| * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
| * In order to guarantee error in log below 1ulp, we compute log |
| * by |
| * log(1+f) = f - s*(f - R) (if f is not too large) |
| * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
| * |
| * 3. Finally, log(x) = k*ln2 + log(1+f). |
| * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
| * Here ln2 is split into two floating point number: |
| * ln2_hi + ln2_lo, |
| * where n*ln2_hi is always exact for |n| < 2000. |
| * |
| * Special cases: |
| * log(x) is NaN with signal if x < 0 (including -INF) ; |
| * log(+INF) is +INF; log(0) is -INF with signal; |
| * log(NaN) is that NaN with no signal. |
| * |
| * Accuracy: |
| * according to an error analysis, the error is always less than |
| * 1 ulp (unit in the last place). |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| */ |
| |
| static const double Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| |
| /* |
| * We always inline k_log1p(), since doing so produces a |
| * substantial performance improvement (~40% on amd64). |
| */ |
| static inline double k_log1p(double f) { |
| double hfsq, s, z, R, w, t1, t2; |
| |
| s = f / (2.0 + f); |
| z = s * s; |
| w = z * z; |
| t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); |
| t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); |
| R = t2 + t1; |
| hfsq = 0.5 * f * f; |
| return s * (hfsq + R); |
| } |
| |
| /* |
| * Return the base 2 logarithm of x. See e_log.c and k_log.h for most |
| * comments. |
| * |
| * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel, |
| * then does the combining and scaling steps |
| * log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k |
| * in not-quite-routine extra precision. |
| */ |
| double log2(double x) { |
| static const double |
| two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
| ivln2hi = 1.44269504072144627571e+00, /* 0x3FF71547, 0x65200000 */ |
| ivln2lo = 1.67517131648865118353e-10; /* 0x3DE705FC, 0x2EEFA200 */ |
| |
| double f, hfsq, hi, lo, r, val_hi, val_lo, w, y; |
| int32_t i, k, hx; |
| uint32_t lx; |
| |
| EXTRACT_WORDS(hx, lx, x); |
| |
| k = 0; |
| if (hx < 0x00100000) { /* x < 2**-1022 */ |
| if (((hx & 0x7FFFFFFF) | lx) == 0) { |
| return -std::numeric_limits<double>::infinity(); /* log(+-0)=-inf */ |
| } |
| if (hx < 0) { |
| return std::numeric_limits<double>::signaling_NaN(); /* log(-#) = NaN */ |
| } |
| k -= 54; |
| x *= two54; /* subnormal number, scale up x */ |
| GET_HIGH_WORD(hx, x); |
| } |
| if (hx >= 0x7FF00000) return x + x; |
| if (hx == 0x3FF00000 && lx == 0) return 0.0; /* log(1) = +0 */ |
| k += (hx >> 20) - 1023; |
| hx &= 0x000FFFFF; |
| i = (hx + 0x95F64) & 0x100000; |
| SET_HIGH_WORD(x, hx | (i ^ 0x3FF00000)); /* normalize x or x/2 */ |
| k += (i >> 20); |
| y = static_cast<double>(k); |
| f = x - 1.0; |
| hfsq = 0.5 * f * f; |
| r = k_log1p(f); |
| |
| /* |
| * f-hfsq must (for args near 1) be evaluated in extra precision |
| * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2). |
| * This is fairly efficient since f-hfsq only depends on f, so can |
| * be evaluated in parallel with R. Not combining hfsq with R also |
| * keeps R small (though not as small as a true `lo' term would be), |
| * so that extra precision is not needed for terms involving R. |
| * |
| * Compiler bugs involving extra precision used to break Dekker's |
| * theorem for spitting f-hfsq as hi+lo, unless double_t was used |
| * or the multi-precision calculations were avoided when double_t |
| * has extra precision. These problems are now automatically |
| * avoided as a side effect of the optimization of combining the |
| * Dekker splitting step with the clear-low-bits step. |
| * |
| * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra |
| * precision to avoid a very large cancellation when x is very near |
| * these values. Unlike the above cancellations, this problem is |
| * specific to base 2. It is strange that adding +-1 is so much |
| * harder than adding +-ln2 or +-log10_2. |
| * |
| * This uses Dekker's theorem to normalize y+val_hi, so the |
| * compiler bugs are back in some configurations, sigh. And I |
| * don't want to used double_t to avoid them, since that gives a |
| * pessimization and the support for avoiding the pessimization |
| * is not yet available. |
| * |
| * The multi-precision calculations for the multiplications are |
| * routine. |
| */ |
