| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_COMPILER_NODE_MATCHERS_H_ |
| #define V8_COMPILER_NODE_MATCHERS_H_ |
| |
| #include <cmath> |
| #include <limits> |
| |
| #include "src/base/compiler-specific.h" |
| #include "src/codegen/external-reference.h" |
| #include "src/common/globals.h" |
| #include "src/compiler/common-operator.h" |
| #include "src/compiler/node.h" |
| #include "src/compiler/operator.h" |
| #include "src/numbers/double.h" |
| #include "src/objects/heap-object.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| class JSHeapBroker; |
| |
| // A pattern matcher for nodes. |
| struct NodeMatcher { |
| explicit NodeMatcher(Node* node) : node_(node) {} |
| |
| Node* node() const { return node_; } |
| const Operator* op() const { return node()->op(); } |
| IrOpcode::Value opcode() const { return node()->opcode(); } |
| |
| bool HasProperty(Operator::Property property) const { |
| return op()->HasProperty(property); |
| } |
| Node* InputAt(int index) const { return node()->InputAt(index); } |
| |
| bool Equals(const Node* node) const { return node_ == node; } |
| |
| bool IsComparison() const; |
| |
| #define DEFINE_IS_OPCODE(Opcode, ...) \ |
| bool Is##Opcode() const { return opcode() == IrOpcode::k##Opcode; } |
| ALL_OP_LIST(DEFINE_IS_OPCODE) |
| #undef DEFINE_IS_OPCODE |
| |
| private: |
| Node* node_; |
| }; |
| |
| inline Node* SkipValueIdentities(Node* node) { |
| #ifdef DEBUG |
| bool seen_fold_constant = false; |
| #endif |
| do { |
| #ifdef DEBUG |
| if (node->opcode() == IrOpcode::kFoldConstant) { |
| DCHECK(!seen_fold_constant); |
| seen_fold_constant = true; |
| } |
| #endif |
| } while (NodeProperties::IsValueIdentity(node, &node)); |
| DCHECK_NOT_NULL(node); |
| return node; |
| } |
| |
| // A pattern matcher for abitrary value constants. |
| // |
| // Note that value identities on the input node are skipped when matching. The |
| // resolved value may not be a parameter of the input node. The node() method |
| // returns the unmodified input node. This is by design, as reducers may wish to |
| // match value constants but delay reducing the node until a later phase. For |
| // example, binary operator reducers may opt to keep FoldConstant operands while |
| // applying a reduction that match on the constant value of the FoldConstant. |
| template <typename T, IrOpcode::Value kOpcode> |
| struct ValueMatcher : public NodeMatcher { |
| using ValueType = T; |
| |
| explicit ValueMatcher(Node* node) |
| : NodeMatcher(node), resolved_value_(), has_resolved_value_(false) { |
| node = SkipValueIdentities(node); |
| has_resolved_value_ = node->opcode() == kOpcode; |
| if (has_resolved_value_) { |
| resolved_value_ = OpParameter<T>(node->op()); |
| } |
| } |
| |
| bool HasResolvedValue() const { return has_resolved_value_; } |
| const T& ResolvedValue() const { |
| CHECK(HasResolvedValue()); |
| return resolved_value_; |
| } |
| |
| private: |
| T resolved_value_; |
| bool has_resolved_value_; |
| }; |
| |
| template <> |
| inline ValueMatcher<uint32_t, IrOpcode::kInt32Constant>::ValueMatcher( |
| Node* node) |
| : NodeMatcher(node), resolved_value_(), has_resolved_value_(false) { |
| node = SkipValueIdentities(node); |
| has_resolved_value_ = node->opcode() == IrOpcode::kInt32Constant; |
