blob: 4ae51bf00ad9989a2380587ed9573cefd94f91c5 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/deoptimizer/deoptimizer.h"
#include <memory>
#include "src/ast/prettyprinter.h"
#include "src/builtins/accessors.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/callable.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/register-configuration.h"
#include "src/common/assert-scope.h"
#include "src/diagnostics/disasm.h"
#include "src/execution/frames-inl.h"
#include "src/execution/pointer-authentication.h"
#include "src/execution/v8threads.h"
#include "src/handles/global-handles.h"
#include "src/heap/heap-inl.h"
#include "src/init/v8.h"
#include "src/interpreter/interpreter.h"
#include "src/logging/counters.h"
#include "src/logging/log.h"
#include "src/objects/arguments.h"
#include "src/objects/debug-objects-inl.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/smi.h"
#include "src/snapshot/embedded/embedded-data.h"
#include "src/tracing/trace-event.h"
// Has to be the last include (doesn't have include guards)
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
// {FrameWriter} offers a stack writer abstraction for writing
// FrameDescriptions. The main service the class provides is managing
// {top_offset_}, i.e. the offset of the next slot to write to.
class FrameWriter {
public:
static const int NO_INPUT_INDEX = -1;
FrameWriter(Deoptimizer* deoptimizer, FrameDescription* frame,
CodeTracer::Scope* trace_scope)
: deoptimizer_(deoptimizer),
frame_(frame),
trace_scope_(trace_scope),
top_offset_(frame->GetFrameSize()) {}
void PushRawValue(intptr_t value, const char* debug_hint) {
PushValue(value);
if (trace_scope_ != nullptr) {
DebugPrintOutputValue(value, debug_hint);
}
}
void PushRawObject(Object obj, const char* debug_hint) {
intptr_t value = obj.ptr();
PushValue(value);
if (trace_scope_ != nullptr) {
DebugPrintOutputObject(obj, top_offset_, debug_hint);
}
}
// There is no check against the allowed addresses for bottommost frames, as
// the caller's pc could be anything. The caller's pc pushed here should never
// be re-signed.
void PushBottommostCallerPc(intptr_t pc) {
top_offset_ -= kPCOnStackSize;
frame_->SetFrameSlot(top_offset_, pc);
DebugPrintOutputPc(pc, "bottommost caller's pc\n");
}
void PushApprovedCallerPc(intptr_t pc) {
top_offset_ -= kPCOnStackSize;
frame_->SetCallerPc(top_offset_, pc);
DebugPrintOutputPc(pc, "caller's pc\n");
}
void PushCallerFp(intptr_t fp) {
top_offset_ -= kFPOnStackSize;
frame_->SetCallerFp(top_offset_, fp);
DebugPrintOutputValue(fp, "caller's fp\n");
}
void PushCallerConstantPool(intptr_t cp) {
top_offset_ -= kSystemPointerSize;
frame_->SetCallerConstantPool(top_offset_, cp);
DebugPrintOutputValue(cp, "caller's constant_pool\n");
}
void PushTranslatedValue(const TranslatedFrame::iterator& iterator,
const char* debug_hint = "") {
Object obj = iterator->GetRawValue();
PushRawObject(obj, debug_hint);
if (trace_scope_) {
PrintF(trace_scope_->file(), " (input #%d)\n", iterator.input_index());
}
deoptimizer_->QueueValueForMaterialization(output_address(top_offset_), obj,
iterator);
}
void PushStackJSArguments(TranslatedFrame::iterator& iterator,
int parameters_count) {
std::vector<TranslatedFrame::iterator> parameters;
parameters.reserve(parameters_count);
for (int i = 0; i < parameters_count; ++i, ++iterator) {
parameters.push_back(iterator);
}
for (auto& parameter : base::Reversed(parameters)) {
PushTranslatedValue(parameter, "stack parameter");
}
}
unsigned top_offset() const { return top_offset_; }
FrameDescription* frame() { return frame_; }
private:
void PushValue(intptr_t value) {
CHECK_GE(top_offset_, 0);
top_offset_ -= kSystemPointerSize;
frame_->SetFrameSlot(top_offset_, value);
}
Address output_address(unsigned output_offset) {
Address output_address =
static_cast<Address>(frame_->GetTop()) + output_offset;
return output_address;
}
void DebugPrintOutputValue(intptr_t value, const char* debug_hint = "") {
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(),
" " V8PRIxPTR_FMT ": [top + %3d] <- " V8PRIxPTR_FMT " ; %s",
output_address(top_offset_), top_offset_, value, debug_hint);
}
}
void DebugPrintOutputPc(intptr_t value, const char* debug_hint = "") {
#ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(),
" " V8PRIxPTR_FMT ": [top + %3d] <- " V8PRIxPTR_FMT
" (signed) " V8PRIxPTR_FMT " (unsigned) ; %s",
output_address(top_offset_), top_offset_, value,
PointerAuthentication::StripPAC(value), debug_hint);
}
#else
DebugPrintOutputValue(value, debug_hint);
#endif
}
void DebugPrintOutputObject(Object obj, unsigned output_offset,
const char* debug_hint = "") {
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), " " V8PRIxPTR_FMT ": [top + %3d] <- ",
output_address(output_offset), output_offset);
if (obj.IsSmi()) {
PrintF(trace_scope_->file(), V8PRIxPTR_FMT " <Smi %d>", obj.ptr(),
Smi::cast(obj).value());
} else {
obj.ShortPrint(trace_scope_->file());
}
PrintF(trace_scope_->file(), " ; %s", debug_hint);
}
}
Deoptimizer* deoptimizer_;
FrameDescription* frame_;
CodeTracer::Scope* const trace_scope_;
unsigned top_offset_;
};
Code Deoptimizer::FindDeoptimizingCode(Address addr) {
if (function_.IsHeapObject()) {
// Search all deoptimizing code in the native context of the function.
Isolate* isolate = isolate_;
NativeContext native_context = function_.context().native_context();
Object element = native_context.DeoptimizedCodeListHead();
while (!element.IsUndefined(isolate)) {
Code code = Code::cast(element);
CHECK(CodeKindCanDeoptimize(code.kind()));
if (code.contains(addr)) return code;
element = code.next_code_link();
}
}
return Code();
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
Deoptimizer* Deoptimizer::New(Address raw_function, DeoptimizeKind kind,
unsigned bailout_id, Address from,
int fp_to_sp_delta, Isolate* isolate) {
JSFunction function = JSFunction::cast(Object(raw_function));
Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, kind,
bailout_id, from, fp_to_sp_delta);
isolate->set_current_deoptimizer(deoptimizer);
return deoptimizer;
}
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
Deoptimizer* result = isolate->GetAndClearCurrentDeoptimizer();
result->DeleteFrameDescriptions();
return result;
}
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
JavaScriptFrame* frame, int jsframe_index, Isolate* isolate) {
CHECK(frame->is_optimized());
TranslatedState translated_values(frame);
translated_values.Prepare(frame->fp());
TranslatedState::iterator frame_it = translated_values.end();
int counter = jsframe_index;
for (auto it = translated_values.begin(); it != translated_values.end();
it++) {
if (it->kind() == TranslatedFrame::kInterpretedFunction ||
it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
it->kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
if (counter == 0) {
frame_it = it;
break;
}
counter--;
}
}
CHECK(frame_it != translated_values.end());
// We only include kJavaScriptBuiltinContinuation frames above to get the
// counting right.
CHECK_EQ(frame_it->kind(), TranslatedFrame::kInterpretedFunction);
DeoptimizedFrameInfo* info =
new DeoptimizedFrameInfo(&translated_values, frame_it, isolate);
return info;
}
namespace {
class ActivationsFinder : public ThreadVisitor {
public:
explicit ActivationsFinder(std::set<Code>* codes, Code topmost_optimized_code,
bool safe_to_deopt_topmost_optimized_code)
: codes_(codes) {
#ifdef DEBUG
topmost_ = topmost_optimized_code;
safe_to_deopt_ = safe_to_deopt_topmost_optimized_code;
#endif
}
// Find the frames with activations of codes marked for deoptimization, search
// for the trampoline to the deoptimizer call respective to each code, and use
// it to replace the current pc on the stack.
void VisitThread(Isolate* isolate, ThreadLocalTop* top) override {
for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
if (it.frame()->type() == StackFrame::OPTIMIZED) {
Code code = it.frame()->LookupCode();
if (CodeKindCanDeoptimize(code.kind()) &&
code.marked_for_deoptimization()) {
codes_->erase(code);
// Obtain the trampoline to the deoptimizer call.
SafepointEntry safepoint = code.GetSafepointEntry(it.frame()->pc());
int trampoline_pc = safepoint.trampoline_pc();
DCHECK_IMPLIES(code == topmost_, safe_to_deopt_);
// Replace the current pc on the stack with the trampoline.
// TODO(v8:10026): avoid replacing a signed pointer.
Address* pc_addr = it.frame()->pc_address();
Address new_pc = code.raw_instruction_start() + trampoline_pc;
PointerAuthentication::ReplacePC(pc_addr, new_pc, kSystemPointerSize);
}
}
}
}
private:
std::set<Code>* codes_;
#ifdef DEBUG
Code topmost_;
bool safe_to_deopt_;
#endif
};
} // namespace
// Move marked code from the optimized code list to the deoptimized code list,
// and replace pc on the stack for codes marked for deoptimization.
// static
void Deoptimizer::DeoptimizeMarkedCodeForContext(NativeContext native_context) {
DisallowHeapAllocation no_allocation;
Isolate* isolate = native_context.GetIsolate();
Code topmost_optimized_code;
bool safe_to_deopt_topmost_optimized_code = false;
#ifdef DEBUG
// Make sure all activations of optimized code can deopt at their current PC.
// The topmost optimized code has special handling because it cannot be
// deoptimized due to weak object dependency.
for (StackFrameIterator it(isolate, isolate->thread_local_top()); !it.done();
it.Advance()) {
StackFrame::Type type = it.frame()->type();
if (type == StackFrame::OPTIMIZED) {
Code code = it.frame()->LookupCode();
JSFunction function =
static_cast<OptimizedFrame*>(it.frame())->function();
TraceFoundActivation(isolate, function);
SafepointEntry safepoint = code.GetSafepointEntry(it.frame()->pc());
// Turbofan deopt is checked when we are patching addresses on stack.
bool safe_if_deopt_triggered = safepoint.has_deoptimization_index();
bool is_builtin_code = code.kind() == CodeKind::BUILTIN;
DCHECK(topmost_optimized_code.is_null() || safe_if_deopt_triggered ||
is_builtin_code);
if (topmost_optimized_code.is_null()) {
topmost_optimized_code = code;
safe_to_deopt_topmost_optimized_code = safe_if_deopt_triggered;
}
}
}
#endif
// We will use this set to mark those Code objects that are marked for
// deoptimization and have not been found in stack frames.
std::set<Code> codes;
// Move marked code from the optimized code list to the deoptimized code list.
// Walk over all optimized code objects in this native context.
Code prev;
Object element = native_context.OptimizedCodeListHead();
while (!element.IsUndefined(isolate)) {
Code code = Code::cast(element);
CHECK(CodeKindCanDeoptimize(code.kind()));
Object next = code.next_code_link();
if (code.marked_for_deoptimization()) {
codes.insert(code);
if (!prev.is_null()) {
// Skip this code in the optimized code list.
prev.set_next_code_link(next);
} else {
// There was no previous node, the next node is the new head.
native_context.SetOptimizedCodeListHead(next);
}
// Move the code to the _deoptimized_ code list.
code.set_next_code_link(native_context.DeoptimizedCodeListHead());
native_context.SetDeoptimizedCodeListHead(code);
} else {
// Not marked; preserve this element.
prev = code;
}
element = next;
}
ActivationsFinder visitor(&codes, topmost_optimized_code,
safe_to_deopt_topmost_optimized_code);
// Iterate over the stack of this thread.
visitor.VisitThread(isolate, isolate->thread_local_top());
// In addition to iterate over the stack of this thread, we also
// need to consider all the other threads as they may also use
// the code currently beings deoptimized.
isolate->thread_manager()->IterateArchivedThreads(&visitor);
// If there's no activation of a code in any stack then we can remove its
// deoptimization data. We do this to ensure that code objects that are
// unlinked don't transitively keep objects alive unnecessarily.
for (Code code : codes) {
isolate->heap()->InvalidateCodeDeoptimizationData(code);
}
native_context.GetOSROptimizedCodeCache().EvictMarkedCode(
native_context.GetIsolate());
}
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
RuntimeCallTimerScope runtimeTimer(isolate,
RuntimeCallCounterId::kDeoptimizeCode);
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
TraceDeoptAll(isolate);
isolate->AbortConcurrentOptimization(BlockingBehavior::kBlock);
DisallowHeapAllocation no_allocation;
// For all contexts, mark all code, then deoptimize.
Object context = isolate->heap()->native_contexts_list();
while (!context.IsUndefined(isolate)) {
NativeContext native_context = NativeContext::cast(context);
MarkAllCodeForContext(native_context);
OSROptimizedCodeCache::Clear(native_context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context.next_context_link();
}
}
void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
RuntimeCallTimerScope runtimeTimer(isolate,
RuntimeCallCounterId::kDeoptimizeCode);
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
TraceDeoptMarked(isolate);
DisallowHeapAllocation no_allocation;
// For all contexts, deoptimize code already marked.
Object context = isolate->heap()->native_contexts_list();
while (!context.IsUndefined(isolate)) {
NativeContext native_context = NativeContext::cast(context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context.next_context_link();
}
}
void Deoptimizer::MarkAllCodeForContext(NativeContext native_context) {
Object element = native_context.OptimizedCodeListHead();
Isolate* isolate = native_context.GetIsolate();
while (!element.IsUndefined(isolate)) {
Code code = Code::cast(element);
CHECK(CodeKindCanDeoptimize(code.kind()));
code.set_marked_for_deoptimization(true);
element = code.next_code_link();
}
}
void Deoptimizer::DeoptimizeFunction(JSFunction function, Code code) {
Isolate* isolate = function.GetIsolate();
RuntimeCallTimerScope runtimeTimer(isolate,
RuntimeCallCounterId::kDeoptimizeCode);
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
function.ResetIfBytecodeFlushed();
if (code.is_null()) code = function.code();
if (CodeKindCanDeoptimize(code.kind())) {
// Mark the code for deoptimization and unlink any functions that also
// refer to that code. The code cannot be shared across native contexts,
// so we only need to search one.
code.set_marked_for_deoptimization(true);
// The code in the function's optimized code feedback vector slot might
// be different from the code on the function - evict it if necessary.
function.feedback_vector().EvictOptimizedCodeMarkedForDeoptimization(
function.shared(), "unlinking code marked for deopt");
if (!code.deopt_already_counted()) {
code.set_deopt_already_counted(true);
}
DeoptimizeMarkedCodeForContext(function.context().native_context());
// TODO(mythria): Ideally EvictMarkCode should compact the cache without
// having to explicitly call this. We don't do this currently because
// compacting causes GC and DeoptimizeMarkedCodeForContext uses raw
// pointers. Update DeoptimizeMarkedCodeForContext to use handles and remove
// this call from here.
OSROptimizedCodeCache::Compact(
Handle<NativeContext>(function.context().native_context(), isolate));
}
}
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
deoptimizer->DoComputeOutputFrames();
}
const char* Deoptimizer::MessageFor(DeoptimizeKind kind, bool reuse_code) {
DCHECK_IMPLIES(reuse_code, kind == DeoptimizeKind::kSoft);
switch (kind) {
case DeoptimizeKind::kEager:
return "deopt-eager";
case DeoptimizeKind::kSoft:
return reuse_code ? "bailout-soft" : "deopt-soft";
case DeoptimizeKind::kLazy:
return "deopt-lazy";
case DeoptimizeKind::kBailout:
return "bailout";
}
}
namespace {
uint16_t InternalFormalParameterCountWithReceiver(SharedFunctionInfo sfi) {
static constexpr int kTheReceiver = 1;
return sfi.internal_formal_parameter_count() + kTheReceiver;
}
} // namespace
Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction function,
DeoptimizeKind kind, unsigned bailout_id, Address from,
int fp_to_sp_delta)
: isolate_(isolate),
function_(function),
bailout_id_(bailout_id),
deopt_kind_(kind),
from_(from),
fp_to_sp_delta_(fp_to_sp_delta),
deoptimizing_throw_(false),
catch_handler_data_(-1),
catch_handler_pc_offset_(-1),
input_(nullptr),
output_count_(0),
jsframe_count_(0),
output_(nullptr),
caller_frame_top_(0),
caller_fp_(0),
caller_pc_(0),
caller_constant_pool_(0),
input_frame_context_(0),
actual_argument_count_(0),
stack_fp_(0),
trace_scope_(FLAG_trace_deopt
? new CodeTracer::Scope(isolate->GetCodeTracer())
: nullptr) {
if (isolate->deoptimizer_lazy_throw()) {
isolate->set_deoptimizer_lazy_throw(false);
deoptimizing_throw_ = true;
}
DCHECK(bailout_id_ == kFixedExitSizeMarker ||
bailout_id_ < kMaxNumberOfEntries);
DCHECK_NE(from, kNullAddress);
compiled_code_ = FindOptimizedCode();
DCHECK(!compiled_code_.is_null());
DCHECK(function.IsJSFunction());
#ifdef DEBUG
DCHECK(AllowHeapAllocation::IsAllowed());
DCHECK(AllowGarbageCollection::IsAllowed());
disallow_garbage_collection_ = new DisallowGarbageCollection();
#endif // DEBUG
CHECK(CodeKindCanDeoptimize(compiled_code_.kind()));
if (!compiled_code_.deopt_already_counted() &&
deopt_kind_ == DeoptimizeKind::kSoft) {
isolate->counters()->soft_deopts_executed()->Increment();
}
compiled_code_.set_deopt_already_counted(true);
{
HandleScope scope(isolate_);
PROFILE(isolate_,
CodeDeoptEvent(handle(compiled_code_, isolate_), kind, from_,
fp_to_sp_delta_, should_reuse_code()));
}
unsigned size = ComputeInputFrameSize();
const int parameter_count =
InternalFormalParameterCountWithReceiver(function.shared());
input_ = new (size) FrameDescription(size, parameter_count);
if (kSupportsFixedDeoptExitSizes) {
DCHECK_EQ(bailout_id_, kFixedExitSizeMarker);
// Calculate bailout id from return address.
