blob: a564c10d50064206a74a63af8b57e987d4bebcff [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/BaselineJIT.h"
#include "jit/BaselineIC.h"
#include "jit/BaselineCompiler.h"
#include "jit/BaselineHelpers.h"
#include "jit/IonLinker.h"
using namespace js;
using namespace js::jit;
namespace js {
namespace jit {
// ICCompare_Int32
bool
ICCompare_Int32::Compiler::generateStubCode(MacroAssembler &masm)
{
// Guard that R0 is an integer and R1 is an integer.
Label failure;
masm.branchTestInt32(Assembler::NotEqual, R0, &failure);
masm.branchTestInt32(Assembler::NotEqual, R1, &failure);
// Compare payload regs of R0 and R1.
Assembler::Condition cond = JSOpToCondition(op, /* signed = */true);
masm.cmpl(R0.payloadReg(), R1.payloadReg());
masm.setCC(cond, R0.payloadReg());
masm.movzxbl(R0.payloadReg(), R0.payloadReg());
// Box the result and return
masm.tagValue(JSVAL_TYPE_BOOLEAN, R0.payloadReg(), R0);
EmitReturnFromIC(masm);
// Failure case - jump to next stub
masm.bind(&failure);
EmitStubGuardFailure(masm);
return true;
}
// ICBinaryArith_Int32
bool
ICBinaryArith_Int32::Compiler::generateStubCode(MacroAssembler &masm)
{
// Guard that R0 is an integer and R1 is an integer.
Label failure;
masm.branchTestInt32(Assembler::NotEqual, R0, &failure);
masm.branchTestInt32(Assembler::NotEqual, R1, &failure);
// Add R0 and R1. Don't need to explicitly unbox, just use the TailCallReg which
// should be available.
Register scratchReg = BaselineTailCallReg;
Label revertRegister, maybeNegZero;
switch(op_) {
case JSOP_ADD:
// Add R0 and R1. Don't need to explicitly unbox.
masm.movl(R0.payloadReg(), scratchReg);
masm.addl(R1.payloadReg(), scratchReg);
// Just jump to failure on overflow. R0 and R1 are preserved, so we can just jump to
// the next stub.
masm.j(Assembler::Overflow, &failure);
// Just overwrite the payload, the tag is still fine.
masm.movl(scratchReg, R0.payloadReg());
break;
case JSOP_SUB:
masm.movl(R0.payloadReg(), scratchReg);
masm.subl(R1.payloadReg(), scratchReg);
masm.j(Assembler::Overflow, &failure);
masm.movl(scratchReg, R0.payloadReg());
break;
case JSOP_MUL:
masm.movl(R0.payloadReg(), scratchReg);
masm.imull(R1.payloadReg(), scratchReg);
masm.j(Assembler::Overflow, &failure);
masm.testl(scratchReg, scratchReg);
masm.j(Assembler::Zero, &maybeNegZero);
masm.movl(scratchReg, R0.payloadReg());
break;
case JSOP_DIV:
// Prevent division by 0.
masm.branchTest32(Assembler::Zero, R1.payloadReg(), R1.payloadReg(), &failure);
// Prevent negative 0 and -2147483648 / -1.
masm.branchTest32(Assembler::Zero, R0.payloadReg(), Imm32(0x7fffffff), &failure);
// For idiv we need eax.
JS_ASSERT(R1.typeReg() == eax);
masm.movl(R0.payloadReg(), eax);
// Preserve R0.payloadReg()/edx, eax is JSVAL_TYPE_INT32.
masm.movl(R0.payloadReg(), scratchReg);
// Sign extend eax into edx to make (edx:eax), since idiv is 64-bit.
masm.cdq();
masm.idiv(R1.payloadReg());
// A remainder implies a double result.
masm.branchTest32(Assembler::NonZero, edx, edx, &revertRegister);
masm.movl(eax, R0.payloadReg());
break;
case JSOP_MOD:
{
// x % 0 always results in NaN.
masm.branchTest32(Assembler::Zero, R1.payloadReg(), R1.payloadReg(), &failure);
// Prevent negative 0 and -2147483648 % -1.
masm.branchTest32(Assembler::Zero, R0.payloadReg(), Imm32(0x7fffffff), &failure);
// For idiv we need eax.
JS_ASSERT(R1.typeReg() == eax);
masm.movl(R0.payloadReg(), eax);
// Preserve R0.payloadReg()/edx, eax is JSVAL_TYPE_INT32.
masm.movl(R0.payloadReg(), scratchReg);
// Sign extend eax into edx to make (edx:eax), since idiv is 64-bit.
masm.cdq();
masm.idiv(R1.payloadReg());
// Fail when we would need a negative remainder.
