| //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the generic AliasAnalysis interface which is used as the | 
 | // common interface used by all clients and implementations of alias analysis. | 
 | // | 
 | // This file also implements the default version of the AliasAnalysis interface | 
 | // that is to be used when no other implementation is specified.  This does some | 
 | // simple tests that detect obvious cases: two different global pointers cannot | 
 | // alias, a global cannot alias a malloc, two different mallocs cannot alias, | 
 | // etc. | 
 | // | 
 | // This alias analysis implementation really isn't very good for anything, but | 
 | // it is very fast, and makes a nice clean default implementation.  Because it | 
 | // handles lots of little corner cases, other, more complex, alias analysis | 
 | // implementations may choose to rely on this pass to resolve these simple and | 
 | // easy cases. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/BasicAliasAnalysis.h" | 
 | #include "llvm/Analysis/CFLAndersAliasAnalysis.h" | 
 | #include "llvm/Analysis/CFLSteensAliasAnalysis.h" | 
 | #include "llvm/Analysis/CaptureTracking.h" | 
 | #include "llvm/Analysis/GlobalsModRef.h" | 
 | #include "llvm/Analysis/MemoryLocation.h" | 
 | #include "llvm/Analysis/ObjCARCAliasAnalysis.h" | 
 | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" | 
 | #include "llvm/Analysis/ScopedNoAliasAA.h" | 
 | #include "llvm/Analysis/TargetLibraryInfo.h" | 
 | #include "llvm/Analysis/TypeBasedAliasAnalysis.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/IR/Argument.h" | 
 | #include "llvm/IR/Attributes.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/CallSite.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/AtomicOrdering.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <functional> | 
 | #include <iterator> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | /// Allow disabling BasicAA from the AA results. This is particularly useful | 
 | /// when testing to isolate a single AA implementation. | 
 | static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, | 
 |                                     cl::init(false)); | 
 |  | 
 | AAResults::AAResults(AAResults &&Arg) | 
 |     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) { | 
 |   for (auto &AA : AAs) | 
 |     AA->setAAResults(this); | 
 | } | 
 |  | 
 | AAResults::~AAResults() { | 
 | // FIXME; It would be nice to at least clear out the pointers back to this | 
 | // aggregation here, but we end up with non-nesting lifetimes in the legacy | 
 | // pass manager that prevent this from working. In the legacy pass manager | 
 | // we'll end up with dangling references here in some cases. | 
 | #if 0 | 
 |   for (auto &AA : AAs) | 
 |     AA->setAAResults(nullptr); | 
 | #endif | 
 | } | 
 |  | 
 | bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, | 
 |                            FunctionAnalysisManager::Invalidator &Inv) { | 
 |   // Check if the AA manager itself has been invalidated. | 
 |   auto PAC = PA.getChecker<AAManager>(); | 
 |   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) | 
 |     return true; // The manager needs to be blown away, clear everything. | 
 |  | 
 |   // Check all of the dependencies registered. | 
 |   for (AnalysisKey *ID : AADeps) | 
 |     if (Inv.invalidate(ID, F, PA)) | 
 |       return true; | 
 |  | 
 |   // Everything we depend on is still fine, so are we. Nothing to invalidate. | 
 |   return false; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Default chaining methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | AliasResult AAResults::alias(const MemoryLocation &LocA, | 
 |                              const MemoryLocation &LocB) { | 
 |   for (const auto &AA : AAs) { | 
 |     auto Result = AA->alias(LocA, LocB); | 
 |     if (Result != MayAlias) | 
 |       return Result; | 
 |   } | 
 |   return MayAlias; | 
 | } | 
 |  | 
 | bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, | 
