blob: 40ca16cadc00ba66b2ee34df5aba3a89c15b3a9c [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/branch-elimination.h"
#include "src/base/small-vector.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/simplified-operator.h"
namespace v8 {
namespace internal {
namespace compiler {
BranchElimination::BranchElimination(Editor* editor, JSGraph* js_graph,
Zone* zone, Phase phase)
: AdvancedReducer(editor),
jsgraph_(js_graph),
node_conditions_(js_graph->graph()->NodeCount(), zone),
reduced_(js_graph->graph()->NodeCount(), zone),
zone_(zone),
dead_(js_graph->Dead()),
phase_(phase) {}
BranchElimination::~BranchElimination() = default;
Reduction BranchElimination::Reduce(Node* node) {
switch (node->opcode()) {
case IrOpcode::kDead:
return NoChange();
case IrOpcode::kDeoptimizeIf:
case IrOpcode::kDeoptimizeUnless:
return ReduceDeoptimizeConditional(node);
case IrOpcode::kMerge:
return ReduceMerge(node);
case IrOpcode::kLoop:
return ReduceLoop(node);
case IrOpcode::kBranch:
return ReduceBranch(node);
case IrOpcode::kIfFalse:
return ReduceIf(node, false);
case IrOpcode::kIfTrue:
return ReduceIf(node, true);
case IrOpcode::kStart:
return ReduceStart(node);
default:
if (node->op()->ControlOutputCount() > 0) {
return ReduceOtherControl(node);
}
break;
}
return NoChange();
}
void BranchElimination::SimplifyBranchCondition(Node* branch) {
// Try to use a phi as a branch condition if the control flow from the branch
// is known from previous branches. For example, in the graph below, the
// control flow of the second_branch is predictable because the first_branch
// use the same branch condition. In such case, create a new phi with constant
// inputs and let the second branch use the phi as its branch condition. From
// this transformation, more branch folding opportunities would be exposed to
// later passes through branch cloning in effect-control-linearizer.
//
// condition condition
// | \ |
// | first_branch first_branch
// | / \ / \
// | / \ / \
// |first_true first_false first_true first_false
// | \ / \ /
// | \ / \ /
// | first_merge ==> first_merge
// | | |
// second_branch 1 0 |
// / \ \ / |
// / \ phi |
// second_true second_false \ |
// second_branch
// / \
// / \
// second_true second_false
//
DCHECK_EQ(IrOpcode::kBranch, branch->opcode());
Node* merge = NodeProperties::GetControlInput(branch);
if (merge->opcode() != IrOpcode::kMerge) return;
Node* branch_condition = branch->InputAt(0);
Node* previous_branch;
bool condition_value;
Graph* graph = jsgraph()->graph();
base::SmallVector<Node*, 2> phi_inputs;
Node::Inputs inputs = merge->inputs();
int input_count = inputs.count();
for (int i = 0; i != input_count; ++i) {
Node* input = inputs[i];
ControlPathConditions from_input = node_conditions_.Get(input);
if (!from_input.LookupCondition(branch_condition, &previous_branch,
&condition_value))
return;
if (phase_ == kEARLY) {
phi_inputs.emplace_back(condition_value ? jsgraph()->TrueConstant()
: jsgraph()->FalseConstant());
} else {
phi_inputs.emplace_back(
condition_value
? graph->NewNode(jsgraph()->common()->Int32Constant(1))
: graph->NewNode(jsgraph()->common()->Int32Constant(0)));
}
}
phi_inputs.emplace_back(merge);
Node* new_phi = graph->NewNode(
common()->Phi(phase_ == kEARLY ? MachineRepresentation::kTagged
: MachineRepresentation::kWord32,
input_count),
input_count + 1, &phi_inputs.at(0));
// Replace the branch condition with the new phi.
NodeProperties::ReplaceValueInput(branch, new_phi, 0);
}
Reduction BranchElimination::ReduceBranch(Node* node) {
Node* condition = node->InputAt(0);
Node* control_input = NodeProperties::GetControlInput(node, 0);
ControlPathConditions from_input = node_conditions_.Get(control_input);
Node* branch;
bool condition_value;
// If we know the condition we can discard the branch.
if (from_input.LookupCondition(condition, &branch, &condition_value)) {
MarkAsSafetyCheckIfNeeded(branch, node);
for (Node* const use : node->uses()) {
switch (use->opcode()) {
case IrOpcode::kIfTrue:
Replace(use, condition_value ? control_input : dead());
break;
case IrOpcode::kIfFalse:
Replace(use, condition_value ? dead() : control_input);
break;
default:
UNREACHABLE();
}
}
return Replace(dead());
}
SimplifyBranchCondition(node);
// Trigger revisits of the IfTrue/IfFalse projections, since they depend on
// the branch condition.
for (Node* const use : node->uses()) {
Revisit(use);
}
return TakeConditionsFromFirstControl(node);
}
Reduction BranchElimination::ReduceDeoptimizeConditional(Node* node) {
DCHECK(node->opcode() == IrOpcode::kDeoptimizeIf ||
node->opcode() == IrOpcode::kDeoptimizeUnless);
bool condition_is_true = node->opcode() == IrOpcode::kDeoptimizeUnless;
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
Node* condition = NodeProperties::GetValueInput(node, 0);
Node* frame_state = NodeProperties::GetValueInput(node, 1);
Node* effect = NodeProperties::GetEffectInput(node);
Node* control = NodeProperties::GetControlInput(node);
// If we do not know anything about the predecessor, do not propagate just
// yet because we will have to recompute anyway once we compute the
// predecessor.
if (!reduced_.Get(control)) {
return NoChange();
}
ControlPathConditions conditions = node_conditions_.Get(control);
bool condition_value;
Node* branch;
// If we know the condition we can discard the branch.
if (conditions.LookupCondition(condition, &branch, &condition_value)) {
MarkAsSafetyCheckIfNeeded(branch, node);
if (condition_is_true == condition_value) {
// We don't update the conditions here, because we're replacing {node}
// with the {control} node that already contains the right information.