DCHECK_GT(kNonLazyDeoptExitSize, 0);
DCHECK_GT(kLazyDeoptExitSize, 0);
DeoptimizationData deopt_data =
DeoptimizationData::cast(compiled_code_.deoptimization_data());
Address deopt_start = compiled_code_.raw_instruction_start() +
deopt_data.DeoptExitStart().value();
int non_lazy_deopt_count = deopt_data.NonLazyDeoptCount().value();
Address lazy_deopt_start =
deopt_start + non_lazy_deopt_count * kNonLazyDeoptExitSize;
// The deoptimization exits are sorted so that lazy deopt exits appear last.
static_assert(DeoptimizeKind::kLazy == kLastDeoptimizeKind,
"lazy deopts are expected to be emitted last");
// from_ is the value of the link register after the call to the
// deoptimizer, so for the last lazy deopt, from_ points to the first
// non-lazy deopt, so we use <=.
if (from_ <= lazy_deopt_start) {
int offset =
static_cast<int>(from_ - kNonLazyDeoptExitSize - deopt_start);
DCHECK_EQ(0, offset % kNonLazyDeoptExitSize);
bailout_id_ = offset / kNonLazyDeoptExitSize;
} else {
int offset =
static_cast<int>(from_ - kLazyDeoptExitSize - lazy_deopt_start);
DCHECK_EQ(0, offset % kLazyDeoptExitSize);
bailout_id_ = non_lazy_deopt_count + (offset / kLazyDeoptExitSize);
}
}
}
Code Deoptimizer::FindOptimizedCode() {
Code compiled_code = FindDeoptimizingCode(from_);
return !compiled_code.is_null() ? compiled_code
: isolate_->FindCodeObject(from_);
}
Handle<JSFunction> Deoptimizer::function() const {
return Handle<JSFunction>(function_, isolate());
}
Handle<Code> Deoptimizer::compiled_code() const {
return Handle<Code>(compiled_code_, isolate());
}
bool Deoptimizer::should_reuse_code() const {
int count = compiled_code_.deoptimization_count();
return deopt_kind_ == DeoptimizeKind::kSoft &&
count < FLAG_reuse_opt_code_count;
}
Deoptimizer::~Deoptimizer() {
DCHECK(input_ == nullptr && output_ == nullptr);
DCHECK_NULL(disallow_garbage_collection_);
}
void Deoptimizer::DeleteFrameDescriptions() {
delete input_;
for (int i = 0; i < output_count_; ++i) {
if (output_[i] != input_) delete output_[i];
}
delete[] output_;
input_ = nullptr;
output_ = nullptr;
#ifdef DEBUG
DCHECK(!AllowGarbageCollection::IsAllowed());
DCHECK_NOT_NULL(disallow_garbage_collection_);
delete disallow_garbage_collection_;
disallow_garbage_collection_ = nullptr;
#endif // DEBUG
}
Builtins::Name Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
DeoptimizeKind kind) {
switch (kind) {
case DeoptimizeKind::kEager:
return Builtins::kDeoptimizationEntry_Eager;
case DeoptimizeKind::kSoft:
return Builtins::kDeoptimizationEntry_Soft;
case DeoptimizeKind::kBailout:
return Builtins::kDeoptimizationEntry_Bailout;
case DeoptimizeKind::kLazy:
return Builtins::kDeoptimizationEntry_Lazy;
}
}
bool Deoptimizer::IsDeoptimizationEntry(Isolate* isolate, Address addr,
DeoptimizeKind* type_out) {
Code maybe_code = InstructionStream::TryLookupCode(isolate, addr);
if (maybe_code.is_null()) return false;
Code code = maybe_code;
switch (code.builtin_index()) {
case Builtins::kDeoptimizationEntry_Eager:
*type_out = DeoptimizeKind::kEager;
return true;
case Builtins::kDeoptimizationEntry_Soft:
*type_out = DeoptimizeKind::kSoft;
return true;
case Builtins::kDeoptimizationEntry_Bailout:
*type_out = DeoptimizeKind::kBailout;
return true;
case Builtins::kDeoptimizationEntry_Lazy:
*type_out = DeoptimizeKind::kLazy;
return true;
default:
return false;
}
UNREACHABLE();
}
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
int length = 0;
// Count all entries in the deoptimizing code list of every context.
Object context = isolate->heap()->native_contexts_list();
while (!context.IsUndefined(isolate)) {
NativeContext native_context = NativeContext::cast(context);
Object element = native_context.DeoptimizedCodeListHead();
while (!element.IsUndefined(isolate)) {
Code code = Code::cast(element);
DCHECK(CodeKindCanDeoptimize(code.kind()));
if (!code.marked_for_deoptimization()) {
length++;
}
element = code.next_code_link();
}
context = Context::cast(context).next_context_link();
}
return length;
}
namespace {
int LookupCatchHandler(TranslatedFrame* translated_frame, int* data_out) {
switch (translated_frame->kind()) {
case TranslatedFrame::kInterpretedFunction: {
int bytecode_offset = translated_frame->node_id().ToInt();
HandlerTable table(
translated_frame->raw_shared_info().GetBytecodeArray());
return table.LookupRange(bytecode_offset, data_out, nullptr);
}
case TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch: {
return 0;
}
default:
break;
}
return -1;
}
} // namespace
void Deoptimizer::TraceDeoptBegin(int optimization_id, int node_id) {
DCHECK(tracing_enabled());
FILE* file = trace_scope()->file();
Deoptimizer::DeoptInfo info =
Deoptimizer::GetDeoptInfo(compiled_code_, from_);
PrintF(file, "[bailout (kind: %s, reason: %s): begin. deoptimizing ",
MessageFor(deopt_kind_, should_reuse_code()),
DeoptimizeReasonToString(info.deopt_reason));
if (function_.IsJSFunction()) {
function_.ShortPrint(file);
} else {
PrintF(file, "%s", CodeKindToString(compiled_code_.kind()));
}
PrintF(file,
", opt id %d, node id %d, bailout id %d, FP to SP delta %d, "
"caller SP " V8PRIxPTR_FMT ", pc " V8PRIxPTR_FMT "]\n",
optimization_id, node_id, bailout_id_, fp_to_sp_delta_,
caller_frame_top_, PointerAuthentication::StripPAC(from_));
if (verbose_tracing_enabled() && deopt_kind_ != DeoptimizeKind::kLazy) {
PrintF(file, " ;;; deoptimize at ");
OFStream outstr(file);
info.position.Print(outstr, compiled_code_);
PrintF(file, "\n");
}
}
void Deoptimizer::TraceDeoptEnd(double deopt_duration) {
DCHECK(verbose_tracing_enabled());
PrintF(trace_scope()->file(), "[bailout end. took %0.3f ms]\n",
deopt_duration);
}
// static
void Deoptimizer::TraceMarkForDeoptimization(Code code, const char* reason) {
if (!FLAG_trace_deopt_verbose) return;
DisallowHeapAllocation no_gc;
Isolate* isolate = code.GetIsolate();
Object maybe_data = code.deoptimization_data();
if (maybe_data == ReadOnlyRoots(isolate).empty_fixed_array()) return;
DeoptimizationData deopt_data = DeoptimizationData::cast(maybe_data);
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[marking dependent code " V8PRIxPTR_FMT " (",
code.ptr());
deopt_data.SharedFunctionInfo().ShortPrint(scope.file());
PrintF(") (opt id %d) for deoptimization, reason: %s]\n",
deopt_data.OptimizationId().value(), reason);
{
AllowHeapAllocation yes_gc;
HandleScope scope(isolate);
PROFILE(
isolate,
CodeDependencyChangeEvent(
handle(code, isolate),
handle(SharedFunctionInfo::cast(deopt_data.SharedFunctionInfo()),
isolate),
reason));
}
}
// static
void Deoptimizer::TraceEvictFromOptimizedCodeCache(SharedFunctionInfo sfi,
const char* reason) {
if (!FLAG_trace_deopt_verbose) return;
DisallowHeapAllocation no_gc;
CodeTracer::Scope scope(sfi.GetIsolate()->GetCodeTracer());
PrintF(scope.file(),
"[evicting optimized code marked for deoptimization (%s) for ",
reason);
sfi.ShortPrint(scope.file());
PrintF(scope.file(), "]\n");
}
#ifdef DEBUG
// static
void Deoptimizer::TraceFoundActivation(Isolate* isolate, JSFunction function) {
if (!FLAG_trace_deopt_verbose) return;
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimizer found activation of function: ");
function.PrintName(scope.file());
PrintF(scope.file(), " / %" V8PRIxPTR "]\n", function.ptr());
}
#endif // DEBUG
// static
void Deoptimizer::TraceDeoptAll(Isolate* isolate) {
if (!FLAG_trace_deopt_verbose) return;
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
}
// static
void Deoptimizer::TraceDeoptMarked(Isolate* isolate) {
if (!FLAG_trace_deopt_verbose) return;
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
void Deoptimizer::DoComputeOutputFrames() {
// When we call this function, the return address of the previous frame has
// been removed from the stack by the DeoptimizationEntry builtin, so the
// stack is not iterable by the SafeStackFrameIterator.
#if V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK
DCHECK_EQ(0, isolate()->isolate_data()->stack_is_iterable());
#endif
base::ElapsedTimer timer;
// Determine basic deoptimization information. The optimized frame is
// described by the input data.
DeoptimizationData input_data =
DeoptimizationData::cast(compiled_code_.deoptimization_data());
{
// Read caller's PC, caller's FP and caller's constant pool values
// from input frame. Compute caller's frame top address.
Register fp_reg = JavaScriptFrame::fp_register();
stack_fp_ = input_->GetRegister(fp_reg.code());
caller_frame_top_ = stack_fp_ + ComputeInputFrameAboveFpFixedSize();
Address fp_address = input_->GetFramePointerAddress();
caller_fp_ = Memory<intptr_t>(fp_address);
caller_pc_ =
Memory<intptr_t>(fp_address + CommonFrameConstants::kCallerPCOffset);
input_frame_context_ = Memory<intptr_t>(
fp_address + CommonFrameConstants::kContextOrFrameTypeOffset);
actual_argument_count_ = static_cast<int>(
Memory<intptr_t>(fp_address + StandardFrameConstants::kArgCOffset));
if (FLAG_enable_embedded_constant_pool) {
caller_constant_pool_ = Memory<intptr_t>(
fp_address + CommonFrameConstants::kConstantPoolOffset);
}
}
StackGuard* const stack_guard = isolate()->stack_guard();
CHECK_GT(static_cast<uintptr_t>(caller_frame_top_),
stack_guard->real_jslimit());
BailoutId node_id = input_data.BytecodeOffset(bailout_id_);
ByteArray translations = input_data.TranslationByteArray();
unsigned translation_index = input_data.TranslationIndex(bailout_id_).value();
if (tracing_enabled()) {
timer.Start();
TraceDeoptBegin(input_data.OptimizationId().value(), node_id.ToInt());
}
FILE* trace_file =
verbose_tracing_enabled() ? trace_scope()->file() : nullptr;
TranslationIterator state_iterator(translations, translation_index);
translated_state_.Init(
isolate_, input_->GetFramePointerAddress(), stack_fp_, &state_iterator,
input_data.LiteralArray(), input_->GetRegisterValues(), trace_file,
function_.IsHeapObject()
? function_.shared().internal_formal_parameter_count()
: 0,
actual_argument_count_);
// Do the input frame to output frame(s) translation.
size_t count = translated_state_.frames().size();
// If we are supposed to go to the catch handler, find the catching frame
// for the catch and make sure we only deoptimize up to that frame.
if (deoptimizing_throw_) {
size_t catch_handler_frame_index = count;
for (size_t i = count; i-- > 0;) {
catch_handler_pc_offset_ = LookupCatchHandler(
&(translated_state_.frames()[i]), &catch_handler_data_);
if (catch_handler_pc_offset_ >= 0) {
catch_handler_frame_index = i;
break;
}
}
CHECK_LT(catch_handler_frame_index, count);
count = catch_handler_frame_index + 1;
}
DCHECK_NULL(output_);
output_ = new FrameDescription*[count];
for (size_t i = 0; i < count; ++i) {
output_[i] = nullptr;
}
output_count_ = static_cast<int>(count);
// Translate each output frame.
int frame_index = 0; // output_frame_index
size_t total_output_frame_size = 0;
for (size_t i = 0; i < count; ++i, ++frame_index) {
// Read the ast node id, function, and frame height for this output frame.
TranslatedFrame* translated_frame = &(translated_state_.frames()[i]);
bool handle_exception = deoptimizing_throw_ && i == count - 1;
switch (translated_frame->kind()) {
case TranslatedFrame::kInterpretedFunction:
DoComputeInterpretedFrame(translated_frame, frame_index,
handle_exception);
jsframe_count_++;
break;
case TranslatedFrame::kArgumentsAdaptor:
DoComputeArgumentsAdaptorFrame(translated_frame, frame_index);
break;
case TranslatedFrame::kConstructStub:
DoComputeConstructStubFrame(translated_frame, frame_index);
break;
case TranslatedFrame::kBuiltinContinuation:
DoComputeBuiltinContinuation(translated_frame, frame_index,
BuiltinContinuationMode::STUB);
break;
case TranslatedFrame::kJavaScriptBuiltinContinuation:
DoComputeBuiltinContinuation(translated_frame, frame_index,
BuiltinContinuationMode::JAVASCRIPT);
break;
case TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch:
DoComputeBuiltinContinuation(
translated_frame, frame_index,
handle_exception
? BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION
: BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH);
break;
case TranslatedFrame::kInvalid:
FATAL("invalid frame");
break;
}
total_output_frame_size += output_[frame_index]->GetFrameSize();
}
FrameDescription* topmost = output_[count - 1];
topmost->GetRegisterValues()->SetRegister(kRootRegister.code(),
isolate()->isolate_root());
// Print some helpful diagnostic information.
if (verbose_tracing_enabled()) {
TraceDeoptEnd(timer.Elapsed().InMillisecondsF());
}
// The following invariant is fairly tricky to guarantee, since the size of
// an optimized frame and its deoptimized counterparts usually differs. We
// thus need to consider the case in which deoptimized frames are larger than
// the optimized frame in stack checks in optimized code. We do this by
// applying an offset to stack checks (see kArchStackPointerGreaterThan in the
// code generator).
// Note that we explicitly allow deopts to exceed the limit by a certain
// number of slack bytes.