| if (has_resolved_value_) { |
| resolved_value_ = static_cast<uint32_t>(OpParameter<int32_t>(node->op())); |
| } |
| } |
| |
| template <> |
| inline ValueMatcher<int64_t, IrOpcode::kInt64Constant>::ValueMatcher(Node* node) |
| : NodeMatcher(node), resolved_value_(), has_resolved_value_(false) { |
| node = SkipValueIdentities(node); |
| if (node->opcode() == IrOpcode::kInt32Constant) { |
| resolved_value_ = OpParameter<int32_t>(node->op()); |
| has_resolved_value_ = true; |
| } else if (node->opcode() == IrOpcode::kInt64Constant) { |
| resolved_value_ = OpParameter<int64_t>(node->op()); |
| has_resolved_value_ = true; |
| } |
| } |
| |
| template <> |
| inline ValueMatcher<uint64_t, IrOpcode::kInt64Constant>::ValueMatcher( |
| Node* node) |
| : NodeMatcher(node), resolved_value_(), has_resolved_value_(false) { |
| node = SkipValueIdentities(node); |
| if (node->opcode() == IrOpcode::kInt32Constant) { |
| resolved_value_ = static_cast<uint32_t>(OpParameter<int32_t>(node->op())); |
| has_resolved_value_ = true; |
| } else if (node->opcode() == IrOpcode::kInt64Constant) { |
| resolved_value_ = static_cast<uint64_t>(OpParameter<int64_t>(node->op())); |
| has_resolved_value_ = true; |
| } |
| } |
| |
| // A pattern matcher for integer constants. |
| template <typename T, IrOpcode::Value kOpcode> |
| struct IntMatcher final : public ValueMatcher<T, kOpcode> { |
| explicit IntMatcher(Node* node) : ValueMatcher<T, kOpcode>(node) {} |
| |
| bool Is(const T& value) const { |
| return this->HasResolvedValue() && this->ResolvedValue() == value; |
| } |
| bool IsInRange(const T& low, const T& high) const { |
| return this->HasResolvedValue() && low <= this->ResolvedValue() && |
| this->ResolvedValue() <= high; |
| } |
| bool IsMultipleOf(T n) const { |
| return this->HasResolvedValue() && (this->ResolvedValue() % n) == 0; |
| } |
| bool IsPowerOf2() const { |
| return this->HasResolvedValue() && this->ResolvedValue() > 0 && |
| (this->ResolvedValue() & (this->ResolvedValue() - 1)) == 0; |
| } |
| bool IsNegativePowerOf2() const { |
| return this->HasResolvedValue() && this->ResolvedValue() < 0 && |
| ((this->ResolvedValue() == std::numeric_limits<T>::min()) || |
| (-this->ResolvedValue() & (-this->ResolvedValue() - 1)) == 0); |
| } |
| bool IsNegative() const { |
| return this->HasResolvedValue() && this->ResolvedValue() < 0; |
| } |
| }; |
| |
| using Int32Matcher = IntMatcher<int32_t, IrOpcode::kInt32Constant>; |
| using Uint32Matcher = IntMatcher<uint32_t, IrOpcode::kInt32Constant>; |
| using Int64Matcher = IntMatcher<int64_t, IrOpcode::kInt64Constant>; |
| using Uint64Matcher = IntMatcher<uint64_t, IrOpcode::kInt64Constant>; |
| #if V8_HOST_ARCH_32_BIT |
| using IntPtrMatcher = Int32Matcher; |
| using UintPtrMatcher = Uint32Matcher; |
| #else |
| using IntPtrMatcher = Int64Matcher; |
| using UintPtrMatcher = Uint64Matcher; |
| #endif |
| |
| |
| // A pattern matcher for floating point constants. |
| template <typename T, IrOpcode::Value kOpcode> |
| struct FloatMatcher final : public ValueMatcher<T, kOpcode> { |
| explicit FloatMatcher(Node* node) : ValueMatcher<T, kOpcode>(node) {} |
| |
| bool Is(const T& value) const { |
| return this->HasResolvedValue() && this->ResolvedValue() == value; |
| } |
| bool IsInRange(const T& low, const T& high) const { |