 |                                        bool OrLocal) { | 
 |   for (const auto &AA : AAs) | 
 |     if (AA->pointsToConstantMemory(Loc, OrLocal)) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { | 
 |   ModRefInfo Result = ModRefInfo::ModRef; | 
 |  | 
 |   for (const auto &AA : AAs) { | 
 |     Result = intersectModRef(Result, AA->getArgModRefInfo(CS, ArgIdx)); | 
 |  | 
 |     // Early-exit the moment we reach the bottom of the lattice. | 
 |     if (isNoModRef(Result)) | 
 |       return ModRefInfo::NoModRef; | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) { | 
 |   // We may have two calls. | 
 |   if (auto CS = ImmutableCallSite(I)) { | 
 |     // Check if the two calls modify the same memory. | 
 |     return getModRefInfo(CS, Call); | 
 |   } else if (I->isFenceLike()) { | 
 |     // If this is a fence, just return ModRef. | 
 |     return ModRefInfo::ModRef; | 
 |   } else { | 
 |     // Otherwise, check if the call modifies or references the | 
 |     // location this memory access defines.  The best we can say | 
 |     // is that if the call references what this instruction | 
 |     // defines, it must be clobbered by this location. | 
 |     const MemoryLocation DefLoc = MemoryLocation::get(I); | 
 |     ModRefInfo MR = getModRefInfo(Call, DefLoc); | 
 |     if (isModOrRefSet(MR)) | 
 |       return setModAndRef(MR); | 
 |   } | 
 |   return ModRefInfo::NoModRef; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS, | 
 |                                     const MemoryLocation &Loc) { | 
 |   ModRefInfo Result = ModRefInfo::ModRef; | 
 |  | 
 |   for (const auto &AA : AAs) { | 
 |     Result = intersectModRef(Result, AA->getModRefInfo(CS, Loc)); | 
 |  | 
 |     // Early-exit the moment we reach the bottom of the lattice. | 
 |     if (isNoModRef(Result)) | 
 |       return ModRefInfo::NoModRef; | 
 |   } | 
 |  | 
 |   // Try to refine the mod-ref info further using other API entry points to the | 
 |   // aggregate set of AA results. | 
 |   auto MRB = getModRefBehavior(CS); | 
 |   if (MRB == FMRB_DoesNotAccessMemory || | 
 |       MRB == FMRB_OnlyAccessesInaccessibleMem) | 
 |     return ModRefInfo::NoModRef; | 
 |  | 
 |   if (onlyReadsMemory(MRB)) | 
 |     Result = clearMod(Result); | 
 |   else if (doesNotReadMemory(MRB)) | 
 |     Result = clearRef(Result); | 
 |  | 
 |   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) { | 
 |     bool DoesAlias = false; | 
 |     bool IsMustAlias = true; | 
 |     ModRefInfo AllArgsMask = ModRefInfo::NoModRef; | 
 |     if (doesAccessArgPointees(MRB)) { | 
 |       for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) { | 
 |         const Value *Arg = *AI; | 
 |         if (!Arg->getType()->isPointerTy()) | 
 |           continue; | 
 |         unsigned ArgIdx = std::distance(CS.arg_begin(), AI); | 
 |         MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI); | 
 |         AliasResult ArgAlias = alias(ArgLoc, Loc); | 
 |         if (ArgAlias != NoAlias) { | 
 |           ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx); | 
 |           DoesAlias = true; | 
 |           AllArgsMask = unionModRef(AllArgsMask, ArgMask); | 
 |         } | 
 |         // Conservatively clear IsMustAlias unless only MustAlias is found. | 
 |         IsMustAlias &= (ArgAlias == MustAlias); | 
 |       } | 
 |     } | 
 |     // Return NoModRef if no alias found with any argument. | 
 |     if (!DoesAlias) | 
 |       return ModRefInfo::NoModRef; | 
 |     // Logical & between other AA analyses and argument analysis. | 
 |     Result = intersectModRef(Result, AllArgsMask); | 
 |     // If only MustAlias found above, set Must bit. | 
 |     Result = IsMustAlias ? setMust(Result) : clearMust(Result); | 
 |   } | 
 |  | 
 |   // If Loc is a constant memory location, the call definitely could not | 
 |   // modify the memory location. | 
 |   if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false)) | 
 |     Result = clearMod(Result); | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1, | 
