| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/compiler/backend/gap-resolver.h" |
| |
| #include "src/base/utils/random-number-generator.h" |
| #include "test/cctest/cctest.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| const auto GetRegConfig = RegisterConfiguration::Default; |
| |
| // Fragments the given FP operand into an equivalent set of FP operands to |
| // simplify ParallelMove equivalence testing. |
| void GetCanonicalOperands(const InstructionOperand& op, |
| std::vector<InstructionOperand>* fragments) { |
| CHECK(!kSimpleFPAliasing); |
| CHECK(op.IsFPLocationOperand()); |
| const LocationOperand& loc = LocationOperand::cast(op); |
| MachineRepresentation rep = loc.representation(); |
| int base = -1; |
| int aliases = GetRegConfig()->GetAliases( |
| rep, 0, MachineRepresentation::kFloat32, &base); |
| CHECK_LT(0, aliases); |
| CHECK_GE(4, aliases); |
| int index = -1; |
| int step = 1; |
| if (op.IsFPRegister()) { |
| index = loc.register_code() * aliases; |
| } else { |
| index = loc.index(); |
| step = -1; |
| } |
| for (int i = 0; i < aliases; i++) { |
| fragments->push_back(AllocatedOperand(loc.location_kind(), |
| MachineRepresentation::kFloat32, |
| index + i * step)); |
| } |
| } |
| |
| // The state of our move interpreter is the mapping of operands to values. Note |
| // that the actual values don't really matter, all we care about is equality. |
| class InterpreterState { |
| public: |
| void ExecuteInParallel(const ParallelMove* moves) { |
| InterpreterState copy(*this); |
| for (const auto m : *moves) { |
| CHECK(!m->IsRedundant()); |
| const InstructionOperand& src = m->source(); |
| const InstructionOperand& dst = m->destination(); |
| if (!kSimpleFPAliasing && src.IsFPLocationOperand() && |
| dst.IsFPLocationOperand()) { |
| // Canonicalize FP location-location moves by fragmenting them into |
| // an equivalent sequence of float32 moves, to simplify state |
| // equivalence testing. |
| std::vector<InstructionOperand> src_fragments; |
| GetCanonicalOperands(src, &src_fragments); |
| CHECK(!src_fragments.empty()); |
| std::vector<InstructionOperand> dst_fragments; |
| GetCanonicalOperands(dst, &dst_fragments); |
| CHECK_EQ(src_fragments.size(), dst_fragments.size()); |
| |
| for (size_t i = 0; i < src_fragments.size(); ++i) { |
| write(dst_fragments[i], copy.read(src_fragments[i])); |
| } |
| continue; |
| } |
| // All other moves. |
| write(dst, copy.read(src)); |
| } |
| } |
| |
| bool operator==(const InterpreterState& other) const { |
| return values_ == other.values_; |
| } |
| |
| private: |
| // struct for mapping operands to a unique value, that makes it easier to |
| // detect illegal parallel moves, and to evaluate moves for equivalence. This |
| // is a one way transformation. All general register and slot operands are |
| // mapped to the default representation. FP registers and slots are mapped to |
| // float64 except on architectures with non-simple FP register aliasing, where |
| // the actual representation is used. |
| struct Key { |
| bool is_constant; |
| MachineRepresentation rep; |
| LocationOperand::LocationKind kind; |
| int index; |
| |
| bool operator<(const Key& other) const { |
| if (this->is_constant != other.is_constant) { |
| return this->is_constant; |
| } |
| if (this->rep != other.rep) { |
| return this->rep < other.rep; |
| } |
| if (this->kind != other.kind) { |
| return this->kind < other.kind; |
| } |
| return this->index < other.index; |
| } |
| |
| bool operator==(const Key& other) const { |
| return this->is_constant == other.is_constant && this->rep == other.rep && |
| this->kind == other.kind && this->index == other.index; |
| } |
| }; |
| |
| // Internally, the state is a normalized permutation of Value pairs. |
| using Value = Key; |
| using OperandMap = std::map<Key, Value>; |
| |
| Value read(const InstructionOperand& op) const { |
| OperandMap::const_iterator it = values_.find(KeyFor(op)); |
| return (it == values_.end()) ? ValueFor(op) : it->second; |
| } |
| |
| void write(const InstructionOperand& dst, Value v) { |