| return this->HasResolvedValue() && low <= this->ResolvedValue() && |
| this->ResolvedValue() <= high; |
| } |
| bool IsMinusZero() const { |
| return this->Is(0.0) && std::signbit(this->ResolvedValue()); |
| } |
| bool IsNegative() const { |
| return this->HasResolvedValue() && this->ResolvedValue() < 0.0; |
| } |
| bool IsNaN() const { |
| return this->HasResolvedValue() && std::isnan(this->ResolvedValue()); |
| } |
| bool IsZero() const { |
| return this->Is(0.0) && !std::signbit(this->ResolvedValue()); |
| } |
| bool IsNormal() const { |
| return this->HasResolvedValue() && std::isnormal(this->ResolvedValue()); |
| } |
| bool IsInteger() const { |
| return this->HasResolvedValue() && |
| std::nearbyint(this->ResolvedValue()) == this->ResolvedValue(); |
| } |
| bool IsPositiveOrNegativePowerOf2() const { |
| if (!this->HasResolvedValue() || (this->ResolvedValue() == 0.0)) { |
| return false; |
| } |
| Double value = Double(this->ResolvedValue()); |
| return !value.IsInfinite() && base::bits::IsPowerOfTwo(value.Significand()); |
| } |
| }; |
| |
| using Float32Matcher = FloatMatcher<float, IrOpcode::kFloat32Constant>; |
| using Float64Matcher = FloatMatcher<double, IrOpcode::kFloat64Constant>; |
| using NumberMatcher = FloatMatcher<double, IrOpcode::kNumberConstant>; |
| |
| // A pattern matcher for heap object constants. |
| template <IrOpcode::Value kHeapConstantOpcode> |
| struct HeapObjectMatcherImpl final |
| : public ValueMatcher<Handle<HeapObject>, kHeapConstantOpcode> { |
| explicit HeapObjectMatcherImpl(Node* node) |
| : ValueMatcher<Handle<HeapObject>, kHeapConstantOpcode>(node) {} |
| |
| bool Is(Handle<HeapObject> const& value) const { |
| return this->HasResolvedValue() && |
| this->ResolvedValue().address() == value.address(); |
| } |
| |
| HeapObjectRef Ref(JSHeapBroker* broker) const { |
| return HeapObjectRef(broker, this->ResolvedValue()); |
| } |
| }; |
| |
| using HeapObjectMatcher = HeapObjectMatcherImpl<IrOpcode::kHeapConstant>; |
| using CompressedHeapObjectMatcher = |
| HeapObjectMatcherImpl<IrOpcode::kCompressedHeapConstant>; |
| |
| // A pattern matcher for external reference constants. |
| struct ExternalReferenceMatcher final |
| : public ValueMatcher<ExternalReference, IrOpcode::kExternalConstant> { |
| explicit ExternalReferenceMatcher(Node* node) |
| : ValueMatcher<ExternalReference, IrOpcode::kExternalConstant>(node) {} |
| bool Is(const ExternalReference& value) const { |
| return this->HasResolvedValue() && this->ResolvedValue() == value; |
| } |
| }; |
| |
| |
| // For shorter pattern matching code, this struct matches the inputs to |
| // machine-level load operations. |
| template <typename Object> |
| struct LoadMatcher : public NodeMatcher { |
| explicit LoadMatcher(Node* node) |
| : NodeMatcher(node), object_(InputAt(0)), index_(InputAt(1)) {} |
| |
| using ObjectMatcher = Object; |
| |
| Object const& object() const { return object_; } |
| IntPtrMatcher const& index() const { return index_; } |
| |
| private: |
| Object const object_; |
| IntPtrMatcher const index_; |
| }; |
| |
| |
| // For shorter pattern matching code, this struct matches both the left and |
| // right hand sides of a binary operation and can put constants on the right |
| // if they appear on the left hand side of a commutative operation. |