CHECK_GT(
static_cast<uintptr_t>(caller_frame_top_) - total_output_frame_size,
stack_guard->real_jslimit() - kStackLimitSlackForDeoptimizationInBytes);
}
void Deoptimizer::DoComputeInterpretedFrame(TranslatedFrame* translated_frame,
int frame_index,
bool goto_catch_handler) {
SharedFunctionInfo shared = translated_frame->raw_shared_info();
TranslatedFrame::iterator value_iterator = translated_frame->begin();
const bool is_bottommost = (0 == frame_index);
const bool is_topmost = (output_count_ - 1 == frame_index);
const int real_bytecode_offset = translated_frame->node_id().ToInt();
const int bytecode_offset =
goto_catch_handler ? catch_handler_pc_offset_ : real_bytecode_offset;
const int parameters_count = InternalFormalParameterCountWithReceiver(shared);
#ifdef V8_NO_ARGUMENTS_ADAPTOR
// If this is the bottom most frame or the previous frame was the arguments
// adaptor fake frame, then we already have extra arguments in the stack
// (including any extra padding). Therefore we should not try to add any
// padding.
bool should_pad_arguments =
!is_bottommost && (translated_state_.frames()[frame_index - 1]).kind() !=
TranslatedFrame::kArgumentsAdaptor;
#else
bool should_pad_arguments = true;
#endif
const int locals_count = translated_frame->height();
InterpretedFrameInfo frame_info = InterpretedFrameInfo::Precise(
parameters_count, locals_count, is_topmost, should_pad_arguments);
const uint32_t output_frame_size = frame_info.frame_size_in_bytes();
TranslatedFrame::iterator function_iterator = value_iterator++;
if (verbose_tracing_enabled()) {
PrintF(trace_scope()->file(), " translating interpreted frame ");
std::unique_ptr<char[]> name = shared.DebugName().ToCString();
PrintF(trace_scope()->file(), "%s", name.get());
PrintF(trace_scope()->file(),
" => bytecode_offset=%d, variable_frame_size=%d, frame_size=%d%s\n",
real_bytecode_offset, frame_info.frame_size_in_bytes_without_fixed(),
output_frame_size, goto_catch_handler ? " (throw)" : "");
}
// Allocate and store the output frame description.
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, parameters_count);
FrameWriter frame_writer(this, output_frame, verbose_trace_scope());
CHECK(frame_index >= 0 && frame_index < output_count_);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
const intptr_t top_address =
is_bottommost ? caller_frame_top_ - output_frame_size
: output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
ReadOnlyRoots roots(isolate());
if (should_pad_arguments && ShouldPadArguments(parameters_count)) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// Note: parameters_count includes the receiver.
if (verbose_tracing_enabled() && is_bottommost &&
actual_argument_count_ > parameters_count - 1) {
PrintF(trace_scope_->file(),
" -- %d extra argument(s) already in the stack --\n",
actual_argument_count_ - parameters_count + 1);
}
frame_writer.PushStackJSArguments(value_iterator, parameters_count);
DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(should_pad_arguments),
frame_writer.top_offset());
if (verbose_tracing_enabled()) {
PrintF(trace_scope()->file(), " -------------------------\n");
}
// There are no translation commands for the caller's pc and fp, the
// context, the function and the bytecode offset. Synthesize
// their values and set them up
// explicitly.
//
// The caller's pc for the bottommost output frame is the same as in the
// input frame. For all subsequent output frames, it can be read from the
// previous one. This frame's pc can be computed from the non-optimized
// function code and AST id of the bailout.
if (is_bottommost) {
frame_writer.PushBottommostCallerPc(caller_pc_);
} else {
frame_writer.PushApprovedCallerPc(output_[frame_index - 1]->GetPc());
}
// The caller's frame pointer for the bottommost output frame is the same
// as in the input frame. For all subsequent output frames, it can be
// read from the previous one. Also compute and set this frame's frame
// pointer.
const intptr_t caller_fp =
is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp();
frame_writer.PushCallerFp(caller_fp);
const intptr_t fp_value = top_address + frame_writer.top_offset();
output_frame->SetFp(fp_value);
if (is_topmost) {
Register fp_reg = InterpretedFrame::fp_register();
output_frame->SetRegister(fp_reg.code(), fp_value);
}
if (FLAG_enable_embedded_constant_pool) {
// For the bottommost output frame the constant pool pointer can be gotten
// from the input frame. For subsequent output frames, it can be read from
// the previous frame.
const intptr_t caller_cp =
is_bottommost ? caller_constant_pool_
: output_[frame_index - 1]->GetConstantPool();
frame_writer.PushCallerConstantPool(caller_cp);
}
// For the bottommost output frame the context can be gotten from the input
// frame. For all subsequent output frames it can be gotten from the function
// so long as we don't inline functions that need local contexts.
// When deoptimizing into a catch block, we need to take the context
// from a register that was specified in the handler table.
TranslatedFrame::iterator context_pos = value_iterator++;
if (goto_catch_handler) {
// Skip to the translated value of the register specified
// in the handler table.
for (int i = 0; i < catch_handler_data_ + 1; ++i) {
context_pos++;
}
}
// Read the context from the translations.
Object context = context_pos->GetRawValue();
output_frame->SetContext(static_cast<intptr_t>(context.ptr()));
frame_writer.PushTranslatedValue(context_pos, "context");
// The function was mentioned explicitly in the BEGIN_FRAME.
frame_writer.PushTranslatedValue(function_iterator, "function");
// Actual argument count.
int argc;
if (is_bottommost) {
argc = actual_argument_count_;
} else {
TranslatedFrame::Kind previous_frame_kind =
(translated_state_.frames()[frame_index - 1]).kind();
argc = previous_frame_kind == TranslatedFrame::kArgumentsAdaptor
? output_[frame_index - 1]->parameter_count()
: parameters_count - 1;
}
frame_writer.PushRawValue(argc, "actual argument count\n");
// Set the bytecode array pointer.
Object bytecode_array = shared.HasBreakInfo()
? shared.GetDebugInfo().DebugBytecodeArray()
: shared.GetBytecodeArray();
frame_writer.PushRawObject(bytecode_array, "bytecode array\n");
// The bytecode offset was mentioned explicitly in the BEGIN_FRAME.
const int raw_bytecode_offset =
BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset;
Smi smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset);
frame_writer.PushRawObject(smi_bytecode_offset, "bytecode offset\n");
if (verbose_tracing_enabled()) {
PrintF(trace_scope()->file(), " -------------------------\n");
}
// Translate the rest of the interpreter registers in the frame.
// The return_value_offset is counted from the top. Here, we compute the
// register index (counted from the start).
const int return_value_first_reg =
locals_count - translated_frame->return_value_offset();
const int return_value_count = translated_frame->return_value_count();
for (int i = 0; i < locals_count; ++i, ++value_iterator) {
// Ensure we write the return value if we have one and we are returning
// normally to a lazy deopt point.
if (is_topmost && !goto_catch_handler &&
deopt_kind_ == DeoptimizeKind::kLazy && i >= return_value_first_reg &&
i < return_value_first_reg + return_value_count) {
const int return_index = i - return_value_first_reg;
if (return_index == 0) {
frame_writer.PushRawValue(input_->GetRegister(kReturnRegister0.code()),
"return value 0\n");
// We do not handle the situation when one return value should go into
// the accumulator and another one into an ordinary register. Since
// the interpreter should never create such situation, just assert
// this does not happen.
CHECK_LE(return_value_first_reg + return_value_count, locals_count);
} else {
CHECK_EQ(return_index, 1);
frame_writer.PushRawValue(input_->GetRegister(kReturnRegister1.code()),
"return value 1\n");
}
} else {
// This is not return value, just write the value from the translations.
frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
}
}
uint32_t register_slots_written = static_cast<uint32_t>(locals_count);
DCHECK_LE(register_slots_written, frame_info.register_stack_slot_count());
// Some architectures must pad the stack frame with extra stack slots
// to ensure the stack frame is aligned. Do this now.
while (register_slots_written < frame_info.register_stack_slot_count()) {
register_slots_written++;
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// Translate the accumulator register (depending on frame position).
if (is_topmost) {
if (kPadArguments) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// For topmost frame, put the accumulator on the stack. The
// {NotifyDeoptimized} builtin pops it off the topmost frame (possibly
// after materialization).
if (goto_catch_handler) {
// If we are lazy deopting to a catch handler, we set the accumulator to
// the exception (which lives in the result register).
intptr_t accumulator_value =
input_->GetRegister(kInterpreterAccumulatorRegister.code());
frame_writer.PushRawObject(Object(accumulator_value), "accumulator\n");
} else {
// If we are lazily deoptimizing make sure we store the deopt
// return value into the appropriate slot.
if (deopt_kind_ == DeoptimizeKind::kLazy &&
translated_frame->return_value_offset() == 0 &&
translated_frame->return_value_count() > 0) {
CHECK_EQ(translated_frame->return_value_count(), 1);
frame_writer.PushRawValue(input_->GetRegister(kReturnRegister0.code()),
"return value 0\n");
} else {
frame_writer.PushTranslatedValue(value_iterator, "accumulator");
}
}
++value_iterator; // Move over the accumulator.
} else {
// For non-topmost frames, skip the accumulator translation. For those
// frames, the return value from the callee will become the accumulator.
++value_iterator;
}
CHECK_EQ(translated_frame->end(), value_iterator);
CHECK_EQ(0u, frame_writer.top_offset());
// Compute this frame's PC and state. The PC will be a special builtin that
// continues the bytecode dispatch. Note that non-topmost and lazy-style
// bailout handlers also advance the bytecode offset before dispatch, hence
// simulating what normal handlers do upon completion of the operation.
Builtins* builtins = isolate_->builtins();
Code dispatch_builtin =
(!is_topmost || (deopt_kind_ == DeoptimizeKind::kLazy)) &&
!goto_catch_handler
? builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance)
: builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
if (is_topmost) {
// Only the pc of the topmost frame needs to be signed since it is
// authenticated at the end of the DeoptimizationEntry builtin.
const intptr_t top_most_pc = PointerAuthentication::SignAndCheckPC(
static_cast<intptr_t>(dispatch_builtin.InstructionStart()),
frame_writer.frame()->GetTop());
output_frame->SetPc(top_most_pc);
} else {
output_frame->SetPc(
static_cast<intptr_t>(dispatch_builtin.InstructionStart()));
}
// Update constant pool.
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
static_cast<intptr_t>(dispatch_builtin.constant_pool());
output_frame->SetConstantPool(constant_pool_value);
if (is_topmost) {
Register constant_pool_reg =
InterpretedFrame::constant_pool_pointer_register();
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
}
// Clear the context register. The context might be a de-materialized object
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
// safety we use Smi(0) instead of the potential {arguments_marker} here.
if (is_topmost) {
intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr());
Register context_reg = JavaScriptFrame::context_register();
output_frame->SetRegister(context_reg.code(), context_value);
// Set the continuation for the topmost frame.
Code continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
output_frame->SetContinuation(
static_cast<intptr_t>(continuation.InstructionStart()));
}
}
void Deoptimizer::DoComputeArgumentsAdaptorFrame(
TranslatedFrame* translated_frame, int frame_index) {
// Arguments adaptor can not be top most, nor the bottom most frames.
CHECK(frame_index < output_count_ - 1);
CHECK_GT(frame_index, 0);
CHECK_NULL(output_[frame_index]);
#ifdef V8_NO_ARGUMENTS_ADAPTOR
// During execution, V8 does not understand arguments adaptor frames anymore,
// so during deoptimization we only push the extra arguments (arguments with
// index greater than the formal parameter count). Therefore we call this
// TranslatedFrame the fake adaptor frame. For more info, see the design
// document shorturl.at/fKT49.
TranslatedFrame::iterator value_iterator = translated_frame->begin();
const int argument_count_without_receiver = translated_frame->height() - 1;
const int formal_parameter_count =
translated_frame->raw_shared_info().internal_formal_parameter_count();
const int extra_argument_count =
argument_count_without_receiver - formal_parameter_count;
// The number of pushed arguments is the maximum of the actual argument count
// and the formal parameter count + the receiver.
const bool should_pad_args = ShouldPadArguments(
std::max(argument_count_without_receiver, formal_parameter_count) + 1);
const int output_frame_size =
std::max(0, extra_argument_count * kSystemPointerSize) +
(should_pad_args ? kSystemPointerSize : 0);
if (verbose_tracing_enabled()) {
PrintF(trace_scope_->file(),
" translating arguments adaptor => variable_size=%d\n",
output_frame_size);
}
// Allocate and store the output frame description.
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, argument_count_without_receiver);
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
const intptr_t top_address =
output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// This is not a real frame, we take PC and FP values from the parent frame.
output_frame->SetPc(output_[frame_index - 1]->GetPc());
output_frame->SetFp(output_[frame_index - 1]->GetFp());
output_[frame_index] = output_frame;
FrameWriter frame_writer(this, output_frame, verbose_trace_scope());
ReadOnlyRoots roots(isolate());
if (should_pad_args) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
if (extra_argument_count > 0) {
// The receiver and arguments with index below the formal parameter
// count are in the fake adaptor frame, because they are used to create the
// arguments object. We should however not push them, since the interpreter
// frame with do that.
value_iterator++; // Skip function.
value_iterator++; // Skip receiver.
for (int i = 0; i < formal_parameter_count; i++) value_iterator++;
frame_writer.PushStackJSArguments(value_iterator, extra_argument_count);
}
#else
TranslatedFrame::iterator value_iterator = translated_frame->begin();
const bool is_bottommost = (0 == frame_index);
const int parameters_count = translated_frame->height();
ArgumentsAdaptorFrameInfo frame_info =
ArgumentsAdaptorFrameInfo::Precise(parameters_count);
const uint32_t output_frame_size = frame_info.frame_size_in_bytes();
TranslatedFrame::iterator function_iterator = value_iterator++;
if (verbose_tracing_enabled()) {
PrintF(trace_scope()->file(),
" translating arguments adaptor => variable_frame_size=%d, "
"frame_size=%d\n",
frame_info.frame_size_in_bytes_without_fixed(), output_frame_size);
}
// Allocate and store the output frame description.
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, parameters_count);
FrameWriter frame_writer(this, output_frame, verbose_trace_scope());
// Arguments adaptor can not be topmost.
CHECK(frame_index < output_count_ - 1);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
const intptr_t top_address =
is_bottommost ? caller_frame_top_ - output_frame_size
: output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
ReadOnlyRoots roots(isolate());
if (ShouldPadArguments(parameters_count)) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// Compute the incoming parameter translation.
frame_writer.PushStackJSArguments(value_iterator, parameters_count);
DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
frame_writer.top_offset());
// Read caller's PC from the previous frame.
if (is_bottommost) {
frame_writer.PushBottommostCallerPc(caller_pc_);
} else {
frame_writer.PushApprovedCallerPc(output_[frame_index - 1]->GetPc());
}
// Read caller's FP from the previous frame, and set this frame's FP.
const intptr_t caller_fp =
is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp();
frame_writer.PushCallerFp(caller_fp);
intptr_t fp_value = top_address + frame_writer.top_offset();
output_frame->SetFp(fp_value);
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
const intptr_t caller_cp =
is_bottommost ? caller_constant_pool_
: output_[frame_index - 1]->GetConstantPool();
frame_writer.PushCallerConstantPool(caller_cp);
}
// A marker value is used in place of the context.
intptr_t marker = StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR);
frame_writer.PushRawValue(marker, "context (adaptor sentinel)\n");
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
frame_writer.PushTranslatedValue(function_iterator, "function\n");
// Number of incoming arguments.
const uint32_t parameters_count_without_receiver = parameters_count - 1;
frame_writer.PushRawObject(Smi::FromInt(parameters_count_without_receiver),
"argc\n");
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
CHECK_EQ(translated_frame->end(), value_iterator);
DCHECK_EQ(0, frame_writer.top_offset());
Builtins* builtins = isolate_->builtins();
Code adaptor_trampoline =
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
intptr_t pc_value = static_cast<intptr_t>(
adaptor_trampoline.InstructionStart() +
isolate_->heap()->arguments_adaptor_deopt_pc_offset().value());
output_frame->SetPc(pc_value);
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
static_cast<intptr_t>(adaptor_trampoline.constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
#endif
}
void Deoptimizer::DoComputeConstructStubFrame(TranslatedFrame* translated_frame,
int frame_index) {
TranslatedFrame::iterator value_iterator = translated_frame->begin();
const bool is_topmost = (output_count_ - 1 == frame_index);
// The construct frame could become topmost only if we inlined a constructor
// call which does a tail call (otherwise the tail callee's frame would be
// the topmost one). So it could only be the DeoptimizeKind::kLazy case.
CHECK(!is_topmost || deopt_kind_ == DeoptimizeKind::kLazy);
Builtins* builtins = isolate_->builtins();
Code construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
BailoutId bailout_id = translated_frame->node_id();
const int parameters_count = translated_frame->height();
ConstructStubFrameInfo frame_info =
ConstructStubFrameInfo::Precise(parameters_count, is_topmost);
const uint32_t output_frame_size = frame_info.frame_size_in_bytes();
TranslatedFrame::iterator function_iterator = value_iterator++;
if (verbose_tracing_enabled()) {
PrintF(trace_scope()->file(),
" translating construct stub => bailout_id=%d (%s), "
"variable_frame_size=%d, frame_size=%d\n",
bailout_id.ToInt(),
bailout_id == BailoutId::ConstructStubCreate() ? "create" : "invoke",
frame_info.frame_size_in_bytes_without_fixed(), output_frame_size);
}
// Allocate and store the output frame description.
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, parameters_count);
FrameWriter frame_writer(this, output_frame, verbose_trace_scope());
// Construct stub can not be topmost.