ReplaceWithValue(node, dead(), effect, control);
} else {
control = graph()->NewNode(
common()->Deoptimize(p.kind(), p.reason(), p.feedback()), frame_state,
effect, control);
// TODO(bmeurer): This should be on the AdvancedReducer somehow.
NodeProperties::MergeControlToEnd(graph(), common(), control);
Revisit(graph()->end());
}
return Replace(dead());
}
return UpdateConditions(node, conditions, condition, node, condition_is_true);
}
Reduction BranchElimination::ReduceIf(Node* node, bool is_true_branch) {
// Add the condition to the list arriving from the input branch.
Node* branch = NodeProperties::GetControlInput(node, 0);
ControlPathConditions from_branch = node_conditions_.Get(branch);
// If we do not know anything about the predecessor, do not propagate just
// yet because we will have to recompute anyway once we compute the
// predecessor.
if (!reduced_.Get(branch)) {
return NoChange();
}
Node* condition = branch->InputAt(0);
return UpdateConditions(node, from_branch, condition, branch, is_true_branch);
}
Reduction BranchElimination::ReduceLoop(Node* node) {
// Here we rely on having only reducible loops:
// The loop entry edge always dominates the header, so we can just use
// the information from the loop entry edge.
return TakeConditionsFromFirstControl(node);
}
Reduction BranchElimination::ReduceMerge(Node* node) {
// Shortcut for the case when we do not know anything about some
// input.
Node::Inputs inputs = node->inputs();
for (Node* input : inputs) {
if (!reduced_.Get(input)) {
return NoChange();
}
}
auto input_it = inputs.begin();
DCHECK_GT(inputs.count(), 0);
ControlPathConditions conditions = node_conditions_.Get(*input_it);
++input_it;
// Merge the first input's conditions with the conditions from the other
// inputs.
auto input_end = inputs.end();
for (; input_it != input_end; ++input_it) {
// Change the current condition list to a longest common tail
// of this condition list and the other list. (The common tail
// should correspond to the list from the common dominator.)
conditions.ResetToCommonAncestor(node_conditions_.Get(*input_it));
}
return UpdateConditions(node, conditions);
}
Reduction BranchElimination::ReduceStart(Node* node) {
return UpdateConditions(node, {});
}
Reduction BranchElimination::ReduceOtherControl(Node* node) {
DCHECK_EQ(1, node->op()->ControlInputCount());
return TakeConditionsFromFirstControl(node);
}
Reduction BranchElimination::TakeConditionsFromFirstControl(Node* node) {
// We just propagate the information from the control input (ideally,
// we would only revisit control uses if there is change).
Node* input = NodeProperties::GetControlInput(node, 0);
if (!reduced_.Get(input)) return NoChange();
return UpdateConditions(node, node_conditions_.Get(input));
}
Reduction BranchElimination::UpdateConditions(
Node* node, ControlPathConditions conditions) {
// Only signal that the node has Changed if the condition information has
// changed.
if (reduced_.Set(node, true) | node_conditions_.Set(node, conditions)) {
return Changed(node);
}
return NoChange();
}
Reduction BranchElimination::UpdateConditions(
Node* node, ControlPathConditions prev_conditions, Node* current_condition,
Node* current_branch, bool is_true_branch) {
ControlPathConditions original = node_conditions_.Get(node);
// The control path for the node is the path obtained by appending the
// current_condition to the prev_conditions. Use the original control path as
// a hint to avoid allocations.
prev_conditions.AddCondition(zone_, current_condition, current_branch,
is_true_branch, original);
return UpdateConditions(node, prev_conditions);
}
void BranchElimination::ControlPathConditions::AddCondition(
Zone* zone, Node* condition, Node* branch, bool is_true,
ControlPathConditions hint) {
DCHECK(!LookupCondition(condition, nullptr, nullptr));
PushFront({condition, branch, is_true}, zone, hint);
}
bool BranchElimination::ControlPathConditions::LookupCondition(
Node* condition, Node** branch, bool* is_true) const {
for (BranchCondition element : *this) {
if (element.condition == condition) {
*is_true = element.is_true;
*branch = element.branch;
return true;
}
}
return false;
}
void BranchElimination::MarkAsSafetyCheckIfNeeded(Node* branch, Node* node) {
// Check if {branch} is dead because we might have a stale side-table entry.
if (!branch->IsDead() && branch->opcode() != IrOpcode::kDead) {
IsSafetyCheck branch_safety = IsSafetyCheckOf(branch->op());
IsSafetyCheck combined_safety =
CombineSafetyChecks(branch_safety, IsSafetyCheckOf(node->op()));
if (branch_safety != combined_safety) {
NodeProperties::ChangeOp(
branch, common()->MarkAsSafetyCheck(branch->op(), combined_safety));
}
}
}
Graph* BranchElimination::graph() const { return jsgraph()->graph(); }
Isolate* BranchElimination::isolate() const { return jsgraph()->isolate(); }
CommonOperatorBuilder* BranchElimination::common() const {
return jsgraph()->common();
}
} // namespace compiler
} // namespace internal
} // namespace v8