 |                                     ImmutableCallSite CS2) { | 
 |   ModRefInfo Result = ModRefInfo::ModRef; | 
 |  | 
 |   for (const auto &AA : AAs) { | 
 |     Result = intersectModRef(Result, AA->getModRefInfo(CS1, CS2)); | 
 |  | 
 |     // Early-exit the moment we reach the bottom of the lattice. | 
 |     if (isNoModRef(Result)) | 
 |       return ModRefInfo::NoModRef; | 
 |   } | 
 |  | 
 |   // Try to refine the mod-ref info further using other API entry points to the | 
 |   // aggregate set of AA results. | 
 |  | 
 |   // If CS1 or CS2 are readnone, they don't interact. | 
 |   auto CS1B = getModRefBehavior(CS1); | 
 |   if (CS1B == FMRB_DoesNotAccessMemory) | 
 |     return ModRefInfo::NoModRef; | 
 |  | 
 |   auto CS2B = getModRefBehavior(CS2); | 
 |   if (CS2B == FMRB_DoesNotAccessMemory) | 
 |     return ModRefInfo::NoModRef; | 
 |  | 
 |   // If they both only read from memory, there is no dependence. | 
 |   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) | 
 |     return ModRefInfo::NoModRef; | 
 |  | 
 |   // If CS1 only reads memory, the only dependence on CS2 can be | 
 |   // from CS1 reading memory written by CS2. | 
 |   if (onlyReadsMemory(CS1B)) | 
 |     Result = clearMod(Result); | 
 |   else if (doesNotReadMemory(CS1B)) | 
 |     Result = clearRef(Result); | 
 |  | 
 |   // If CS2 only access memory through arguments, accumulate the mod/ref | 
 |   // information from CS1's references to the memory referenced by | 
 |   // CS2's arguments. | 
 |   if (onlyAccessesArgPointees(CS2B)) { | 
 |     if (!doesAccessArgPointees(CS2B)) | 
 |       return ModRefInfo::NoModRef; | 
 |     ModRefInfo R = ModRefInfo::NoModRef; | 
 |     bool IsMustAlias = true; | 
 |     for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { | 
 |       const Value *Arg = *I; | 
 |       if (!Arg->getType()->isPointerTy()) | 
 |         continue; | 
 |       unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I); | 
 |       auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI); | 
 |  | 
 |       // ArgModRefCS2 indicates what CS2 might do to CS2ArgLoc, and the | 
 |       // dependence of CS1 on that location is the inverse: | 
 |       // - If CS2 modifies location, dependence exists if CS1 reads or writes. | 
 |       // - If CS2 only reads location, dependence exists if CS1 writes. | 
 |       ModRefInfo ArgModRefCS2 = getArgModRefInfo(CS2, CS2ArgIdx); | 
 |       ModRefInfo ArgMask = ModRefInfo::NoModRef; | 
 |       if (isModSet(ArgModRefCS2)) | 
 |         ArgMask = ModRefInfo::ModRef; | 
 |       else if (isRefSet(ArgModRefCS2)) | 
 |         ArgMask = ModRefInfo::Mod; | 
 |  | 
 |       // ModRefCS1 indicates what CS1 might do to CS2ArgLoc, and we use | 
 |       // above ArgMask to update dependence info. | 
 |       ModRefInfo ModRefCS1 = getModRefInfo(CS1, CS2ArgLoc); | 
 |       ArgMask = intersectModRef(ArgMask, ModRefCS1); | 
 |  | 
 |       // Conservatively clear IsMustAlias unless only MustAlias is found. | 
 |       IsMustAlias &= isMustSet(ModRefCS1); | 
 |  | 
 |       R = intersectModRef(unionModRef(R, ArgMask), Result); | 
 |       if (R == Result) { | 
 |         // On early exit, not all args were checked, cannot set Must. | 
 |         if (I + 1 != E) | 
 |           IsMustAlias = false; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (isNoModRef(R)) | 
 |       return ModRefInfo::NoModRef; | 
 |  | 
 |     // If MustAlias found above, set Must bit. | 
 |     return IsMustAlias ? setMust(R) : clearMust(R); | 
 |   } | 
 |  | 
 |   // If CS1 only accesses memory through arguments, check if CS2 references | 
 |   // any of the memory referenced by CS1's arguments. If not, return NoModRef. | 
 |   if (onlyAccessesArgPointees(CS1B)) { | 
 |     if (!doesAccessArgPointees(CS1B)) | 
 |       return ModRefInfo::NoModRef; | 
 |     ModRefInfo R = ModRefInfo::NoModRef; | 
 |     bool IsMustAlias = true; | 
 |     for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { | 
 |       const Value *Arg = *I; | 
 |       if (!Arg->getType()->isPointerTy()) | 
 |         continue; | 
 |       unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I); | 
 |       auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI); | 
 |  | 
 |       // ArgModRefCS1 indicates what CS1 might do to CS1ArgLoc; if CS1 might | 
 |       // Mod CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If | 
 |       // CS1 might Ref, then we care only about a Mod by CS2. | 
 |       ModRefInfo ArgModRefCS1 = getArgModRefInfo(CS1, CS1ArgIdx); | 
 |       ModRefInfo ModRefCS2 = getModRefInfo(CS2, CS1ArgLoc); | 
 |       if ((isModSet(ArgModRefCS1) && isModOrRefSet(ModRefCS2)) || | 
 |           (isRefSet(ArgModRefCS1) && isModSet(ModRefCS2))) | 
 |         R = intersectModRef(unionModRef(R, ArgModRefCS1), Result); | 
 |  | 
 |       // Conservatively clear IsMustAlias unless only MustAlias is found. | 
 |       IsMustAlias &= isMustSet(ModRefCS2); | 
 |  | 
 |       if (R == Result) { | 
 |         // On early exit, not all args were checked, cannot set Must. | 
 |         if (I + 1 != E) | 
 |           IsMustAlias = false; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (isNoModRef(R)) | 
 |       return ModRefInfo::NoModRef; | 
 |  | 
 |     // If MustAlias found above, set Must bit. | 
 |     return IsMustAlias ? setMust(R) : clearMust(R); | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) { | 
 |   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; | 
 |  | 
 |   for (const auto &AA : AAs) { | 
 |     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS)); | 
 |  | 
 |     // Early-exit the moment we reach the bottom of the lattice. | 
 |     if (Result == FMRB_DoesNotAccessMemory) | 
 |       return Result; | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { | 
 |   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; | 
 |  | 
 |   for (const auto &AA : AAs) { | 
 |     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); | 
 |  | 
 |     // Early-exit the moment we reach the bottom of the lattice. | 
 |     if (Result == FMRB_DoesNotAccessMemory) | 
 |       return Result; | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { | 
 |   switch (AR) { | 
 |   case NoAlias: | 
 |     OS << "NoAlias"; | 
 |     break; | 
 |   case MustAlias: | 
 |     OS << "MustAlias"; | 
 |     break; | 
 |   case MayAlias: | 
 |     OS << "MayAlias"; | 
 |     break; | 
 |   case PartialAlias: | 
 |     OS << "PartialAlias"; | 
 |     break; | 
 |   } | 
 |   return OS; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Helper method implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(const LoadInst *L, | 
 |                                     const MemoryLocation &Loc) { | 
 |   // Be conservative in the face of atomic. | 
 |   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) | 
 |     return ModRefInfo::ModRef; | 
 |  | 
 |   // If the load address doesn't alias the given address, it doesn't read | 
 |   // or write the specified memory. | 
 |   if (Loc.Ptr) { | 
 |     AliasResult AR = alias(MemoryLocation::get(L), Loc); | 
 |     if (AR == NoAlias) | 
 |       return ModRefInfo::NoModRef; | 
 |     if (AR == MustAlias) | 
 |       return ModRefInfo::MustRef; | 
 |   } | 
 |   // Otherwise, a load just reads. | 
 |   return ModRefInfo::Ref; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(const StoreInst *S, | 
 |                                     const MemoryLocation &Loc) { | 
 |   // Be conservative in the face of atomic. | 
 |   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) | 
 |     return ModRefInfo::ModRef; | 
 |  | 
 |   if (Loc.Ptr) { | 
 |     AliasResult AR = alias(MemoryLocation::get(S), Loc); | 
 |     // If the store address cannot alias the pointer in question, then the | 
 |     // specified memory cannot be modified by the store. | 
 |     if (AR == NoAlias) | 
 |       return ModRefInfo::NoModRef; | 
 |  | 
 |     // If the pointer is a pointer to constant memory, then it could not have | 
 |     // been modified by this store. | 
 |     if (pointsToConstantMemory(Loc)) | 