DCHECK(frame_index > 0 && frame_index < output_count_);
DCHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
const intptr_t top_address =
output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
ReadOnlyRoots roots(isolate());
if (ShouldPadArguments(parameters_count)) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// The allocated receiver of a construct stub frame is passed as the
// receiver parameter through the translation. It might be encoding
// a captured object, so we need save it for later.
TranslatedFrame::iterator receiver_iterator = value_iterator;
// Compute the incoming parameter translation.
frame_writer.PushStackJSArguments(value_iterator, parameters_count);
DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
frame_writer.top_offset());
// Read caller's PC from the previous frame.
const intptr_t caller_pc = output_[frame_index - 1]->GetPc();
frame_writer.PushApprovedCallerPc(caller_pc);
// Read caller's FP from the previous frame, and set this frame's FP.
const intptr_t caller_fp = output_[frame_index - 1]->GetFp();
frame_writer.PushCallerFp(caller_fp);
const intptr_t fp_value = top_address + frame_writer.top_offset();
output_frame->SetFp(fp_value);
if (is_topmost) {
Register fp_reg = JavaScriptFrame::fp_register();
output_frame->SetRegister(fp_reg.code(), fp_value);
}
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
const intptr_t caller_cp = output_[frame_index - 1]->GetConstantPool();
frame_writer.PushCallerConstantPool(caller_cp);
}
// A marker value is used to mark the frame.
intptr_t marker = StackFrame::TypeToMarker(StackFrame::CONSTRUCT);
frame_writer.PushRawValue(marker, "context (construct stub sentinel)\n");
frame_writer.PushTranslatedValue(value_iterator++, "context");
// Number of incoming arguments.
const uint32_t parameters_count_without_receiver = parameters_count - 1;
frame_writer.PushRawObject(Smi::FromInt(parameters_count_without_receiver),
"argc\n");
// The constructor function was mentioned explicitly in the
// CONSTRUCT_STUB_FRAME.
frame_writer.PushTranslatedValue(function_iterator, "constructor function\n");
// The deopt info contains the implicit receiver or the new target at the
// position of the receiver. Copy it to the top of stack, with the hole value
// as padding to maintain alignment.
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
CHECK(bailout_id == BailoutId::ConstructStubCreate() ||
bailout_id == BailoutId::ConstructStubInvoke());
const char* debug_hint = bailout_id == BailoutId::ConstructStubCreate()
? "new target\n"
: "allocated receiver\n";
frame_writer.PushTranslatedValue(receiver_iterator, debug_hint);
if (is_topmost) {
if (kPadArguments) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// Ensure the result is restored back when we return to the stub.
Register result_reg = kReturnRegister0;
intptr_t result = input_->GetRegister(result_reg.code());
frame_writer.PushRawValue(result, "subcall result\n");
}
CHECK_EQ(translated_frame->end(), value_iterator);
CHECK_EQ(0u, frame_writer.top_offset());
// Compute this frame's PC.
DCHECK(bailout_id.IsValidForConstructStub());
Address start = construct_stub.InstructionStart();
const int pc_offset =
bailout_id == BailoutId::ConstructStubCreate()
? isolate_->heap()->construct_stub_create_deopt_pc_offset().value()
: isolate_->heap()->construct_stub_invoke_deopt_pc_offset().value();
intptr_t pc_value = static_cast<intptr_t>(start + pc_offset);
if (is_topmost) {
// Only the pc of the topmost frame needs to be signed since it is
// authenticated at the end of the DeoptimizationEntry builtin.
output_frame->SetPc(PointerAuthentication::SignAndCheckPC(
pc_value, frame_writer.frame()->GetTop()));
} else {
output_frame->SetPc(pc_value);
}
// Update constant pool.
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
static_cast<intptr_t>(construct_stub.constant_pool());
output_frame->SetConstantPool(constant_pool_value);
if (is_topmost) {
Register constant_pool_reg =
JavaScriptFrame::constant_pool_pointer_register();
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
}
// Clear the context register. The context might be a de-materialized object
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
// safety we use Smi(0) instead of the potential {arguments_marker} here.
if (is_topmost) {
intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr());
Register context_reg = JavaScriptFrame::context_register();
output_frame->SetRegister(context_reg.code(), context_value);
}
// Set the continuation for the topmost frame.
if (is_topmost) {
Builtins* builtins = isolate_->builtins();
DCHECK_EQ(DeoptimizeKind::kLazy, deopt_kind_);
Code continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
output_frame->SetContinuation(
static_cast<intptr_t>(continuation.InstructionStart()));
}
}
namespace {
bool BuiltinContinuationModeIsJavaScript(BuiltinContinuationMode mode) {
switch (mode) {
case BuiltinContinuationMode::STUB:
return false;
case BuiltinContinuationMode::JAVASCRIPT:
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
return true;
}
UNREACHABLE();
}
StackFrame::Type BuiltinContinuationModeToFrameType(
BuiltinContinuationMode mode) {
switch (mode) {
case BuiltinContinuationMode::STUB:
return StackFrame::BUILTIN_CONTINUATION;
case BuiltinContinuationMode::JAVASCRIPT:
return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION;
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH;
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH;
}
UNREACHABLE();
}
} // namespace
Builtins::Name Deoptimizer::TrampolineForBuiltinContinuation(
BuiltinContinuationMode mode, bool must_handle_result) {
switch (mode) {
case BuiltinContinuationMode::STUB:
return must_handle_result ? Builtins::kContinueToCodeStubBuiltinWithResult
: Builtins::kContinueToCodeStubBuiltin;
case BuiltinContinuationMode::JAVASCRIPT:
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
return must_handle_result
? Builtins::kContinueToJavaScriptBuiltinWithResult
: Builtins::kContinueToJavaScriptBuiltin;
}
UNREACHABLE();
}
// BuiltinContinuationFrames capture the machine state that is expected as input
// to a builtin, including both input register values and stack parameters. When
// the frame is reactivated (i.e. the frame below it returns), a
// ContinueToBuiltin stub restores the register state from the frame and tail
// calls to the actual target builtin, making it appear that the stub had been
// directly called by the frame above it. The input values to populate the frame
// are taken from the deopt's FrameState.
//
// Frame translation happens in two modes, EAGER and LAZY. In EAGER mode, all of
// the parameters to the Builtin are explicitly specified in the TurboFan
// FrameState node. In LAZY mode, there is always one fewer parameters specified
// in the FrameState than expected by the Builtin. In that case, construction of
// BuiltinContinuationFrame adds the final missing parameter during
// deoptimization, and that parameter is always on the stack and contains the
// value returned from the callee of the call site triggering the LAZY deopt
// (e.g. rax on x64). This requires that continuation Builtins for LAZY deopts
// must have at least one stack parameter.
//
// TO
// | .... |
// +-------------------------+
// | arg padding (arch dept) |<- at most 1*kSystemPointerSize
// +-------------------------+
// | builtin param 0 |<- FrameState input value n becomes
// +-------------------------+
// | ... |
// +-------------------------+
// | builtin param m |<- FrameState input value n+m-1, or in
// +-----needs-alignment-----+ the LAZY case, return LAZY result value
// | ContinueToBuiltin entry |
// +-------------------------+
// | | saved frame (FP) |
// | +=====needs=alignment=====+<- fpreg
// | |constant pool (if ool_cp)|
// v +-------------------------+
// |BUILTIN_CONTINUATION mark|
// +-------------------------+
// | JSFunction (or zero) |<- only if JavaScript builtin
// +-------------------------+
// | frame height above FP |
// +-------------------------+
// | context |<- this non-standard context slot contains
// +-------------------------+ the context, even for non-JS builtins.
// | builtin index |
// +-------------------------+
// | builtin input GPR reg0 |<- populated from deopt FrameState using
// +-------------------------+ the builtin's CallInterfaceDescriptor
// | ... | to map a FrameState's 0..n-1 inputs to
// +-------------------------+ the builtin's n input register params.
// | builtin input GPR regn |
// +-------------------------+
// | reg padding (arch dept) |
// +-----needs--alignment----+
// | res padding (arch dept) |<- only if {is_topmost}; result is pop'd by
// +-------------------------+<- kNotifyDeopt ASM stub and moved to acc
// | result value |<- reg, as ContinueToBuiltin stub expects.
// +-----needs-alignment-----+<- spreg
//
void Deoptimizer::DoComputeBuiltinContinuation(
TranslatedFrame* translated_frame, int frame_index,
BuiltinContinuationMode mode) {
TranslatedFrame::iterator value_iterator = translated_frame->begin();
const BailoutId bailout_id = translated_frame->node_id();
Builtins::Name builtin_name = Builtins::GetBuiltinFromBailoutId(bailout_id);
CallInterfaceDescriptor continuation_descriptor =
Builtins::CallInterfaceDescriptorFor(builtin_name);
const RegisterConfiguration* config = RegisterConfiguration::Default();
const bool is_bottommost = (0 == frame_index);
const bool is_topmost = (output_count_ - 1 == frame_index);
const int parameters_count = translated_frame->height();
BuiltinContinuationFrameInfo frame_info =
BuiltinContinuationFrameInfo::Precise(parameters_count,
continuation_descriptor, config,
is_topmost, deopt_kind_, mode);
const unsigned output_frame_size = frame_info.frame_size_in_bytes();
const unsigned output_frame_size_above_fp =
frame_info.frame_size_in_bytes_above_fp();
// Validate types of parameters. They must all be tagged except for argc for
// JS builtins.
bool has_argc = false;
const int register_parameter_count =
continuation_descriptor.GetRegisterParameterCount();
for (int i = 0; i < register_parameter_count; ++i) {
MachineType type = continuation_descriptor.GetParameterType(i);
int code = continuation_descriptor.GetRegisterParameter(i).code();
// Only tagged and int32 arguments are supported, and int32 only for the
// arguments count on JavaScript builtins.
if (type == MachineType::Int32()) {
CHECK_EQ(code, kJavaScriptCallArgCountRegister.code());
has_argc = true;
} else {
// Any other argument must be a tagged value.
CHECK(IsAnyTagged(type.representation()));
}
}
CHECK_EQ(BuiltinContinuationModeIsJavaScript(mode), has_argc);
if (verbose_tracing_enabled()) {
PrintF(trace_scope()->file(),
" translating BuiltinContinuation to %s,"
" => register_param_count=%d,"
" stack_param_count=%d, frame_size=%d\n",
Builtins::name(builtin_name), register_parameter_count,
frame_info.stack_parameter_count(), output_frame_size);
}
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, frame_info.stack_parameter_count());
output_[frame_index] = output_frame;
FrameWriter frame_writer(this, output_frame, verbose_trace_scope());
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
const intptr_t top_address =
is_bottommost ? caller_frame_top_ - output_frame_size
: output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Get the possible JSFunction for the case that this is a
// JavaScriptBuiltinContinuationFrame, which needs the JSFunction pointer
// like a normal JavaScriptFrame.
const intptr_t maybe_function = value_iterator->GetRawValue().ptr();
++value_iterator;
ReadOnlyRoots roots(isolate());
if (ShouldPadArguments(frame_info.stack_parameter_count())) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
if (mode == BuiltinContinuationMode::STUB) {
DCHECK_EQ(Builtins::CallInterfaceDescriptorFor(builtin_name)
.GetStackArgumentOrder(),
StackArgumentOrder::kDefault);
for (uint32_t i = 0; i < frame_info.translated_stack_parameter_count();
++i, ++value_iterator) {
frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
}
if (frame_info.frame_has_result_stack_slot()) {
frame_writer.PushRawObject(
roots.the_hole_value(),
"placeholder for return result on lazy deopt\n");
}
} else {
// JavaScript builtin.
if (frame_info.frame_has_result_stack_slot()) {
frame_writer.PushRawObject(
roots.the_hole_value(),
"placeholder for return result on lazy deopt\n");
}
switch (mode) {
case BuiltinContinuationMode::STUB:
UNREACHABLE();
case BuiltinContinuationMode::JAVASCRIPT:
break;
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH: {
frame_writer.PushRawObject(roots.the_hole_value(),
"placeholder for exception on lazy deopt\n");
} break;
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION: {
intptr_t accumulator_value =
input_->GetRegister(kInterpreterAccumulatorRegister.code());
frame_writer.PushRawObject(Object(accumulator_value),
"exception (from accumulator)\n");
} break;
}
frame_writer.PushStackJSArguments(
value_iterator, frame_info.translated_stack_parameter_count());
}
DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
frame_writer.top_offset());
std::vector<TranslatedFrame::iterator> register_values;
int total_registers = config->num_general_registers();
register_values.resize(total_registers, {value_iterator});
for (int i = 0; i < register_parameter_count; ++i, ++value_iterator) {
int code = continuation_descriptor.GetRegisterParameter(i).code();
register_values[code] = value_iterator;
}
// The context register is always implicit in the CallInterfaceDescriptor but
// its register must be explicitly set when continuing to the builtin. Make
// sure that it's harvested from the translation and copied into the register
// set (it was automatically added at the end of the FrameState by the
// instruction selector).
Object context = value_iterator->GetRawValue();
const intptr_t value = context.ptr();
TranslatedFrame::iterator context_register_value = value_iterator++;
register_values[kContextRegister.code()] = context_register_value;
output_frame->SetContext(value);
output_frame->SetRegister(kContextRegister.code(), value);
// Set caller's PC (JSFunction continuation).
if (is_bottommost) {
frame_writer.PushBottommostCallerPc(caller_pc_);
} else {
frame_writer.PushApprovedCallerPc(output_[frame_index - 1]->GetPc());
}
// Read caller's FP from the previous frame, and set this frame's FP.
const intptr_t caller_fp =
is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp();
frame_writer.PushCallerFp(caller_fp);
const intptr_t fp_value = top_address + frame_writer.top_offset();
output_frame->SetFp(fp_value);
DCHECK_EQ(output_frame_size_above_fp, frame_writer.top_offset());
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
const intptr_t caller_cp =
is_bottommost ? caller_constant_pool_
: output_[frame_index - 1]->GetConstantPool();
frame_writer.PushCallerConstantPool(caller_cp);
}
// A marker value is used in place of the context.
const intptr_t marker =
StackFrame::TypeToMarker(BuiltinContinuationModeToFrameType(mode));
frame_writer.PushRawValue(marker,
"context (builtin continuation sentinel)\n");
if (BuiltinContinuationModeIsJavaScript(mode)) {
frame_writer.PushRawValue(maybe_function, "JSFunction\n");
} else {
frame_writer.PushRawValue(0, "unused\n");
}
// The delta from the SP to the FP; used to reconstruct SP in
// Isolate::UnwindAndFindHandler.
frame_writer.PushRawObject(Smi::FromInt(output_frame_size_above_fp),
"frame height at deoptimization\n");
// The context even if this is a stub contininuation frame. We can't use the
// usual context slot, because we must store the frame marker there.
frame_writer.PushTranslatedValue(context_register_value,
"builtin JavaScript context\n");
// The builtin to continue to.
frame_writer.PushRawObject(Smi::FromInt(builtin_name), "builtin index\n");
const int allocatable_register_count =
config->num_allocatable_general_registers();
for (int i = 0; i < allocatable_register_count; ++i) {
int code = config->GetAllocatableGeneralCode(i);
ScopedVector<char> str(128);
if (verbose_tracing_enabled()) {
if (BuiltinContinuationModeIsJavaScript(mode) &&
code == kJavaScriptCallArgCountRegister.code()) {
SNPrintF(
str,
"tagged argument count %s (will be untagged by continuation)\n",
RegisterName(Register::from_code(code)));
} else {
SNPrintF(str, "builtin register argument %s\n",
RegisterName(Register::from_code(code)));
}
}
frame_writer.PushTranslatedValue(
register_values[code], verbose_tracing_enabled() ? str.begin() : "");
}
// Some architectures must pad the stack frame with extra stack slots
// to ensure the stack frame is aligned.
const int padding_slot_count =
BuiltinContinuationFrameConstants::PaddingSlotCount(
allocatable_register_count);
for (int i = 0; i < padding_slot_count; ++i) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
if (is_topmost) {
if (kPadArguments) {
frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
}
// Ensure the result is restored back when we return to the stub.
if (frame_info.frame_has_result_stack_slot()) {
Register result_reg = kReturnRegister0;
frame_writer.PushRawValue(input_->GetRegister(result_reg.code()),
"callback result\n");
} else {
frame_writer.PushRawObject(roots.undefined_value(), "callback result\n");
}
}
CHECK_EQ(translated_frame->end(), value_iterator);
CHECK_EQ(0u, frame_writer.top_offset());
// Clear the context register. The context might be a de-materialized object
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
// safety we use Smi(0) instead of the potential {arguments_marker} here.
if (is_topmost) {
intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr());
Register context_reg = JavaScriptFrame::context_register();
output_frame->SetRegister(context_reg.code(), context_value);
}
// Ensure the frame pointer register points to the callee's frame. The builtin
// will build its own frame once we continue to it.