| if (v == ValueFor(dst)) { |
| values_.erase(KeyFor(dst)); |
| } else { |
| values_[KeyFor(dst)] = v; |
| } |
| } |
| |
| static Key KeyFor(const InstructionOperand& op) { |
| bool is_constant = op.IsConstant(); |
| MachineRepresentation rep = |
| v8::internal::compiler::InstructionSequence::DefaultRepresentation(); |
| LocationOperand::LocationKind kind; |
| int index; |
| if (!is_constant) { |
| const LocationOperand& loc_op = LocationOperand::cast(op); |
| // Preserve FP representation when FP register aliasing is complex. |
| // Otherwise, canonicalize to kFloat64. |
| if (IsFloatingPoint(loc_op.representation())) { |
| rep = kSimpleFPAliasing ? MachineRepresentation::kFloat64 |
| : loc_op.representation(); |
| } |
| if (loc_op.IsAnyRegister()) { |
| index = loc_op.register_code(); |
| } else { |
| index = loc_op.index(); |
| } |
| kind = loc_op.location_kind(); |
| } else { |
| index = ConstantOperand::cast(op).virtual_register(); |
| kind = LocationOperand::REGISTER; |
| } |
| Key key = {is_constant, rep, kind, index}; |
| return key; |
| } |
| |
| static Value ValueFor(const InstructionOperand& op) { return KeyFor(op); } |
| |
| static InstructionOperand FromKey(Key key) { |
| if (key.is_constant) { |
| return ConstantOperand(key.index); |
| } |
| return AllocatedOperand(key.kind, key.rep, key.index); |
| } |
| |
| friend std::ostream& operator<<(std::ostream& os, |
| const InterpreterState& is) { |
| const char* space = ""; |
| for (auto& value : is.values_) { |
| InstructionOperand source = FromKey(value.second); |
| InstructionOperand destination = FromKey(value.first); |
| os << space << MoveOperands{source, destination}; |
| space = " "; |
| } |
| return os; |
| } |
| |
| OperandMap values_; |
| }; |
| |
| // An abstract interpreter for moves, swaps and parallel moves. |
| class MoveInterpreter : public GapResolver::Assembler { |
| public: |
| explicit MoveInterpreter(Zone* zone) : zone_(zone) {} |
| |
| void AssembleMove(InstructionOperand* source, |
| InstructionOperand* destination) override { |
| ParallelMove* moves = zone_->New<ParallelMove>(zone_); |
| moves->AddMove(*source, *destination); |
| state_.ExecuteInParallel(moves); |
| } |
| |
| void AssembleSwap(InstructionOperand* source, |
| InstructionOperand* destination) override { |
| ParallelMove* moves = zone_->New<ParallelMove>(zone_); |
| moves->AddMove(*source, *destination); |
| moves->AddMove(*destination, *source); |
| state_.ExecuteInParallel(moves); |
| } |
| |
| void AssembleParallelMove(const ParallelMove* moves) { |
| state_.ExecuteInParallel(moves); |
| } |
| |
| InterpreterState state() const { return state_; } |
| |
| private: |
| Zone* const zone_; |
| InterpreterState state_; |
| }; |
| |
| |
| class ParallelMoveCreator : public HandleAndZoneScope { |
| public: |
| ParallelMoveCreator() : rng_(CcTest::random_number_generator()) {} |
| |
| // Creates a ParallelMove with 'size' random MoveOperands. Note that illegal |
| // moves will be rejected, so the actual number of MoveOperands may be less. |
| ParallelMove* Create(int size) { |
| ParallelMove* parallel_move = main_zone()->New<ParallelMove>(main_zone()); |
| // Valid ParallelMoves can't have interfering destination ops. |
| std::set<InstructionOperand, CompareOperandModuloType> destinations; |
| // Valid ParallelMoves can't have interfering source ops of different reps. |
| std::map<InstructionOperand, MachineRepresentation, |
| CompareOperandModuloType> |
| sources; |
| for (int i = 0; i < size; ++i) { |
| MachineRepresentation rep = RandomRepresentation(); |
| MoveOperands mo(CreateRandomOperand(true, rep), |
| CreateRandomOperand(false, rep)); |
| if (mo.IsRedundant()) continue; |
| |
| const InstructionOperand& dst = mo.destination(); |
| bool reject = false; |
| // On architectures where FP register aliasing is non-simple, update the |
| // destinations set with the float equivalents of the operand and check |
| // that all destinations are unique and do not alias each other. |
| if (!kSimpleFPAliasing && mo.destination().IsFPLocationOperand()) { |