| template <typename Left, typename Right> |
| struct BinopMatcher : public NodeMatcher { |
| explicit BinopMatcher(Node* node) |
| : NodeMatcher(node), left_(InputAt(0)), right_(InputAt(1)) { |
| if (HasProperty(Operator::kCommutative)) PutConstantOnRight(); |
| } |
| BinopMatcher(Node* node, bool allow_input_swap) |
| : NodeMatcher(node), left_(InputAt(0)), right_(InputAt(1)) { |
| if (allow_input_swap) PutConstantOnRight(); |
| } |
| |
| using LeftMatcher = Left; |
| using RightMatcher = Right; |
| |
| const Left& left() const { return left_; } |
| const Right& right() const { return right_; } |
| |
| bool IsFoldable() const { |
| return left().HasResolvedValue() && right().HasResolvedValue(); |
| } |
| bool LeftEqualsRight() const { return left().node() == right().node(); } |
| |
| bool OwnsInput(Node* input) { |
| for (Node* use : input->uses()) { |
| if (use != node()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| protected: |
| void SwapInputs() { |
| std::swap(left_, right_); |
| // TODO(tebbi): This modification should notify the reducers using |
| // BinopMatcher. Alternatively, all reducers (especially value numbering) |
| // could ignore the ordering for commutative binops. |
| node()->ReplaceInput(0, left().node()); |
| node()->ReplaceInput(1, right().node()); |
| } |
| |
| private: |
| void PutConstantOnRight() { |
| if (left().HasResolvedValue() && !right().HasResolvedValue()) { |
| SwapInputs(); |
| } |
| } |
| |
| Left left_; |
| Right right_; |
| }; |
| |
| using Int32BinopMatcher = BinopMatcher<Int32Matcher, Int32Matcher>; |
| using Uint32BinopMatcher = BinopMatcher<Uint32Matcher, Uint32Matcher>; |
| using Int64BinopMatcher = BinopMatcher<Int64Matcher, Int64Matcher>; |
| using Uint64BinopMatcher = BinopMatcher<Uint64Matcher, Uint64Matcher>; |
| using IntPtrBinopMatcher = BinopMatcher<IntPtrMatcher, IntPtrMatcher>; |
| using UintPtrBinopMatcher = BinopMatcher<UintPtrMatcher, UintPtrMatcher>; |
| using Float32BinopMatcher = BinopMatcher<Float32Matcher, Float32Matcher>; |
| using Float64BinopMatcher = BinopMatcher<Float64Matcher, Float64Matcher>; |
| using NumberBinopMatcher = BinopMatcher<NumberMatcher, NumberMatcher>; |
| using HeapObjectBinopMatcher = |
| BinopMatcher<HeapObjectMatcher, HeapObjectMatcher>; |
| using CompressedHeapObjectBinopMatcher = |
| BinopMatcher<CompressedHeapObjectMatcher, CompressedHeapObjectMatcher>; |
| |
| template <class BinopMatcher, IrOpcode::Value kMulOpcode, |
| IrOpcode::Value kShiftOpcode> |
| struct ScaleMatcher { |
| explicit ScaleMatcher(Node* node, bool allow_power_of_two_plus_one = false) |
| : scale_(-1), power_of_two_plus_one_(false) { |
| if (node->InputCount() < 2) return; |
| BinopMatcher m(node); |
| if (node->opcode() == kShiftOpcode) { |
| if (m.right().HasResolvedValue()) { |
| typename BinopMatcher::RightMatcher::ValueType value = |
| m.right().ResolvedValue(); |
| if (value >= 0 && value <= 3) { |
| scale_ = static_cast<int>(value); |
| } |
| } |
| } else if (node->opcode() == kMulOpcode) { |
| if (m.right().HasResolvedValue()) { |
| typename BinopMatcher::RightMatcher::ValueType value = |
| m.right().ResolvedValue(); |
| if (value == 1) { |
| scale_ = 0; |
| } else if (value == 2) { |
| scale_ = 1; |
| } else if (value == 4) { |