Register fp_reg = JavaScriptFrame::fp_register();
output_frame->SetRegister(fp_reg.code(), fp_value);
Code continue_to_builtin =
isolate()->builtins()->builtin(TrampolineForBuiltinContinuation(
mode, frame_info.frame_has_result_stack_slot()));
if (is_topmost) {
// Only the pc of the topmost frame needs to be signed since it is
// authenticated at the end of the DeoptimizationEntry builtin.
const intptr_t top_most_pc = PointerAuthentication::SignAndCheckPC(
static_cast<intptr_t>(continue_to_builtin.InstructionStart()),
frame_writer.frame()->GetTop());
output_frame->SetPc(top_most_pc);
} else {
output_frame->SetPc(
static_cast<intptr_t>(continue_to_builtin.InstructionStart()));
}
Code continuation =
isolate()->builtins()->builtin(Builtins::kNotifyDeoptimized);
output_frame->SetContinuation(
static_cast<intptr_t>(continuation.InstructionStart()));
}
void Deoptimizer::MaterializeHeapObjects() {
translated_state_.Prepare(static_cast<Address>(stack_fp_));
if (FLAG_deopt_every_n_times > 0) {
// Doing a GC here will find problems with the deoptimized frames.
isolate_->heap()->CollectAllGarbage(Heap::kNoGCFlags,
GarbageCollectionReason::kTesting);
}
for (auto& materialization : values_to_materialize_) {
Handle<Object> value = materialization.value_->GetValue();
if (verbose_tracing_enabled()) {
PrintF(trace_scope()->file(),
"Materialization [" V8PRIxPTR_FMT "] <- " V8PRIxPTR_FMT " ; ",
static_cast<intptr_t>(materialization.output_slot_address_),
value->ptr());
value->ShortPrint(trace_scope()->file());
PrintF(trace_scope()->file(), "\n");
}
*(reinterpret_cast<Address*>(materialization.output_slot_address_)) =
value->ptr();
}
translated_state_.VerifyMaterializedObjects();
bool feedback_updated = translated_state_.DoUpdateFeedback();
if (verbose_tracing_enabled() && feedback_updated) {
FILE* file = trace_scope()->file();
Deoptimizer::DeoptInfo info =
Deoptimizer::GetDeoptInfo(compiled_code_, from_);
PrintF(file, "Feedback updated from deoptimization at ");
OFStream outstr(file);
info.position.Print(outstr, compiled_code_);
PrintF(file, ", %s\n", DeoptimizeReasonToString(info.deopt_reason));
}
isolate_->materialized_object_store()->Remove(
static_cast<Address>(stack_fp_));
}
void Deoptimizer::QueueValueForMaterialization(
Address output_address, Object obj,
const TranslatedFrame::iterator& iterator) {
if (obj == ReadOnlyRoots(isolate_).arguments_marker()) {
values_to_materialize_.push_back({output_address, iterator});
}
}
unsigned Deoptimizer::ComputeInputFrameAboveFpFixedSize() const {
unsigned fixed_size = CommonFrameConstants::kFixedFrameSizeAboveFp;
// TODO(jkummerow): If {function_->IsSmi()} can indeed be true, then
// {function_} should not have type {JSFunction}.
if (!function_.IsSmi()) {
fixed_size += ComputeIncomingArgumentSize(function_.shared());
}
return fixed_size;
}
unsigned Deoptimizer::ComputeInputFrameSize() const {
// The fp-to-sp delta already takes the context, constant pool pointer and the
// function into account so we have to avoid double counting them.
unsigned fixed_size_above_fp = ComputeInputFrameAboveFpFixedSize();
unsigned result = fixed_size_above_fp + fp_to_sp_delta_;
DCHECK(CodeKindCanDeoptimize(compiled_code_.kind()));
unsigned stack_slots = compiled_code_.stack_slots();
unsigned outgoing_size = 0;
// ComputeOutgoingArgumentSize(compiled_code_, bailout_id_);
CHECK_EQ(fixed_size_above_fp + (stack_slots * kSystemPointerSize) -
CommonFrameConstants::kFixedFrameSizeAboveFp + outgoing_size,
result);
return result;
}
// static
unsigned Deoptimizer::ComputeIncomingArgumentSize(SharedFunctionInfo shared) {
int parameter_slots = InternalFormalParameterCountWithReceiver(shared);
#ifndef V8_NO_ARGUMENTS_ADAPTOR
if (ShouldPadArguments(parameter_slots)) parameter_slots++;
#endif
return parameter_slots * kSystemPointerSize;
}
FrameDescription::FrameDescription(uint32_t frame_size, int parameter_count)
: frame_size_(frame_size),
parameter_count_(parameter_count),
top_(kZapUint32),
pc_(kZapUint32),
fp_(kZapUint32),
context_(kZapUint32),
constant_pool_(kZapUint32) {
// Zap all the registers.
for (int r = 0; r < Register::kNumRegisters; r++) {
// TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
// isn't used before the next safepoint, the GC will try to scan it as a
// tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
#if defined(V8_OS_WIN) && defined(V8_TARGET_ARCH_ARM64)
// x18 is reserved as platform register on Windows arm64 platform
const int kPlatformRegister = 18;
if (r != kPlatformRegister) {
SetRegister(r, kZapUint32);
}
#else
SetRegister(r, kZapUint32);
#endif
}
// Zap all the slots.
for (unsigned o = 0; o < frame_size; o += kSystemPointerSize) {
SetFrameSlot(o, kZapUint32);
}
}
void TranslationBuffer::Add(int32_t value) {
// This wouldn't handle kMinInt correctly if it ever encountered it.
DCHECK_NE(value, kMinInt);
// Encode the sign bit in the least significant bit.
bool is_negative = (value < 0);
uint32_t bits = (static_cast<uint32_t>(is_negative ? -value : value) << 1) |
static_cast<uint32_t>(is_negative);
// Encode the individual bytes using the least significant bit of
// each byte to indicate whether or not more bytes follow.
do {
uint32_t next = bits >> 7;
contents_.push_back(((bits << 1) & 0xFF) | (next != 0));
bits = next;
} while (bits != 0);
}
TranslationIterator::TranslationIterator(ByteArray buffer, int index)
: buffer_(buffer), index_(index) {
DCHECK(index >= 0 && index < buffer.length());
}
int32_t TranslationIterator::Next() {
// Run through the bytes until we reach one with a least significant
// bit of zero (marks the end).
uint32_t bits = 0;
for (int i = 0; true; i += 7) {
DCHECK(HasNext());
uint8_t next = buffer_.get(index_++);
bits |= (next >> 1) << i;
if ((next & 1) == 0) break;
}
// The bits encode the sign in the least significant bit.
bool is_negative = (bits & 1) == 1;
int32_t result = bits >> 1;
return is_negative ? -result : result;
}
bool TranslationIterator::HasNext() const { return index_ < buffer_.length(); }
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
Handle<ByteArray> result =
factory->NewByteArray(CurrentIndex(), AllocationType::kOld);
contents_.CopyTo(result->GetDataStartAddress());
return result;
}
void Translation::BeginBuiltinContinuationFrame(BailoutId bailout_id,
int literal_id,
unsigned height) {
buffer_->Add(BUILTIN_CONTINUATION_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginJavaScriptBuiltinContinuationFrame(BailoutId bailout_id,
int literal_id,
unsigned height) {
buffer_->Add(JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginJavaScriptBuiltinContinuationWithCatchFrame(
BailoutId bailout_id, int literal_id, unsigned height) {
buffer_->Add(JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginConstructStubFrame(BailoutId bailout_id, int literal_id,
unsigned height) {
buffer_->Add(CONSTRUCT_STUB_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME);
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginInterpretedFrame(BailoutId bytecode_offset,
int literal_id, unsigned height,
int return_value_offset,
int return_value_count) {
buffer_->Add(INTERPRETED_FRAME);
buffer_->Add(bytecode_offset.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
buffer_->Add(return_value_offset);
buffer_->Add(return_value_count);
}
void Translation::ArgumentsElements(CreateArgumentsType type) {
buffer_->Add(ARGUMENTS_ELEMENTS);
buffer_->Add(static_cast<uint8_t>(type));
}
void Translation::ArgumentsLength() { buffer_->Add(ARGUMENTS_LENGTH); }
void Translation::BeginCapturedObject(int length) {
buffer_->Add(CAPTURED_OBJECT);
buffer_->Add(length);
}
void Translation::DuplicateObject(int object_index) {
buffer_->Add(DUPLICATED_OBJECT);
buffer_->Add(object_index);
}
void Translation::StoreRegister(Register reg) {
buffer_->Add(REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreInt32Register(Register reg) {
buffer_->Add(INT32_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreInt64Register(Register reg) {
buffer_->Add(INT64_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreUint32Register(Register reg) {
buffer_->Add(UINT32_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreBoolRegister(Register reg) {
buffer_->Add(BOOL_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreFloatRegister(FloatRegister reg) {
buffer_->Add(FLOAT_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreDoubleRegister(DoubleRegister reg) {
buffer_->Add(DOUBLE_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreStackSlot(int index) {
buffer_->Add(STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreInt32StackSlot(int index) {
buffer_->Add(INT32_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreInt64StackSlot(int index) {
buffer_->Add(INT64_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreUint32StackSlot(int index) {
buffer_->Add(UINT32_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreBoolStackSlot(int index) {
buffer_->Add(BOOL_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreFloatStackSlot(int index) {
buffer_->Add(FLOAT_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreDoubleStackSlot(int index) {
buffer_->Add(DOUBLE_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreLiteral(int literal_id) {
buffer_->Add(LITERAL);
buffer_->Add(literal_id);
}
void Translation::AddUpdateFeedback(int vector_literal, int slot) {
buffer_->Add(UPDATE_FEEDBACK);
buffer_->Add(vector_literal);
buffer_->Add(slot);
}
void Translation::StoreJSFrameFunction() {
StoreStackSlot((StandardFrameConstants::kCallerPCOffset -
StandardFrameConstants::kFunctionOffset) /
kSystemPointerSize);
}
int Translation::NumberOfOperandsFor(Opcode opcode) {
switch (opcode) {
case ARGUMENTS_LENGTH:
return 0;
case DUPLICATED_OBJECT:
case ARGUMENTS_ELEMENTS:
case CAPTURED_OBJECT:
case REGISTER:
case INT32_REGISTER:
case INT64_REGISTER:
case UINT32_REGISTER:
case BOOL_REGISTER:
case FLOAT_REGISTER:
case DOUBLE_REGISTER:
case STACK_SLOT:
case INT32_STACK_SLOT:
case INT64_STACK_SLOT:
case UINT32_STACK_SLOT:
case BOOL_STACK_SLOT:
case FLOAT_STACK_SLOT:
case DOUBLE_STACK_SLOT:
case LITERAL:
return 1;
case ARGUMENTS_ADAPTOR_FRAME:
case UPDATE_FEEDBACK:
return 2;
case BEGIN:
case CONSTRUCT_STUB_FRAME:
case BUILTIN_CONTINUATION_FRAME:
case JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME:
return 3;
case INTERPRETED_FRAME:
return 5;
}
FATAL("Unexpected translation type");
return -1;
}
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
const char* Translation::StringFor(Opcode opcode) {
#define TRANSLATION_OPCODE_CASE(item) \
case item: \
return #item;
switch (opcode) { TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE) }
#undef TRANSLATION_OPCODE_CASE
UNREACHABLE();
}
#endif
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
int index = StackIdToIndex(fp);
if (index == -1) {
return Handle<FixedArray>::null();
}
Handle<FixedArray> array = GetStackEntries();
CHECK_GT(array->length(), index);
return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
}
void MaterializedObjectStore::Set(Address fp,
Handle<FixedArray> materialized_objects) {
int index = StackIdToIndex(fp);
if (index == -1) {
index = static_cast<int>(frame_fps_.size());
frame_fps_.push_back(fp);
}
Handle<FixedArray> array = EnsureStackEntries(index + 1);
array->set(index, *materialized_objects);
}
bool MaterializedObjectStore::Remove(Address fp) {
auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
if (it == frame_fps_.end()) return false;
int index = static_cast<int>(std::distance(frame_fps_.begin(), it));
frame_fps_.erase(it);
FixedArray array = isolate()->heap()->materialized_objects();
CHECK_LT(index, array.length());
int fps_size = static_cast<int>(frame_fps_.size());
for (int i = index; i < fps_size; i++) {
array.set(i, array.get(i + 1));
}
array.set(fps_size, ReadOnlyRoots(isolate()).undefined_value());
return true;
}
int MaterializedObjectStore::StackIdToIndex(Address fp) {
auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
return it == frame_fps_.end()
? -1
: static_cast<int>(std::distance(frame_fps_.begin(), it));
}
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
return Handle<FixedArray>(isolate()->heap()->materialized_objects(),
isolate());
}
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
Handle<FixedArray> array = GetStackEntries();
if (array->length() >= length) {
return array;
}
int new_length = length > 10 ? length : 10;
if (new_length < 2 * array->length()) {
new_length = 2 * array->length();
}
Handle<FixedArray> new_array =
isolate()->factory()->NewFixedArray(new_length, AllocationType::kOld);
for (int i = 0; i < array->length(); i++) {
new_array->set(i, array->get(i));
}
HeapObject undefined_value = ReadOnlyRoots(isolate()).undefined_value();
for (int i = array->length(); i < length; i++) {
new_array->set(i, undefined_value);
}
isolate()->heap()->SetRootMaterializedObjects(*new_array);
return new_array;
}
namespace {
Handle<Object> GetValueForDebugger(TranslatedFrame::iterator it,
Isolate* isolate) {
if (it->GetRawValue() == ReadOnlyRoots(isolate).arguments_marker()) {
if (!it->IsMaterializableByDebugger()) {
return isolate->factory()->optimized_out();
}
}
return it->GetValue();
}
} // namespace
DeoptimizedFrameInfo::DeoptimizedFrameInfo(TranslatedState* state,
TranslatedState::iterator frame_it,
Isolate* isolate) {
int parameter_count =
frame_it->shared_info()->internal_formal_parameter_count();
TranslatedFrame::iterator stack_it = frame_it->begin();
// Get the function. Note that this might materialize the function.
// In case the debugger mutates this value, we should deoptimize
// the function and remember the value in the materialized value store.
function_ = Handle<JSFunction>::cast(stack_it->GetValue());
stack_it++; // Skip the function.
stack_it++; // Skip the receiver.
DCHECK_EQ(TranslatedFrame::kInterpretedFunction, frame_it->kind());
source_position_ = Deoptimizer::ComputeSourcePositionFromBytecodeArray(
*frame_it->shared_info(), frame_it->node_id());
DCHECK_EQ(parameter_count,
function_->shared().internal_formal_parameter_count());
parameters_.resize(static_cast<size_t>(parameter_count));
for (int i = 0; i < parameter_count; i++) {
Handle<Object> parameter = GetValueForDebugger(stack_it, isolate);
SetParameter(i, parameter);
stack_it++;
}
// Get the context.
context_ = GetValueForDebugger(stack_it, isolate);
stack_it++;
// Get the expression stack.
DCHECK_EQ(TranslatedFrame::kInterpretedFunction, frame_it->kind());
const int stack_height = frame_it->height(); // Accumulator *not* included.
expression_stack_.resize(static_cast<size_t>(stack_height));
for (int i = 0; i < stack_height; i++) {
Handle<Object> expression = GetValueForDebugger(stack_it, isolate);
SetExpression(i, expression);
stack_it++;
}
DCHECK_EQ(TranslatedFrame::kInterpretedFunction, frame_it->kind());
stack_it++; // Skip the accumulator.
