blob: 900516c05de32b0027aa7e89301c92dbbf3b8432 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_SCHEDULE_H_
#define V8_COMPILER_SCHEDULE_H_
#include <iosfwd>
#include "src/base/compiler-specific.h"
#include "src/common/globals.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
namespace compiler {
// Forward declarations.
class BasicBlock;
class BasicBlockInstrumentor;
class Node;
using BasicBlockVector = ZoneVector<BasicBlock*>;
using NodeVector = ZoneVector<Node*>;
// A basic block contains an ordered list of nodes and ends with a control
// node. Note that if a basic block has phis, then all phis must appear as the
// first nodes in the block.
class V8_EXPORT_PRIVATE BasicBlock final
: public NON_EXPORTED_BASE(ZoneObject) {
public:
// Possible control nodes that can end a block.
enum Control {
kNone, // Control not initialized yet.
kGoto, // Goto a single successor block.
kCall, // Call with continuation as first successor, exception
// second.
kBranch, // Branch if true to first successor, otherwise second.
kSwitch, // Table dispatch to one of the successor blocks.
kDeoptimize, // Return a value from this method.
kTailCall, // Tail call another method from this method.
kReturn, // Return a value from this method.
kThrow // Throw an exception.
};
class Id {
public:
int ToInt() const { return static_cast<int>(index_); }
size_t ToSize() const { return index_; }
static Id FromSize(size_t index) { return Id(index); }
static Id FromInt(int index) { return Id(static_cast<size_t>(index)); }
private:
explicit Id(size_t index) : index_(index) {}
size_t index_;
};
BasicBlock(Zone* zone, Id id);
BasicBlock(const BasicBlock&) = delete;
BasicBlock& operator=(const BasicBlock&) = delete;
Id id() const { return id_; }
#if DEBUG
void set_debug_info(AssemblerDebugInfo debug_info) {
debug_info_ = debug_info;
}
AssemblerDebugInfo debug_info() const { return debug_info_; }
#endif // DEBUG
void Print();
// Predecessors.
BasicBlockVector& predecessors() { return predecessors_; }
const BasicBlockVector& predecessors() const { return predecessors_; }
size_t PredecessorCount() const { return predecessors_.size(); }
BasicBlock* PredecessorAt(size_t index) { return predecessors_[index]; }
void ClearPredecessors() { predecessors_.clear(); }
void AddPredecessor(BasicBlock* predecessor);
void RemovePredecessor(size_t index);
// Successors.
BasicBlockVector& successors() { return successors_; }
const BasicBlockVector& successors() const { return successors_; }
size_t SuccessorCount() const { return successors_.size(); }
BasicBlock* SuccessorAt(size_t index) { return successors_[index]; }
void ClearSuccessors() { successors_.clear(); }
void AddSuccessor(BasicBlock* successor);
// Nodes in the basic block.
using value_type = Node*;
bool empty() const { return nodes_.empty(); }
size_t size() const { return nodes_.size(); }
Node* NodeAt(size_t index) { return nodes_[index]; }
size_t NodeCount() const { return nodes_.size(); }
value_type& front() { return nodes_.front(); }
value_type const& front() const { return nodes_.front(); }
using iterator = NodeVector::iterator;
iterator begin() { return nodes_.begin(); }
iterator end() { return nodes_.end(); }
void RemoveNode(iterator it) { nodes_.erase(it); }
using const_iterator = NodeVector::const_iterator;
const_iterator begin() const { return nodes_.begin(); }
const_iterator end() const { return nodes_.end(); }
using reverse_iterator = NodeVector::reverse_iterator;
reverse_iterator rbegin() { return nodes_.rbegin(); }
reverse_iterator rend() { return nodes_.rend(); }
void AddNode(Node* node);
template <class InputIterator>
void InsertNodes(iterator insertion_point, InputIterator insertion_start,
InputIterator insertion_end) {
nodes_.insert(insertion_point, insertion_start, insertion_end);
}
// Trim basic block to end at {new_end}.
void TrimNodes(iterator new_end);
void ResetRPOInfo();
// Accessors.