 |       return ModRefInfo::NoModRef; | 
 |  | 
 |     // If the store address aliases the pointer as must alias, set Must. | 
 |     if (AR == MustAlias) | 
 |       return ModRefInfo::MustMod; | 
 |   } | 
 |  | 
 |   // Otherwise, a store just writes. | 
 |   return ModRefInfo::Mod; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) { | 
 |   // If we know that the location is a constant memory location, the fence | 
 |   // cannot modify this location. | 
 |   if (Loc.Ptr && pointsToConstantMemory(Loc)) | 
 |     return ModRefInfo::Ref; | 
 |   return ModRefInfo::ModRef; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, | 
 |                                     const MemoryLocation &Loc) { | 
 |   if (Loc.Ptr) { | 
 |     AliasResult AR = alias(MemoryLocation::get(V), Loc); | 
 |     // If the va_arg address cannot alias the pointer in question, then the | 
 |     // specified memory cannot be accessed by the va_arg. | 
 |     if (AR == NoAlias) | 
 |       return ModRefInfo::NoModRef; | 
 |  | 
 |     // If the pointer is a pointer to constant memory, then it could not have | 
 |     // been modified by this va_arg. | 
 |     if (pointsToConstantMemory(Loc)) | 
 |       return ModRefInfo::NoModRef; | 
 |  | 
 |     // If the va_arg aliases the pointer as must alias, set Must. | 
 |     if (AR == MustAlias) | 
 |       return ModRefInfo::MustModRef; | 
 |   } | 
 |  | 
 |   // Otherwise, a va_arg reads and writes. | 
 |   return ModRefInfo::ModRef; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, | 
 |                                     const MemoryLocation &Loc) { | 
 |   if (Loc.Ptr) { | 
 |     // If the pointer is a pointer to constant memory, | 
 |     // then it could not have been modified by this catchpad. | 
 |     if (pointsToConstantMemory(Loc)) | 
 |       return ModRefInfo::NoModRef; | 
 |   } | 
 |  | 
 |   // Otherwise, a catchpad reads and writes. | 
 |   return ModRefInfo::ModRef; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, | 
 |                                     const MemoryLocation &Loc) { | 
 |   if (Loc.Ptr) { | 
 |     // If the pointer is a pointer to constant memory, | 
 |     // then it could not have been modified by this catchpad. | 
 |     if (pointsToConstantMemory(Loc)) | 
 |       return ModRefInfo::NoModRef; | 
 |   } | 
 |  | 
 |   // Otherwise, a catchret reads and writes. | 
 |   return ModRefInfo::ModRef; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, | 
 |                                     const MemoryLocation &Loc) { | 
 |   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. | 
 |   if (isStrongerThanMonotonic(CX->getSuccessOrdering())) | 
 |     return ModRefInfo::ModRef; | 
 |  | 
 |   if (Loc.Ptr) { | 
 |     AliasResult AR = alias(MemoryLocation::get(CX), Loc); | 
 |     // If the cmpxchg address does not alias the location, it does not access | 
 |     // it. | 
 |     if (AR == NoAlias) | 
 |       return ModRefInfo::NoModRef; | 
 |  | 
 |     // If the cmpxchg address aliases the pointer as must alias, set Must. | 
 |     if (AR == MustAlias) | 
 |       return ModRefInfo::MustModRef; | 
 |   } | 
 |  | 
 |   return ModRefInfo::ModRef; | 
 | } | 
 |  | 
 | ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, | 
 |                                     const MemoryLocation &Loc) { | 
 |   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. | 
 |   if (isStrongerThanMonotonic(RMW->getOrdering())) | 
 |     return ModRefInfo::ModRef; | 
 |  | 
 |   if (Loc.Ptr) { | 
 |     AliasResult AR = alias(MemoryLocation::get(RMW), Loc); | 
 |     // If the atomicrmw address does not alias the location, it does not access | 
 |     // it. | 
 |     if (AR == NoAlias) | 
 |       return ModRefInfo::NoModRef; | 
 |  | 
 |     // If the atomicrmw address aliases the pointer as must alias, set Must. | 
 |     if (AR == MustAlias) | 
 |       return ModRefInfo::MustModRef; | 
 |   } | 
 |  | 
 |   return ModRefInfo::ModRef; | 
 | } | 
 |  | 
 | /// Return information about whether a particular call site modifies | 