| scale_ = 2; |
| } else if (value == 8) { |
| scale_ = 3; |
| } else if (allow_power_of_two_plus_one) { |
| if (value == 3) { |
| scale_ = 1; |
| power_of_two_plus_one_ = true; |
| } else if (value == 5) { |
| scale_ = 2; |
| power_of_two_plus_one_ = true; |
| } else if (value == 9) { |
| scale_ = 3; |
| power_of_two_plus_one_ = true; |
| } |
| } |
| } |
| } |
| } |
| |
| bool matches() const { return scale_ != -1; } |
| int scale() const { return scale_; } |
| bool power_of_two_plus_one() const { return power_of_two_plus_one_; } |
| |
| private: |
| int scale_; |
| bool power_of_two_plus_one_; |
| }; |
| |
| using Int32ScaleMatcher = |
| ScaleMatcher<Int32BinopMatcher, IrOpcode::kInt32Mul, IrOpcode::kWord32Shl>; |
| using Int64ScaleMatcher = |
| ScaleMatcher<Int64BinopMatcher, IrOpcode::kInt64Mul, IrOpcode::kWord64Shl>; |
| |
| template <class BinopMatcher, IrOpcode::Value AddOpcode, |
| IrOpcode::Value SubOpcode, IrOpcode::Value kMulOpcode, |
| IrOpcode::Value kShiftOpcode> |
| struct AddMatcher : public BinopMatcher { |
| static const IrOpcode::Value kAddOpcode = AddOpcode; |
| static const IrOpcode::Value kSubOpcode = SubOpcode; |
| using Matcher = ScaleMatcher<BinopMatcher, kMulOpcode, kShiftOpcode>; |
| |
| AddMatcher(Node* node, bool allow_input_swap) |
| : BinopMatcher(node, allow_input_swap), |
| scale_(-1), |
| power_of_two_plus_one_(false) { |
| Initialize(node, allow_input_swap); |
| } |
| explicit AddMatcher(Node* node) |
| : BinopMatcher(node, node->op()->HasProperty(Operator::kCommutative)), |
| scale_(-1), |
| power_of_two_plus_one_(false) { |
| Initialize(node, node->op()->HasProperty(Operator::kCommutative)); |
| } |
| |
| bool HasIndexInput() const { return scale_ != -1; } |
| Node* IndexInput() const { |
| DCHECK(HasIndexInput()); |
| return this->left().node()->InputAt(0); |
| } |
| int scale() const { |
| DCHECK(HasIndexInput()); |
| return scale_; |
| } |
| bool power_of_two_plus_one() const { return power_of_two_plus_one_; } |
| |
| private: |
| void Initialize(Node* node, bool allow_input_swap) { |
| Matcher left_matcher(this->left().node(), true); |
| if (left_matcher.matches()) { |
| scale_ = left_matcher.scale(); |
| power_of_two_plus_one_ = left_matcher.power_of_two_plus_one(); |
| return; |
| } |
| |
| if (!allow_input_swap) { |
| return; |
| } |
| |
| Matcher right_matcher(this->right().node(), true); |
| if (right_matcher.matches()) { |
| scale_ = right_matcher.scale(); |
| power_of_two_plus_one_ = right_matcher.power_of_two_plus_one(); |
| this->SwapInputs(); |
| return; |
| } |
| |
| if ((this->left().opcode() != kSubOpcode && |
| this->left().opcode() != kAddOpcode) && |
| (this->right().opcode() == kAddOpcode || |
| this->right().opcode() == kSubOpcode)) { |
| this->SwapInputs(); |
| } |
| } |
| |
| int scale_; |
| bool power_of_two_plus_one_; |
| }; |
| |
| using Int32AddMatcher = |
| AddMatcher<Int32BinopMatcher, IrOpcode::kInt32Add, IrOpcode::kInt32Sub, |
| IrOpcode::kInt32Mul, IrOpcode::kWord32Shl>; |
| using Int64AddMatcher = |
| AddMatcher<Int64BinopMatcher, IrOpcode::kInt64Add, IrOpcode::kInt64Sub, |
| IrOpcode::kInt64Mul, IrOpcode::kWord64Shl>; |
| |
| enum DisplacementMode { kPositiveDisplacement, kNegativeDisplacement }; |
| |
| enum class AddressOption : uint8_t { |