| std::vector<InstructionOperand> fragments; |
| GetCanonicalOperands(dst, &fragments); |
| CHECK(!fragments.empty()); |
| for (size_t i = 0; i < fragments.size(); ++i) { |
| if (destinations.find(fragments[i]) == destinations.end()) { |
| destinations.insert(fragments[i]); |
| } else { |
| reject = true; |
| break; |
| } |
| } |
| // Update the sources map, and check that no FP source has multiple |
| // representations. |
| const InstructionOperand& src = mo.source(); |
| if (src.IsFPRegister()) { |
| std::vector<InstructionOperand> fragments; |
| MachineRepresentation src_rep = |
| LocationOperand::cast(src).representation(); |
| GetCanonicalOperands(src, &fragments); |
| CHECK(!fragments.empty()); |
| for (size_t i = 0; i < fragments.size(); ++i) { |
| auto find_it = sources.find(fragments[i]); |
| if (find_it != sources.end() && find_it->second != src_rep) { |
| reject = true; |
| break; |
| } |
| sources.insert(std::make_pair(fragments[i], src_rep)); |
| } |
| } |
| } else { |
| if (destinations.find(dst) == destinations.end()) { |
| destinations.insert(dst); |
| } else { |
| reject = true; |
| } |
| } |
| |
| if (!reject) { |
| parallel_move->AddMove(mo.source(), mo.destination()); |
| } |
| } |
| return parallel_move; |
| } |
| |
| // Creates a ParallelMove from a list of operand pairs. Even operands are |
| // destinations, odd ones are sources. |
| ParallelMove* Create(const std::vector<InstructionOperand>& operand_pairs) { |
| ParallelMove* parallel_move = main_zone()->New<ParallelMove>(main_zone()); |
| for (size_t i = 0; i < operand_pairs.size(); i += 2) { |
| const InstructionOperand& dst = operand_pairs[i]; |
| const InstructionOperand& src = operand_pairs[i + 1]; |
| parallel_move->AddMove(src, dst); |
| } |
| return parallel_move; |
| } |
| |
| private: |
| MachineRepresentation RandomRepresentation() { |
| int index = rng_->NextInt(6); |
| switch (index) { |
| case 0: |
| return MachineRepresentation::kWord32; |
| case 1: |
| return MachineRepresentation::kWord64; |
| case 2: |
| return MachineRepresentation::kFloat32; |
| case 3: |
| return MachineRepresentation::kFloat64; |
| case 4: |
| return MachineRepresentation::kSimd128; |
| case 5: |
| return MachineRepresentation::kTagged; |
| } |
| UNREACHABLE(); |
| } |
| |
| // min(num_alloctable_general_registers for each arch) == 5 from |
| // assembler-ia32.h |
| const int kMaxIndex = 5; |
| const int kMaxIndices = kMaxIndex + 1; |
| |
| // Non-FP slots shouldn't overlap FP slots. |
| // FP slots with different representations shouldn't overlap. |
| int GetValidSlotIndex(MachineRepresentation rep, int index) { |
| DCHECK_GE(kMaxIndex, index); |
| // The first group of slots are for non-FP values. |
| if (!IsFloatingPoint(rep)) return index; |
| // The next group are for float values. |
| int base = kMaxIndices; |
| if (rep == MachineRepresentation::kFloat32) return base + index; |
| // Double values. |
| base += kMaxIndices; |
| if (rep == MachineRepresentation::kFloat64) return base + index * 2; |
| // SIMD values |
| base += kMaxIndices * 2; |
| CHECK_EQ(MachineRepresentation::kSimd128, rep); |
| return base + index * 4; |
| } |
| |
| InstructionOperand CreateRandomOperand(bool is_source, |
| MachineRepresentation rep) { |
| auto conf = RegisterConfiguration::Default(); |
| auto GetValidRegisterCode = [&conf](MachineRepresentation rep, int index) { |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| return conf->RegisterConfiguration::GetAllocatableFloatCode(index); |
| case MachineRepresentation::kFloat64: |
| return conf->RegisterConfiguration::GetAllocatableDoubleCode(index); |
| case MachineRepresentation::kSimd128: |
| return conf->RegisterConfiguration::GetAllocatableSimd128Code(index); |
| default: |
| return conf->RegisterConfiguration::GetAllocatableGeneralCode(index); |
| } |
| UNREACHABLE(); |
| }; |
| int index = rng_->NextInt(kMaxIndex); |
| // destination can't be Constant. |
| switch (rng_->NextInt(is_source ? 3 : 2)) { |
| case 0: |
| return AllocatedOperand(LocationOperand::STACK_SLOT, rep, |