CHECK(stack_it == frame_it->end());
}
Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code code, Address pc) {
CHECK(code.InstructionStart() <= pc && pc <= code.InstructionEnd());
SourcePosition last_position = SourcePosition::Unknown();
DeoptimizeReason last_reason = DeoptimizeReason::kUnknown;
int last_deopt_id = kNoDeoptimizationId;
int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
RelocInfo::ModeMask(RelocInfo::DEOPT_ID) |
RelocInfo::ModeMask(RelocInfo::DEOPT_SCRIPT_OFFSET) |
RelocInfo::ModeMask(RelocInfo::DEOPT_INLINING_ID);
for (RelocIterator it(code, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->pc() >= pc) break;
if (info->rmode() == RelocInfo::DEOPT_SCRIPT_OFFSET) {
int script_offset = static_cast<int>(info->data());
it.next();
DCHECK(it.rinfo()->rmode() == RelocInfo::DEOPT_INLINING_ID);
int inlining_id = static_cast<int>(it.rinfo()->data());
last_position = SourcePosition(script_offset, inlining_id);
} else if (info->rmode() == RelocInfo::DEOPT_ID) {
last_deopt_id = static_cast<int>(info->data());
} else if (info->rmode() == RelocInfo::DEOPT_REASON) {
last_reason = static_cast<DeoptimizeReason>(info->data());
}
}
return DeoptInfo(last_position, last_reason, last_deopt_id);
}
// static
int Deoptimizer::ComputeSourcePositionFromBytecodeArray(
SharedFunctionInfo shared, BailoutId node_id) {
DCHECK(shared.HasBytecodeArray());
return AbstractCode::cast(shared.GetBytecodeArray())
.SourcePosition(node_id.ToInt());
}
// static
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
int length,
int object_index) {
TranslatedValue slot(container, kCapturedObject);
slot.materialization_info_ = {object_index, length};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
int id) {
TranslatedValue slot(container, kDuplicatedObject);
slot.materialization_info_ = {id, -1};
return slot;
}
// static
TranslatedValue TranslatedValue::NewFloat(TranslatedState* container,
Float32 value) {
TranslatedValue slot(container, kFloat);
slot.float_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
Float64 value) {
TranslatedValue slot(container, kDouble);
slot.double_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
int32_t value) {
TranslatedValue slot(container, kInt32);
slot.int32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInt64(TranslatedState* container,
int64_t value) {
TranslatedValue slot(container, kInt64);
slot.int64_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kUInt32);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kBoolBit);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
Object literal) {
TranslatedValue slot(container, kTagged);
slot.raw_literal_ = literal;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
return TranslatedValue(container, kInvalid);
}
Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
Object TranslatedValue::raw_literal() const {
DCHECK_EQ(kTagged, kind());
return raw_literal_;
}
int32_t TranslatedValue::int32_value() const {
DCHECK_EQ(kInt32, kind());
return int32_value_;
}
int64_t TranslatedValue::int64_value() const {
DCHECK_EQ(kInt64, kind());
return int64_value_;
}
uint32_t TranslatedValue::uint32_value() const {
DCHECK(kind() == kUInt32 || kind() == kBoolBit);
return uint32_value_;
}
Float32 TranslatedValue::float_value() const {
DCHECK_EQ(kFloat, kind());
return float_value_;
}
Float64 TranslatedValue::double_value() const {
DCHECK_EQ(kDouble, kind());
return double_value_;
}
int TranslatedValue::object_length() const {
DCHECK_EQ(kind(), kCapturedObject);
return materialization_info_.length_;
}
int TranslatedValue::object_index() const {
DCHECK(kind() == kCapturedObject || kind() == kDuplicatedObject);
return materialization_info_.id_;
}
Object TranslatedValue::GetRawValue() const {
// If we have a value, return it.
if (materialization_state() == kFinished) {
int smi;
if (storage_->IsHeapNumber() &&
DoubleToSmiInteger(storage_->Number(), &smi)) {
return Smi::FromInt(smi);
}
return *storage_;
}
// Otherwise, do a best effort to get the value without allocation.
switch (kind()) {
case kTagged:
return raw_literal();
case kInt32: {
bool is_smi = Smi::IsValid(int32_value());
if (is_smi) {
return Smi::FromInt(int32_value());
}
break;
}
case kInt64: {
bool is_smi = (int64_value() >= static_cast<int64_t>(Smi::kMinValue) &&
int64_value() <= static_cast<int64_t>(Smi::kMaxValue));
if (is_smi) {
return Smi::FromIntptr(static_cast<intptr_t>(int64_value()));
}
break;
}
case kUInt32: {
bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
if (is_smi) {
return Smi::FromInt(static_cast<int32_t>(uint32_value()));
}
break;
}
case kBoolBit: {
if (uint32_value() == 0) {
return ReadOnlyRoots(isolate()).false_value();
} else {
CHECK_EQ(1U, uint32_value());
return ReadOnlyRoots(isolate()).true_value();
}
}
case kFloat: {
int smi;
if (DoubleToSmiInteger(float_value().get_scalar(), &smi)) {
return Smi::FromInt(smi);
}
break;
}
case kDouble: {
int smi;
if (DoubleToSmiInteger(double_value().get_scalar(), &smi)) {
return Smi::FromInt(smi);
}
break;
}
default:
break;
}
// If we could not get the value without allocation, return the arguments
// marker.
return ReadOnlyRoots(isolate()).arguments_marker();
}
void TranslatedValue::set_initialized_storage(Handle<HeapObject> storage) {
DCHECK_EQ(kUninitialized, materialization_state());
storage_ = storage;
materialization_state_ = kFinished;
}
Handle<Object> TranslatedValue::GetValue() {
Handle<Object> value(GetRawValue(), isolate());
if (materialization_state() == kFinished) return value;
if (value->IsSmi()) {
// Even though stored as a Smi, this number might instead be needed as a
// HeapNumber when materializing a JSObject with a field of HeapObject
// representation. Since we don't have this information available here, we
// just always allocate a HeapNumber and later extract the Smi again if we
// don't need a HeapObject.
set_initialized_storage(
isolate()->factory()->NewHeapNumber(value->Number()));
return value;
}
if (*value != ReadOnlyRoots(isolate()).arguments_marker()) {
set_initialized_storage(Handle<HeapObject>::cast(value));
return storage_;
}
// Otherwise we have to materialize.
if (kind() == TranslatedValue::kCapturedObject ||
kind() == TranslatedValue::kDuplicatedObject) {
// We need to materialize the object (or possibly even object graphs).
// To make the object verifier happy, we materialize in two steps.
// 1. Allocate storage for reachable objects. This makes sure that for
// each object we have allocated space on heap. The space will be
// a byte array that will be later initialized, or a fully
// initialized object if it is safe to allocate one that will
// pass the verifier.
container_->EnsureObjectAllocatedAt(this);
// 2. Initialize the objects. If we have allocated only byte arrays
// for some objects, we now overwrite the byte arrays with the
// correct object fields. Note that this phase does not allocate
// any new objects, so it does not trigger the object verifier.
return container_->InitializeObjectAt(this);
}
double number;
switch (kind()) {
case TranslatedValue::kInt32:
number = int32_value();
break;
case TranslatedValue::kInt64:
number = int64_value();
break;
case TranslatedValue::kUInt32:
number = uint32_value();
break;
case TranslatedValue::kFloat:
number = float_value().get_scalar();
break;
case TranslatedValue::kDouble:
number = double_value().get_scalar();
break;
default:
UNREACHABLE();
}
DCHECK(!IsSmiDouble(number));
set_initialized_storage(isolate()->factory()->NewHeapNumber(number));
return storage_;
}
bool TranslatedValue::IsMaterializedObject() const {
switch (kind()) {
case kCapturedObject:
case kDuplicatedObject:
return true;
default:
return false;
}
}
bool TranslatedValue::IsMaterializableByDebugger() const {
// At the moment, we only allow materialization of doubles.
return (kind() == kDouble);
}
int TranslatedValue::GetChildrenCount() const {
if (kind() == kCapturedObject) {
return object_length();
} else {
return 0;
}
}
uint64_t TranslatedState::GetUInt64Slot(Address fp, int slot_offset) {
#if V8_TARGET_ARCH_32_BIT
return ReadUnalignedValue<uint64_t>(fp + slot_offset);
#else
return Memory<uint64_t>(fp + slot_offset);
#endif
}
uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
Address address = fp + slot_offset;
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
return Memory<uint32_t>(address + kIntSize);
#else
return Memory<uint32_t>(address);
#endif
}
Float32 TranslatedState::GetFloatSlot(Address fp, int slot_offset) {
#if !V8_TARGET_ARCH_S390X && !V8_TARGET_ARCH_PPC64
return Float32::FromBits(GetUInt32Slot(fp, slot_offset));
#else
return Float32::FromBits(Memory<uint32_t>(fp + slot_offset));
#endif
}
Float64 TranslatedState::GetDoubleSlot(Address fp, int slot_offset) {
return Float64::FromBits(GetUInt64Slot(fp, slot_offset));
}
void TranslatedValue::Handlify() {
if (kind() == kTagged && raw_literal().IsHeapObject()) {
set_initialized_storage(
Handle<HeapObject>(HeapObject::cast(raw_literal()), isolate()));
raw_literal_ = Object();
}
}
TranslatedFrame TranslatedFrame::InterpretedFrame(
BailoutId bytecode_offset, SharedFunctionInfo shared_info, int height,
int return_value_offset, int return_value_count) {
TranslatedFrame frame(kInterpretedFunction, shared_info, height,
return_value_offset, return_value_count);
frame.node_id_ = bytecode_offset;
return frame;
}
TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
SharedFunctionInfo shared_info, int height) {
return TranslatedFrame(kArgumentsAdaptor, shared_info, height);
}
TranslatedFrame TranslatedFrame::ConstructStubFrame(
BailoutId bailout_id, SharedFunctionInfo shared_info, int height) {
TranslatedFrame frame(kConstructStub, shared_info, height);
frame.node_id_ = bailout_id;
return frame;
}
TranslatedFrame TranslatedFrame::BuiltinContinuationFrame(
BailoutId bailout_id, SharedFunctionInfo shared_info, int height) {
TranslatedFrame frame(kBuiltinContinuation, shared_info, height);
frame.node_id_ = bailout_id;
return frame;
}
TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationFrame(
BailoutId bailout_id, SharedFunctionInfo shared_info, int height) {
TranslatedFrame frame(kJavaScriptBuiltinContinuation, shared_info, height);
frame.node_id_ = bailout_id;
return frame;
}
TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationWithCatchFrame(
BailoutId bailout_id, SharedFunctionInfo shared_info, int height) {
TranslatedFrame frame(kJavaScriptBuiltinContinuationWithCatch, shared_info,
height);
frame.node_id_ = bailout_id;
return frame;
}
int TranslatedFrame::GetValueCount() {
// The function is added to all frame state descriptors in
// InstructionSelector::AddInputsToFrameStateDescriptor.
static constexpr int kTheFunction = 1;
switch (kind()) {
case kInterpretedFunction: {
int parameter_count =
InternalFormalParameterCountWithReceiver(raw_shared_info_);
static constexpr int kTheContext = 1;
static constexpr int kTheAccumulator = 1;
return height() + parameter_count + kTheContext + kTheFunction +
kTheAccumulator;
}
case kArgumentsAdaptor:
return height() + kTheFunction;
case kConstructStub:
case kBuiltinContinuation:
case kJavaScriptBuiltinContinuation:
case kJavaScriptBuiltinContinuationWithCatch: {
static constexpr int kTheContext = 1;
return height() + kTheContext + kTheFunction;
}
case kInvalid:
UNREACHABLE();
}
UNREACHABLE();
}
void TranslatedFrame::Handlify() {
if (!raw_shared_info_.is_null()) {
shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_,
raw_shared_info_.GetIsolate());
raw_shared_info_ = SharedFunctionInfo();
}
for (auto& value : values_) {
value.Handlify();
}
}
TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
TranslationIterator* iterator, FixedArray literal_array, Address fp,
FILE* trace_file) {
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::INTERPRETED_FRAME: {
BailoutId bytecode_offset = BailoutId(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
int return_value_offset = iterator->Next();
int return_value_count = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugName().ToCString();
PrintF(trace_file, " reading input frame %s", name.get());
int arg_count = InternalFormalParameterCountWithReceiver(shared_info);
PrintF(trace_file,
" => bytecode_offset=%d, args=%d, height=%d, retval=%i(#%i); "
"inputs:\n",
bytecode_offset.ToInt(), arg_count, height, return_value_offset,
return_value_count);
}
return TranslatedFrame::InterpretedFrame(bytecode_offset, shared_info,
height, return_value_offset,
return_value_count);
}
case Translation::ARGUMENTS_ADAPTOR_FRAME: {
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugName().ToCString();
PrintF(trace_file, " reading arguments adaptor frame %s", name.get());
PrintF(trace_file, " => height=%d; inputs:\n", height);
}
return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
}
case Translation::CONSTRUCT_STUB_FRAME: {
BailoutId bailout_id = BailoutId(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugName().ToCString();
PrintF(trace_file, " reading construct stub frame %s", name.get());
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
bailout_id.ToInt(), height);
}
return TranslatedFrame::ConstructStubFrame(bailout_id, shared_info,
height);
}
case Translation::BUILTIN_CONTINUATION_FRAME: {
BailoutId bailout_id = BailoutId(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugName().ToCString();
PrintF(trace_file, " reading builtin continuation frame %s",
name.get());
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
bailout_id.ToInt(), height);
}
return TranslatedFrame::BuiltinContinuationFrame(bailout_id, shared_info,
height);
}
case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME: {
BailoutId bailout_id = BailoutId(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugName().ToCString();
PrintF(trace_file, " reading JavaScript builtin continuation frame %s",
name.get());
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
bailout_id.ToInt(), height);
}
return TranslatedFrame::JavaScriptBuiltinContinuationFrame(
bailout_id, shared_info, height);
}
case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME: {
BailoutId bailout_id = BailoutId(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugName().ToCString();
PrintF(trace_file,
" reading JavaScript builtin continuation frame with catch %s",
name.get());
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
bailout_id.ToInt(), height);
}
return TranslatedFrame::JavaScriptBuiltinContinuationWithCatchFrame(
bailout_id, shared_info, height);
}
case Translation::UPDATE_FEEDBACK:
case Translation::BEGIN:
case Translation::DUPLICATED_OBJECT:
case Translation::ARGUMENTS_ELEMENTS:
case Translation::ARGUMENTS_LENGTH:
case Translation::CAPTURED_OBJECT:
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::INT64_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::BOOL_REGISTER:
case Translation::FLOAT_REGISTER:
case Translation::DOUBLE_REGISTER:
case Translation::STACK_SLOT:
case Translation::INT32_STACK_SLOT:
case Translation::INT64_STACK_SLOT:
case Translation::UINT32_STACK_SLOT:
case Translation::BOOL_STACK_SLOT:
case Translation::FLOAT_STACK_SLOT:
case Translation::DOUBLE_STACK_SLOT:
case Translation::LITERAL:
break;
}
FATAL("We should never get here - unexpected deopt info.");
return TranslatedFrame::InvalidFrame();
}
// static
void TranslatedFrame::AdvanceIterator(
std::deque<TranslatedValue>::iterator* iter) {
int values_to_skip = 1;
while (values_to_skip > 0) {
// Consume the current element.
values_to_skip--;
// Add all the children.
values_to_skip += (*iter)->GetChildrenCount();
(*iter)++;
}
}
Address TranslatedState::ComputeArgumentsPosition(Address input_frame_pointer,
int* length) {
Address parent_frame_pointer = *reinterpret_cast<Address*>(
input_frame_pointer + StandardFrameConstants::kCallerFPOffset);
intptr_t parent_frame_type = Memory<intptr_t>(
parent_frame_pointer + CommonFrameConstants::kContextOrFrameTypeOffset);
Address arguments_frame;
if (parent_frame_type ==
StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)) {
if (length)
*length = Smi::cast(*FullObjectSlot(
parent_frame_pointer +
ArgumentsAdaptorFrameConstants::kLengthOffset))
.value();
arguments_frame = parent_frame_pointer;
} else {
if (length) *length = formal_parameter_count_;
arguments_frame = input_frame_pointer;
}
return arguments_frame;
}
// Creates translated values for an arguments backing store, or the backing
// store for rest parameters depending on the given {type}. The TranslatedValue
// objects for the fields are not read from the TranslationIterator, but instead
// created on-the-fly based on dynamic information in the optimized frame.
void TranslatedState::CreateArgumentsElementsTranslatedValues(
int frame_index, Address input_frame_pointer, CreateArgumentsType type,
FILE* trace_file) {
TranslatedFrame& frame = frames_[frame_index];
#ifdef V8_NO_ARGUMENTS_ADAPTOR
int arguments_length = actual_argument_count_;
#else
int arguments_length;
Address arguments_frame =
ComputeArgumentsPosition(input_frame_pointer, &arguments_length);
#endif
int length = type == CreateArgumentsType::kRestParameter
? std::max(0, arguments_length - formal_parameter_count_)
: arguments_length;
int object_index = static_cast<int>(object_positions_.size());
int value_index = static_cast<int>(frame.values_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "arguments elements object #%d (type = %d, length = %d)",
object_index, static_cast<uint8_t>(type), length);
}
object_positions_.push_back({frame_index, value_index});
frame.Add(TranslatedValue::NewDeferredObject(
this, length + FixedArray::kHeaderSize / kTaggedSize, object_index));
ReadOnlyRoots roots(isolate_);
frame.Add(TranslatedValue::NewTagged(this, roots.fixed_array_map()));
frame.Add(TranslatedValue::NewInt32(this, length));
int number_of_holes = 0;
if (type == CreateArgumentsType::kMappedArguments) {
// If the actual number of arguments is less than the number of formal
// parameters, we have fewer holes to fill to not overshoot the length.
number_of_holes = std::min(formal_parameter_count_, length);
}
for (int i = 0; i < number_of_holes; ++i) {
frame.Add(TranslatedValue::NewTagged(this, roots.the_hole_value()));
}
int argc = length - number_of_holes;
int start_index = number_of_holes;
if (type == CreateArgumentsType::kRestParameter) {
start_index = std::max(0, formal_parameter_count_);
}
for (int i = 0; i < argc; i++) {
// Skip the receiver.
int offset = i + start_index + 1;
#ifdef V8_NO_ARGUMENTS_ADAPTOR
Address arguments_frame = offset > formal_parameter_count_
? stack_frame_pointer_
: input_frame_pointer;
#endif
Address argument_slot = arguments_frame +
CommonFrameConstants::kFixedFrameSizeAboveFp +
offset * kSystemPointerSize;
frame.Add(TranslatedValue::NewTagged(this, *FullObjectSlot(argument_slot)));
}
}
// We can't intermix stack decoding and allocations because the deoptimization
// infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
// The TranslatedValue objects created correspond to the static translation
// instructions from the TranslationIterator, except for
// Translation::ARGUMENTS_ELEMENTS, where the number and values of the
// FixedArray elements depend on dynamic information from the optimized frame.
// Returns the number of expected nested translations from the
// TranslationIterator.
int TranslatedState::CreateNextTranslatedValue(
int frame_index, TranslationIterator* iterator, FixedArray literal_array,
Address fp, RegisterValues* registers, FILE* trace_file) {
disasm::NameConverter converter;
TranslatedFrame& frame = frames_[frame_index];
int value_index = static_cast<int>(frame.values_.size());
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::INTERPRETED_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME:
case Translation::BUILTIN_CONTINUATION_FRAME:
case Translation::UPDATE_FEEDBACK:
// Peeled off before getting here.
break;
case Translation::DUPLICATED_OBJECT: {
int object_id = iterator->Next();
if (trace_file != nullptr) {
PrintF(trace_file, "duplicated object #%d", object_id);
}
object_positions_.push_back(object_positions_[object_id]);
TranslatedValue translated_value =
TranslatedValue::NewDuplicateObject(this, object_id);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::ARGUMENTS_ELEMENTS: {
CreateArgumentsType arguments_type =
static_cast<CreateArgumentsType>(iterator->Next());
CreateArgumentsElementsTranslatedValues(frame_index, fp, arguments_type,
trace_file);
return 0;
}
case Translation::ARGUMENTS_LENGTH: {
#ifdef V8_NO_ARGUMENTS_ADAPTOR
int arguments_length = actual_argument_count_;
#else
int arguments_length;
ComputeArgumentsPosition(fp, &arguments_length);
#endif
if (trace_file != nullptr) {
PrintF(trace_file, "arguments length field (length = %d)",
arguments_length);
}
frame.Add(TranslatedValue::NewInt32(this, arguments_length));
return 0;
}
case Translation::CAPTURED_OBJECT: {
int field_count = iterator->Next();
int object_index = static_cast<int>(object_positions_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "captured object #%d (length = %d)", object_index,
field_count);
}
object_positions_.push_back({frame_index, value_index});
TranslatedValue translated_value =
TranslatedValue::NewDeferredObject(this, field_count, object_index);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
Address uncompressed_value = DecompressIfNeeded(value);
if (trace_file != nullptr) {
PrintF(trace_file, V8PRIxPTR_FMT " ; %s ", uncompressed_value,
converter.NameOfCPURegister(input_reg));
Object(uncompressed_value).ShortPrint(trace_file);
}
TranslatedValue translated_value =
TranslatedValue::NewTagged(this, Object(uncompressed_value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::INT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s (int32)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::INT64_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s (int64)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewInt64(this, static_cast<int64_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::UINT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint32)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::BOOL_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::FLOAT_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
Float32 value = registers->GetFloatRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; %s (float)", value.get_scalar(),
RegisterName(FloatRegister::from_code(input_reg)));
}
TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
Float64 value = registers->GetDoubleRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; %s (double)", value.get_scalar(),
RegisterName(DoubleRegister::from_code(input_reg)));
}
TranslatedValue translated_value =
TranslatedValue::NewDouble(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
Address uncompressed_value = DecompressIfNeeded(value);
if (trace_file != nullptr) {
PrintF(trace_file, V8PRIxPTR_FMT " ; [fp %c %3d] ",
uncompressed_value, slot_offset < 0 ? '-' : '+',
std::abs(slot_offset));
Object(uncompressed_value).ShortPrint(trace_file);
}
TranslatedValue translated_value =
TranslatedValue::NewTagged(this, Object(uncompressed_value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::INT32_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%d ; (int32) [fp %c %3d] ",
static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewInt32(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::INT64_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint64_t value = GetUInt64Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; (int64) [fp %c %3d] ",
static_cast<intptr_t>(value), slot_offset < 0 ? '-' : '+',
std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewInt64(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::UINT32_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (uint32) [fp %c %3d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value =
TranslatedValue::NewUInt32(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::BOOL_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (bool) [fp %c %3d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewBool(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::FLOAT_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
Float32 value = GetFloatSlot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; (float) [fp %c %3d] ", value.get_scalar(),
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::DOUBLE_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
Float64 value = GetDoubleSlot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; (double) [fp %c %d] ", value.get_scalar(),
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value =
TranslatedValue::NewDouble(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::LITERAL: {
int literal_index = iterator->Next();
Object value = literal_array.get(literal_index);
if (trace_file != nullptr) {
PrintF(trace_file, V8PRIxPTR_FMT " ; (literal %2d) ", value.ptr(),
literal_index);
value.ShortPrint(trace_file);
}
TranslatedValue translated_value =
TranslatedValue::NewTagged(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
}
FATAL("We should never get here - unexpected deopt info.");
}
Address TranslatedState::DecompressIfNeeded(intptr_t value) {
if (COMPRESS_POINTERS_BOOL) {
return DecompressTaggedAny(isolate()->isolate_root(),
static_cast<uint32_t>(value));
} else {
return value;
}
}
TranslatedState::TranslatedState(const JavaScriptFrame* frame) {
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationData data =
static_cast<const OptimizedFrame*>(frame)->GetDeoptimizationData(
&deopt_index);
DCHECK(!data.is_null() && deopt_index != Safepoint::kNoDeoptimizationIndex);
TranslationIterator it(data.TranslationByteArray(),
data.TranslationIndex(deopt_index).value());
#ifdef V8_NO_ARGUMENTS_ADAPTOR
int actual_argc = frame->GetActualArgumentCount();
#else
int actual_argc = 0;
#endif
Init(frame->isolate(), frame->fp(), frame->fp(), &it, data.LiteralArray(),
nullptr /* registers */, nullptr /* trace file */,
frame->function().shared().internal_formal_parameter_count(),
actual_argc);
}
void TranslatedState::Init(Isolate* isolate, Address input_frame_pointer,
Address stack_frame_pointer,
TranslationIterator* iterator,
FixedArray literal_array, RegisterValues* registers,
FILE* trace_file, int formal_parameter_count,
int actual_argument_count) {
DCHECK(frames_.empty());
stack_frame_pointer_ = stack_frame_pointer;
formal_parameter_count_ = formal_parameter_count;
actual_argument_count_ = actual_argument_count;
isolate_ = isolate;
// Read out the 'header' translation.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
CHECK(opcode == Translation::BEGIN);
int count = iterator->Next();
frames_.reserve(count);
iterator->Next(); // Drop JS frames count.
int update_feedback_count = iterator->Next();
CHECK_GE(update_feedback_count, 0);
CHECK_LE(update_feedback_count, 1);
if (update_feedback_count == 1) {
ReadUpdateFeedback(iterator, literal_array, trace_file);
}
std::stack<int> nested_counts;
// Read the frames
for (int frame_index = 0; frame_index < count; frame_index++) {
// Read the frame descriptor.
frames_.push_back(CreateNextTranslatedFrame(
iterator, literal_array, input_frame_pointer, trace_file));
TranslatedFrame& frame = frames_.back();
// Read the values.
int values_to_process = frame.GetValueCount();
while (values_to_process > 0 || !nested_counts.empty()) {
if (trace_file != nullptr) {
if (nested_counts.empty()) {
// For top level values, print the value number.
PrintF(trace_file,
" %3i: ", frame.GetValueCount() - values_to_process);
} else {
// Take care of indenting for nested values.
PrintF(trace_file, " ");
for (size_t j = 0; j < nested_counts.size(); j++) {
PrintF(trace_file, " ");
}
}
}
int nested_count =
CreateNextTranslatedValue(frame_index, iterator, literal_array,
input_frame_pointer, registers, trace_file);
if (trace_file != nullptr) {
PrintF(trace_file, "\n");
}
// Update the value count and resolve the nesting.
values_to_process--;
if (nested_count > 0) {
nested_counts.push(values_to_process);
values_to_process = nested_count;
} else {
while (values_to_process == 0 && !nested_counts.empty()) {
values_to_process = nested_counts.top();
nested_counts.pop();
}
}
}
}
CHECK(!iterator->HasNext() || static_cast<Translation::Opcode>(
iterator->Next()) == Translation::BEGIN);
}
void TranslatedState::Prepare(Address stack_frame_pointer) {
for (auto& frame : frames_) frame.Handlify();
if (!feedback_vector_.is_null()) {
feedback_vector_handle_ =
Handle<FeedbackVector>(feedback_vector_, isolate());
feedback_vector_ = FeedbackVector();
}
stack_frame_pointer_ = stack_frame_pointer;
UpdateFromPreviouslyMaterializedObjects();
}
TranslatedValue* TranslatedState::GetValueByObjectIndex(int object_index) {
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
TranslatedState::ObjectPosition pos = object_positions_[object_index];
return &(frames_[pos.frame_index_].values_[pos.value_index_]);
}
Handle<HeapObject> TranslatedState::InitializeObjectAt(TranslatedValue* slot) {
slot = ResolveCapturedObject(slot);
DisallowHeapAllocation no_allocation;
if (slot->materialization_state() != TranslatedValue::kFinished) {
std::stack<int> worklist;
worklist.push(slot->object_index());
slot->mark_finished();
while (!worklist.empty()) {
int index = worklist.top();
worklist.pop();
InitializeCapturedObjectAt(index, &worklist, no_allocation);
}
}
return slot->storage();
}
void TranslatedState::InitializeCapturedObjectAt(
int object_index, std::stack<int>* worklist,
const DisallowHeapAllocation& no_allocation) {
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
TranslatedState::ObjectPosition pos = object_positions_[object_index];
int value_index = pos.value_index_;
TranslatedFrame* frame = &(frames_[pos.frame_index_]);
TranslatedValue* slot = &(frame->values_[value_index]);
value_index++;
CHECK_EQ(TranslatedValue::kFinished, slot->materialization_state());
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
// Ensure all fields are initialized.
int children_init_index = value_index;
for (int i = 0; i < slot->GetChildrenCount(); i++) {
// If the field is an object that has not been initialized yet, queue it
// for initialization (and mark it as such).
TranslatedValue* child_slot = frame->ValueAt(children_init_index);
if (child_slot->kind() == TranslatedValue::kCapturedObject ||
child_slot->kind() == TranslatedValue::kDuplicatedObject) {
child_slot = ResolveCapturedObject(child_slot);
if (child_slot->materialization_state() != TranslatedValue::kFinished) {
DCHECK_EQ(TranslatedValue::kAllocated,
child_slot->materialization_state());
worklist->push(child_slot->object_index());
child_slot->mark_finished();
}
}
SkipSlots(1, frame, &children_init_index);
}
// Read the map.
// The map should never be materialized, so let us check we already have
// an existing object here.
CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
CHECK(map->IsMap());
value_index++;
// Handle the special cases.
switch (map->instance_type()) {
case HEAP_NUMBER_TYPE:
case FIXED_DOUBLE_ARRAY_TYPE:
return;
case FIXED_ARRAY_TYPE:
case AWAIT_CONTEXT_TYPE:
case BLOCK_CONTEXT_TYPE:
case CATCH_CONTEXT_TYPE:
case DEBUG_EVALUATE_CONTEXT_TYPE:
case EVAL_CONTEXT_TYPE:
case FUNCTION_CONTEXT_TYPE:
case MODULE_CONTEXT_TYPE:
case NATIVE_CONTEXT_TYPE:
case SCRIPT_CONTEXT_TYPE:
case WITH_CONTEXT_TYPE:
case OBJECT_BOILERPLATE_DESCRIPTION_TYPE:
case HASH_TABLE_TYPE:
case ORDERED_HASH_MAP_TYPE:
case ORDERED_HASH_SET_TYPE:
case NAME_DICTIONARY_TYPE:
case GLOBAL_DICTIONARY_TYPE:
case NUMBER_DICTIONARY_TYPE:
case SIMPLE_NUMBER_DICTIONARY_TYPE:
case PROPERTY_ARRAY_TYPE:
case SCRIPT_CONTEXT_TABLE_TYPE:
case SLOPPY_ARGUMENTS_ELEMENTS_TYPE:
InitializeObjectWithTaggedFieldsAt(frame, &value_index, slot, map,
no_allocation);
break;
default:
CHECK(map->IsJSObjectMap());
InitializeJSObjectAt(frame, &value_index, slot, map, no_allocation);
break;
}
CHECK_EQ(value_index, children_init_index);
}
void TranslatedState::EnsureObjectAllocatedAt(TranslatedValue* slot) {
slot = ResolveCapturedObject(slot);
if (slot->materialization_state() == TranslatedValue::kUninitialized) {
std::stack<int> worklist;
worklist.push(slot->object_index());
slot->mark_allocated();
while (!worklist.empty()) {
int index = worklist.top();
worklist.pop();
EnsureCapturedObjectAllocatedAt(index, &worklist);
}
}
}
int TranslatedValue::GetSmiValue() const {
Object value = GetRawValue();
CHECK(value.IsSmi());
return Smi::cast(value).value();
}
void TranslatedState::MaterializeFixedDoubleArray(TranslatedFrame* frame,
int* value_index,
TranslatedValue* slot,
Handle<Map> map) {
int length = frame->values_[*value_index].GetSmiValue();
(*value_index)++;
Handle<FixedDoubleArray> array = Handle<FixedDoubleArray>::cast(
isolate()->factory()->NewFixedDoubleArray(length));
CHECK_GT(length, 0);
for (int i = 0; i < length; i++) {
CHECK_NE(TranslatedValue::kCapturedObject,
frame->values_[*value_index].kind());
Handle<Object> value = frame->values_[*value_index].GetValue();
if (value->IsNumber()) {
array->set(i, value->Number());
} else {
CHECK(value.is_identical_to(isolate()->factory()->the_hole_value()));
array->set_the_hole(isolate(), i);
}
(*value_index)++;
}
slot->set_storage(array);
}
void TranslatedState::MaterializeHeapNumber(TranslatedFrame* frame,
int* value_index,
TranslatedValue* slot) {
CHECK_NE(TranslatedValue::kCapturedObject,
frame->values_[*value_index].kind());
Handle<Object> value = frame->values_[*value_index].GetValue();
CHECK(value->IsNumber());
Handle<HeapNumber> box = isolate()->factory()->NewHeapNumber(value->Number());
(*value_index)++;
slot->set_storage(box);
}
namespace {
enum StorageKind : uint8_t {
kStoreTagged,
kStoreUnboxedDouble,
kStoreHeapObject
};
} // namespace
void TranslatedState::SkipSlots(int slots_to_skip, TranslatedFrame* frame,
int* value_index) {
while (slots_to_skip > 0) {
TranslatedValue* slot = &(frame->values_[*value_index]);
(*value_index)++;
slots_to_skip--;
if (slot->kind() == TranslatedValue::kCapturedObject) {
slots_to_skip += slot->GetChildrenCount();
}
}
}
void TranslatedState::EnsureCapturedObjectAllocatedAt(
int object_index, std::stack<int>* worklist) {
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
TranslatedState::ObjectPosition pos = object_positions_[object_index];
int value_index = pos.value_index_;
TranslatedFrame* frame = &(frames_[pos.frame_index_]);
TranslatedValue* slot = &(frame->values_[value_index]);
value_index++;
CHECK_EQ(TranslatedValue::kAllocated, slot->materialization_state());
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
// Read the map.
// The map should never be materialized, so let us check we already have
// an existing object here.
CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
CHECK(map->IsMap());
value_index++;
// Handle the special cases.
switch (map->instance_type()) {
case FIXED_DOUBLE_ARRAY_TYPE:
// Materialize (i.e. allocate&initialize) the array and return since
// there is no need to process the children.
return MaterializeFixedDoubleArray(frame, &value_index, slot, map);
case HEAP_NUMBER_TYPE:
// Materialize (i.e. allocate&initialize) the heap number and return.