| kAllowNone = 0u, |
| kAllowInputSwap = 1u << 0, |
| kAllowScale = 1u << 1, |
| kAllowAll = kAllowInputSwap | kAllowScale |
| }; |
| |
| using AddressOptions = base::Flags<AddressOption, uint8_t>; |
| DEFINE_OPERATORS_FOR_FLAGS(AddressOptions) |
| |
| template <class AddMatcher> |
| struct BaseWithIndexAndDisplacementMatcher { |
| BaseWithIndexAndDisplacementMatcher(Node* node, AddressOptions options) |
| : matches_(false), |
| index_(nullptr), |
| scale_(0), |
| base_(nullptr), |
| displacement_(nullptr), |
| displacement_mode_(kPositiveDisplacement) { |
| Initialize(node, options); |
| } |
| |
| explicit BaseWithIndexAndDisplacementMatcher(Node* node) |
| : matches_(false), |
| index_(nullptr), |
| scale_(0), |
| base_(nullptr), |
| displacement_(nullptr), |
| displacement_mode_(kPositiveDisplacement) { |
| Initialize(node, AddressOption::kAllowScale | |
| (node->op()->HasProperty(Operator::kCommutative) |
| ? AddressOption::kAllowInputSwap |
| : AddressOption::kAllowNone)); |
| } |
| |
| bool matches() const { return matches_; } |
| Node* index() const { return index_; } |
| int scale() const { return scale_; } |
| Node* base() const { return base_; } |
| Node* displacement() const { return displacement_; } |
| DisplacementMode displacement_mode() const { return displacement_mode_; } |
| |
| private: |
| bool matches_; |
| Node* index_; |
| int scale_; |
| Node* base_; |
| Node* displacement_; |
| DisplacementMode displacement_mode_; |
| |
| void Initialize(Node* node, AddressOptions options) { |
| // The BaseWithIndexAndDisplacementMatcher canonicalizes the order of |
| // displacements and scale factors that are used as inputs, so instead of |
| // enumerating all possible patterns by brute force, checking for node |
| // clusters using the following templates in the following order suffices to |
| // find all of the interesting cases (S = index * scale, B = base input, D = |
| // displacement input): |
| // (S + (B + D)) |
| // (S + (B + B)) |
| // (S + D) |
| // (S + B) |
| // ((S + D) + B) |
| // ((S + B) + D) |
| // ((B + D) + B) |
| // ((B + B) + D) |
| // (B + D) |
| // (B + B) |
| if (node->InputCount() < 2) return; |
| AddMatcher m(node, options & AddressOption::kAllowInputSwap); |
| Node* left = m.left().node(); |
| Node* right = m.right().node(); |
| Node* displacement = nullptr; |
| Node* base = nullptr; |
| Node* index = nullptr; |
| Node* scale_expression = nullptr; |
| bool power_of_two_plus_one = false; |
| DisplacementMode displacement_mode = kPositiveDisplacement; |
| int scale = 0; |
| if (m.HasIndexInput() && OwnedByAddressingOperand(left)) { |
| index = m.IndexInput(); |
| scale = m.scale(); |
| scale_expression = left; |
| power_of_two_plus_one = m.power_of_two_plus_one(); |
| bool match_found = false; |
| if (right->opcode() == AddMatcher::kSubOpcode && |
| OwnedByAddressingOperand(right)) { |
| AddMatcher right_matcher(right); |
| if (right_matcher.right().HasResolvedValue()) { |
| // (S + (B - D)) |
| base = right_matcher.left().node(); |
| displacement = right_matcher.right().node(); |
| displacement_mode = kNegativeDisplacement; |
| match_found = true; |
| } |
| } |
| if (!match_found) { |
| if (right->opcode() == AddMatcher::kAddOpcode && |
| OwnedByAddressingOperand(right)) { |
| AddMatcher right_matcher(right); |
| if (right_matcher.right().HasResolvedValue()) { |
| // (S + (B + D)) |
| base = right_matcher.left().node(); |
| displacement = right_matcher.right().node(); |
| } else { |
| // (S + (B + B)) |
| base = right; |
| } |
| } else if (m.right().HasResolvedValue()) { |
| // (S + D) |
| displacement = right; |
| } else { |
| // (S + B) |
| base = right; |
| } |
| } |
| } else { |
| bool match_found = false; |
| if (left->opcode() == AddMatcher::kSubOpcode && |
| OwnedByAddressingOperand(left)) { |
| AddMatcher left_matcher(left); |
| Node* left_left = left_matcher.left().node(); |
| Node* left_right = left_matcher.right().node(); |
| if (left_matcher.right().HasResolvedValue()) { |
| if (left_matcher.HasIndexInput() && left_left->OwnedBy(left)) { |
| // ((S - D) + B) |
| index = left_matcher.IndexInput(); |
| scale = left_matcher.scale(); |
| scale_expression = left_left; |
| power_of_two_plus_one = left_matcher.power_of_two_plus_one(); |
| displacement = left_right; |
| displacement_mode = kNegativeDisplacement; |
| base = right; |
| } else { |
| // ((B - D) + B) |
| index = left_left; |
| displacement = left_right; |
| displacement_mode = kNegativeDisplacement; |
| base = right; |
| } |
| match_found = true; |
| } |
| } |
| if (!match_found) { |
| if (left->opcode() == AddMatcher::kAddOpcode && |
| OwnedByAddressingOperand(left)) { |
| AddMatcher left_matcher(left); |
| Node* left_left = left_matcher.left().node(); |
| Node* left_right = left_matcher.right().node(); |
| if (left_matcher.HasIndexInput() && left_left->OwnedBy(left)) { |
| if (left_matcher.right().HasResolvedValue()) { |
| // ((S + D) + B) |
| index = left_matcher.IndexInput(); |
| scale = left_matcher.scale(); |
| scale_expression = left_left; |
| power_of_two_plus_one = left_matcher.power_of_two_plus_one(); |
| displacement = left_right; |
| base = right; |
| } else if (m.right().HasResolvedValue()) { |
| if (left->OwnedBy(node)) { |
| // ((S + B) + D) |
| index = left_matcher.IndexInput(); |
| scale = left_matcher.scale(); |
| scale_expression = left_left; |
| power_of_two_plus_one = left_matcher.power_of_two_plus_one(); |
| base = left_right; |
| displacement = right; |
| } else { |
| // (B + D) |
| base = left; |
| displacement = right; |
| } |
| } else { |
| // (B + B) |
| index = left; |
| base = right; |
| } |
| } else { |
| if (left_matcher.right().HasResolvedValue()) { |
| // ((B + D) + B) |
| index = left_left; |
| displacement = left_right; |
| base = right; |
| } else if (m.right().HasResolvedValue()) { |
| if (left->OwnedBy(node)) { |
| // ((B + B) + D) |
| index = left_left; |
| base = left_right; |
| displacement = right; |
| } else { |
| // (B + D) |
| base = left; |
| displacement = right; |
| } |
| } else { |
| // (B + B) |
| index = left; |
| base = right; |
| } |
| } |
| } else { |
| if (m.right().HasResolvedValue()) { |
| // (B + D) |
| base = left; |
| displacement = right; |
| } else { |
| // (B + B) |
| base = left; |
| index = right; |
| } |
| } |
| } |
| } |
| int64_t value = 0; |
| if (displacement != nullptr) { |
| switch (displacement->opcode()) { |
| case IrOpcode::kInt32Constant: { |
| value = OpParameter<int32_t>(displacement->op()); |
| break; |
| } |
| case IrOpcode::kInt64Constant: { |
| value = OpParameter<int64_t>(displacement->op()); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (value == 0) { |
| displacement = nullptr; |
| } |
| } |
| if (power_of_two_plus_one) { |
| if (base != nullptr) { |
| // If the scale requires explicitly using the index as the base, but a |
| // base is already part of the match, then the (1 << N + 1) scale factor |
| // can't be folded into the match and the entire index * scale |
| // calculation must be computed separately. |
| index = scale_expression; |
| scale = 0; |
| } else { |
| base = index; |
| } |
| } |
| if (!(options & AddressOption::kAllowScale) && scale != 0) { |
| index = scale_expression; |
| scale = 0; |
| } |
| base_ = base; |
| displacement_ = displacement; |
| displacement_mode_ = displacement_mode; |
| index_ = index; |
| scale_ = scale; |
| matches_ = true; |
| } |
| |
| static bool OwnedByAddressingOperand(Node* node) { |
| for (auto use : node->use_edges()) { |
| Node* from = use.from(); |
| switch (from->opcode()) { |
| case IrOpcode::kLoad: |
| case IrOpcode::kPoisonedLoad: |
| case IrOpcode::kProtectedLoad: |
| case IrOpcode::kInt32Add: |
| case IrOpcode::kInt64Add: |
| // Skip addressing uses. |
| break; |
| case IrOpcode::kStore: |
| case IrOpcode::kProtectedStore: |
| // If the stored value is this node, it is not an addressing use. |
| if (from->InputAt(2) == node) return false; |
| // Otherwise it is used as an address and skipped. |
| break; |
| default: |
| // Non-addressing use found. |
| return false; |
| } |
| } |
| return true; |
| } |
| }; |
| |
| using BaseWithIndexAndDisplacement32Matcher = |
| BaseWithIndexAndDisplacementMatcher<Int32AddMatcher>; |
| using BaseWithIndexAndDisplacement64Matcher = |
| BaseWithIndexAndDisplacementMatcher<Int64AddMatcher>; |
| |
| struct V8_EXPORT_PRIVATE BranchMatcher : public NON_EXPORTED_BASE(NodeMatcher) { |
| explicit BranchMatcher(Node* branch); |
| |
| bool Matched() const { return if_true_ && if_false_; } |
| |
| Node* Branch() const { return node(); } |
| Node* IfTrue() const { return if_true_; } |
| Node* IfFalse() const { return if_false_; } |
| |
| private: |
| Node* if_true_; |
| Node* if_false_; |
| }; |
| |
| struct V8_EXPORT_PRIVATE DiamondMatcher |
| : public NON_EXPORTED_BASE(NodeMatcher) { |
| explicit DiamondMatcher(Node* merge); |
| |
| bool Matched() const { return branch_; } |
| bool IfProjectionsAreOwned() const { |
| return if_true_->OwnedBy(node()) && if_false_->OwnedBy(node()); |
| } |
| |
| Node* Branch() const { return branch_; } |
| Node* IfTrue() const { return if_true_; } |
| Node* IfFalse() const { return if_false_; } |
| Node* Merge() const { return node(); } |
| |
| Node* TrueInputOf(Node* phi) const { |
| DCHECK(IrOpcode::IsPhiOpcode(phi->opcode())); |
| DCHECK_EQ(3, phi->InputCount()); |
| DCHECK_EQ(Merge(), phi->InputAt(2)); |
| return phi->InputAt(if_true_ == Merge()->InputAt(0) ? 0 : 1); |
| } |
| |
| Node* FalseInputOf(Node* phi) const { |
| DCHECK(IrOpcode::IsPhiOpcode(phi->opcode())); |
| DCHECK_EQ(3, phi->InputCount()); |
| DCHECK_EQ(Merge(), phi->InputAt(2)); |
| return phi->InputAt(if_true_ == Merge()->InputAt(0) ? 1 : 0); |
| } |
| |
| private: |
| Node* branch_; |
| Node* if_true_; |
| Node* if_false_; |
| }; |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_COMPILER_NODE_MATCHERS_H_ |