| GetValidSlotIndex(rep, index)); |
| case 1: |
| return AllocatedOperand(LocationOperand::REGISTER, rep, |
| GetValidRegisterCode(rep, index)); |
| case 2: |
| return ConstantOperand(index); |
| } |
| UNREACHABLE(); |
| } |
| |
| private: |
| v8::base::RandomNumberGenerator* rng_; |
| }; |
| |
| void RunTest(ParallelMove* pm, Zone* zone) { |
| // Note: The gap resolver modifies the ParallelMove, so interpret first. |
| MoveInterpreter mi1(zone); |
| mi1.AssembleParallelMove(pm); |
| |
| MoveInterpreter mi2(zone); |
| GapResolver resolver(&mi2); |
| resolver.Resolve(pm); |
| |
| CHECK_EQ(mi1.state(), mi2.state()); |
| } |
| |
| TEST(Aliasing) { |
| // On platforms with simple aliasing, these parallel moves are ill-formed. |
| if (kSimpleFPAliasing) return; |
| |
| ParallelMoveCreator pmc; |
| Zone* zone = pmc.main_zone(); |
| |
| auto s0 = AllocatedOperand(LocationOperand::REGISTER, |
| MachineRepresentation::kFloat32, 0); |
| auto s1 = AllocatedOperand(LocationOperand::REGISTER, |
| MachineRepresentation::kFloat32, 1); |
| auto s2 = AllocatedOperand(LocationOperand::REGISTER, |
| MachineRepresentation::kFloat32, 2); |
| auto s3 = AllocatedOperand(LocationOperand::REGISTER, |
| MachineRepresentation::kFloat32, 3); |
| auto s4 = AllocatedOperand(LocationOperand::REGISTER, |
| MachineRepresentation::kFloat32, 4); |
| |
| auto d0 = AllocatedOperand(LocationOperand::REGISTER, |
| MachineRepresentation::kFloat64, 0); |
| auto d1 = AllocatedOperand(LocationOperand::REGISTER, |
| MachineRepresentation::kFloat64, 1); |
| auto d16 = AllocatedOperand(LocationOperand::REGISTER, |
| MachineRepresentation::kFloat64, 16); |
| |
| // Double slots must be odd to match frame allocation. |
| auto dSlot = AllocatedOperand(LocationOperand::STACK_SLOT, |
| MachineRepresentation::kFloat64, 3); |
| |
| // Cycles involving s- and d-registers. |
| { |
| std::vector<InstructionOperand> moves = { |
| s2, s0, // s2 <- s0 |
| d0, d1 // d0 <- d1 |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| { |
| std::vector<InstructionOperand> moves = { |
| d0, d1, // d0 <- d1 |
| s2, s0 // s2 <- s0 |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| { |
| std::vector<InstructionOperand> moves = { |
| s2, s1, // s2 <- s1 |
| d0, d1 // d0 <- d1 |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| { |
| std::vector<InstructionOperand> moves = { |
| d0, d1, // d0 <- d1 |
| s2, s1 // s2 <- s1 |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| // Two cycles involving a single d-register. |
| { |
| std::vector<InstructionOperand> moves = { |
| d0, d1, // d0 <- d1 |
| s2, s1, // s2 <- s1 |
| s3, s0 // s3 <- s0 |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| // Cycle with a float move that must be deferred until after swaps. |
| { |
| std::vector<InstructionOperand> moves = { |
| d0, d1, // d0 <- d1 |
| s2, s0, // s2 <- s0 |
| s3, s4 // s3 <- s4 must be deferred |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| // Cycles involving s-registers and a non-aliased d-register. |
| { |
| std::vector<InstructionOperand> moves = { |
| d16, d0, // d16 <- d0 |
| s1, s2, // s1 <- s2 |
| d1, d16 // d1 <- d16 |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| { |
| std::vector<InstructionOperand> moves = { |
| s2, s1, // s1 <- s2 |
| d0, d16, // d16 <- d0 |
| d16, d1 // d1 <- d16 |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| { |
| std::vector<InstructionOperand> moves = { |
| d0, d16, // d0 <- d16 |
| d16, d1, // s2 <- s0 |
| s3, s0 // d0 <- d1 |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| // Cycle involving aliasing registers and a slot. |
| { |
| std::vector<InstructionOperand> moves = { |
| dSlot, d0, // dSlot <- d0 |
| d1, dSlot, // d1 <- dSlot |
| s0, s3 // s0 <- s3 |
| }; |
| RunTest(pmc.Create(moves), zone); |
| } |
| } |
| |
| TEST(FuzzResolver) { |
| ParallelMoveCreator pmc; |
| for (int size = 0; size < 80; ++size) { |
| for (int repeat = 0; repeat < 50; ++repeat) { |
| RunTest(pmc.Create(size), pmc.main_zone()); |
| } |
| } |
| } |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |