blob: 230ceffd583883e5eeb1da640bc134b52032e997 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ctypes/CTypes.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/StandardInteger.h"
#include <limits>
#include <math.h>
#if defined(XP_WIN) || defined(XP_OS2)
#include <float.h>
#endif
#if defined(SOLARIS)
#include <ieeefp.h>
#endif
#ifdef HAVE_SSIZE_T
#include <sys/types.h>
#endif
#if defined(XP_UNIX)
#include <errno.h>
#elif defined(XP_WIN)
#include <windows.h>
#endif
#include "jscompartment.h"
#include "jsnum.h"
#include "jsprf.h"
#include "jstypedarray.h"
#include "ctypes/Library.h"
using namespace std;
namespace js {
namespace ctypes {
size_t
GetDeflatedUTF8StringLength(JSContext *maybecx, const jschar *chars,
size_t nchars)
{
size_t nbytes;
const jschar *end;
unsigned c, c2;
char buffer[10];
nbytes = nchars;
for (end = chars + nchars; chars != end; chars++) {
c = *chars;
if (c < 0x80)
continue;
if (0xD800 <= c && c <= 0xDFFF) {
/* Surrogate pair. */
chars++;
/* nbytes sets 1 length since this is surrogate pair. */
nbytes--;
if (c >= 0xDC00 || chars == end)
goto bad_surrogate;
c2 = *chars;
if (c2 < 0xDC00 || c2 > 0xDFFF)
goto bad_surrogate;
c = ((c - 0xD800) << 10) + (c2 - 0xDC00) + 0x10000;
}
c >>= 11;
nbytes++;
while (c) {
c >>= 5;
nbytes++;
}
}
return nbytes;
bad_surrogate:
if (maybecx) {
JS_snprintf(buffer, 10, "0x%x", c);
JS_ReportErrorFlagsAndNumber(maybecx, JSREPORT_ERROR, js_GetErrorMessage,
NULL, JSMSG_BAD_SURROGATE_CHAR, buffer);
}
return (size_t) -1;
}
bool
DeflateStringToUTF8Buffer(JSContext *maybecx, const jschar *src, size_t srclen,
char *dst, size_t *dstlenp)
{
size_t i, utf8Len;
jschar c, c2;
uint32_t v;
uint8_t utf8buf[6];
size_t dstlen = *dstlenp;
size_t origDstlen = dstlen;
while (srclen) {
c = *src++;
srclen--;
if (c >= 0xDC00 && c <= 0xDFFF)
goto badSurrogate;
if (c < 0xD800 || c > 0xDBFF) {
v = c;
} else {
if (srclen < 1)
goto badSurrogate;
c2 = *src;
if ((c2 < 0xDC00) || (c2 > 0xDFFF))
goto badSurrogate;
src++;
srclen--;
v = ((c - 0xD800) << 10) + (c2 - 0xDC00) + 0x10000;
}
if (v < 0x0080) {
/* no encoding necessary - performance hack */
if (dstlen == 0)
goto bufferTooSmall;
*dst++ = (char) v;
utf8Len = 1;
} else {
utf8Len = js_OneUcs4ToUtf8Char(utf8buf, v);
if (utf8Len > dstlen)
goto bufferTooSmall;
for (i = 0; i < utf8Len; i++)
*dst++ = (char) utf8buf[i];
}
dstlen -= utf8Len;
}
*dstlenp = (origDstlen - dstlen);
return JS_TRUE;
badSurrogate:
*dstlenp = (origDstlen - dstlen);
/* Delegate error reporting to the measurement function. */
if (maybecx)
GetDeflatedUTF8StringLength(maybecx, src - 1, srclen + 1);
return JS_FALSE;
bufferTooSmall:
*dstlenp = (origDstlen - dstlen);
if (maybecx) {
JS_ReportErrorNumber(maybecx, js_GetErrorMessage, NULL,
JSMSG_BUFFER_TOO_SMALL);
}
return JS_FALSE;
}
/*******************************************************************************
** JSAPI function prototypes
*******************************************************************************/
static JSBool ConstructAbstract(JSContext* cx, unsigned argc, jsval* vp);
namespace CType {
static JSBool ConstructData(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructBasic(JSContext* cx, HandleObject obj, const CallArgs& args);
static void Trace(JSTracer* trc, JSObject* obj);
static void Finalize(JSFreeOp *fop, JSObject* obj);
static void FinalizeProtoClass(JSFreeOp *fop, JSObject* obj);
static JSBool PrototypeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool NameGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool SizeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool PtrGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp);
static JSBool CreateArray(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToString(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
static JSBool HasInstance(JSContext* cx, HandleObject obj, MutableHandleValue v, JSBool* bp);
/*
* Get the global "ctypes" object.
*
* |obj| must be a CType object.
*
* This function never returns NULL.
*/
static JSObject* GetGlobalCTypes(JSContext* cx, JSObject* obj);
}
namespace ABI {
bool IsABI(JSObject* obj);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
}
namespace PointerType {
static JSBool Create(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructData(JSContext* cx, HandleObject obj, const CallArgs& args);
static JSBool TargetTypeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ContentsGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ContentsSetter(JSContext* cx, HandleObject obj, HandleId idval, JSBool strict,
MutableHandleValue vp);
static JSBool IsNull(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Increment(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Decrement(JSContext* cx, unsigned argc, jsval* vp);
// The following is not an instance function, since we don't want to expose arbitrary
// pointer arithmetic at this moment.
static JSBool OffsetBy(JSContext* cx, const CallArgs& args, int offset);
}
namespace ArrayType {
static JSBool Create(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructData(JSContext* cx, HandleObject obj, const CallArgs& args);
static JSBool ElementTypeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool LengthGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool Getter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp);
static JSBool Setter(JSContext* cx, HandleObject obj, HandleId idval, JSBool strict, MutableHandleValue vp);
static JSBool AddressOfElement(JSContext* cx, unsigned argc, jsval* vp);
}
namespace StructType {
static JSBool Create(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructData(JSContext* cx, HandleObject obj, const CallArgs& args);
static JSBool FieldsArrayGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool FieldGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool FieldSetter(JSContext* cx, HandleObject obj, HandleId idval, JSBool strict,
MutableHandleValue vp);
static JSBool AddressOfField(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Define(JSContext* cx, unsigned argc, jsval* vp);
}
namespace FunctionType {
static JSBool Create(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructData(JSContext* cx, HandleObject typeObj,
HandleObject dataObj, HandleObject fnObj, HandleObject thisObj, jsval errVal);
static JSBool Call(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ArgTypesGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ReturnTypeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ABIGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp);
static JSBool IsVariadicGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
}
namespace CClosure {
static void Trace(JSTracer* trc, JSObject* obj);
static void Finalize(JSFreeOp *fop, JSObject* obj);
// libffi callback
static void ClosureStub(ffi_cif* cif, void* result, void** args,
void* userData);
}
namespace CData {
static void Finalize(JSFreeOp *fop, JSObject* obj);
static JSBool ValueGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ValueSetter(JSContext* cx, HandleObject obj, HandleId idval,
JSBool strict, MutableHandleValue vp);
static JSBool Address(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ReadString(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ReadStringReplaceMalformed(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
static JSString *GetSourceString(JSContext *cx, HandleObject typeObj,
void *data);
static JSBool ErrnoGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
#if defined(XP_WIN)
static JSBool LastErrorGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
#endif // defined(XP_WIN)
}
namespace CDataFinalizer {
/*
* Attach a C function as a finalizer to a JS object.
*
* This function is available from JS as |ctypes.withFinalizer|.
*
* JavaScript signature:
* function(CData, CData): CDataFinalizer
* value finalizer finalizable
*
* Where |finalizer| is a one-argument function taking a value
* with the same type as |value|.
*/
static JSBool Construct(JSContext* cx, unsigned argc, jsval *vp);
/*
* Private data held by |CDataFinalizer|.
*
* See also |enum CDataFinalizerSlot| for the slots of
* |CDataFinalizer|.
*
* Note: the private data may be NULL, if |dispose|, |forget| or the
* finalizer has already been called.
*/
struct Private {
/*
* The C data to pass to the code.
* Finalization/|dispose|/|forget| release this memory.
*/
void *cargs;
/*
* The total size of the buffer pointed by |cargs|
*/
size_t cargs_size;
/*
* Low-level signature information.
* Finalization/|dispose|/|forget| release this memory.
*/
ffi_cif CIF;
/*
* The C function to invoke during finalization.
* Do not deallocate this.
*/
uintptr_t code;
/*
* A buffer for holding the return value.
* Finalization/|dispose|/|forget| release this memory.
*/
void *rvalue;
};
/*
* Methods of instances of |CDataFinalizer|
*/
namespace Methods {
static JSBool Dispose(JSContext* cx, unsigned argc, jsval *vp);
static JSBool Forget(JSContext* cx, unsigned argc, jsval *vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval *vp);
static JSBool ToString(JSContext* cx, unsigned argc, jsval *vp);
}
/*
* Utility functions
*
* @return true if |obj| is a CDataFinalizer, false otherwise.
*/
static bool IsCDataFinalizer(JSObject *obj);
/*
* Clean up the finalization information of a CDataFinalizer.
*
* Used by |Finalize|, |Dispose| and |Forget|.
*
* @param p The private information of the CDataFinalizer. If NULL,
* this function does nothing.
* @param obj Either NULL, if the object should not be cleaned up (i.e.
* during finalization) or a CDataFinalizer JSObject. Always use NULL
* if you are calling from a finalizer.
*/
static void Cleanup(Private *p, JSObject *obj);
/*
* Perform the actual call to the finalizer code.
*/
static void CallFinalizer(CDataFinalizer::Private *p,
int* errnoStatus,
int32_t* lastErrorStatus);
/*
* Return the CType of a CDataFinalizer object, or NULL if the object
* has been cleaned-up already.
*/
static JSObject *GetCType(JSContext *cx, JSObject *obj);
/*
* Perform finalization of a |CDataFinalizer|
*/
static void Finalize(JSFreeOp *fop, JSObject *obj);
/*
* Return the jsval contained by this finalizer.
*
* Note that the jsval is actually not recorded, but converted back from C.
*/
static bool GetValue(JSContext *cx, JSObject *obj, jsval *result);
static JSObject* GetCData(JSContext *cx, JSObject *obj);
}
// Int64Base provides functions common to Int64 and UInt64.
namespace Int64Base {
JSObject* Construct(JSContext* cx, HandleObject proto, uint64_t data,
bool isUnsigned);
uint64_t GetInt(JSObject* obj);
JSBool ToString(JSContext* cx, JSObject* obj, const CallArgs& args,
bool isUnsigned);
JSBool ToSource(JSContext* cx, JSObject* obj, const CallArgs& args,
bool isUnsigned);
static void Finalize(JSFreeOp *fop, JSObject* obj);
}
namespace Int64 {
static JSBool Construct(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToString(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Compare(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Lo(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Hi(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Join(JSContext* cx, unsigned argc, jsval* vp);
}
namespace UInt64 {
static JSBool Construct(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToString(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Compare(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Lo(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Hi(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Join(JSContext* cx, unsigned argc, jsval* vp);
}
/*******************************************************************************
** JSClass definitions and initialization functions
*******************************************************************************/
// Class representing the 'ctypes' object itself. This exists to contain the
// JSCTypesCallbacks set of function pointers.
static JSClass sCTypesGlobalClass = {
"ctypes",
JSCLASS_HAS_RESERVED_SLOTS(CTYPESGLOBAL_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
static JSClass sCABIClass = {
"CABI",
JSCLASS_HAS_RESERVED_SLOTS(CABI_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
// Class representing ctypes.{C,Pointer,Array,Struct,Function}Type.prototype.
// This exists to give said prototypes a class of "CType", and to provide
// reserved slots for stashing various other prototype objects.
static JSClass sCTypeProtoClass = {
"CType",
JSCLASS_HAS_RESERVED_SLOTS(CTYPEPROTO_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CType::FinalizeProtoClass,
NULL, ConstructAbstract, NULL, ConstructAbstract
};
// Class representing ctypes.CData.prototype and the 'prototype' properties
// of CTypes. This exists to give said prototypes a class of "CData".
static JSClass sCDataProtoClass = {
"CData",
0,
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
static JSClass sCTypeClass = {
"CType",
JSCLASS_IMPLEMENTS_BARRIERS | JSCLASS_HAS_RESERVED_SLOTS(CTYPE_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CType::Finalize,
NULL, CType::ConstructData, CType::HasInstance, CType::ConstructData,
CType::Trace
};
static JSClass sCDataClass = {
"CData",
JSCLASS_HAS_RESERVED_SLOTS(CDATA_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, ArrayType::Getter, ArrayType::Setter,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CData::Finalize,
NULL, FunctionType::Call, NULL, FunctionType::Call
};
static JSClass sCClosureClass = {
"CClosure",
JSCLASS_IMPLEMENTS_BARRIERS | JSCLASS_HAS_RESERVED_SLOTS(CCLOSURE_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CClosure::Finalize,
NULL, NULL, NULL, NULL, CClosure::Trace
};
/*
* Class representing the prototype of CDataFinalizer.
*/
static JSClass sCDataFinalizerProtoClass = {
"CDataFinalizer",
0,
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
/*
* Class representing instances of CDataFinalizer.
*
* Instances of CDataFinalizer have both private data (with type
* |CDataFinalizer::Private|) and slots (see |CDataFinalizerSlots|).
*/
static JSClass sCDataFinalizerClass = {
"CDataFinalizer",
JSCLASS_HAS_PRIVATE | JSCLASS_HAS_RESERVED_SLOTS(CDATAFINALIZER_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CDataFinalizer::Finalize,
};
#define CTYPESFN_FLAGS \
(JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT)
#define CTYPESCTOR_FLAGS \
(CTYPESFN_FLAGS | JSFUN_CONSTRUCTOR)
#define CTYPESPROP_FLAGS \
(JSPROP_SHARED | JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT)
#define CABIFN_FLAGS \
(JSPROP_READONLY | JSPROP_PERMANENT)
#define CDATAFN_FLAGS \
(JSPROP_READONLY | JSPROP_PERMANENT)
#define CDATAFINALIZERFN_FLAGS \
(JSPROP_READONLY | JSPROP_PERMANENT)
static const JSPropertySpec sCTypeProps[] = {
{ "name", 0, CTYPESPROP_FLAGS, JSOP_WRAPPER(CType::NameGetter), JSOP_NULLWRAPPER },
{ "size", 0, CTYPESPROP_FLAGS, JSOP_WRAPPER(CType::SizeGetter), JSOP_NULLWRAPPER },
{ "ptr", 0, CTYPESPROP_FLAGS, JSOP_WRAPPER(CType::PtrGetter), JSOP_NULLWRAPPER },
{ "prototype", 0, CTYPESPROP_FLAGS, JSOP_WRAPPER(CType::PrototypeGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sCTypeFunctions[] = {
JS_FN("array", CType::CreateArray, 0, CTYPESFN_FLAGS),
JS_FN("toString", CType::ToString, 0, CTYPESFN_FLAGS),
JS_FN("toSource", CType::ToSource, 0, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sCABIFunctions[] = {
JS_FN("toSource", ABI::ToSource, 0, CABIFN_FLAGS),
JS_FN("toString", ABI::ToSource, 0, CABIFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sCDataProps[] = {
{ "value", 0, JSPROP_SHARED | JSPROP_PERMANENT,
JSOP_WRAPPER(CData::ValueGetter), JSOP_WRAPPER(CData::ValueSetter) },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sCDataFunctions[] = {
JS_FN("address", CData::Address, 0, CDATAFN_FLAGS),
JS_FN("readString", CData::ReadString, 0, CDATAFN_FLAGS),
JS_FN("readStringReplaceMalformed", CData::ReadStringReplaceMalformed, 0, CDATAFN_FLAGS),
JS_FN("toSource", CData::ToSource, 0, CDATAFN_FLAGS),
JS_FN("toString", CData::ToSource, 0, CDATAFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sCDataFinalizerProps[] = {
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sCDataFinalizerFunctions[] = {
JS_FN("dispose", CDataFinalizer::Methods::Dispose, 0, CDATAFINALIZERFN_FLAGS),
JS_FN("forget", CDataFinalizer::Methods::Forget, 0, CDATAFINALIZERFN_FLAGS),
JS_FN("readString",CData::ReadString, 0, CDATAFINALIZERFN_FLAGS),
JS_FN("toString", CDataFinalizer::Methods::ToString, 0, CDATAFINALIZERFN_FLAGS),
JS_FN("toSource", CDataFinalizer::Methods::ToSource, 0, CDATAFINALIZERFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sPointerFunction =
JS_FN("PointerType", PointerType::Create, 1, CTYPESCTOR_FLAGS);
static const JSPropertySpec sPointerProps[] = {
{ "targetType", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(PointerType::TargetTypeGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sPointerInstanceFunctions[] = {
JS_FN("isNull", PointerType::IsNull, 0, CTYPESFN_FLAGS),
JS_FN("increment", PointerType::Increment, 0, CTYPESFN_FLAGS),
JS_FN("decrement", PointerType::Decrement, 0, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sPointerInstanceProps[] = {
{ "contents", 0, JSPROP_SHARED | JSPROP_PERMANENT,
JSOP_WRAPPER(PointerType::ContentsGetter),
JSOP_WRAPPER(PointerType::ContentsSetter) },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sArrayFunction =
JS_FN("ArrayType", ArrayType::Create, 1, CTYPESCTOR_FLAGS);
static const JSPropertySpec sArrayProps[] = {
{ "elementType", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(ArrayType::ElementTypeGetter), JSOP_NULLWRAPPER },
{ "length", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(ArrayType::LengthGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sArrayInstanceFunctions[] = {
JS_FN("addressOfElement", ArrayType::AddressOfElement, 1, CDATAFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sArrayInstanceProps[] = {
{ "length", 0, JSPROP_SHARED | JSPROP_READONLY | JSPROP_PERMANENT,
JSOP_WRAPPER(ArrayType::LengthGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sStructFunction =
JS_FN("StructType", StructType::Create, 2, CTYPESCTOR_FLAGS);
static const JSPropertySpec sStructProps[] = {
{ "fields", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(StructType::FieldsArrayGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sStructFunctions[] = {
JS_FN("define", StructType::Define, 1, CDATAFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sStructInstanceFunctions[] = {
JS_FN("addressOfField", StructType::AddressOfField, 1, CDATAFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sFunctionFunction =
JS_FN("FunctionType", FunctionType::Create, 2, CTYPESCTOR_FLAGS);
static const JSPropertySpec sFunctionProps[] = {
{ "argTypes", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(FunctionType::ArgTypesGetter), JSOP_NULLWRAPPER },
{ "returnType", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(FunctionType::ReturnTypeGetter), JSOP_NULLWRAPPER },
{ "abi", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(FunctionType::ABIGetter), JSOP_NULLWRAPPER },
{ "isVariadic", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(FunctionType::IsVariadicGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sFunctionInstanceFunctions[] = {
JS_FN("call", js_fun_call, 1, CDATAFN_FLAGS),
JS_FN("apply", js_fun_apply, 2, CDATAFN_FLAGS),
JS_FS_END
};
static JSClass sInt64ProtoClass = {
"Int64",
0,
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
static JSClass sUInt64ProtoClass = {
"UInt64",
0,
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
static JSClass sInt64Class = {
"Int64",
JSCLASS_HAS_RESERVED_SLOTS(INT64_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, Int64Base::Finalize
};
static JSClass sUInt64Class = {
"UInt64",
JSCLASS_HAS_RESERVED_SLOTS(INT64_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, Int64Base::Finalize
};
static const JSFunctionSpec sInt64StaticFunctions[] = {
JS_FN("compare", Int64::Compare, 2, CTYPESFN_FLAGS),
JS_FN("lo", Int64::Lo, 1, CTYPESFN_FLAGS),
JS_FN("hi", Int64::Hi, 1, CTYPESFN_FLAGS),
JS_FN("join", Int64::Join, 2, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sUInt64StaticFunctions[] = {
JS_FN("compare", UInt64::Compare, 2, CTYPESFN_FLAGS),
JS_FN("lo", UInt64::Lo, 1, CTYPESFN_FLAGS),
JS_FN("hi", UInt64::Hi, 1, CTYPESFN_FLAGS),
JS_FN("join", UInt64::Join, 2, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sInt64Functions[] = {
JS_FN("toString", Int64::ToString, 0, CTYPESFN_FLAGS),
JS_FN("toSource", Int64::ToSource, 0, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sUInt64Functions[] = {
JS_FN("toString", UInt64::ToString, 0, CTYPESFN_FLAGS),
JS_FN("toSource", UInt64::ToSource, 0, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sModuleProps[] = {
{ "errno", 0, JSPROP_SHARED | JSPROP_PERMANENT,
JSOP_WRAPPER(CData::ErrnoGetter), JSOP_NULLWRAPPER },
#if defined(XP_WIN)
{ "winLastError", 0, JSPROP_SHARED | JSPROP_PERMANENT,
JSOP_WRAPPER(CData::LastErrorGetter), JSOP_NULLWRAPPER },
#endif // defined(XP_WIN)
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sModuleFunctions[] = {
JS_FN("CDataFinalizer", CDataFinalizer::Construct, 2, CTYPESFN_FLAGS),
JS_FN("open", Library::Open, 1, CTYPESFN_FLAGS),
JS_FN("cast", CData::Cast, 2, CTYPESFN_FLAGS),
JS_FN("getRuntime", CData::GetRuntime, 1, CTYPESFN_FLAGS),
JS_FN("libraryName", Library::Name, 1, CTYPESFN_FLAGS),
JS_FS_END
};
JS_ALWAYS_INLINE JSString*
NewUCString(JSContext* cx, const AutoString& from)
{
return JS_NewUCStringCopyN(cx, from.begin(), from.length());
}
/*
* Return a size rounded up to a multiple of a power of two.
*
* Note: |align| must be a power of 2.
*/
JS_ALWAYS_INLINE size_t
Align(size_t val, size_t align)
{
// Ensure that align is a power of two.