| hi = f - hfsq; |
| SET_LOW_WORD(hi, 0); |
| lo = (f - hi) - hfsq + r; |
| val_hi = hi * ivln2hi; |
| val_lo = (lo + hi) * ivln2lo + lo * ivln2hi; |
| |
| /* spadd(val_hi, val_lo, y), except for not using double_t: */ |
| w = y + val_hi; |
| val_lo += (y - w) + val_hi; |
| val_hi = w; |
| |
| return val_lo + val_hi; |
| } |
| |
| /* |
| * Return the base 10 logarithm of x |
| * |
| * Method : |
| * Let log10_2hi = leading 40 bits of log10(2) and |
| * log10_2lo = log10(2) - log10_2hi, |
| * ivln10 = 1/log(10) rounded. |
| * Then |
| * n = ilogb(x), |
| * if(n<0) n = n+1; |
| * x = scalbn(x,-n); |
| * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) |
| * |
| * Note 1: |
| * To guarantee log10(10**n)=n, where 10**n is normal, the rounding |
| * mode must set to Round-to-Nearest. |
| * Note 2: |
| * [1/log(10)] rounded to 53 bits has error .198 ulps; |
| * log10 is monotonic at all binary break points. |
| * |
| * Special cases: |
| * log10(x) is NaN if x < 0; |
| * log10(+INF) is +INF; log10(0) is -INF; |
| * log10(NaN) is that NaN; |
| * log10(10**N) = N for N=0,1,...,22. |
| */ |
| double log10(double x) { |
| static const double |
| two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
| ivln10 = 4.34294481903251816668e-01, |
| log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ |
| log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ |
| |
| double y; |
| int32_t i, k, hx; |
| uint32_t lx; |
| |
| EXTRACT_WORDS(hx, lx, x); |
| |
| k = 0; |
| if (hx < 0x00100000) { /* x < 2**-1022 */ |
| if (((hx & 0x7FFFFFFF) | lx) == 0) { |
| return -std::numeric_limits<double>::infinity(); /* log(+-0)=-inf */ |
| } |
| if (hx < 0) { |
| return std::numeric_limits<double>::quiet_NaN(); /* log(-#) = NaN */ |
| } |
| k -= 54; |
| x *= two54; /* subnormal number, scale up x */ |
| GET_HIGH_WORD(hx, x); |
| GET_LOW_WORD(lx, x); |
| } |
| if (hx >= 0x7FF00000) return x + x; |
| if (hx == 0x3FF00000 && lx == 0) return 0.0; /* log(1) = +0 */ |
| k += (hx >> 20) - 1023; |
| |
| i = (k & 0x80000000) >> 31; |
| hx = (hx & 0x000FFFFF) | ((0x3FF - i) << 20); |
| y = k + i; |
| SET_HIGH_WORD(x, hx); |
| SET_LOW_WORD(x, lx); |
| |
| double z = y * log10_2lo + ivln10 * log(x); |
| return z + y * log10_2hi; |
| } |
| |
| /* expm1(x) |
| * Returns exp(x)-1, the exponential of x minus 1. |
| * |
| * Method |
| * 1. Argument reduction: |
| * Given x, find r and integer k such that |
| * |
| * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
| * |
| * Here a correction term c will be computed to compensate |
| * the error in r when rounded to a floating-point number. |
| * |
| * 2. Approximating expm1(r) by a special rational function on |
| * the interval [0,0.34658]: |
| * Since |
| * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
| * we define R1(r*r) by |
| * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
| * That is, |
| * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
| * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
| * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
| * We use a special Reme algorithm on [0,0.347] to generate |
| * a polynomial of degree 5 in r*r to approximate R1. The |
| * maximum error of this polynomial approximation is bounded |
| * by 2**-61. In other words, |
| * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
| * where Q1 = -1.6666666666666567384E-2, |
| * Q2 = 3.9682539681370365873E-4, |
| * Q3 = -9.9206344733435987357E-6, |
| * Q4 = 2.5051361420808517002E-7, |
| * Q5 = -6.2843505682382617102E-9; |
| * z = r*r, |
| * with error bounded by |
| * | 5 | -61 |
| * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
| * | | |
| * |
| * expm1(r) = exp(r)-1 is then computed by the following |
| * specific way which minimize the accumulation rounding error: |
| * 2 3 |
| * r r [ 3 - (R1 + R1*r/2) ] |
| * expm1(r) = r + --- + --- * [--------------------] |
| * 2 2 [ 6 - r*(3 - R1*r/2) ] |
| * |
| * To compensate the error in the argument reduction, we use |
| * expm1(r+c) = expm1(r) + c + expm1(r)*c |
| * ~ expm1(r) + c + r*c |
| * Thus c+r*c will be added in as the correction terms for |
| * expm1(r+c). Now rearrange the term to avoid optimization |
| * screw up: |
| * ( 2 2 ) |
| * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
| * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
| * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
| * ( ) |
| * |
| * = r - E |