 | /// or reads the specified memory location \p MemLoc before instruction \p I | 
 | /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up | 
 | /// instruction-ordering queries inside the BasicBlock containing \p I. | 
 | /// FIXME: this is really just shoring-up a deficiency in alias analysis. | 
 | /// BasicAA isn't willing to spend linear time determining whether an alloca | 
 | /// was captured before or after this particular call, while we are. However, | 
 | /// with a smarter AA in place, this test is just wasting compile time. | 
 | ModRefInfo AAResults::callCapturesBefore(const Instruction *I, | 
 |                                          const MemoryLocation &MemLoc, | 
 |                                          DominatorTree *DT, | 
 |                                          OrderedBasicBlock *OBB) { | 
 |   if (!DT) | 
 |     return ModRefInfo::ModRef; | 
 |  | 
 |   const Value *Object = | 
 |       GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); | 
 |   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || | 
 |       isa<Constant>(Object)) | 
 |     return ModRefInfo::ModRef; | 
 |  | 
 |   ImmutableCallSite CS(I); | 
 |   if (!CS.getInstruction() || CS.getInstruction() == Object) | 
 |     return ModRefInfo::ModRef; | 
 |  | 
 |   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, | 
 |                                  /* StoreCaptures */ true, I, DT, | 
 |                                  /* include Object */ true, | 
 |                                  /* OrderedBasicBlock */ OBB)) | 
 |     return ModRefInfo::ModRef; | 
 |  | 
 |   unsigned ArgNo = 0; | 
 |   ModRefInfo R = ModRefInfo::NoModRef; | 
 |   bool IsMustAlias = true; | 
 |   // Set flag only if no May found and all operands processed. | 
 |   for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); | 
 |        CI != CE; ++CI, ++ArgNo) { | 
 |     // Only look at the no-capture or byval pointer arguments.  If this | 
 |     // pointer were passed to arguments that were neither of these, then it | 
 |     // couldn't be no-capture. | 
 |     if (!(*CI)->getType()->isPointerTy() || | 
 |         (!CS.doesNotCapture(ArgNo) && | 
 |          ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo))) | 
 |       continue; | 
 |  | 
 |     AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object)); | 
 |     // If this is a no-capture pointer argument, see if we can tell that it | 
 |     // is impossible to alias the pointer we're checking.  If not, we have to | 
 |     // assume that the call could touch the pointer, even though it doesn't | 
 |     // escape. | 
 |     if (AR != MustAlias) | 
 |       IsMustAlias = false; | 
 |     if (AR == NoAlias) | 
 |       continue; | 
 |     if (CS.doesNotAccessMemory(ArgNo)) | 
 |       continue; | 
 |     if (CS.onlyReadsMemory(ArgNo)) { | 
 |       R = ModRefInfo::Ref; | 
 |       continue; | 
 |     } | 
 |     // Not returning MustModRef since we have not seen all the arguments. | 
 |     return ModRefInfo::ModRef; | 
 |   } | 
 |   return IsMustAlias ? setMust(R) : clearMust(R); | 
 | } | 
 |  | 
 | /// canBasicBlockModify - Return true if it is possible for execution of the | 
 | /// specified basic block to modify the location Loc. | 
 | /// | 
 | bool AAResults::canBasicBlockModify(const BasicBlock &BB, | 
 |                                     const MemoryLocation &Loc) { | 
 |   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); | 
 | } | 
 |  | 
 | /// canInstructionRangeModRef - Return true if it is possible for the | 
 | /// execution of the specified instructions to mod\ref (according to the | 
 | /// mode) the location Loc. The instructions to consider are all | 
 | /// of the instructions in the range of [I1,I2] INCLUSIVE. | 
 | /// I1 and I2 must be in the same basic block. | 
 | bool AAResults::canInstructionRangeModRef(const Instruction &I1, | 
 |                                           const Instruction &I2, | 
 |                                           const MemoryLocation &Loc, | 