MOZ_ASSERT(align != 0 && (align & (align - 1)) == 0);
return ((val - 1) | (align - 1)) + 1;
}
static ABICode
GetABICode(JSObject* obj)
{
// make sure we have an object representing a CABI class,
// and extract the enumerated class type from the reserved slot.
if (JS_GetClass(obj) != &sCABIClass)
return INVALID_ABI;
jsval result = JS_GetReservedSlot(obj, SLOT_ABICODE);
return ABICode(JSVAL_TO_INT(result));
}
JSErrorFormatString ErrorFormatString[CTYPESERR_LIMIT] = {
#define MSG_DEF(name, number, count, exception, format) \
{ format, count, exception } ,
#include "ctypes.msg"
#undef MSG_DEF
};
const JSErrorFormatString*
GetErrorMessage(void* userRef, const char* locale, const unsigned errorNumber)
{
if (0 < errorNumber && errorNumber < CTYPESERR_LIMIT)
return &ErrorFormatString[errorNumber];
return NULL;
}
JSBool
TypeError(JSContext* cx, const char* expected, jsval actual)
{
JSString* str = JS_ValueToSource(cx, actual);
JSAutoByteString bytes;
const char* src;
if (str) {
src = bytes.encodeLatin1(cx, str);
if (!src)
return false;
} else {
JS_ClearPendingException(cx);
src = "<<error converting value to string>>";
}
JS_ReportErrorNumber(cx, GetErrorMessage, NULL,
CTYPESMSG_TYPE_ERROR, expected, src);
return false;
}
static JSObject*
InitCTypeClass(JSContext* cx, HandleObject parent)
{
JSFunction *fun = JS_DefineFunction(cx, parent, "CType", ConstructAbstract, 0,
CTYPESCTOR_FLAGS);
if (!fun)
return NULL;
RootedObject ctor(cx, JS_GetFunctionObject(fun));
RootedObject fnproto(cx);
if (!JS_GetPrototype(cx, ctor, fnproto.address()))
return NULL;
JS_ASSERT(ctor);
JS_ASSERT(fnproto);
// Set up ctypes.CType.prototype.
RootedObject prototype(cx, JS_NewObject(cx, &sCTypeProtoClass, fnproto, parent));
if (!prototype)
return NULL;
if (!JS_DefineProperty(cx, ctor, "prototype", OBJECT_TO_JSVAL(prototype),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
if (!JS_DefineProperty(cx, prototype, "constructor", OBJECT_TO_JSVAL(ctor),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
// Define properties and functions common to all CTypes.
if (!JS_DefineProperties(cx, prototype, sCTypeProps) ||
!JS_DefineFunctions(cx, prototype, sCTypeFunctions))
return NULL;
if (!JS_FreezeObject(cx, ctor) || !JS_FreezeObject(cx, prototype))
return NULL;
return prototype;
}
static JSObject*
InitABIClass(JSContext* cx, JSObject* parent)
{
RootedObject obj(cx, JS_NewObject(cx, NULL, NULL, NULL));
if (!obj)
return NULL;
if (!JS_DefineFunctions(cx, obj, sCABIFunctions))
return NULL;
return obj;
}
static JSObject*
InitCDataClass(JSContext* cx, HandleObject parent, HandleObject CTypeProto)
{
JSFunction* fun = JS_DefineFunction(cx, parent, "CData", ConstructAbstract, 0,
CTYPESCTOR_FLAGS);
if (!fun)
return NULL;
RootedObject ctor(cx, JS_GetFunctionObject(fun));
JS_ASSERT(ctor);
// Set up ctypes.CData.__proto__ === ctypes.CType.prototype.
// (Note that 'ctypes.CData instanceof Function' is still true, thanks to the
// prototype chain.)
if (!JS_SetPrototype(cx, ctor, CTypeProto))
return NULL;
// Set up ctypes.CData.prototype.
RootedObject prototype(cx, JS_NewObject(cx, &sCDataProtoClass, NULL, parent));
if (!prototype)
return NULL;
if (!JS_DefineProperty(cx, ctor, "prototype", OBJECT_TO_JSVAL(prototype),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
if (!JS_DefineProperty(cx, prototype, "constructor", OBJECT_TO_JSVAL(ctor),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
// Define properties and functions common to all CDatas.
if (!JS_DefineProperties(cx, prototype, sCDataProps) ||
!JS_DefineFunctions(cx, prototype, sCDataFunctions))
return NULL;
if (//!JS_FreezeObject(cx, prototype) || // XXX fixme - see bug 541212!
!JS_FreezeObject(cx, ctor))
return NULL;
return prototype;
}
static JSBool
DefineABIConstant(JSContext* cx,
HandleObject parent,
const char* name,
ABICode code,
HandleObject prototype)
{
RootedObject obj(cx, JS_DefineObject(cx, parent, name, &sCABIClass, prototype,
JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT));
if (!obj)
return false;
JS_SetReservedSlot(obj, SLOT_ABICODE, INT_TO_JSVAL(code));
return JS_FreezeObject(cx, obj);
}
// Set up a single type constructor for
// ctypes.{Pointer,Array,Struct,Function}Type.
static JSBool
InitTypeConstructor(JSContext* cx,
HandleObject parent,
HandleObject CTypeProto,
HandleObject CDataProto,
const JSFunctionSpec spec,
const JSFunctionSpec* fns,
const JSPropertySpec* props,
const JSFunctionSpec* instanceFns,
const JSPropertySpec* instanceProps,
MutableHandleObject typeProto,
MutableHandleObject dataProto)
{
JSFunction* fun = js::DefineFunctionWithReserved(cx, parent, spec.name, spec.call.op,
spec.nargs, spec.flags);
if (!fun)
return false;
RootedObject obj(cx, JS_GetFunctionObject(fun));
if (!obj)
return false;
// Set up the .prototype and .prototype.constructor properties.
typeProto.set(JS_NewObject(cx, &sCTypeProtoClass, CTypeProto, parent));
if (!typeProto)
return false;
// Define property before proceeding, for GC safety.
if (!JS_DefineProperty(cx, obj, "prototype", OBJECT_TO_JSVAL(typeProto),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
if (fns && !JS_DefineFunctions(cx, typeProto, fns))
return false;
if (!JS_DefineProperties(cx, typeProto, props))
return false;
if (!JS_DefineProperty(cx, typeProto, "constructor", OBJECT_TO_JSVAL(obj),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
// Stash ctypes.{Pointer,Array,Struct}Type.prototype on a reserved slot of
// the type constructor, for faster lookup.
js::SetFunctionNativeReserved(obj, SLOT_FN_CTORPROTO, OBJECT_TO_JSVAL(typeProto));
// Create an object to serve as the common ancestor for all CData objects
// created from the given type constructor. This has ctypes.CData.prototype
// as its prototype, such that it inherits the properties and functions
// common to all CDatas.
dataProto.set(JS_NewObject(cx, &sCDataProtoClass, CDataProto, parent));
if (!dataProto)
return false;
// Define functions and properties on the 'dataProto' object that are common
// to all CData objects created from this type constructor. (These will
// become functions and properties on CData objects created from this type.)
if (instanceFns && !JS_DefineFunctions(cx, dataProto, instanceFns))
return false;
if (instanceProps && !JS_DefineProperties(cx, dataProto, instanceProps))
return false;
// Link the type prototype to the data prototype.
JS_SetReservedSlot(typeProto, SLOT_OURDATAPROTO, OBJECT_TO_JSVAL(dataProto));
if (!JS_FreezeObject(cx, obj) ||
//!JS_FreezeObject(cx, dataProto) || // XXX fixme - see bug 541212!
!JS_FreezeObject(cx, typeProto))
return false;
return true;
}
JSObject*
InitInt64Class(JSContext* cx,
HandleObject parent,
JSClass* clasp,
JSNative construct,
const JSFunctionSpec* fs,
const JSFunctionSpec* static_fs)
{
// Init type class and constructor
RootedObject prototype(cx, JS_InitClass(cx, parent, NULL, clasp, construct,
0, NULL, fs, NULL, static_fs));
if (!prototype)
return NULL;
RootedObject ctor(cx, JS_GetConstructor(cx, prototype));
if (!ctor)
return NULL;
if (!JS_FreezeObject(cx, ctor))
return NULL;
// Redefine the 'join' function as an extended native and stash
// ctypes.{Int64,UInt64}.prototype in a reserved slot of the new function.
JS_ASSERT(clasp == &sInt64ProtoClass || clasp == &sUInt64ProtoClass);
JSNative native = (clasp == &sInt64ProtoClass) ? Int64::Join : UInt64::Join;
JSFunction* fun = js::DefineFunctionWithReserved(cx, ctor, "join", native,
2, CTYPESFN_FLAGS);
if (!fun)
return NULL;
js::SetFunctionNativeReserved(fun, SLOT_FN_INT64PROTO,
OBJECT_TO_JSVAL(prototype));
if (!JS_FreezeObject(cx, prototype))
return NULL;
return prototype;
}
static void
AttachProtos(JSObject* proto, const AutoObjectVector& protos)
{
// For a given 'proto' of [[Class]] "CTypeProto", attach each of the 'protos'
// to the appropriate CTypeProtoSlot. (SLOT_CTYPES is the last slot
// of [[Class]] "CTypeProto" that we fill in this automated manner.)
for (uint32_t i = 0; i <= SLOT_CTYPES; ++i)
JS_SetReservedSlot(proto, i, OBJECT_TO_JSVAL(protos[i]));
}
JSBool
InitTypeClasses(JSContext* cx, HandleObject parent)
{
// Initialize the ctypes.CType class. This acts as an abstract base class for
// the various types, and provides the common API functions. It has:
// * [[Class]] "Function"
// * __proto__ === Function.prototype
// * A constructor that throws a TypeError. (You can't construct an
// abstract type!)
// * 'prototype' property:
// * [[Class]] "CTypeProto"
// * __proto__ === Function.prototype
// * A constructor that throws a TypeError. (You can't construct an
// abstract type instance!)
// * 'constructor' property === ctypes.CType
// * Provides properties and functions common to all CTypes.
RootedObject CTypeProto(cx, InitCTypeClass(cx, parent));
if (!CTypeProto)
return false;
// Initialize the ctypes.CData class. This acts as an abstract base class for
// instances of the various types, and provides the common API functions.
// It has:
// * [[Class]] "Function"
// * __proto__ === Function.prototype
// * A constructor that throws a TypeError. (You can't construct an
// abstract type instance!)
// * 'prototype' property:
// * [[Class]] "CDataProto"
// * 'constructor' property === ctypes.CData
// * Provides properties and functions common to all CDatas.
RootedObject CDataProto(cx, InitCDataClass(cx, parent, CTypeProto));
if (!CDataProto)
return false;
// Link CTypeProto to CDataProto.
JS_SetReservedSlot(CTypeProto, SLOT_OURDATAPROTO, OBJECT_TO_JSVAL(CDataProto));
// Create and attach the special class constructors: ctypes.PointerType,
// ctypes.ArrayType, ctypes.StructType, and ctypes.FunctionType.
// Each of these constructors 'c' has, respectively:
// * [[Class]] "Function"
// * __proto__ === Function.prototype
// * A constructor that creates a user-defined type.
// * 'prototype' property:
// * [[Class]] "CTypeProto"
// * __proto__ === ctypes.CType.prototype
// * 'constructor' property === 'c'
// We also construct an object 'p' to serve, given a type object 't'
// constructed from one of these type constructors, as
// 't.prototype.__proto__'. This object has:
// * [[Class]] "CDataProto"
// * __proto__ === ctypes.CData.prototype
// * Properties and functions common to all CDatas.
// Therefore an instance 't' of ctypes.{Pointer,Array,Struct,Function}Type
// will have, resp.:
// * [[Class]] "CType"
// * __proto__ === ctypes.{Pointer,Array,Struct,Function}Type.prototype
// * A constructor which creates and returns a CData object, containing
// binary data of the given type.