Control control() const { return control_; }
void set_control(Control control);
Node* control_input() const { return control_input_; }
void set_control_input(Node* control_input);
bool deferred() const { return deferred_; }
void set_deferred(bool deferred) { deferred_ = deferred; }
int32_t dominator_depth() const { return dominator_depth_; }
void set_dominator_depth(int32_t depth) { dominator_depth_ = depth; }
BasicBlock* dominator() const { return dominator_; }
void set_dominator(BasicBlock* dominator) { dominator_ = dominator; }
BasicBlock* rpo_next() const { return rpo_next_; }
void set_rpo_next(BasicBlock* rpo_next) { rpo_next_ = rpo_next; }
BasicBlock* loop_header() const { return loop_header_; }
void set_loop_header(BasicBlock* loop_header);
BasicBlock* loop_end() const { return loop_end_; }
void set_loop_end(BasicBlock* loop_end);
int32_t loop_depth() const { return loop_depth_; }
void set_loop_depth(int32_t loop_depth);
int32_t loop_number() const { return loop_number_; }
void set_loop_number(int32_t loop_number) { loop_number_ = loop_number; }
int32_t rpo_number() const { return rpo_number_; }
void set_rpo_number(int32_t rpo_number);
NodeVector* nodes() { return &nodes_; }
// Loop membership helpers.
inline bool IsLoopHeader() const { return loop_end_ != nullptr; }
bool LoopContains(BasicBlock* block) const;
// Computes the immediate common dominator of {b1} and {b2}. The worst time
// complexity is O(N) where N is the height of the dominator tree.
static BasicBlock* GetCommonDominator(BasicBlock* b1, BasicBlock* b2);
private:
int32_t loop_number_; // loop number of the block.
int32_t rpo_number_; // special RPO number of the block.
bool deferred_; // true if the block contains deferred code.
int32_t dominator_depth_; // Depth within the dominator tree.
BasicBlock* dominator_; // Immediate dominator of the block.
BasicBlock* rpo_next_; // Link to next block in special RPO order.
BasicBlock* loop_header_; // Pointer to dominating loop header basic block,
// nullptr if none. For loop headers, this points to
// enclosing loop header.
BasicBlock* loop_end_; // end of the loop, if this block is a loop header.
int32_t loop_depth_; // loop nesting, 0 is top-level
Control control_; // Control at the end of the block.
Node* control_input_; // Input value for control.
NodeVector nodes_; // nodes of this block in forward order.
BasicBlockVector successors_;
BasicBlockVector predecessors_;
#if DEBUG
AssemblerDebugInfo debug_info_;
#endif
Id id_;
};
std::ostream& operator<<(std::ostream&, const BasicBlock&);
std::ostream& operator<<(std::ostream&, const BasicBlock::Control&);
std::ostream& operator<<(std::ostream&, const BasicBlock::Id&);
// A schedule represents the result of assigning nodes to basic blocks
// and ordering them within basic blocks. Prior to computing a schedule,
// a graph has no notion of control flow ordering other than that induced
// by the graph's dependencies. A schedule is required to generate code.
class V8_EXPORT_PRIVATE Schedule final : public NON_EXPORTED_BASE(ZoneObject) {
public:
explicit Schedule(Zone* zone, size_t node_count_hint = 0);
Schedule(const Schedule&) = delete;
Schedule& operator=(const Schedule&) = delete;
// Return the block which contains {node}, if any.
BasicBlock* block(Node* node) const;
bool IsScheduled(Node* node);
BasicBlock* GetBlockById(BasicBlock::Id block_id);
void ClearBlockById(BasicBlock::Id block_id);
size_t BasicBlockCount() const { return all_blocks_.size(); }
size_t RpoBlockCount() const { return rpo_order_.size(); }
// Check if nodes {a} and {b} are in the same block.
bool SameBasicBlock(Node* a, Node* b) const;
// BasicBlock building: create a new block.