 |                                           const ModRefInfo Mode) { | 
 |   assert(I1.getParent() == I2.getParent() && | 
 |          "Instructions not in same basic block!"); | 
 |   BasicBlock::const_iterator I = I1.getIterator(); | 
 |   BasicBlock::const_iterator E = I2.getIterator(); | 
 |   ++E;  // Convert from inclusive to exclusive range. | 
 |  | 
 |   for (; I != E; ++I) // Check every instruction in range | 
 |     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode))) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | // Provide a definition for the root virtual destructor. | 
 | AAResults::Concept::~Concept() = default; | 
 |  | 
 | // Provide a definition for the static object used to identify passes. | 
 | AnalysisKey AAManager::Key; | 
 |  | 
 | namespace { | 
 |  | 
 | /// A wrapper pass for external alias analyses. This just squirrels away the | 
 | /// callback used to run any analyses and register their results. | 
 | struct ExternalAAWrapperPass : ImmutablePass { | 
 |   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>; | 
 |  | 
 |   CallbackT CB; | 
 |  | 
 |   static char ID; | 
 |  | 
 |   ExternalAAWrapperPass() : ImmutablePass(ID) { | 
 |     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   explicit ExternalAAWrapperPass(CallbackT CB) | 
 |       : ImmutablePass(ID), CB(std::move(CB)) { | 
 |     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |     AU.setPreservesAll(); | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char ExternalAAWrapperPass::ID = 0; | 
 |  | 
 | INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", | 
 |                 false, true) | 
 |  | 
 | ImmutablePass * | 
 | llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { | 
 |   return new ExternalAAWrapperPass(std::move(Callback)); | 
 | } | 
 |  | 
 | AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { | 
 |   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); | 
 | } | 
 |  | 
 | char AAResultsWrapperPass::ID = 0; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", | 
 |                       "Function Alias Analysis Results", false, true) | 
 | INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) | 
 | INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", | 
 |                     "Function Alias Analysis Results", false, true) | 
 |  | 
 | FunctionPass *llvm::createAAResultsWrapperPass() { | 
 |   return new AAResultsWrapperPass(); | 
 | } | 
 |  | 
 | /// Run the wrapper pass to rebuild an aggregation over known AA passes. | 
 | /// | 
 | /// This is the legacy pass manager's interface to the new-style AA results | 
 | /// aggregation object. Because this is somewhat shoe-horned into the legacy | 
 | /// pass manager, we hard code all the specific alias analyses available into | 
 | /// it. While the particular set enabled is configured via commandline flags, | 
 | /// adding a new alias analysis to LLVM will require adding support for it to | 
 | /// this list. | 
 | bool AAResultsWrapperPass::runOnFunction(Function &F) { | 
 |   // NB! This *must* be reset before adding new AA results to the new | 
 |   // AAResults object because in the legacy pass manager, each instance | 
 |   // of these will refer to the *same* immutable analyses, registering and | 
 |   // unregistering themselves with them. We need to carefully tear down the | 
 |   // previous object first, in this case replacing it with an empty one, before | 
 |   // registering new results. | 
 |   AAR.reset( | 
 |       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI())); | 
 |  | 
 |   // BasicAA is always available for function analyses. Also, we add it first | 
 |   // so that it can trump TBAA results when it proves MustAlias. | 
 |   // FIXME: TBAA should have an explicit mode to support this and then we | 
 |   // should reconsider the ordering here. | 
 |   if (!DisableBasicAA) | 
 |     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); | 
 |  | 
 |   // Populate the results with the currently available AAs. | 