// * 'prototype' property:
// * [[Class]] "CDataProto"
// * __proto__ === 'p', the prototype object from above
// * 'constructor' property === 't'
AutoObjectVector protos(cx);
protos.resize(CTYPEPROTO_SLOTS);
if (!InitTypeConstructor(cx, parent, CTypeProto, CDataProto,
sPointerFunction, NULL, sPointerProps,
sPointerInstanceFunctions, sPointerInstanceProps,
protos.handleAt(SLOT_POINTERPROTO), protos.handleAt(SLOT_POINTERDATAPROTO)))
return false;
if (!InitTypeConstructor(cx, parent, CTypeProto, CDataProto,
sArrayFunction, NULL, sArrayProps,
sArrayInstanceFunctions, sArrayInstanceProps,
protos.handleAt(SLOT_ARRAYPROTO), protos.handleAt(SLOT_ARRAYDATAPROTO)))
return false;
if (!InitTypeConstructor(cx, parent, CTypeProto, CDataProto,
sStructFunction, sStructFunctions, sStructProps,
sStructInstanceFunctions, NULL,
protos.handleAt(SLOT_STRUCTPROTO), protos.handleAt(SLOT_STRUCTDATAPROTO)))
return false;
if (!InitTypeConstructor(cx, parent, CTypeProto, protos.handleAt(SLOT_POINTERDATAPROTO),
sFunctionFunction, NULL, sFunctionProps, sFunctionInstanceFunctions, NULL,
protos.handleAt(SLOT_FUNCTIONPROTO), protos.handleAt(SLOT_FUNCTIONDATAPROTO)))
return false;
protos[SLOT_CDATAPROTO] = CDataProto;
// Create and attach the ctypes.{Int64,UInt64} constructors.
// Each of these has, respectively:
// * [[Class]] "Function"
// * __proto__ === Function.prototype
// * A constructor that creates a ctypes.{Int64,UInt64} object, respectively.
// * 'prototype' property:
// * [[Class]] {"Int64Proto","UInt64Proto"}
// * 'constructor' property === ctypes.{Int64,UInt64}
protos[SLOT_INT64PROTO] = InitInt64Class(cx, parent, &sInt64ProtoClass,
Int64::Construct, sInt64Functions, sInt64StaticFunctions);
if (!protos[SLOT_INT64PROTO])
return false;
protos[SLOT_UINT64PROTO] = InitInt64Class(cx, parent, &sUInt64ProtoClass,
UInt64::Construct, sUInt64Functions, sUInt64StaticFunctions);
if (!protos[SLOT_UINT64PROTO])
return false;
// Finally, store a pointer to the global ctypes object.
// Note that there is no other reliable manner of locating this object.
protos[SLOT_CTYPES] = parent;
// Attach the prototypes just created to each of ctypes.CType.prototype,
// and the special type constructors, so we can access them when constructing
// instances of those types.
AttachProtos(CTypeProto, protos);
AttachProtos(protos[SLOT_POINTERPROTO], protos);
AttachProtos(protos[SLOT_ARRAYPROTO], protos);
AttachProtos(protos[SLOT_STRUCTPROTO], protos);
AttachProtos(protos[SLOT_FUNCTIONPROTO], protos);
RootedObject ABIProto(cx, InitABIClass(cx, parent));
if (!ABIProto)
return false;
// Attach objects representing ABI constants.
if (!DefineABIConstant(cx, parent, "default_abi", ABI_DEFAULT, ABIProto) ||
!DefineABIConstant(cx, parent, "stdcall_abi", ABI_STDCALL, ABIProto) ||
!DefineABIConstant(cx, parent, "winapi_abi", ABI_WINAPI, ABIProto))
return false;
// Create objects representing the builtin types, and attach them to the
// ctypes object. Each type object 't' has:
// * [[Class]] "CType"
// * __proto__ === ctypes.CType.prototype
// * A constructor which creates and returns a CData object, containing
// binary data of the given type.
// * 'prototype' property:
// * [[Class]] "CDataProto"
// * __proto__ === ctypes.CData.prototype
// * 'constructor' property === 't'
#define DEFINE_TYPE(name, type, ffiType) \
RootedObject typeObj_##name(cx, \
CType::DefineBuiltin(cx, parent, #name, CTypeProto, CDataProto, #name, \
TYPE_##name, INT_TO_JSVAL(sizeof(type)), \
INT_TO_JSVAL(ffiType.alignment), &ffiType)); \
if (!typeObj_##name) \
return false;
#include "typedefs.h"
// Alias 'ctypes.unsigned' as 'ctypes.unsigned_int', since they represent
// the same type in C.
if (!JS_DefineProperty(cx, parent, "unsigned",
OBJECT_TO_JSVAL(typeObj_unsigned_int), NULL, NULL,
JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
// Create objects representing the special types void_t and voidptr_t.
RootedObject typeObj(cx,
CType::DefineBuiltin(cx, parent, "void_t", CTypeProto, CDataProto, "void",
TYPE_void_t, JSVAL_VOID, JSVAL_VOID, &ffi_type_void));
if (!typeObj)
return false;
typeObj = PointerType::CreateInternal(cx, typeObj);
if (!typeObj)
return false;
if (!JS_DefineProperty(cx, parent, "voidptr_t", OBJECT_TO_JSVAL(typeObj),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
return true;
}
bool
IsCTypesGlobal(JSObject* obj)
{
return JS_GetClass(obj) == &sCTypesGlobalClass;
}
// Get the JSCTypesCallbacks struct from the 'ctypes' object 'obj'.
JSCTypesCallbacks*
GetCallbacks(JSObject* obj)
{
JS_ASSERT(IsCTypesGlobal(obj));
jsval result = JS_GetReservedSlot(obj, SLOT_CALLBACKS);
if (JSVAL_IS_VOID(result))
return NULL;
return static_cast<JSCTypesCallbacks*>(JSVAL_TO_PRIVATE(result));
}
// Utility function to access a property of an object as an object
// returns false and sets the error if the property does not exist
// or is not an object
bool GetObjectProperty(JSContext *cx, HandleObject obj,
const char *property, MutableHandleObject result)
{
RootedValue val(cx);
if (!JS_GetProperty(cx, obj, property, val.address())) {
return false;
}
if (JSVAL_IS_PRIMITIVE(val)) {
JS_ReportError(cx, "missing or non-object field");
return false;
}
result.set(JSVAL_TO_OBJECT(val));
return true;
}
} /* namespace ctypes */
} /* namespace js */
using namespace js;
using namespace js::ctypes;
JS_PUBLIC_API(JSBool)
JS_InitCTypesClass(JSContext* cx, JSObject *globalArg)
{
RootedObject global(cx, globalArg);
// attach ctypes property to global object
RootedObject ctypes(cx, JS_NewObject(cx, &sCTypesGlobalClass, NULL, NULL));
if (!ctypes)
return false;
if (!JS_DefineProperty(cx, global, "ctypes", OBJECT_TO_JSVAL(ctypes),
JS_PropertyStub, JS_StrictPropertyStub, JSPROP_READONLY | JSPROP_PERMANENT)){
return false;
}
if (!InitTypeClasses(cx, ctypes))
return false;
// attach API functions and properties
if (!JS_DefineFunctions(cx, ctypes, sModuleFunctions) ||
!JS_DefineProperties(cx, ctypes, sModuleProps))
return false;
// Set up ctypes.CDataFinalizer.prototype.
RootedObject ctor(cx);
if (!GetObjectProperty(cx, ctypes, "CDataFinalizer", &ctor))
return false;
RootedObject prototype(cx, JS_NewObject(cx, &sCDataFinalizerProtoClass, NULL, ctypes));
if (!prototype)
return false;
if (!JS_DefineProperties(cx, prototype, sCDataFinalizerProps) ||
!JS_DefineFunctions(cx, prototype, sCDataFinalizerFunctions))
return false;
if (!JS_DefineProperty(cx, ctor, "prototype", OBJECT_TO_JSVAL(prototype),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
if (!JS_DefineProperty(cx, prototype, "constructor", OBJECT_TO_JSVAL(ctor),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
// Seal the ctypes object, to prevent modification.
return JS_FreezeObject(cx, ctypes);
}
JS_PUBLIC_API(void)
JS_SetCTypesCallbacks(JSObject *ctypesObj, JSCTypesCallbacks* callbacks)
{
JS_ASSERT(callbacks);
JS_ASSERT(IsCTypesGlobal(ctypesObj));
// Set the callbacks on a reserved slot.
JS_SetReservedSlot(ctypesObj, SLOT_CALLBACKS, PRIVATE_TO_JSVAL(callbacks));
}
namespace js {
JS_FRIEND_API(size_t)
SizeOfDataIfCDataObject(JSMallocSizeOfFun mallocSizeOf, JSObject *obj)
{
if (!CData::IsCData(obj))
return 0;
size_t n = 0;
jsval slot = JS_GetReservedSlot(obj, ctypes::SLOT_OWNS);
if (!JSVAL_IS_VOID(slot)) {
JSBool owns = JSVAL_TO_BOOLEAN(slot);
slot = JS_GetReservedSlot(obj, ctypes::SLOT_DATA);
if (!JSVAL_IS_VOID(slot)) {
char** buffer = static_cast<char**>(JSVAL_TO_PRIVATE(slot));
n += mallocSizeOf(buffer);
if (owns)
n += mallocSizeOf(*buffer);
}
}
return n;
}
namespace ctypes {
/*******************************************************************************
** Type conversion functions
*******************************************************************************/
// Enforce some sanity checks on type widths and properties.
// Where the architecture is 64-bit, make sure it's LP64 or LLP64. (ctypes.int
// autoconverts to a primitive JS number; to support ILP64 architectures, it
// would need to autoconvert to an Int64 object instead. Therefore we enforce
// this invariant here.)
JS_STATIC_ASSERT(sizeof(bool) == 1 || sizeof(bool) == 4);
JS_STATIC_ASSERT(sizeof(char) == 1);
JS_STATIC_ASSERT(sizeof(short) == 2);
JS_STATIC_ASSERT(sizeof(int) == 4);
JS_STATIC_ASSERT(sizeof(unsigned) == 4);
JS_STATIC_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
JS_STATIC_ASSERT(sizeof(long long) == 8);
JS_STATIC_ASSERT(sizeof(size_t) == sizeof(uintptr_t));
JS_STATIC_ASSERT(sizeof(float) == 4);
JS_STATIC_ASSERT(sizeof(PRFuncPtr) == sizeof(void*));
JS_STATIC_ASSERT(numeric_limits<double>::is_signed);
// Templated helper to convert FromType to TargetType, for the default case
// where the trivial POD constructor will do.
template<class TargetType, class FromType>
struct ConvertImpl {
static JS_ALWAYS_INLINE TargetType Convert(FromType d) {
return TargetType(d);
}
};
#ifdef _MSC_VER
// MSVC can't perform double to unsigned __int64 conversion when the
// double is greater than 2^63 - 1. Help it along a little.
template<>
struct ConvertImpl<uint64_t, double> {
static JS_ALWAYS_INLINE uint64_t Convert(double d) {
return d > 0x7fffffffffffffffui64 ?
uint64_t(d - 0x8000000000000000ui64) + 0x8000000000000000ui64 :
uint64_t(d);
}
};
#endif
// C++ doesn't guarantee that exact values are the only ones that will
// round-trip. In fact, on some platforms, including SPARC, there are pairs of
// values, a uint64_t and a double, such that neither value is exactly
// representable in the other type, but they cast to each other.
#ifdef SPARC
// Simulate x86 overflow behavior
template<>
struct ConvertImpl<uint64_t, double> {
static JS_ALWAYS_INLINE uint64_t Convert(double d) {
return d >= 0xffffffffffffffff ?
0x8000000000000000 : uint64_t(d);
}
};
template<>
struct ConvertImpl<int64_t, double> {
static JS_ALWAYS_INLINE int64_t Convert(double d) {
return d >= 0x7fffffffffffffff ?
0x8000000000000000 : int64_t(d);
}
};
#endif
template<class TargetType, class FromType>
static JS_ALWAYS_INLINE TargetType Convert(FromType d)
{
return ConvertImpl<TargetType, FromType>::Convert(d);
}
template<class TargetType, class FromType>
static JS_ALWAYS_INLINE bool IsAlwaysExact()
{
// Return 'true' if TargetType can always exactly represent FromType.
// This means that:
// 1) TargetType must be the same or more bits wide as FromType. For integers
// represented in 'n' bits, unsigned variants will have 'n' digits while
// signed will have 'n - 1'. For floating point types, 'digits' is the
// mantissa width.
// 2) If FromType is signed, TargetType must also be signed. (Floating point
// types are always signed.)
// 3) If TargetType is an exact integral type, FromType must be also.
if (numeric_limits<TargetType>::digits < numeric_limits<FromType>::digits)
return false;
if (numeric_limits<FromType>::is_signed &&
!numeric_limits<TargetType>::is_signed)
return false;
if (!numeric_limits<FromType>::is_exact &&
numeric_limits<TargetType>::is_exact)
return false;
return true;
}
// Templated helper to determine if FromType 'i' converts losslessly to
// TargetType 'j'. Default case where both types are the same signedness.
template<class TargetType, class FromType, bool TargetSigned, bool FromSigned>
struct IsExactImpl {
static JS_ALWAYS_INLINE bool Test(FromType i, TargetType j) {
JS_STATIC_ASSERT(numeric_limits<TargetType>::is_exact);
return FromType(j) == i;
}
};
// Specialization where TargetType is unsigned, FromType is signed.
template<class TargetType, class FromType>
struct IsExactImpl<TargetType, FromType, false, true> {
static JS_ALWAYS_INLINE bool Test(FromType i, TargetType j) {
JS_STATIC_ASSERT(numeric_limits<TargetType>::is_exact);
return i >= 0 && FromType(j) == i;
}
};
// Specialization where TargetType is signed, FromType is unsigned.
template<class TargetType, class FromType>
struct IsExactImpl<TargetType, FromType, true, false> {
static JS_ALWAYS_INLINE bool Test(FromType i, TargetType j) {
JS_STATIC_ASSERT(numeric_limits<TargetType>::is_exact);
return TargetType(i) >= 0 && FromType(j) == i;
}
};
// Convert FromType 'i' to TargetType 'result', returning true iff 'result'
// is an exact representation of 'i'.
template<class TargetType, class FromType>
static JS_ALWAYS_INLINE bool ConvertExact(FromType i, TargetType* result)
{
// Require that TargetType is integral, to simplify conversion.
JS_STATIC_ASSERT(numeric_limits<TargetType>::is_exact);
*result = Convert<TargetType>(i);
// See if we can avoid a dynamic check.
if (IsAlwaysExact<TargetType, FromType>())
return true;
// Return 'true' if 'i' is exactly representable in 'TargetType'.
return IsExactImpl<TargetType,
FromType,
numeric_limits<TargetType>::is_signed,
numeric_limits<FromType>::is_signed>::Test(i, *result);
}
// Templated helper to determine if Type 'i' is negative. Default case
// where IntegerType is unsigned.
template<class Type, bool IsSigned>
struct IsNegativeImpl {
static JS_ALWAYS_INLINE bool Test(Type i) {
return false;
}
};
// Specialization where Type is signed.
template<class Type>
struct IsNegativeImpl<Type, true> {
static JS_ALWAYS_INLINE bool Test(Type i) {
return i < 0;
}
};
// Determine whether Type 'i' is negative.
template<class Type>
static JS_ALWAYS_INLINE bool IsNegative(Type i)
{
return IsNegativeImpl<Type, numeric_limits<Type>::is_signed>::Test(i);
}
// Implicitly convert val to bool, allowing JSBool, int, and double
// arguments numerically equal to 0 or 1.
static bool
jsvalToBool(JSContext* cx, jsval val, bool* result)
{
if (JSVAL_IS_BOOLEAN(val)) {
*result = JSVAL_TO_BOOLEAN(val) != JS_FALSE;
return true;
}
if (JSVAL_IS_INT(val)) {
int32_t i = JSVAL_TO_INT(val);
*result = i != 0;
return i == 0 || i == 1;
}
if (JSVAL_IS_DOUBLE(val)) {
double d = JSVAL_TO_DOUBLE(val);
*result = d != 0;
// Allow -0.
return d == 1 || d == 0;
}
// Don't silently convert null to bool. It's probably a mistake.
return false;
}
// Implicitly convert val to IntegerType, allowing JSBool, int, double,
// Int64, UInt64, and CData integer types 't' where all values of 't' are
// representable by IntegerType.
template<class IntegerType>
static bool
jsvalToInteger(JSContext* cx, jsval val, IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
if (JSVAL_IS_INT(val)) {
// Make sure the integer fits in the alotted precision, and has the right
// sign.
int32_t i = JSVAL_TO_INT(val);
return ConvertExact(i, result);
}
if (JSVAL_IS_DOUBLE(val)) {
// Don't silently lose bits here -- check that val really is an
// integer value, and has the right sign.
double d = JSVAL_TO_DOUBLE(val);
return ConvertExact(d, result);
}
if (!JSVAL_IS_PRIMITIVE(val)) {
JSObject* obj = JSVAL_TO_OBJECT(val);
if (CData::IsCData(obj)) {
JSObject* typeObj = CData::GetCType(obj);
void* data = CData::GetData(obj);
// Check whether the source type is always representable, with exact
// precision, by the target type. If it is, convert the value.
switch (CType::GetTypeCode(typeObj)) {
#define DEFINE_INT_TYPE(name, fromType, ffiType) \
case TYPE_##name: \
if (!IsAlwaysExact<IntegerType, fromType>()) \
return false; \
*result = IntegerType(*static_cast<fromType*>(data)); \
return true;
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#include "typedefs.h"
case TYPE_void_t:
case TYPE_bool:
case TYPE_float:
case TYPE_double:
case TYPE_float32_t:
case TYPE_float64_t:
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char:
case TYPE_jschar:
case TYPE_pointer:
case TYPE_function:
case TYPE_array:
case TYPE_struct:
// Not a compatible number type.
return false;
}
}
if (Int64::IsInt64(obj)) {
// Make sure the integer fits in IntegerType.
int64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (UInt64::IsUInt64(obj)) {
// Make sure the integer fits in IntegerType.
uint64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (CDataFinalizer::IsCDataFinalizer(obj)) {
RootedValue innerData(cx);
if (!CDataFinalizer::GetValue(cx, obj, innerData.address())) {
return false; // Nothing to convert
}
return jsvalToInteger(cx, innerData, result);
}
return false;
}
if (JSVAL_IS_BOOLEAN(val)) {
// Implicitly promote boolean values to 0 or 1, like C.
*result = JSVAL_TO_BOOLEAN(val);
JS_ASSERT(*result == 0 || *result == 1);
return true;
}
// Don't silently convert null to an integer. It's probably a mistake.
return false;
}
// Implicitly convert val to FloatType, allowing int, double,
// Int64, UInt64, and CData numeric types 't' where all values of 't' are
// representable by FloatType.
template<class FloatType>
static bool
jsvalToFloat(JSContext *cx, jsval val, FloatType* result)
{
JS_STATIC_ASSERT(!numeric_limits<FloatType>::is_exact);
// The following casts may silently throw away some bits, but there's
// no good way around it. Sternly requiring that the 64-bit double
// argument be exactly representable as a 32-bit float is
// unrealistic: it would allow 1/2 to pass but not 1/3.
if (JSVAL_IS_INT(val)) {
*result = FloatType(JSVAL_TO_INT(val));
return true;
}
if (JSVAL_IS_DOUBLE(val)) {
*result = FloatType(JSVAL_TO_DOUBLE(val));
return true;
}
if (!JSVAL_IS_PRIMITIVE(val)) {
JSObject* obj = JSVAL_TO_OBJECT(val);
if (CData::IsCData(obj)) {
JSObject* typeObj = CData::GetCType(obj);
void* data = CData::GetData(obj);
// Check whether the source type is always representable, with exact
// precision, by the target type. If it is, convert the value.
switch (CType::GetTypeCode(typeObj)) {
#define DEFINE_FLOAT_TYPE(name, fromType, ffiType) \
case TYPE_##name: \
if (!IsAlwaysExact<FloatType, fromType>()) \
return false; \
*result = FloatType(*static_cast<fromType*>(data)); \
return true;
#define DEFINE_INT_TYPE(x, y, z) DEFINE_FLOAT_TYPE(x, y, z)
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#include "typedefs.h"
case TYPE_void_t:
case TYPE_bool:
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char:
case TYPE_jschar:
case TYPE_pointer:
case TYPE_function:
case TYPE_array:
case TYPE_struct:
// Not a compatible number type.
return false;
}
}
}
// Don't silently convert true to 1.0 or false to 0.0, even though C/C++
// does it. It's likely to be a mistake.
return false;
}
template<class IntegerType>
static bool
StringToInteger(JSContext* cx, JSString* string, IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
const jschar* cp = string->getChars(NULL);
if (!cp)
return false;
const jschar* end = cp + string->length();
if (cp == end)
return false;
IntegerType sign = 1;
if (cp[0] == '-') {
if (!numeric_limits<IntegerType>::is_signed)
return false;
sign = -1;
++cp;
}
// Assume base-10, unless the string begins with '0x' or '0X'.
IntegerType base = 10;
if (end - cp > 2 && cp[0] == '0' && (cp[1] == 'x' || cp[1] == 'X')) {
cp += 2;
base = 16;
}
// Scan the string left to right and build the number,
// checking for valid characters 0 - 9, a - f, A - F and overflow.
IntegerType i = 0;
while (cp != end) {
jschar c = *cp++;
if (c >= '0' && c <= '9')
c -= '0';
else if (base == 16 && c >= 'a' && c <= 'f')
c = c - 'a' + 10;
else if (base == 16 && c >= 'A' && c <= 'F')
c = c - 'A' + 10;
else
return false;
IntegerType ii = i;
i = ii * base + sign * c;
if (i / base != ii) // overflow
return false;
}
*result = i;
return true;
}
// Implicitly convert val to IntegerType, allowing int, double,
// Int64, UInt64, and optionally a decimal or hexadecimal string argument.
// (This is common code shared by jsvalToSize and the Int64/UInt64 constructors.)
template<class IntegerType>
static bool
jsvalToBigInteger(JSContext* cx,
jsval val,
bool allowString,
IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
if (JSVAL_IS_INT(val)) {
// Make sure the integer fits in the alotted precision, and has the right
// sign.
int32_t i = JSVAL_TO_INT(val);
return ConvertExact(i, result);
}
if (JSVAL_IS_DOUBLE(val)) {
// Don't silently lose bits here -- check that val really is an
// integer value, and has the right sign.
double d = JSVAL_TO_DOUBLE(val);
return ConvertExact(d, result);
}
if (allowString && JSVAL_IS_STRING(val)) {
// Allow conversion from base-10 or base-16 strings, provided the result
// fits in IntegerType. (This allows an Int64 or UInt64 object to be passed
// to the JS array element operator, which will automatically call
// toString() on the object for us.)
return StringToInteger(cx, JSVAL_TO_STRING(val), result);
}
if (!JSVAL_IS_PRIMITIVE(val)) {
// Allow conversion from an Int64 or UInt64 object directly.
JSObject* obj = JSVAL_TO_OBJECT(val);
if (UInt64::IsUInt64(obj)) {
// Make sure the integer fits in IntegerType.
uint64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (Int64::IsInt64(obj)) {
// Make sure the integer fits in IntegerType.
int64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (CDataFinalizer::IsCDataFinalizer(obj)) {
RootedValue innerData(cx);
if (!CDataFinalizer::GetValue(cx, obj, innerData.address())) {
return false; // Nothing to convert
}
return jsvalToBigInteger(cx, innerData, allowString, result);
}
}
return false;
}
// Implicitly convert val to a size value, where the size value is represented
// by size_t but must also fit in a double.
static bool
jsvalToSize(JSContext* cx, jsval val, bool allowString, size_t* result)
{
if (!jsvalToBigInteger(cx, val, allowString, result))
return false;
// Also check that the result fits in a double.
return Convert<size_t>(double(*result)) == *result;
}
// Implicitly convert val to IntegerType, allowing int, double,
// Int64, UInt64, and optionally a decimal or hexadecimal string argument.
// (This is common code shared by jsvalToSize and the Int64/UInt64 constructors.)
template<class IntegerType>
static bool
jsidToBigInteger(JSContext* cx,
jsid val,
bool allowString,
IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
if (JSID_IS_INT(val)) {
// Make sure the integer fits in the alotted precision, and has the right
// sign.
int32_t i = JSID_TO_INT(val);
return ConvertExact(i, result);
}
if (allowString && JSID_IS_STRING(val)) {
// Allow conversion from base-10 or base-16 strings, provided the result
// fits in IntegerType. (This allows an Int64 or UInt64 object to be passed
// to the JS array element operator, which will automatically call
// toString() on the object for us.)
return StringToInteger(cx, JSID_TO_STRING(val), result);
}
if (JSID_IS_OBJECT(val)) {
// Allow conversion from an Int64 or UInt64 object directly.
JSObject* obj = JSID_TO_OBJECT(val);
if (UInt64::IsUInt64(obj)) {
// Make sure the integer fits in IntegerType.
uint64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (Int64::IsInt64(obj)) {
// Make sure the integer fits in IntegerType.
int64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
}
return false;
}
// Implicitly convert val to a size value, where the size value is represented
// by size_t but must also fit in a double.
static bool
jsidToSize(JSContext* cx, jsid val, bool allowString, size_t* result)
{
if (!jsidToBigInteger(cx, val, allowString, result))
return false;
// Also check that the result fits in a double.
return Convert<size_t>(double(*result)) == *result;
}
// Implicitly convert a size value to a jsval, ensuring that the size_t value
// fits in a double.
static JSBool
SizeTojsval(JSContext* cx, size_t size, jsval* result)
{
if (Convert<size_t>(double(size)) != size) {
JS_ReportError(cx, "size overflow");
return false;
}
*result = JS_NumberValue(double(size));
return true;
}
// Forcefully convert val to IntegerType when explicitly requested.
template<class IntegerType>
static bool
jsvalToIntegerExplicit(jsval val, IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
if (JSVAL_IS_DOUBLE(val)) {
// Convert -Inf, Inf, and NaN to 0; otherwise, convert by C-style cast.
double d = JSVAL_TO_DOUBLE(val);
*result = mozilla::IsFinite(d) ? IntegerType(d) : 0;
return true;
}
if (!JSVAL_IS_PRIMITIVE(val)) {
// Convert Int64 and UInt64 values by C-style cast.
JSObject* obj = JSVAL_TO_OBJECT(val);
if (Int64::IsInt64(obj)) {
int64_t i = Int64Base::GetInt(obj);
*result = IntegerType(i);
return true;
}
if (UInt64::IsUInt64(obj)) {
uint64_t i = Int64Base::GetInt(obj);
*result = IntegerType(i);
return true;
}
}
return false;
}
// Forcefully convert val to a pointer value when explicitly requested.
static bool
jsvalToPtrExplicit(JSContext* cx, jsval val, uintptr_t* result)
{
if (JSVAL_IS_INT(val)) {
// int32_t always fits in intptr_t. If the integer is negative, cast through
// an intptr_t intermediate to sign-extend.
int32_t i = JSVAL_TO_INT(val);
*result = i < 0 ? uintptr_t(intptr_t(i)) : uintptr_t(i);
return true;
}
if (JSVAL_IS_DOUBLE(val)) {
double d = JSVAL_TO_DOUBLE(val);
if (d < 0) {
// Cast through an intptr_t intermediate to sign-extend.
intptr_t i = Convert<intptr_t>(d);
if (double(i) != d)
return false;
*result = uintptr_t(i);
return true;
}
// Don't silently lose bits here -- check that val really is an
// integer value, and has the right sign.
*result = Convert<uintptr_t>(d);
return double(*result) == d;
}
if (!JSVAL_IS_PRIMITIVE(val)) {
JSObject* obj = JSVAL_TO_OBJECT(val);
if (Int64::IsInt64(obj)) {
int64_t i = Int64Base::GetInt(obj);
intptr_t p = intptr_t(i);
// Make sure the integer fits in the alotted precision.
if (int64_t(p) != i)
return false;
*result = uintptr_t(p);
return true;
}
if (UInt64::IsUInt64(obj)) {
uint64_t i = Int64Base::GetInt(obj);
// Make sure the integer fits in the alotted precision.
*result = uintptr_t(i);
return uint64_t(*result) == i;
}
}
return false;
}
template<class IntegerType, class CharType, size_t N, class AP>
void
IntegerToString(IntegerType i, int radix, Vector<CharType, N, AP>& result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
// The buffer must be big enough for all the bits of IntegerType to fit,
// in base-2, including '-'.
CharType buffer[sizeof(IntegerType) * 8 + 1];
CharType* end = buffer + sizeof(buffer) / sizeof(CharType);
CharType* cp = end;
// Build the string in reverse. We use multiplication and subtraction
// instead of modulus because that's much faster.
const bool isNegative = IsNegative(i);
size_t sign = isNegative ? -1 : 1;
do {
IntegerType ii = i / IntegerType(radix);
size_t index = sign * size_t(i - ii * IntegerType(radix));
*--cp = "0123456789abcdefghijklmnopqrstuvwxyz"[index];
i = ii;
} while (i != 0);
if (isNegative)
*--cp = '-';
JS_ASSERT(cp >= buffer);
result.append(cp, end);
}
template<class CharType>
static size_t
strnlen(const CharType* begin, size_t max)
{
for (const CharType* s = begin; s != begin + max; ++s)
if (*s == 0)
return s - begin;
return max;
}
// Convert C binary value 'data' of CType 'typeObj' to a JS primitive, where
// possible; otherwise, construct and return a CData object. The following
// semantics apply when constructing a CData object for return:
// * If 'wantPrimitive' is true, the caller indicates that 'result' must be
// a JS primitive, and ConvertToJS will fail if 'result' would be a CData
// object. Otherwise:
// * If a CData object 'parentObj' is supplied, the new CData object is
// dependent on the given parent and its buffer refers to a slice of the
// parent's buffer.
// * If 'parentObj' is null, the new CData object may or may not own its
// resulting buffer depending on the 'ownResult' argument.
JSBool
ConvertToJS(JSContext* cx,
HandleObject typeObj,
HandleObject parentObj,
void* data,
bool wantPrimitive,
bool ownResult,
jsval* result)
{
JS_ASSERT(!parentObj || CData::IsCData(parentObj));
JS_ASSERT(!parentObj || !ownResult);
JS_ASSERT(!wantPrimitive || !ownResult);
TypeCode typeCode = CType::GetTypeCode(typeObj);
switch (typeCode) {
case TYPE_void_t:
*result = JSVAL_VOID;
break;
case TYPE_bool:
*result = *static_cast<bool*>(data) ? JSVAL_TRUE : JSVAL_FALSE;
break;
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
type value = *static_cast<type*>(data); \
if (sizeof(type) < 4) \
*result = INT_TO_JSVAL(int32_t(value)); \
else \
*result = JS_NumberValue(double(value)); \
break; \
}
#define DEFINE_WRAPPED_INT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
/* Return an Int64 or UInt64 object - do not convert to a JS number. */ \
uint64_t value; \
RootedObject proto(cx); \
if (!numeric_limits<type>::is_signed) { \
value = *static_cast<type*>(data); \
/* Get ctypes.UInt64.prototype from ctypes.CType.prototype. */ \
proto = CType::GetProtoFromType(cx, typeObj, SLOT_UINT64PROTO); \
if (!proto) \
return false; \
} else { \
value = int64_t(*static_cast<type*>(data)); \
/* Get ctypes.Int64.prototype from ctypes.CType.prototype. */ \
proto = CType::GetProtoFromType(cx, typeObj, SLOT_INT64PROTO); \
if (!proto) \
return false; \
} \
\
JSObject* obj = Int64Base::Construct(cx, proto, value, \
!numeric_limits<type>::is_signed); \
if (!obj) \
return false; \
*result = OBJECT_TO_JSVAL(obj); \
break; \
}
#define DEFINE_FLOAT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
type value = *static_cast<type*>(data); \
*result = JS_NumberValue(double(value)); \
break; \
}
#define DEFINE_CHAR_TYPE(name, type, ffiType) \
case TYPE_##name: \
/* Convert to an integer. We have no idea what character encoding to */ \
/* use, if any. */ \
*result = INT_TO_JSVAL(*static_cast<type*>(data)); \
break;
#include "typedefs.h"
case TYPE_jschar: {
// Convert the jschar to a 1-character string.
JSString* str = JS_NewUCStringCopyN(cx, static_cast<jschar*>(data), 1);
if (!str)
return false;
*result = STRING_TO_JSVAL(str);
break;
}
case TYPE_pointer:
case TYPE_array:
case TYPE_struct: {
// We're about to create a new CData object to return. If the caller doesn't
// want this, return early.
if (wantPrimitive) {
JS_ReportError(cx, "cannot convert to primitive value");
return false;
}
JSObject* obj = CData::Create(cx, typeObj, parentObj, data, ownResult);
if (!obj)
return false;
*result = OBJECT_TO_JSVAL(obj);
break;
}
case TYPE_function:
JS_NOT_REACHED("cannot return a FunctionType");
}
return true;
}
// Determine if the contents of a typed array can be converted without
// ambiguity to a C type. Elements of a Int8Array are converted to
// ctypes.int8_t, UInt8Array to ctypes.uint8_t, etc.
bool CanConvertTypedArrayItemTo(JSObject *baseType, JSObject *valObj, JSContext *cx) {
TypeCode baseTypeCode = CType::GetTypeCode(baseType);
if (baseTypeCode == TYPE_void_t) {
return true;
}
TypeCode elementTypeCode;
switch (JS_GetArrayBufferViewType(valObj)) {
case TypedArray::TYPE_INT8:
elementTypeCode = TYPE_int8_t;
break;
case TypedArray::TYPE_UINT8:
case TypedArray::TYPE_UINT8_CLAMPED:
elementTypeCode = TYPE_uint8_t;
break;
case TypedArray::TYPE_INT16:
elementTypeCode = TYPE_int16_t;
break;
case TypedArray::TYPE_UINT16:
elementTypeCode = TYPE_uint16_t;
break;
case TypedArray::TYPE_INT32:
elementTypeCode = TYPE_int32_t;
break;
case TypedArray::TYPE_UINT32:
elementTypeCode = TYPE_uint32_t;
break;
case TypedArray::TYPE_FLOAT32:
elementTypeCode = TYPE_float32_t;
break;
case TypedArray::TYPE_FLOAT64:
elementTypeCode = TYPE_float64_t;
break;
default:
return false;
}
return elementTypeCode == baseTypeCode;
}
// Implicitly convert jsval 'val' to a C binary representation of CType
// 'targetType', storing the result in 'buffer'. Adequate space must be
// provided in 'buffer' by the caller. This function generally does minimal
// coercion between types. There are two cases in which this function is used:
// 1) The target buffer is internal to a CData object; we simply write data
// into it.
// 2) We are converting an argument for an ffi call, in which case 'isArgument'
// will be true. This allows us to handle a special case: if necessary,
// we can autoconvert a JS string primitive to a pointer-to-character type.
// In this case, ownership of the allocated string is handed off to the
// caller; 'freePointer' will be set to indicate this.
JSBool
ImplicitConvert(JSContext* cx,
HandleValue val,
JSObject* targetType_,
void* buffer,
bool isArgument,
bool* freePointer)
{
RootedObject targetType(cx, targetType_);
JS_ASSERT(CType::IsSizeDefined(targetType));
// First, check if val is either a CData object or a CDataFinalizer
// of type targetType.
JSObject* sourceData = NULL;
JSObject* sourceType = NULL;
RootedObject valObj(cx, NULL);
if (!JSVAL_IS_PRIMITIVE(val)) {
valObj = JSVAL_TO_OBJECT(val);
if (CData::IsCData(valObj)) {
sourceData = valObj;
sourceType = CData::GetCType(sourceData);
// If the types are equal, copy the buffer contained within the CData.
// (Note that the buffers may overlap partially or completely.)
if (CType::TypesEqual(sourceType, targetType)) {
size_t size = CType::GetSize(sourceType);
memmove(buffer, CData::GetData(sourceData), size);
return true;
}
} else if (CDataFinalizer::IsCDataFinalizer(valObj)) {
sourceData = valObj;
sourceType = CDataFinalizer::GetCType(cx, sourceData);
CDataFinalizer::Private *p = (CDataFinalizer::Private *)
JS_GetPrivate(sourceData);
if (!p) {
// We have called |dispose| or |forget| already.
JS_ReportError(cx, "Attempting to convert an empty CDataFinalizer");
return JS_FALSE;
}
// If the types are equal, copy the buffer contained within the CData.
if (CType::TypesEqual(sourceType, targetType)) {
memmove(buffer, p->cargs, p->cargs_size);
return true;
}
}
}
TypeCode targetCode = CType::GetTypeCode(targetType);
switch (targetCode) {
case TYPE_bool: {
// Do not implicitly lose bits, but allow the values 0, 1, and -0.
// Programs can convert explicitly, if needed, using `Boolean(v)` or `!!v`.
bool result;
if (!jsvalToBool(cx, val, &result))
return TypeError(cx, "boolean", val);
*static_cast<bool*>(buffer) = result;
break;
}
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
/* Do not implicitly lose bits. */ \
type result; \
if (!jsvalToInteger(cx, val, &result)) \
return TypeError(cx, #name, val); \
*static_cast<type*>(buffer) = result; \
break; \
}
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_FLOAT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
type result; \
if (!jsvalToFloat(cx, val, &result)) \
return TypeError(cx, #name, val); \
*static_cast<type*>(buffer) = result; \
break; \
}
#define DEFINE_CHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_JSCHAR_TYPE(name, type, ffiType) \
case TYPE_##name: { \
/* Convert from a 1-character string, regardless of encoding, */ \
/* or from an integer, provided the result fits in 'type'. */ \
type result; \
if (JSVAL_IS_STRING(val)) { \
JSString* str = JSVAL_TO_STRING(val); \
if (str->length() != 1) \
return TypeError(cx, #name, val); \
const jschar *chars = str->getChars(cx); \
if (!chars) \
return false; \
result = chars[0]; \
} else if (!jsvalToInteger(cx, val, &result)) { \
return TypeError(cx, #name, val); \
} \
*static_cast<type*>(buffer) = result; \
break; \
}
#include "typedefs.h"
case TYPE_pointer: {
if (JSVAL_IS_NULL(val)) {
// Convert to a null pointer.
*static_cast<void**>(buffer) = NULL;
break;
}
JS::Rooted<JSObject*> baseType(cx, PointerType::GetBaseType(targetType));
if (sourceData) {
// First, determine if the targetType is ctypes.void_t.ptr.
TypeCode sourceCode = CType::GetTypeCode(sourceType);
void* sourceBuffer = CData::GetData(sourceData);
bool voidptrTarget = CType::GetTypeCode(baseType) == TYPE_void_t;
if (sourceCode == TYPE_pointer && voidptrTarget) {
// Autoconvert if targetType is ctypes.voidptr_t.
*static_cast<void**>(buffer) = *static_cast<void**>(sourceBuffer);
break;
}
if (sourceCode == TYPE_array) {
// Autoconvert an array to a ctypes.void_t.ptr or to
// sourceType.elementType.ptr, just like C.
JSObject* elementType = ArrayType::GetBaseType(sourceType);
if (voidptrTarget || CType::TypesEqual(baseType, elementType)) {
*static_cast<void**>(buffer) = sourceBuffer;
break;
}
}
} else if (isArgument && JSVAL_IS_STRING(val)) {
// Convert the string for the ffi call. This requires allocating space
// which the caller assumes ownership of.
// TODO: Extend this so we can safely convert strings at other times also.
JSString* sourceString = JSVAL_TO_STRING(val);
size_t sourceLength = sourceString->length();
const jschar* sourceChars = sourceString->getChars(cx);
if (!sourceChars)
return false;
switch (CType::GetTypeCode(baseType)) {
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char: {
// Convert from UTF-16 to UTF-8.
size_t nbytes =
GetDeflatedUTF8StringLength(cx, sourceChars, sourceLength);
if (nbytes == (size_t) -1)
return false;
char** charBuffer = static_cast<char**>(buffer);
*charBuffer = cx->pod_malloc<char>(nbytes + 1);
if (!*charBuffer) {
JS_ReportAllocationOverflow(cx);
return false;
}
ASSERT_OK(DeflateStringToUTF8Buffer(cx, sourceChars, sourceLength,
*charBuffer, &nbytes));
(*charBuffer)[nbytes] = 0;
*freePointer = true;
break;
}
case TYPE_jschar: {
// Copy the jschar string data. (We could provide direct access to the
// JSString's buffer, but this approach is safer if the caller happens
// to modify the string.)
jschar** jscharBuffer = static_cast<jschar**>(buffer);
*jscharBuffer = cx->pod_malloc<jschar>(sourceLength + 1);
if (!*jscharBuffer) {
JS_ReportAllocationOverflow(cx);
return false;
}
*freePointer = true;
memcpy(*jscharBuffer, sourceChars, sourceLength * sizeof(jschar));
(*jscharBuffer)[sourceLength] = 0;
break;
}
default:
return TypeError(cx, "string pointer", val);
}
break;
} else if (!JSVAL_IS_PRIMITIVE(val) && JS_IsArrayBufferObject(valObj)) {
// Convert ArrayBuffer to pointer without any copy.
// Just as with C arrays, we make no effort to
// keep the ArrayBuffer alive.
*static_cast<void**>(buffer) = JS_GetArrayBufferData(valObj);
break;
} if (!JSVAL_IS_PRIMITIVE(val) && JS_IsTypedArrayObject(valObj)) {
if(!CanConvertTypedArrayItemTo(baseType, valObj, cx)) {
return TypeError(cx, "typed array with the appropriate type", val);
}
// Convert TypedArray to pointer without any copy.
// Just as with C arrays, we make no effort to
// keep the TypedArray alive.
*static_cast<void**>(buffer) = JS_GetArrayBufferViewData(valObj);
break;
}
return TypeError(cx, "pointer", val);
}
case TYPE_array: {
RootedObject baseType(cx, ArrayType::GetBaseType(targetType));
size_t targetLength = ArrayType::GetLength(targetType);
if (JSVAL_IS_STRING(val)) {
JSString* sourceString = JSVAL_TO_STRING(val);
size_t sourceLength = sourceString->length();
const jschar* sourceChars = sourceString->getChars(cx);
if (!sourceChars)
return false;
switch (CType::GetTypeCode(baseType)) {
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char: {
// Convert from UTF-16 to UTF-8.
size_t nbytes =
GetDeflatedUTF8StringLength(cx, sourceChars, sourceLength);
if (nbytes == (size_t) -1)
return false;
if (targetLength < nbytes) {
JS_ReportError(cx, "ArrayType has insufficient length");
return false;
}
char* charBuffer = static_cast<char*>(buffer);
ASSERT_OK(DeflateStringToUTF8Buffer(cx, sourceChars, sourceLength,
charBuffer, &nbytes));
if (targetLength > nbytes)
charBuffer[nbytes] = 0;
break;
}
case TYPE_jschar: {
// Copy the string data, jschar for jschar, including the terminator
// if there's space.
if (targetLength < sourceLength) {
JS_ReportError(cx, "ArrayType has insufficient length");
return false;
}
memcpy(buffer, sourceChars, sourceLength * sizeof(jschar));
if (targetLength > sourceLength)
static_cast<jschar*>(buffer)[sourceLength] = 0;
break;
}
default:
return TypeError(cx, "array", val);
}
} else if (!JSVAL_IS_PRIMITIVE(val) && JS_IsArrayObject(cx, valObj)) {
// Convert each element of the array by calling ImplicitConvert.
uint32_t sourceLength;
if (!JS_GetArrayLength(cx, valObj, &sourceLength) ||
targetLength != size_t(sourceLength)) {
JS_ReportError(cx, "ArrayType length does not match source array length");
return false;
}
// Convert into an intermediate, in case of failure.
size_t elementSize = CType::GetSize(baseType);
size_t arraySize = elementSize * targetLength;
AutoPtr<char> intermediate(cx->pod_malloc<char>(arraySize));
if (!intermediate) {
JS_ReportAllocationOverflow(cx);
return false;
}
for (uint32_t i = 0; i < sourceLength; ++i) {
RootedValue item(cx);
if (!JS_GetElement(cx, valObj, i, item.address()))
return false;
char* data = intermediate.get() + elementSize * i;
if (!ImplicitConvert(cx, item, baseType, data, false, NULL))
return false;
}
memcpy(buffer, intermediate.get(), arraySize);
} else if (!JSVAL_IS_PRIMITIVE(val) &&
JS_IsArrayBufferObject(valObj)) {
// Check that array is consistent with type, then
// copy the array.
uint32_t sourceLength = JS_GetArrayBufferByteLength(valObj);
size_t elementSize = CType::GetSize(baseType);
size_t arraySize = elementSize * targetLength;
if (arraySize != size_t(sourceLength)) {
JS_ReportError(cx, "ArrayType length does not match source ArrayBuffer length");
return false;
}
memcpy(buffer, JS_GetArrayBufferData(valObj), sourceLength);
break;
} else if (!JSVAL_IS_PRIMITIVE(val) &&
JS_IsTypedArrayObject(valObj)) {
// Check that array is consistent with type, then
// copy the array.
if(!CanConvertTypedArrayItemTo(baseType, valObj, cx)) {
return TypeError(cx, "typed array with the appropriate type", val);
}
uint32_t sourceLength = JS_GetTypedArrayByteLength(valObj);
size_t elementSize = CType::GetSize(baseType);
size_t arraySize = elementSize * targetLength;
if (arraySize != size_t(sourceLength)) {
JS_ReportError(cx, "typed array length does not match source TypedArray length");
return false;
}
memcpy(buffer, JS_GetArrayBufferViewData(valObj), sourceLength);
break;
} else {
// Don't implicitly convert to string. Users can implicitly convert
// with `String(x)` or `""+x`.
return TypeError(cx, "array", val);
}
break;
}
case TYPE_struct: {
if (!JSVAL_IS_PRIMITIVE(val) && !sourceData) {
// Enumerate the properties of the object; if they match the struct
// specification, convert the fields.
RootedObject iter(cx, JS_NewPropertyIterator(cx, valObj));
if (!iter)
return false;
// Convert into an intermediate, in case of failure.
size_t structSize = CType::GetSize(targetType);
AutoPtr<char> intermediate(cx->pod_malloc<char>(structSize));
if (!intermediate) {
JS_ReportAllocationOverflow(cx);
return false;
}
RootedId id(cx);
size_t i = 0;
while (1) {
if (!JS_NextProperty(cx, iter, id.address()))
return false;
if (JSID_IS_VOID(id))
break;
if (!JSID_IS_STRING(id)) {
JS_ReportError(cx, "property name is not a string");
return false;
}
JSFlatString *name = JSID_TO_FLAT_STRING(id);
const FieldInfo* field = StructType::LookupField(cx, targetType, name);
if (!field)
return false;
RootedValue prop(cx);
if (!JS_GetPropertyById(cx, valObj, id, prop.address()))
return false;
// Convert the field via ImplicitConvert().
char* fieldData = intermediate.get() + field->mOffset;
if (!ImplicitConvert(cx, prop, field->mType, fieldData, false, NULL))
return false;
++i;
}
const FieldInfoHash* fields = StructType::GetFieldInfo(targetType);
if (i != fields->count()) {
JS_ReportError(cx, "missing fields");
return false;
}
memcpy(buffer, intermediate.get(), structSize);
break;
}
return TypeError(cx, "struct", val);
}
case TYPE_void_t:
case TYPE_function:
JS_NOT_REACHED("invalid type");
return false;
}
return true;
}
// Convert jsval 'val' to a C binary representation of CType 'targetType',
// storing the result in 'buffer'. This function is more forceful than
// ImplicitConvert.
JSBool
ExplicitConvert(JSContext* cx, HandleValue val, HandleObject targetType, void* buffer)
{
// If ImplicitConvert succeeds, use that result.
if (ImplicitConvert(cx, val, targetType, buffer, false, NULL))
return true;
// If ImplicitConvert failed, and there is no pending exception, then assume
// hard failure (out of memory, or some other similarly serious condition).
// We store any pending exception in case we need to re-throw it.
RootedValue ex(cx);
if (!JS_GetPendingException(cx, ex.address()))
return false;
// Otherwise, assume soft failure. Clear the pending exception so that we
// can throw a different one as required.
JS_ClearPendingException(cx);
TypeCode type = CType::GetTypeCode(targetType);
switch (type) {
case TYPE_bool: {
// Convert according to the ECMAScript ToBoolean() function.
JSBool result;
ASSERT_OK(JS_ValueToBoolean(cx, val, &result));
*static_cast<bool*>(buffer) = result != JS_FALSE;
break;
}
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
/* Convert numeric values with a C-style cast, and */ \
/* allow conversion from a base-10 or base-16 string. */ \
type result; \
if (!jsvalToIntegerExplicit(val, &result) && \
(!JSVAL_IS_STRING(val) || \
!StringToInteger(cx, JSVAL_TO_STRING(val), &result))) \
return TypeError(cx, #name, val); \
*static_cast<type*>(buffer) = result; \
break; \
}
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_CHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_JSCHAR_TYPE(x, y, z) DEFINE_CHAR_TYPE(x, y, z)
#include "typedefs.h"
case TYPE_pointer: {
// Convert a number, Int64 object, or UInt64 object to a pointer.
uintptr_t result;
if (!jsvalToPtrExplicit(cx, val, &result))
return TypeError(cx, "pointer", val);
*static_cast<uintptr_t*>(buffer) = result;
break;
}
case TYPE_float32_t:
case TYPE_float64_t:
case TYPE_float:
case TYPE_double:
case TYPE_array:
case TYPE_struct:
// ImplicitConvert is sufficient. Re-throw the exception it generated.
JS_SetPendingException(cx, ex);
return false;
case TYPE_void_t:
case TYPE_function:
JS_NOT_REACHED("invalid type");
return false;
}
return true;
}
// Given a CType 'typeObj', generate a string describing the C type declaration
// corresponding to 'typeObj'. For instance, the CType constructed from
// 'ctypes.int32_t.ptr.array(4).ptr.ptr' will result in the type string
// 'int32_t*(**)[4]'.
static JSString*
BuildTypeName(JSContext* cx, JSObject* typeObj_)
{
AutoString result;
RootedObject typeObj(cx, typeObj_);
// Walk the hierarchy of types, outermost to innermost, building up the type
// string. This consists of the base type, which goes on the left.
// Derived type modifiers (* and []) build from the inside outward, with
// pointers on the left and arrays on the right. An excellent description
// of the rules for building C type declarations can be found at:
// http://unixwiz.net/techtips/reading-cdecl.html
TypeCode prevGrouping = CType::GetTypeCode(typeObj), currentGrouping;
while (1) {
currentGrouping = CType::GetTypeCode(typeObj);
switch (currentGrouping) {
case TYPE_pointer: {
// Pointer types go on the left.
PrependString(result, "*");
typeObj = PointerType::GetBaseType(typeObj);
prevGrouping = currentGrouping;
continue;
}
case TYPE_array: {
if (prevGrouping == TYPE_pointer) {
// Outer type is pointer, inner type is array. Grouping is required.
PrependString(result, "(");
AppendString(result, ")");
}
// Array types go on the right.
AppendString(result, "[");
size_t length;
if (ArrayType::GetSafeLength(typeObj, &length))
IntegerToString(length, 10, result);
AppendString(result, "]");
typeObj = ArrayType::GetBaseType(typeObj);
prevGrouping = currentGrouping;
continue;
}
case TYPE_function: {
FunctionInfo* fninfo = FunctionType::GetFunctionInfo(typeObj);
// Add in the calling convention, if it's not cdecl.
// There's no trailing or leading space needed here, as none of the
// modifiers can produce a string beginning with an identifier ---
// except for TYPE_function itself, which is fine because functions
// can't return functions.
ABICode abi = GetABICode(fninfo->mABI);
if (abi == ABI_STDCALL)
PrependString(result, "__stdcall");
else if (abi == ABI_WINAPI)
PrependString(result, "WINAPI");
// Function application binds more tightly than dereferencing, so
// wrap pointer types in parens. Functions can't return functions
// (only pointers to them), and arrays can't hold functions
// (similarly), so we don't need to address those cases.
if (prevGrouping == TYPE_pointer) {
PrependString(result, "(");
AppendString(result, ")");
}
// Argument list goes on the right.
AppendString(result, "(");
for (size_t i = 0; i < fninfo->mArgTypes.length(); ++i) {
RootedObject argType(cx, fninfo->mArgTypes[i]);
JSString* argName = CType::GetName(cx, argType);
AppendString(result, argName);
if (i != fninfo->mArgTypes.length() - 1 ||
fninfo->mIsVariadic)
AppendString(result, ", ");
}
if (fninfo->mIsVariadic)
AppendString(result, "...");
AppendString(result, ")");
// Set 'typeObj' to the return type, and let the loop process it.
// 'prevGrouping' doesn't matter here, because functions cannot return
// arrays -- thus the parenthetical rules don't get tickled.
typeObj = fninfo->mReturnType;
continue;
}
default:
// Either a basic or struct type. Use the type's name as the base type.
break;
}
break;
}
// If prepending the base type name directly would splice two
// identifiers, insert a space.
if (('a' <= result[0] && result[0] <= 'z') ||
('A' <= result[0] && result[0] <= 'Z') ||
(result[0] == '_'))
PrependString(result, " ");
// Stick the base type and derived type parts together.
JSString* baseName = CType::GetName(cx, typeObj);
PrependString(result, baseName);
return NewUCString(cx, result);
}
// Given a CType 'typeObj', generate a string 'result' such that 'eval(result)'
// would construct the same CType. If 'makeShort' is true, assume that any
// StructType 't' is bound to an in-scope variable of name 't.name', and use
// that variable in place of generating a string to construct the type 't'.
// (This means the type comparison function CType::TypesEqual will return true
// when comparing the input and output of BuildTypeSource, since struct
// equality is determined by strict JSObject pointer equality.)
static void
BuildTypeSource(JSContext* cx,
JSObject* typeObj_,
bool makeShort,
AutoString& result)
{
RootedObject typeObj(cx, typeObj_);
// Walk the types, building up the toSource() string.
switch (CType::GetTypeCode(typeObj)) {
case TYPE_void_t:
#define DEFINE_TYPE(name, type, ffiType) \
case TYPE_##name:
#include "typedefs.h"
{
AppendString(result, "ctypes.");
JSString* nameStr = CType::GetName(cx, typeObj);
AppendString(result, nameStr);
break;
}
case TYPE_pointer: {
RootedObject baseType(cx, PointerType::GetBaseType(typeObj));
// Specialcase ctypes.voidptr_t.
if (CType::GetTypeCode(baseType) == TYPE_void_t) {
AppendString(result, "ctypes.voidptr_t");
break;
}
// Recursively build the source string, and append '.ptr'.
BuildTypeSource(cx, baseType, makeShort, result);
AppendString(result, ".ptr");
break;
}
case TYPE_function: {
FunctionInfo* fninfo = FunctionType::GetFunctionInfo(typeObj);
AppendString(result, "ctypes.FunctionType(");
switch (GetABICode(fninfo->mABI)) {
case ABI_DEFAULT:
AppendString(result, "ctypes.default_abi, ");
break;
case ABI_STDCALL:
AppendString(result, "ctypes.stdcall_abi, ");
break;
case ABI_WINAPI:
AppendString(result, "ctypes.winapi_abi, ");
break;
case INVALID_ABI:
JS_NOT_REACHED("invalid abi");
break;
}
// Recursively build the source string describing the function return and
// argument types.
BuildTypeSource(cx, fninfo->mReturnType, true, result);
if (fninfo->mArgTypes.length() > 0) {
AppendString(result, ", [");
for (size_t i = 0; i < fninfo->mArgTypes.length(); ++i) {
BuildTypeSource(cx, fninfo->mArgTypes[i], true, result);
if (i != fninfo->mArgTypes.length() - 1 ||
fninfo->mIsVariadic)
AppendString(result, ", ");
}
if (fninfo->mIsVariadic)
AppendString(result, "\"...\"");
AppendString(result, "]");
}
AppendString(result, ")");
break;
}
case TYPE_array: {
// Recursively build the source string, and append '.array(n)',
// where n is the array length, or the empty string if the array length
// is undefined.