BasicBlock* NewBasicBlock();
// BasicBlock building: records that a node will later be added to a block but
// doesn't actually add the node to the block.
void PlanNode(BasicBlock* block, Node* node);
// BasicBlock building: add a node to the end of the block.
void AddNode(BasicBlock* block, Node* node);
// BasicBlock building: add a goto to the end of {block}.
void AddGoto(BasicBlock* block, BasicBlock* succ);
// BasicBlock building: add a call at the end of {block}.
void AddCall(BasicBlock* block, Node* call, BasicBlock* success_block,
BasicBlock* exception_block);
// BasicBlock building: add a branch at the end of {block}.
void AddBranch(BasicBlock* block, Node* branch, BasicBlock* tblock,
BasicBlock* fblock);
// BasicBlock building: add a switch at the end of {block}.
void AddSwitch(BasicBlock* block, Node* sw, BasicBlock** succ_blocks,
size_t succ_count);
// BasicBlock building: add a deoptimize at the end of {block}.
void AddDeoptimize(BasicBlock* block, Node* input);
// BasicBlock building: add a tailcall at the end of {block}.
void AddTailCall(BasicBlock* block, Node* input);
// BasicBlock building: add a return at the end of {block}.
void AddReturn(BasicBlock* block, Node* input);
// BasicBlock building: add a throw at the end of {block}.
void AddThrow(BasicBlock* block, Node* input);
// BasicBlock mutation: insert a branch into the end of {block}.
void InsertBranch(BasicBlock* block, BasicBlock* end, Node* branch,
BasicBlock* tblock, BasicBlock* fblock);
// BasicBlock mutation: insert a switch into the end of {block}.
void InsertSwitch(BasicBlock* block, BasicBlock* end, Node* sw,
BasicBlock** succ_blocks, size_t succ_count);
// Exposed publicly for testing only.
void AddSuccessorForTesting(BasicBlock* block, BasicBlock* succ) {
return AddSuccessor(block, succ);
}
const BasicBlockVector* all_blocks() const { return &all_blocks_; }
BasicBlockVector* rpo_order() { return &rpo_order_; }
const BasicBlockVector* rpo_order() const { return &rpo_order_; }
BasicBlock* start() { return start_; }
BasicBlock* end() { return end_; }
Zone* zone() const { return zone_; }
private:
friend class GraphAssembler;
friend class Scheduler;
friend class BasicBlockInstrumentor;
friend class RawMachineAssembler;
// For CSA/Torque: Ensure properties of the CFG assumed by further stages.
void EnsureCFGWellFormedness();
// For CSA/Torque: Eliminates unnecessary phi nodes, including phis with a
// single input. The latter is necessary to ensure the property required for
// SSA deconstruction that the target block of a control flow split has no
// phis.
void EliminateRedundantPhiNodes();
// Ensure split-edge form for a hand-assembled schedule.
void EnsureSplitEdgeForm(BasicBlock* block);
// Move Phi operands to newly created merger blocks
void MovePhis(BasicBlock* from, BasicBlock* to);
// Copy deferred block markers down as far as possible
void PropagateDeferredMark();
void AddSuccessor(BasicBlock* block, BasicBlock* succ);
void MoveSuccessors(BasicBlock* from, BasicBlock* to);
void SetControlInput(BasicBlock* block, Node* node);
void SetBlockForNode(BasicBlock* block, Node* node);
Zone* zone_;
BasicBlockVector all_blocks_; // All basic blocks in the schedule.
BasicBlockVector nodeid_to_block_; // Map from node to containing block.
BasicBlockVector rpo_order_; // Reverse-post-order block list.
BasicBlock* start_;
BasicBlock* end_;
};
V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream&, const Schedule&);
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_SCHEDULE_H_