Label done;
masm.branchTest32(Assembler::NonZero, edx, edx, &done);
masm.branchTest32(Assembler::Signed, scratchReg, scratchReg, &revertRegister);
masm.branchTest32(Assembler::Signed, R1.payloadReg(), R1.payloadReg(), &revertRegister);
masm.bind(&done);
// Result is in edx, tag in ecx remains untouched.
JS_ASSERT(R0.payloadReg() == edx);
JS_ASSERT(R0.typeReg() == ecx);
break;
}
case JSOP_BITOR:
// We can overide R0, because the instruction is unfailable.
// The R0.typeReg() is also still intact.
masm.orl(R1.payloadReg(), R0.payloadReg());
break;
case JSOP_BITXOR:
masm.xorl(R1.payloadReg(), R0.payloadReg());
break;
case JSOP_BITAND:
masm.andl(R1.payloadReg(), R0.payloadReg());
break;
case JSOP_LSH:
// RHS needs to be in ecx for shift operations.
JS_ASSERT(R0.typeReg() == ecx);
masm.movl(R1.payloadReg(), ecx);
masm.shll_cl(R0.payloadReg());
// We need to tag again, because we overwrote it.
masm.tagValue(JSVAL_TYPE_INT32, R0.payloadReg(), R0);
break;
case JSOP_RSH:
masm.movl(R1.payloadReg(), ecx);
masm.sarl_cl(R0.payloadReg());
masm.tagValue(JSVAL_TYPE_INT32, R0.payloadReg(), R0);
break;
case JSOP_URSH:
if (!allowDouble_)
masm.movl(R0.payloadReg(), scratchReg);
masm.movl(R1.payloadReg(), ecx);
masm.shrl_cl(R0.payloadReg());
masm.testl(R0.payloadReg(), R0.payloadReg());
if (allowDouble_) {
Label toUint;
masm.j(Assembler::Signed, &toUint);
// Box and return.
masm.tagValue(JSVAL_TYPE_INT32, R0.payloadReg(), R0);
EmitReturnFromIC(masm);
masm.bind(&toUint);
masm.convertUInt32ToDouble(R0.payloadReg(), ScratchFloatReg);
masm.boxDouble(ScratchFloatReg, R0);
} else {
masm.j(Assembler::Signed, &revertRegister);
masm.tagValue(JSVAL_TYPE_INT32, R0.payloadReg(), R0);
}
break;
default:
JS_NOT_REACHED("Unhandled op for BinaryArith_Int32. ");
return false;
}
// Return.
EmitReturnFromIC(masm);
switch(op_) {
case JSOP_MUL:
masm.bind(&maybeNegZero);
// Result is -0 if exactly one of lhs or rhs is negative.
masm.movl(R0.payloadReg(), scratchReg);
masm.orl(R1.payloadReg(), scratchReg);
masm.j(Assembler::Signed, &failure);
// Result is +0.
masm.xorl(R0.payloadReg(), R0.payloadReg());
EmitReturnFromIC(masm);
break;
case JSOP_DIV:
case JSOP_MOD:
masm.bind(&revertRegister);
masm.movl(scratchReg, R0.payloadReg());
masm.movl(ImmType(JSVAL_TYPE_INT32), R1.typeReg());
break;
case JSOP_URSH:
// Revert the content of R0 in the fallible >>> case.
if (!allowDouble_) {
masm.bind(&revertRegister);
masm.tagValue(JSVAL_TYPE_INT32, scratchReg, R0);
}
break;
default:
// No special failure handling required.
// Fall through to failure.
break;
}
// Failure case - jump to next stub
masm.bind(&failure);
EmitStubGuardFailure(masm);
return true;
}
bool
ICUnaryArith_Int32::Compiler::generateStubCode(MacroAssembler &masm)
{
Label failure;
masm.branchTestInt32(Assembler::NotEqual, R0, &failure);
switch (op) {
case JSOP_BITNOT:
masm.notl(R0.payloadReg());
break;
case JSOP_NEG:
// Guard against 0 and MIN_INT, both result in a double.
masm.branchTest32(Assembler::Zero, R0.payloadReg(), Imm32(0x7fffffff), &failure);
masm.negl(R0.payloadReg());
break;
default:
JS_NOT_REACHED("Unexpected op");
return false;
}
EmitReturnFromIC(masm);
masm.bind(&failure);
EmitStubGuardFailure(masm);
return true;
}
} // namespace jit
} // namespace js