| * 3. Scale back to obtain expm1(x): |
| * From step 1, we have |
| * expm1(x) = either 2^k*[expm1(r)+1] - 1 |
| * = or 2^k*[expm1(r) + (1-2^-k)] |
| * 4. Implementation notes: |
| * (A). To save one multiplication, we scale the coefficient Qi |
| * to Qi*2^i, and replace z by (x^2)/2. |
| * (B). To achieve maximum accuracy, we compute expm1(x) by |
| * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
| * (ii) if k=0, return r-E |
| * (iii) if k=-1, return 0.5*(r-E)-0.5 |
| * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
| * else return 1.0+2.0*(r-E); |
| * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
| * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
| * (vii) return 2^k(1-((E+2^-k)-r)) |
| * |
| * Special cases: |
| * expm1(INF) is INF, expm1(NaN) is NaN; |
| * expm1(-INF) is -1, and |
| * for finite argument, only expm1(0)=0 is exact. |
| * |
| * Accuracy: |
| * according to an error analysis, the error is always less than |
| * 1 ulp (unit in the last place). |
| * |
| * Misc. info. |
| * For IEEE double |
| * if x > 7.09782712893383973096e+02 then expm1(x) overflow |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| */ |
| double expm1(double x) { |
| static const double |
| one = 1.0, |
| tiny = 1.0e-300, |
| o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
| ln2_hi = 6.93147180369123816490e-01, /* 0x3FE62E42, 0xFEE00000 */ |
| ln2_lo = 1.90821492927058770002e-10, /* 0x3DEA39EF, 0x35793C76 */ |
| invln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE */ |
| /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = |
| x*x/2: */ |
| Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ |
| Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ |
| Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ |
| Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ |
| Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
| |
| static volatile double huge = 1.0e+300; |
| |
| double y, hi, lo, c, t, e, hxs, hfx, r1, twopk; |
| int32_t k, xsb; |
| uint32_t hx; |
| |
| GET_HIGH_WORD(hx, x); |
| xsb = hx & 0x80000000; /* sign bit of x */ |
| hx &= 0x7FFFFFFF; /* high word of |x| */ |
| |
| /* filter out huge and non-finite argument */ |
| if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */ |
| if (hx >= 0x40862E42) { /* if |x|>=709.78... */ |
| if (hx >= 0x7FF00000) { |
| uint32_t low; |
| GET_LOW_WORD(low, x); |
| if (((hx & 0xFFFFF) | low) != 0) |
| return x + x; /* NaN */ |
| else |
| return (xsb == 0) ? x : -1.0; /* exp(+-inf)={inf,-1} */ |
| } |
| if (x > o_threshold) return huge * huge; /* overflow */ |
| } |
| if (xsb != 0) { /* x < -56*ln2, return -1.0 with inexact */ |
| if (x + tiny < 0.0) /* raise inexact */ |
| return tiny - one; /* return -1 */ |
| } |
| } |
| |
| /* argument reduction */ |
| if (hx > 0x3FD62E42) { /* if |x| > 0.5 ln2 */ |
| if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
| if (xsb == 0) { |
| hi = x - ln2_hi; |
| lo = ln2_lo; |
| k = 1; |
| } else { |
| hi = x + ln2_hi; |
| lo = -ln2_lo; |
| k = -1; |
| } |
| } else { |
| k = invln2 * x + ((xsb == 0) ? 0.5 : -0.5); |
| t = k; |
| hi = x - t * ln2_hi; /* t*ln2_hi is exact here */ |
| lo = t * ln2_lo; |
| } |
| x = hi - lo; |
| c = (hi - x) - lo; |
| } else if (hx < 0x3C900000) { /* when |x|<2**-54, return x */ |
| t = huge + x; /* return x with inexact flags when x!=0 */ |
| return x - (t - (huge + x)); |
| } else { |
| k = 0; |
| } |
| |
| /* x is now in primary range */ |
| hfx = 0.5 * x; |
| hxs = x * hfx; |
| r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); |
| t = 3.0 - r1 * hfx; |
| e = hxs * ((r1 - t) / (6.0 - x * t)); |
| if (k == 0) { |
| return x - (x * e - hxs); /* c is 0 */ |
| } else { |
| INSERT_WORDS( |
| twopk, |
| 0x3FF00000 + static_cast<int32_t>(static_cast<uint32_t>(k) << 20), |
| 0); /* 2^k */ |
| e = (x * (e - c) - c); |
| e -= hxs; |
| if (k == -1) return 0.5 * (x - e) - 0.5; |
| if (k == 1) { |
| if (x < -0.25) |
| return -2.0 * (e - (x + 0.5)); |
| else |
| return one + 2.0 * (x - e); |
| } |
| if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */ |
| y = one - (e - x); |
| // TODO(mvstanton): is this replacement for the hex float |
| // sufficient? |
| // if (k == 1024) y = y*2.0*0x1p1023; |
| if (k == 1024) |
| y = y * 2.0 * 8.98846567431158e+307; |
| else |
| y = y * twopk; |
| return y - one; |
| } |
| t = one; |
| if (k < 20) { |
| SET_HIGH_WORD(t, 0x3FF00000 - (0x200000 >> k)); /* t=1-2^-k */ |
| y = t - (e - x); |
| y = y * twopk; |
| } else { |
| SET_HIGH_WORD(t, ((0x3FF - k) << 20)); /* 2^-k */ |
| y = x - (e + t); |
| y += one; |
| y = y * twopk; |
| } |
| } |
| return y; |
| } |
| |
| double cbrt(double x) { |
| static const uint32_t |
| B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */ |
| B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */ |
| |
| /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */ |
| static const double P0 = 1.87595182427177009643, /* 0x3FFE03E6, 0x0F61E692 */ |
| P1 = -1.88497979543377169875, /* 0xBFFE28E0, 0x92F02420 */ |
| P2 = 1.621429720105354466140, /* 0x3FF9F160, 0x4A49D6C2 */ |
| P3 = -0.758397934778766047437, /* 0xBFE844CB, 0xBEE751D9 */ |
| P4 = 0.145996192886612446982; /* 0x3FC2B000, 0xD4E4EDD7 */ |
| |
| int32_t hx; |
| double r, s, t = 0.0, w; |
| uint32_t sign; |
| uint32_t high, low; |
| |
| EXTRACT_WORDS(hx, low, x); |
| sign = hx & 0x80000000; /* sign= sign(x) */ |
| hx ^= sign; |
| if (hx >= 0x7FF00000) return (x + x); /* cbrt(NaN,INF) is itself */ |
| |
| /* |
| * Rough cbrt to 5 bits: |
| * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3) |
| * where e is integral and >= 0, m is real and in [0, 1), and "/" and |
| * "%" are integer division and modulus with rounding towards minus |
| * infinity. The RHS is always >= the LHS and has a maximum relative |
| * error of about 1 in 16. Adding a bias of -0.03306235651 to the |
| * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE |
| * floating point representation, for finite positive normal values, |
| * ordinary integer division of the value in bits magically gives |
| * almost exactly the RHS of the above provided we first subtract the |
| * exponent bias (1023 for doubles) and later add it back. We do the |
| * subtraction virtually to keep e >= 0 so that ordinary integer |
| * division rounds towards minus infinity; this is also efficient. |
| */ |
| if (hx < 0x00100000) { /* zero or subnormal? */ |
| if ((hx | low) == 0) return (x); /* cbrt(0) is itself */ |
| SET_HIGH_WORD(t, 0x43500000); /* set t= 2**54 */ |
| t *= x; |
| GET_HIGH_WORD(high, t); |
| INSERT_WORDS(t, sign | ((high & 0x7FFFFFFF) / 3 + B2), 0); |
| } else { |
| INSERT_WORDS(t, sign | (hx / 3 + B1), 0); |
| } |
| |
| /* |
| * New cbrt to 23 bits: |
| * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x) |
| * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r) |
| * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation |
| * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this |
| * gives us bounds for r = t**3/x. |
| * |
| * Try to optimize for parallel evaluation as in k_tanf.c. |
| */ |
| r = (t * t) * (t / x); |
| t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4)); |
| |
| /* |
| * Round t away from zero to 23 bits (sloppily except for ensuring that |
| * the result is larger in magnitude than cbrt(x) but not much more than |
| * 2 23-bit ulps larger). With rounding towards zero, the error bound |
| * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps |
| * in the rounded t, the infinite-precision error in the Newton |
| * approximation barely affects third digit in the final error |
| * 0.667; the error in the rounded t can be up to about 3 23-bit ulps |
| * before the final error is larger than 0.667 ulps. |
| */ |
| uint64_t bits = bit_cast<uint64_t>(t); |
| bits = (bits + 0x80000000) & 0xFFFFFFFFC0000000ULL; |
| t = bit_cast<double>(bits); |
| |
| /* one step Newton iteration to 53 bits with error < 0.667 ulps */ |
| s = t * t; /* t*t is exact */ |
| r = x / s; /* error <= 0.5 ulps; |r| < |t| */ |
| w = t + t; /* t+t is exact */ |
| r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */ |
| t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */ |
| |
| return (t); |
| } |
| |
| /* sin(x) |
| * Return sine function of x. |
| * |
| * kernel function: |
| * __kernel_sin ... sine function on [-pi/4,pi/4] |
| * __kernel_cos ... cose function on [-pi/4,pi/4] |
| * __ieee754_rem_pio2 ... argument reduction routine |
| * |
| * Method. |
| * Let S,C and T denote the sin, cos and tan respectively on |
| * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
| * in [-pi/4 , +pi/4], and let n = k mod 4. |
| * We have |
| * |
| * n sin(x) cos(x) tan(x) |
| * ---------------------------------------------------------- |
| * 0 S C T |
| * 1 C -S -1/T |
| * 2 -S -C T |
| * 3 -C S -1/T |