// There is no need to process the children.
return MaterializeHeapNumber(frame, &value_index, slot);
case FIXED_ARRAY_TYPE:
case SCRIPT_CONTEXT_TABLE_TYPE:
case AWAIT_CONTEXT_TYPE:
case BLOCK_CONTEXT_TYPE:
case CATCH_CONTEXT_TYPE:
case DEBUG_EVALUATE_CONTEXT_TYPE:
case EVAL_CONTEXT_TYPE:
case FUNCTION_CONTEXT_TYPE:
case MODULE_CONTEXT_TYPE:
case NATIVE_CONTEXT_TYPE:
case SCRIPT_CONTEXT_TYPE:
case WITH_CONTEXT_TYPE:
case HASH_TABLE_TYPE:
case ORDERED_HASH_MAP_TYPE:
case ORDERED_HASH_SET_TYPE:
case NAME_DICTIONARY_TYPE:
case GLOBAL_DICTIONARY_TYPE:
case NUMBER_DICTIONARY_TYPE:
case SIMPLE_NUMBER_DICTIONARY_TYPE: {
// Check we have the right size.
int array_length = frame->values_[value_index].GetSmiValue();
int instance_size = FixedArray::SizeFor(array_length);
CHECK_EQ(instance_size, slot->GetChildrenCount() * kTaggedSize);
// Canonicalize empty fixed array.
if (*map == ReadOnlyRoots(isolate()).empty_fixed_array().map() &&
array_length == 0) {
slot->set_storage(isolate()->factory()->empty_fixed_array());
} else {
slot->set_storage(AllocateStorageFor(slot));
}
// Make sure all the remaining children (after the map) are allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
&value_index, worklist);
}
case SLOPPY_ARGUMENTS_ELEMENTS_TYPE: {
// Verify that the arguments size is correct.
int args_length = frame->values_[value_index].GetSmiValue();
int args_size = SloppyArgumentsElements::SizeFor(args_length);
CHECK_EQ(args_size, slot->GetChildrenCount() * kTaggedSize);
slot->set_storage(AllocateStorageFor(slot));
// Make sure all the remaining children (after the map) are allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
&value_index, worklist);
}
case PROPERTY_ARRAY_TYPE: {
// Check we have the right size.
int length_or_hash = frame->values_[value_index].GetSmiValue();
int array_length = PropertyArray::LengthField::decode(length_or_hash);
int instance_size = PropertyArray::SizeFor(array_length);
CHECK_EQ(instance_size, slot->GetChildrenCount() * kTaggedSize);
slot->set_storage(AllocateStorageFor(slot));
// Make sure all the remaining children (after the map) are allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
&value_index, worklist);
}
default:
CHECK(map->IsJSObjectMap());
EnsureJSObjectAllocated(slot, map);
TranslatedValue* properties_slot = &(frame->values_[value_index]);
value_index++;
if (properties_slot->kind() == TranslatedValue::kCapturedObject) {
// If we are materializing the property array, make sure we put
// the mutable heap numbers at the right places.
EnsurePropertiesAllocatedAndMarked(properties_slot, map);
EnsureChildrenAllocated(properties_slot->GetChildrenCount(), frame,
&value_index, worklist);
}
// Make sure all the remaining children (after the map and properties) are
// allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 2, frame,
&value_index, worklist);
}
UNREACHABLE();
}
void TranslatedState::EnsureChildrenAllocated(int count, TranslatedFrame* frame,
int* value_index,
std::stack<int>* worklist) {
// Ensure all children are allocated.
for (int i = 0; i < count; i++) {
// If the field is an object that has not been allocated yet, queue it
// for initialization (and mark it as such).
TranslatedValue* child_slot = frame->ValueAt(*value_index);
if (child_slot->kind() == TranslatedValue::kCapturedObject ||
child_slot->kind() == TranslatedValue::kDuplicatedObject) {
child_slot = ResolveCapturedObject(child_slot);
if (child_slot->materialization_state() ==
TranslatedValue::kUninitialized) {
worklist->push(child_slot->object_index());
child_slot->mark_allocated();
}
} else {
// Make sure the simple values (heap numbers, etc.) are properly
// initialized.
child_slot->GetValue();
}
SkipSlots(1, frame, value_index);
}
}
void TranslatedState::EnsurePropertiesAllocatedAndMarked(
TranslatedValue* properties_slot, Handle<Map> map) {
CHECK_EQ(TranslatedValue::kUninitialized,
properties_slot->materialization_state());
Handle<ByteArray> object_storage = AllocateStorageFor(properties_slot);
properties_slot->mark_allocated();
properties_slot->set_storage(object_storage);
// Set markers for out-of-object properties.
Handle<DescriptorArray> descriptors(map->instance_descriptors(kRelaxedLoad),
isolate());
for (InternalIndex i : map->IterateOwnDescriptors()) {
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
Representation representation = descriptors->GetDetails(i).representation();
if (!index.is_inobject() &&
(representation.IsDouble() || representation.IsHeapObject())) {
CHECK(!map->IsUnboxedDoubleField(index));
int outobject_index = index.outobject_array_index();
int array_index = outobject_index * kTaggedSize;
object_storage->set(array_index, kStoreHeapObject);
}
}
}
Handle<ByteArray> TranslatedState::AllocateStorageFor(TranslatedValue* slot) {
int allocate_size =
ByteArray::LengthFor(slot->GetChildrenCount() * kTaggedSize);
// It is important to allocate all the objects tenured so that the marker
// does not visit them.
Handle<ByteArray> object_storage =
isolate()->factory()->NewByteArray(allocate_size, AllocationType::kOld);
for (int i = 0; i < object_storage->length(); i++) {
object_storage->set(i, kStoreTagged);
}
return object_storage;
}
void TranslatedState::EnsureJSObjectAllocated(TranslatedValue* slot,
Handle<Map> map) {
CHECK_EQ(map->instance_size(), slot->GetChildrenCount() * kTaggedSize);
Handle<ByteArray> object_storage = AllocateStorageFor(slot);
// Now we handle the interesting (JSObject) case.
Handle<DescriptorArray> descriptors(map->instance_descriptors(kRelaxedLoad),
isolate());
// Set markers for in-object properties.
for (InternalIndex i : map->IterateOwnDescriptors()) {
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
Representation representation = descriptors->GetDetails(i).representation();
if (index.is_inobject() &&
(representation.IsDouble() || representation.IsHeapObject())) {
CHECK_GE(index.index(), FixedArray::kHeaderSize / kTaggedSize);
int array_index = index.index() * kTaggedSize - FixedArray::kHeaderSize;
uint8_t marker = map->IsUnboxedDoubleField(index) ? kStoreUnboxedDouble
: kStoreHeapObject;
object_storage->set(array_index, marker);
}
}
slot->set_storage(object_storage);
}
TranslatedValue* TranslatedState::GetResolvedSlot(TranslatedFrame* frame,
int value_index) {
TranslatedValue* slot = frame->ValueAt(value_index);
if (slot->kind() == TranslatedValue::kDuplicatedObject) {
slot = ResolveCapturedObject(slot);
}
CHECK_NE(slot->materialization_state(), TranslatedValue::kUninitialized);
return slot;
}
TranslatedValue* TranslatedState::GetResolvedSlotAndAdvance(
TranslatedFrame* frame, int* value_index) {
TranslatedValue* slot = GetResolvedSlot(frame, *value_index);
SkipSlots(1, frame, value_index);
return slot;
}
Handle<Object> TranslatedState::GetValueAndAdvance(TranslatedFrame* frame,
int* value_index) {
TranslatedValue* slot = GetResolvedSlot(frame, *value_index);
SkipSlots(1, frame, value_index);
return slot->GetValue();
}
void TranslatedState::InitializeJSObjectAt(
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
Handle<Map> map, const DisallowHeapAllocation& no_allocation) {
Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
DCHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
// The object should have at least a map and some payload.
CHECK_GE(slot->GetChildrenCount(), 2);
// Notify the concurrent marker about the layout change.
isolate()->heap()->NotifyObjectLayoutChange(*object_storage, no_allocation);
// Fill the property array field.
{
Handle<Object> properties = GetValueAndAdvance(frame, value_index);
WRITE_FIELD(*object_storage, JSObject::kPropertiesOrHashOffset,
*properties);
WRITE_BARRIER(*object_storage, JSObject::kPropertiesOrHashOffset,
*properties);
}
// For all the other fields we first look at the fixed array and check the
// marker to see if we store an unboxed double.
DCHECK_EQ(kTaggedSize, JSObject::kPropertiesOrHashOffset);
for (int i = 2; i < slot->GetChildrenCount(); i++) {
TranslatedValue* slot = GetResolvedSlotAndAdvance(frame, value_index);
// Read out the marker and ensure the field is consistent with
// what the markers in the storage say (note that all heap numbers
// should be fully initialized by now).
int offset = i * kTaggedSize;
uint8_t marker = object_storage->ReadField<uint8_t>(offset);
if (marker == kStoreUnboxedDouble) {
Handle<HeapObject> field_value = slot->storage();
CHECK(field_value->IsHeapNumber());
object_storage->WriteField<double>(offset, field_value->Number());
} else if (marker == kStoreHeapObject) {
Handle<HeapObject> field_value = slot->storage();
WRITE_FIELD(*object_storage, offset, *field_value);
WRITE_BARRIER(*object_storage, offset, *field_value);
} else {
CHECK_EQ(kStoreTagged, marker);
Handle<Object> field_value = slot->GetValue();
DCHECK_IMPLIES(field_value->IsHeapNumber(),
!IsSmiDouble(field_value->Number()));
WRITE_FIELD(*object_storage, offset, *field_value);
WRITE_BARRIER(*object_storage, offset, *field_value);
}
}
object_storage->synchronized_set_map(*map);
}
void TranslatedState::InitializeObjectWithTaggedFieldsAt(
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
Handle<Map> map, const DisallowHeapAllocation& no_allocation) {
Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
// Skip the writes if we already have the canonical empty fixed array.
if (*object_storage == ReadOnlyRoots(isolate()).empty_fixed_array()) {
CHECK_EQ(2, slot->GetChildrenCount());
Handle<Object> length_value = GetValueAndAdvance(frame, value_index);
CHECK_EQ(*length_value, Smi::FromInt(0));
return;
}
// Notify the concurrent marker about the layout change.
isolate()->heap()->NotifyObjectLayoutChange(*object_storage, no_allocation);
// Write the fields to the object.
for (int i = 1; i < slot->GetChildrenCount(); i++) {
TranslatedValue* slot = GetResolvedSlotAndAdvance(frame, value_index);
int offset = i * kTaggedSize;
uint8_t marker = object_storage->ReadField<uint8_t>(offset);
Handle<Object> field_value;
if (i > 1 && marker == kStoreHeapObject) {
field_value = slot->storage();
} else {
CHECK(marker == kStoreTagged || i == 1);
field_value = slot->GetValue();
DCHECK_IMPLIES(field_value->IsHeapNumber(),
!IsSmiDouble(field_value->Number()));
}
WRITE_FIELD(*object_storage, offset, *field_value);
WRITE_BARRIER(*object_storage, offset, *field_value);
}
object_storage->synchronized_set_map(*map);
}
TranslatedValue* TranslatedState::ResolveCapturedObject(TranslatedValue* slot) {
while (slot->kind() == TranslatedValue::kDuplicatedObject) {
slot = GetValueByObjectIndex(slot->object_index());
}
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
return slot;
}
TranslatedFrame* TranslatedState::GetFrameFromJSFrameIndex(int jsframe_index) {
for (size_t i = 0; i < frames_.size(); i++) {
if (frames_[i].kind() == TranslatedFrame::kInterpretedFunction ||
frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
frames_[i].kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
if (jsframe_index > 0) {
jsframe_index--;
} else {
return &(frames_[i]);
}
}
}
return nullptr;
}
TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
int jsframe_index, int* args_count) {
for (size_t i = 0; i < frames_.size(); i++) {
if (frames_[i].kind() == TranslatedFrame::kInterpretedFunction ||
frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
frames_[i].kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
if (jsframe_index > 0) {
jsframe_index--;
} else {
// We have the JS function frame, now check if it has arguments
// adaptor.
if (i > 0 &&
frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
*args_count = frames_[i - 1].height();
return &(frames_[i - 1]);
}
// JavaScriptBuiltinContinuation frames that are not preceeded by
// a arguments adapter frame are currently only used by C++ API calls
// from TurboFan. Calls to C++ API functions from TurboFan need
// a special marker frame state, otherwise the API call wouldn't
// be shown in a stack trace.
if (frames_[i].kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuation &&
frames_[i].shared_info()->internal_formal_parameter_count() ==
kDontAdaptArgumentsSentinel) {
DCHECK(frames_[i].shared_info()->IsApiFunction());
// The argument count for this special case is always the second
// to last value in the TranslatedFrame. It should also always be
// {1}, as the GenericLazyDeoptContinuation builtin only has one
// argument (the receiver).
static constexpr int kTheContext = 1;
const int height = frames_[i].height() + kTheContext;
*args_count = frames_[i].ValueAt(height - 1)->GetSmiValue();
DCHECK_EQ(*args_count, 1);
} else {
*args_count = InternalFormalParameterCountWithReceiver(
*frames_[i].shared_info());
}
return &(frames_[i]);
}
}
}
return nullptr;
}
void TranslatedState::StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame) {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
bool new_store = false;
if (previously_materialized_objects.is_null()) {
previously_materialized_objects =
isolate_->factory()->NewFixedArray(length, AllocationType::kOld);
for (int i = 0; i < length; i++) {
previously_materialized_objects->set(i, *marker);
}
new_store = true;
}
CHECK_EQ(length, previously_materialized_objects->length());
bool value_changed = false;
for (int i = 0; i < length; i++) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
CHECK(value_info->IsMaterializedObject());
// Skip duplicate objects (i.e., those that point to some other object id).
if (value_info->object_index() != i) continue;
Handle<Object> previous_value(previously_materialized_objects->get(i),
isolate_);
Handle<Object> value(value_info->GetRawValue(), isolate_);
if (value.is_identical_to(marker)) {
DCHECK_EQ(*previous_value, *marker);
} else {
if (*previous_value == *marker) {
if (value->IsSmi()) {
value = isolate()->factory()->NewHeapNumber(value->Number());
}
previously_materialized_objects->set(i, *value);
value_changed = true;
} else {
CHECK(*previous_value == *value ||
(previous_value->IsHeapNumber() && value->IsSmi() &&
previous_value->Number() == value->Number()));
}
}
}
if (new_store && value_changed) {
materialized_store->Set(stack_frame_pointer_,
previously_materialized_objects);
CHECK_EQ(frames_[0].kind(), TranslatedFrame::kInterpretedFunction);
CHECK_EQ(frame->function(), frames_[0].front().GetRawValue());
Deoptimizer::DeoptimizeFunction(frame->function(), frame->LookupCode());
}
}
void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
// If we have no previously materialized objects, there is nothing to do.
if (previously_materialized_objects.is_null()) return;
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
CHECK_EQ(length, previously_materialized_objects->length());
for (int i = 0; i < length; i++) {
// For a previously materialized objects, inject their value into the
// translated values.
if (previously_materialized_objects->get(i) != *marker) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
CHECK(value_info->IsMaterializedObject());
if (value_info->kind() == TranslatedValue::kCapturedObject) {
Handle<Object> object(previously_materialized_objects->get(i),
isolate_);
CHECK(object->IsHeapObject());
value_info->set_initialized_storage(Handle<HeapObject>::cast(object));
}
}
}
}
void TranslatedState::VerifyMaterializedObjects() {
#if VERIFY_HEAP
int length = static_cast<int>(object_positions_.size());
for (int i = 0; i < length; i++) {
TranslatedValue* slot = GetValueByObjectIndex(i);
if (slot->kind() == TranslatedValue::kCapturedObject) {
CHECK_EQ(slot, GetValueByObjectIndex(slot->object_index()));
if (slot->materialization_state() == TranslatedValue::kFinished) {
slot->storage()->ObjectVerify(isolate());
} else {
CHECK_EQ(slot->materialization_state(),
TranslatedValue::kUninitialized);
}
}
}
#endif
}
bool TranslatedState::DoUpdateFeedback() {
if (!feedback_vector_handle_.is_null()) {
CHECK(!feedback_slot_.IsInvalid());
isolate()->CountUsage(v8::Isolate::kDeoptimizerDisableSpeculation);
FeedbackNexus nexus(feedback_vector_handle_, feedback_slot_);
nexus.SetSpeculationMode(SpeculationMode::kDisallowSpeculation);
return true;
}
return false;
}
void TranslatedState::ReadUpdateFeedback(TranslationIterator* iterator,
FixedArray literal_array,
FILE* trace_file) {
CHECK_EQ(Translation::UPDATE_FEEDBACK, iterator->Next());
feedback_vector_ = FeedbackVector::cast(literal_array.get(iterator->Next()));
feedback_slot_ = FeedbackSlot(iterator->Next());
if (trace_file != nullptr) {
PrintF(trace_file, " reading FeedbackVector (slot %d)\n",
feedback_slot_.ToInt());
}
}
} // namespace internal
} // namespace v8
// Undefine the heap manipulation macros.
#include "src/objects/object-macros-undef.h"