 |   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) | 
 |     AAR->addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) | 
 |     AAR->addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = | 
 |           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) | 
 |     AAR->addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) | 
 |     AAR->addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) | 
 |     AAR->addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) | 
 |     AAR->addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) | 
 |     AAR->addAAResult(WrapperPass->getResult()); | 
 |  | 
 |   // If available, run an external AA providing callback over the results as | 
 |   // well. | 
 |   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) | 
 |     if (WrapperPass->CB) | 
 |       WrapperPass->CB(*this, F, *AAR); | 
 |  | 
 |   // Analyses don't mutate the IR, so return false. | 
 |   return false; | 
 | } | 
 |  | 
 | void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesAll(); | 
 |   AU.addRequired<BasicAAWrapperPass>(); | 
 |   AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
 |  | 
 |   // We also need to mark all the alias analysis passes we will potentially | 
 |   // probe in runOnFunction as used here to ensure the legacy pass manager | 
 |   // preserves them. This hard coding of lists of alias analyses is specific to | 
 |   // the legacy pass manager. | 
 |   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<SCEVAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); | 
 | } | 
 |  | 
 | AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, | 
 |                                         BasicAAResult &BAR) { | 
 |   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()); | 
 |  | 
 |   // Add in our explicitly constructed BasicAA results. | 
 |   if (!DisableBasicAA) | 
 |     AAR.addAAResult(BAR); | 
 |  | 
 |   // Populate the results with the other currently available AAs. | 
 |   if (auto *WrapperPass = | 
 |           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) | 
 |     AAR.addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) | 
 |     AAR.addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = | 
 |           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) | 
 |     AAR.addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) | 
 |     AAR.addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) | 
 |     AAR.addAAResult(WrapperPass->getResult()); | 
 |   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) | 
 |     AAR.addAAResult(WrapperPass->getResult()); | 
 |  | 
 |   return AAR; | 
 | } | 
 |  | 
 | bool llvm::isNoAliasCall(const Value *V) { | 
 |   if (auto CS = ImmutableCallSite(V)) | 
 |     return CS.hasRetAttr(Attribute::NoAlias); | 
 |   return false; | 
 | } | 
 |  | 
 | bool llvm::isNoAliasArgument(const Value *V) { | 
 |   if (const Argument *A = dyn_cast<Argument>(V)) | 
 |     return A->hasNoAliasAttr(); | 
 |   return false; | 
 | } | 
 |  | 
 | bool llvm::isIdentifiedObject(const Value *V) { | 
 |   if (isa<AllocaInst>(V)) | 
 |     return true; | 
 |   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) | 
 |     return true; | 
 |   if (isNoAliasCall(V)) | 
 |     return true; | 
 |   if (const Argument *A = dyn_cast<Argument>(V)) | 
 |     return A->hasNoAliasAttr() || A->hasByValAttr(); | 
 |   return false; | 
 | } | 
 |  | 
 | bool llvm::isIdentifiedFunctionLocal(const Value *V) { | 
 |   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); | 
 | } | 
 |  | 
 | void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { | 
 |   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if | 
 |   // more alias analyses are added to llvm::createLegacyPMAAResults, they need | 
 |   // to be added here also. | 
 |   AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
 |   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); | 
 |   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); | 
 | } |