| * ---------------------------------------------------------- |
| * |
| * Special cases: |
| * Let trig be any of sin, cos, or tan. |
| * trig(+-INF) is NaN, with signals; |
| * trig(NaN) is that NaN; |
| * |
| * Accuracy: |
| * TRIG(x) returns trig(x) nearly rounded |
| */ |
| double sin(double x) { |
| double y[2], z = 0.0; |
| int32_t n, ix; |
| |
| /* High word of x. */ |
| GET_HIGH_WORD(ix, x); |
| |
| /* |x| ~< pi/4 */ |
| ix &= 0x7FFFFFFF; |
| if (ix <= 0x3FE921FB) { |
| return __kernel_sin(x, z, 0); |
| } else if (ix >= 0x7FF00000) { |
| /* sin(Inf or NaN) is NaN */ |
| return x - x; |
| } else { |
| /* argument reduction needed */ |
| n = __ieee754_rem_pio2(x, y); |
| switch (n & 3) { |
| case 0: |
| return __kernel_sin(y[0], y[1], 1); |
| case 1: |
| return __kernel_cos(y[0], y[1]); |
| case 2: |
| return -__kernel_sin(y[0], y[1], 1); |
| default: |
| return -__kernel_cos(y[0], y[1]); |
| } |
| } |
| } |
| |
| /* tan(x) |
| * Return tangent function of x. |
| * |
| * kernel function: |
| * __kernel_tan ... tangent function on [-pi/4,pi/4] |
| * __ieee754_rem_pio2 ... argument reduction routine |
| * |
| * Method. |
| * Let S,C and T denote the sin, cos and tan respectively on |
| * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
| * in [-pi/4 , +pi/4], and let n = k mod 4. |
| * We have |
| * |
| * n sin(x) cos(x) tan(x) |
| * ---------------------------------------------------------- |
| * 0 S C T |
| * 1 C -S -1/T |
| * 2 -S -C T |
| * 3 -C S -1/T |
| * ---------------------------------------------------------- |
| * |
| * Special cases: |
| * Let trig be any of sin, cos, or tan. |
| * trig(+-INF) is NaN, with signals; |
| * trig(NaN) is that NaN; |
| * |
| * Accuracy: |
| * TRIG(x) returns trig(x) nearly rounded |
| */ |
| double tan(double x) { |
| double y[2], z = 0.0; |
| int32_t n, ix; |
| |
| /* High word of x. */ |
| GET_HIGH_WORD(ix, x); |
| |
| /* |x| ~< pi/4 */ |
| ix &= 0x7FFFFFFF; |
| if (ix <= 0x3FE921FB) { |
| return __kernel_tan(x, z, 1); |
| } else if (ix >= 0x7FF00000) { |
| /* tan(Inf or NaN) is NaN */ |
| return x - x; /* NaN */ |
| } else { |
| /* argument reduction needed */ |
| n = __ieee754_rem_pio2(x, y); |
| /* 1 -> n even, -1 -> n odd */ |
| return __kernel_tan(y[0], y[1], 1 - ((n & 1) << 1)); |
| } |
| } |
| |
| /* |
| * ES6 draft 09-27-13, section 20.2.2.12. |
| * Math.cosh |
| * Method : |
| * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 |
| * 1. Replace x by |x| (cosh(x) = cosh(-x)). |
| * 2. |
| * [ exp(x) - 1 ]^2 |
| * 0 <= x <= ln2/2 : cosh(x) := 1 + ------------------- |
| * 2*exp(x) |
| * |
| * exp(x) + 1/exp(x) |
| * ln2/2 <= x <= 22 : cosh(x) := ------------------- |
| * 2 |
| * 22 <= x <= lnovft : cosh(x) := exp(x)/2 |
| * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2) |
| * ln2ovft < x : cosh(x) := huge*huge (overflow) |
| * |
| * Special cases: |
| * cosh(x) is |x| if x is +INF, -INF, or NaN. |
| * only cosh(0)=1 is exact for finite x. |
| */ |
| double cosh(double x) { |
| static const double KCOSH_OVERFLOW = 710.4758600739439; |
| static const double one = 1.0, half = 0.5; |
| static volatile double huge = 1.0e+300; |
| |
| int32_t ix; |
| |
| /* High word of |x|. */ |
| GET_HIGH_WORD(ix, x); |
| ix &= 0x7FFFFFFF; |
| |
| // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|)) |
| if (ix < 0x3FD62E43) { |
| double t = expm1(fabs(x)); |
| double w = one + t; |
| // For |x| < 2^-55, cosh(x) = 1 |
| if (ix < 0x3C800000) return w; |
| return one + (t * t) / (w + w); |
| } |
| |
| // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2 |
| if (ix < 0x40360000) { |
| double t = exp(fabs(x)); |
| return half * t + half / t; |
| } |
| |
| // |x| in [22, log(maxdouble)], return half*exp(|x|) |
| if (ix < 0x40862E42) return half * exp(fabs(x)); |
| |
| // |x| in [log(maxdouble), overflowthreshold] |
| if (fabs(x) <= KCOSH_OVERFLOW) { |
| double w = exp(half * fabs(x)); |
| double t = half * w; |
| return t * w; |
| } |
| |
| /* x is INF or NaN */ |
| if (ix >= 0x7FF00000) return x * x; |
| |
| // |x| > overflowthreshold. |
| return huge * huge; |
| } |
| |
| /* |
| * ES2019 Draft 2019-01-02 12.6.4 |
| * Math.pow & Exponentiation Operator |
| * |
| * Return X raised to the Yth power |
| * |
| * Method: |
| * Let x = 2 * (1+f) |
| * 1. Compute and return log2(x) in two pieces: |
| * log2(x) = w1 + w2, |
| * where w1 has 53-24 = 29 bit trailing zeros. |
| * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
| * arithmetic, where |y'|<=0.5. |
| * 3. Return x**y = 2**n*exp(y'*log2) |
| * |
| * Special cases: |
| * 1. (anything) ** 0 is 1 |
| * 2. (anything) ** 1 is itself |
| * 3. (anything) ** NAN is NAN |
| * 4. NAN ** (anything except 0) is NAN |
| * 5. +-(|x| > 1) ** +INF is +INF |
| * 6. +-(|x| > 1) ** -INF is +0 |
| * 7. +-(|x| < 1) ** +INF is +0 |
| * 8. +-(|x| < 1) ** -INF is +INF |
| * 9. +-1 ** +-INF is NAN |
| * 10. +0 ** (+anything except 0, NAN) is +0 |
| * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
| * 12. +0 ** (-anything except 0, NAN) is +INF |
| * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
| * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
| * 15. +INF ** (+anything except 0,NAN) is +INF |
| * 16. +INF ** (-anything except 0,NAN) is +0 |
| * 17. -INF ** (anything) = -0 ** (-anything) |
| * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
| * 19. (-anything except 0 and inf) ** (non-integer) is NAN |
| * |
| * Accuracy: |
| * pow(x,y) returns x**y nearly rounded. In particular, |
| * pow(integer, integer) always returns the correct integer provided it is |
| * representable. |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| */ |
| |
| double pow(double x, double y) { |
| static const double |
| bp[] = {1.0, 1.5}, |
| dp_h[] = {0.0, 5.84962487220764160156e-01}, // 0x3FE2B803, 0x40000000 |
| dp_l[] = {0.0, 1.35003920212974897128e-08}, // 0x3E4CFDEB, 0x43CFD006 |
| zero = 0.0, one = 1.0, two = 2.0, |
| two53 = 9007199254740992.0, // 0x43400000, 0x00000000 |
| huge = 1.0e300, tiny = 1.0e-300, |
| // poly coefs for (3/2)*(log(x)-2s-2/3*s**3 |
| L1 = 5.99999999999994648725e-01, // 0x3FE33333, 0x33333303 |
| L2 = 4.28571428578550184252e-01, // 0x3FDB6DB6, 0xDB6FABFF |
| L3 = 3.33333329818377432918e-01, // 0x3FD55555, 0x518F264D |
| L4 = 2.72728123808534006489e-01, // 0x3FD17460, 0xA91D4101 |
| L5 = 2.30660745775561754067e-01, // 0x3FCD864A, 0x93C9DB65 |
| L6 = 2.06975017800338417784e-01, // 0x3FCA7E28, 0x4A454EEF |
| P1 = 1.66666666666666019037e-01, // 0x3FC55555, 0x5555553E |
| P2 = -2.77777777770155933842e-03, // 0xBF66C16C, 0x16BEBD93 |
| P3 = 6.61375632143793436117e-05, // 0x3F11566A, 0xAF25DE2C |
| P4 = -1.65339022054652515390e-06, // 0xBEBBBD41, 0xC5D26BF1 |
| P5 = 4.13813679705723846039e-08, // 0x3E663769, 0x72BEA4D0 |
| lg2 = 6.93147180559945286227e-01, // 0x3FE62E42, 0xFEFA39EF |
| lg2_h = 6.93147182464599609375e-01, // 0x3FE62E43, 0x00000000 |
| lg2_l = -1.90465429995776804525e-09, // 0xBE205C61, 0x0CA86C39 |
| ovt = 8.0085662595372944372e-0017, // -(1024-log2(ovfl+.5ulp)) |
| cp = 9.61796693925975554329e-01, // 0x3FEEC709, 0xDC3A03FD =2/(3ln2) |
| cp_h = 9.61796700954437255859e-01, // 0x3FEEC709, 0xE0000000 =(float)cp |
| cp_l = -7.02846165095275826516e-09, // 0xBE3E2FE0, 0x145B01F5 =tail cp_h |
| ivln2 = 1.44269504088896338700e+00, // 0x3FF71547, 0x652B82FE =1/ln2 |
| ivln2_h = |
| 1.44269502162933349609e+00, // 0x3FF71547, 0x60000000 =24b 1/ln2 |
| ivln2_l = |
| 1.92596299112661746887e-08; // 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail |
| |
| double z, ax, z_h, z_l, p_h, p_l; |
| double y1, t1, t2, r, s, t, u, v, w; |
| int i, j, k, yisint, n; |
| int hx, hy, ix, iy; |
| unsigned lx, ly; |
| |
| EXTRACT_WORDS(hx, lx, x); |
| EXTRACT_WORDS(hy, ly, y); |
| ix = hx & 0x7fffffff; |
| iy = hy & 0x7fffffff; |
| |
| /* y==zero: x**0 = 1 */ |
| if ((iy | ly) == 0) return one; |
| |
| /* +-NaN return x+y */ |
| if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) || iy > 0x7ff00000 || |
| ((iy == 0x7ff00000) && (ly != 0))) { |
| return x + y; |
| } |
| |
| /* determine if y is an odd int when x < 0 |
| * yisint = 0 ... y is not an integer |
| * yisint = 1 ... y is an odd int |
| * yisint = 2 ... y is an even int |
| */ |
| yisint = 0; |
| if (hx < 0) { |
| if (iy >= 0x43400000) { |
| yisint = 2; /* even integer y */ |
| } else if (iy >= 0x3ff00000) { |
| k = (iy >> 20) - 0x3ff; /* exponent */ |
| if (k > 20) { |
| j = ly >> (52 - k); |
| if ((j << (52 - k)) == static_cast<int>(ly)) yisint = 2 - (j & 1); |
| } else if (ly == 0) { |
| j = iy >> (20 - k); |
| if ((j << (20 - k)) == iy) yisint = 2 - (j & 1); |
| } |
| } |
| } |
| |
| /* special value of y */ |
| if (ly == 0) { |
| if (iy == 0x7ff00000) { /* y is +-inf */ |
| if (((ix - 0x3ff00000) | lx) == 0) { |
| return y - y; /* inf**+-1 is NaN */ |
| } else if (ix >= 0x3ff00000) { /* (|x|>1)**+-inf = inf,0 */ |
| return (hy >= 0) ? y : zero; |
| } else { /* (|x|<1)**-,+inf = inf,0 */ |
| return (hy < 0) ? -y : zero; |
| } |
| } |
| if (iy == 0x3ff00000) { /* y is +-1 */ |
| if (hy < 0) { |
| return base::Divide(one, x); |
| } else { |
| return x; |
| } |
| } |
| if (hy == 0x40000000) return x * x; /* y is 2 */ |
| if (hy == 0x3fe00000) { /* y is 0.5 */ |
| if (hx >= 0) { /* x >= +0 */ |
| return sqrt(x); |
| } |
| } |
| } |
| |
| ax = fabs(x); |
| /* special value of x */ |
| if (lx == 0) { |
| if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { |
| z = ax; /*x is +-0,+-inf,+-1*/ |
| if (hy < 0) z = base::Divide(one, z); /* z = (1/|x|) */ |
| if (hx < 0) { |
| if (((ix - 0x3ff00000) | yisint) == 0) { |
| /* (-1)**non-int is NaN */ |
| z = std::numeric_limits<double>::signaling_NaN(); |
| } else if (yisint == 1) { |
| z = -z; /* (x<0)**odd = -(|x|**odd) */ |
| } |
| } |
| return z; |
| } |
| } |
| |
| n = (hx >> 31) + 1; |
| |
| /* (x<0)**(non-int) is NaN */ |
| if ((n | yisint) == 0) { |
| return std::numeric_limits<double>::signaling_NaN(); |
| } |
| |
| s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
| if ((n | (yisint - 1)) == 0) s = -one; /* (-ve)**(odd int) */ |
| |
| /* |y| is huge */ |
| if (iy > 0x41e00000) { /* if |y| > 2**31 */ |
| if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */ |
| if (ix <= 0x3fefffff) return (hy < 0) ? huge * huge : tiny * tiny; |
| if (ix >= 0x3ff00000) return (hy > 0) ? huge * huge : tiny * tiny; |
| } |
| /* over/underflow if x is not close to one */ |
| if (ix < 0x3fefffff) return (hy < 0) ? s * huge * huge : s * tiny * tiny; |
| if (ix > 0x3ff00000) return (hy > 0) ? s * huge * huge : s * tiny * tiny; |
| /* now |1-x| is tiny <= 2**-20, suffice to compute |
| log(x) by x-x^2/2+x^3/3-x^4/4 */ |
| t = ax - one; /* t has 20 trailing zeros */ |
| w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); |
| u = ivln2_h * t; /* ivln2_h has 21 sig. bits */ |
| v = t * ivln2_l - w * ivln2; |
| t1 = u + v; |
| SET_LOW_WORD(t1, 0); |
| t2 = v - (t1 - u); |
| } else { |
| double ss, s2, s_h, s_l, t_h, t_l; |
| n = 0; |
| /* take care subnormal number */ |
| if (ix < 0x00100000) { |
| ax *= two53; |
| n -= 53; |
| GET_HIGH_WORD(ix, ax); |
| } |
| n += ((ix) >> 20) - 0x3ff; |
| j = ix & 0x000fffff; |
| /* determine interval */ |
| ix = j | 0x3ff00000; /* normalize ix */ |
| if (j <= 0x3988E) { |
| k = 0; /* |x|<sqrt(3/2) */ |
| } else if (j < 0xBB67A) { |
| k = 1; /* |x|<sqrt(3) */ |
| } else { |
| k = 0; |
| n += 1; |
| ix -= 0x00100000; |
| } |
| SET_HIGH_WORD(ax, ix); |
| |
| /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
| u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
| v = base::Divide(one, ax + bp[k]); |
| ss = u * v; |
| s_h = ss; |
| SET_LOW_WORD(s_h, 0); |
| /* t_h=ax+bp[k] High */ |
| t_h = zero; |
| SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)); |
| t_l = ax - (t_h - bp[k]); |
| s_l = v * ((u - s_h * t_h) - s_h * t_l); |
| /* compute log(ax) */ |
| s2 = ss * ss; |
| r = s2 * s2 * |
| (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); |
| r += s_l * (s_h + ss); |
| s2 = s_h * s_h; |
| t_h = 3.0 + s2 + r; |
| SET_LOW_WORD(t_h, 0); |
| t_l = r - ((t_h - 3.0) - s2); |
| /* u+v = ss*(1+...) */ |
| u = s_h * t_h; |
| v = s_l * t_h + t_l * ss; |
| /* 2/(3log2)*(ss+...) */ |
| p_h = u + v; |
| SET_LOW_WORD(p_h, 0); |
| p_l = v - (p_h - u); |
| z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ |
| z_l = cp_l * p_h + p_l * cp + dp_l[k]; |
| /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
| t = static_cast<double>(n); |
| t1 = (((z_h + z_l) + dp_h[k]) + t); |
| SET_LOW_WORD(t1, 0); |
| t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); |
| } |
| |
| /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
| y1 = y; |
| SET_LOW_WORD(y1, 0); |
| p_l = (y - y1) * t1 + y * t2; |
| p_h = y1 * t1; |
| z = p_l + p_h; |
| EXTRACT_WORDS(j, i, z); |
| if (j >= 0x40900000) { /* z >= 1024 */ |
| if (((j - 0x40900000) | i) != 0) { /* if z > 1024 */ |
| return s * huge * huge; /* overflow */ |
| } else { |
| if (p_l + ovt > z - p_h) return s * huge * huge; /* overflow */ |
| } |
| } else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ |
| if (((j - 0xc090cc00) | i) != 0) { /* z < -1075 */ |
| return s * tiny * tiny; /* underflow */ |
| } else { |
| if (p_l <= z - p_h) return s * tiny * tiny; /* underflow */ |
| } |
| } |
| /* |
| * compute 2**(p_h+p_l) |
| */ |
| i = j & 0x7fffffff; |
| k = (i >> 20) - 0x3ff; |
| n = 0; |
| if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
| n = j + (0x00100000 >> (k + 1)); |
| k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ |
| t = zero; |
| SET_HIGH_WORD(t, n & ~(0x000fffff >> k)); |
| n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); |
| if (j < 0) n = -n; |
| p_h -= t; |
| } |
| t = p_l + p_h; |
| SET_LOW_WORD(t, 0); |
| u = t * lg2_h; |
| v = (p_l - (t - p_h)) * lg2 + t * lg2_l; |
| z = u + v; |
| w = v - (z - u); |
| t = z * z; |
| t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); |
| r = base::Divide(z * t1, (t1 - two) - (w + z * w)); |
| z = one - (r - z); |
| GET_HIGH_WORD(j, z); |
| j += static_cast<int>(static_cast<uint32_t>(n) << 20); |
| if ((j >> 20) <= 0) { |
| z = scalbn(z, n); /* subnormal output */ |
| } else { |
| int tmp; |
| GET_HIGH_WORD(tmp, z); |
| SET_HIGH_WORD(z, tmp + static_cast<int>(static_cast<uint32_t>(n) << 20)); |
| } |
| return s * z; |
| } |
| |
| /* |
| * ES6 draft 09-27-13, section 20.2.2.30. |
| * Math.sinh |
| * Method : |
| * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 |
| * 1. Replace x by |x| (sinh(-x) = -sinh(x)). |
| * 2. |
| * E + E/(E+1) |
| * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) |
| * 2 |
| * |
| * 22 <= x <= lnovft : sinh(x) := exp(x)/2 |
| * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) |
| * ln2ovft < x : sinh(x) := x*shuge (overflow) |
| * |
| * Special cases: |
| * sinh(x) is |x| if x is +Infinity, -Infinity, or NaN. |
| * only sinh(0)=0 is exact for finite x. |
| */ |
| double sinh(double x) { |
| static const double KSINH_OVERFLOW = 710.4758600739439, |
| TWO_M28 = |
| 3.725290298461914e-9, // 2^-28, empty lower half |
| LOG_MAXD = 709.7822265625; // 0x40862E42 00000000, empty lower half |
| static const double shuge = 1.0e307; |
| |
| double h = (x < 0) ? -0.5 : 0.5; |
| // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1)) |
| double ax = fabs(x); |
| if (ax < 22) { |
| // For |x| < 2^-28, sinh(x) = x |
| if (ax < TWO_M28) return x; |
| double t = expm1(ax); |
| if (ax < 1) { |
| return h * (2 * t - t * t / (t + 1)); |
| } |
| return h * (t + t / (t + 1)); |
| } |
| // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|) |
| if (ax < LOG_MAXD) return h * exp(ax); |
| // |x| in [log(maxdouble), overflowthreshold] |
| // overflowthreshold = 710.4758600739426 |
| if (ax <= KSINH_OVERFLOW) { |
| double w = exp(0.5 * ax); |
| double t = h * w; |
| return t * w; |
| } |
| // |x| > overflowthreshold or is NaN. |
| // Return Infinity of the appropriate sign or NaN. |
| return x * shuge; |
| } |
| |
| /* Tanh(x) |
| * Return the Hyperbolic Tangent of x |
| * |
| * Method : |
| * x -x |
| * e - e |
| * 0. tanh(x) is defined to be ----------- |
| * x -x |
| * e + e |
| * 1. reduce x to non-negative by tanh(-x) = -tanh(x). |
| * 2. 0 <= x < 2**-28 : tanh(x) := x with inexact if x != 0 |
| * -t |
| * 2**-28 <= x < 1 : tanh(x) := -----; t = expm1(-2x) |
| * t + 2 |
| * 2 |
| * 1 <= x < 22 : tanh(x) := 1 - -----; t = expm1(2x) |
| * t + 2 |
| * 22 <= x <= INF : tanh(x) := 1. |
| * |
| * Special cases: |
| * tanh(NaN) is NaN; |
| * only tanh(0)=0 is exact for finite argument. |
| */ |
| double tanh(double x) { |
| static const volatile double tiny = 1.0e-300; |
| static const double one = 1.0, two = 2.0, huge = 1.0e300; |
| double t, z; |
| int32_t jx, ix; |
| |
| GET_HIGH_WORD(jx, x); |
| ix = jx & 0x7FFFFFFF; |
| |
| /* x is INF or NaN */ |
| if (ix >= 0x7FF00000) { |
| if (jx >= 0) |
| return one / x + one; /* tanh(+-inf)=+-1 */ |
| else |
| return one / x - one; /* tanh(NaN) = NaN */ |
| } |
| |
| /* |x| < 22 */ |
| if (ix < 0x40360000) { /* |x|<22 */ |
| if (ix < 0x3E300000) { /* |x|<2**-28 */ |
| if (huge + x > one) return x; /* tanh(tiny) = tiny with inexact */ |
| } |
| if (ix >= 0x3FF00000) { /* |x|>=1 */ |
| t = expm1(two * fabs(x)); |
| z = one - two / (t + two); |
| } else { |
| t = expm1(-two * fabs(x)); |
| z = -t / (t + two); |
| } |
| /* |x| >= 22, return +-1 */ |
| } else { |
| z = one - tiny; /* raise inexact flag */ |
| } |
| return (jx >= 0) ? z : -z; |
| } |
| |
| #undef EXTRACT_WORDS |
| #undef GET_HIGH_WORD |
| #undef GET_LOW_WORD |
| #undef INSERT_WORDS |
| #undef SET_HIGH_WORD |
| #undef SET_LOW_WORD |
| |
| } // namespace ieee754 |
| } // namespace base |
| } // namespace v8 |