| //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass statically checks for common and easily-identified constructs | 
 | // which produce undefined or likely unintended behavior in LLVM IR. | 
 | // | 
 | // It is not a guarantee of correctness, in two ways. First, it isn't | 
 | // comprehensive. There are checks which could be done statically which are | 
 | // not yet implemented. Some of these are indicated by TODO comments, but | 
 | // those aren't comprehensive either. Second, many conditions cannot be | 
 | // checked statically. This pass does no dynamic instrumentation, so it | 
 | // can't check for all possible problems. | 
 | // | 
 | // Another limitation is that it assumes all code will be executed. A store | 
 | // through a null pointer in a basic block which is never reached is harmless, | 
 | // but this pass will warn about it anyway. This is the main reason why most | 
 | // of these checks live here instead of in the Verifier pass. | 
 | // | 
 | // Optimization passes may make conditions that this pass checks for more or | 
 | // less obvious. If an optimization pass appears to be introducing a warning, | 
 | // it may be that the optimization pass is merely exposing an existing | 
 | // condition in the code. | 
 | // | 
 | // This code may be run before instcombine. In many cases, instcombine checks | 
 | // for the same kinds of things and turns instructions with undefined behavior | 
 | // into unreachable (or equivalent). Because of this, this pass makes some | 
 | // effort to look through bitcasts and so on. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/Lint.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/Twine.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/AssumptionCache.h" | 
 | #include "llvm/Analysis/ConstantFolding.h" | 
 | #include "llvm/Analysis/InstructionSimplify.h" | 
 | #include "llvm/Analysis/Loads.h" | 
 | #include "llvm/Analysis/MemoryLocation.h" | 
 | #include "llvm/Analysis/Passes.h" | 
 | #include "llvm/Analysis/TargetLibraryInfo.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/IR/Argument.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/CallSite.h" | 
 | #include "llvm/IR/Constant.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GlobalVariable.h" | 
 | #include "llvm/IR/InstVisitor.h" | 
 | #include "llvm/IR/InstrTypes.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/LegacyPassManager.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/KnownBits.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <string> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |   namespace MemRef { | 
 |     static const unsigned Read     = 1; | 
 |     static const unsigned Write    = 2; | 
 |     static const unsigned Callee   = 4; | 
 |     static const unsigned Branchee = 8; | 
 |   } // end namespace MemRef | 
 |  | 
 |   class Lint : public FunctionPass, public InstVisitor<Lint> { | 
 |     friend class InstVisitor<Lint>; | 
 |  | 
 |     void visitFunction(Function &F); | 
 |  | 
 |     void visitCallSite(CallSite CS); | 
 |     void visitMemoryReference(Instruction &I, Value *Ptr, | 
 |                               uint64_t Size, unsigned Align, | 
 |                               Type *Ty, unsigned Flags); | 
 |     void visitEHBeginCatch(IntrinsicInst *II); | 
 |     void visitEHEndCatch(IntrinsicInst *II); | 
 |  | 
 |     void visitCallInst(CallInst &I); | 
 |     void visitInvokeInst(InvokeInst &I); | 
 |     void visitReturnInst(ReturnInst &I); | 
 |     void visitLoadInst(LoadInst &I); | 
 |     void visitStoreInst(StoreInst &I); | 
 |     void visitXor(BinaryOperator &I); | 
 |     void visitSub(BinaryOperator &I); | 
 |     void visitLShr(BinaryOperator &I); | 
 |     void visitAShr(BinaryOperator &I); | 
 |     void visitShl(BinaryOperator &I); | 
 |     void visitSDiv(BinaryOperator &I); | 
 |     void visitUDiv(BinaryOperator &I); | 
 |     void visitSRem(BinaryOperator &I); | 
 |     void visitURem(BinaryOperator &I); | 
 |     void visitAllocaInst(AllocaInst &I); | 
 |     void visitVAArgInst(VAArgInst &I); | 
 |     void visitIndirectBrInst(IndirectBrInst &I); | 
 |     void visitExtractElementInst(ExtractElementInst &I); | 
 |     void visitInsertElementInst(InsertElementInst &I); | 
 |     void visitUnreachableInst(UnreachableInst &I); | 
 |  | 
 |     Value *findValue(Value *V, bool OffsetOk) const; | 
 |     Value *findValueImpl(Value *V, bool OffsetOk, | 
 |                          SmallPtrSetImpl<Value *> &Visited) const; | 
 |  | 
 |   public: | 
 |     Module *Mod; | 
 |     const DataLayout *DL; | 
 |     AliasAnalysis *AA; | 
 |     AssumptionCache *AC; | 
 |     DominatorTree *DT; | 
 |     TargetLibraryInfo *TLI; | 
 |  | 
 |     std::string Messages; | 
 |     raw_string_ostream MessagesStr; | 
 |  | 
 |     static char ID; // Pass identification, replacement for typeid | 
 |     Lint() : FunctionPass(ID), MessagesStr(Messages) { | 
 |       initializeLintPass(*PassRegistry::getPassRegistry()); | 
 |     } | 
 |  | 
 |     bool runOnFunction(Function &F) override; | 
 |  | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |       AU.setPreservesAll(); | 
 |       AU.addRequired<AAResultsWrapperPass>(); | 
 |       AU.addRequired<AssumptionCacheTracker>(); | 
 |       AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
 |       AU.addRequired<DominatorTreeWrapperPass>(); | 
 |     } | 
 |     void print(raw_ostream &O, const Module *M) const override {} | 
 |  | 
 |     void WriteValues(ArrayRef<const Value *> Vs) { | 
 |       for (const Value *V : Vs) { | 
 |         if (!V) | 
 |           continue; | 
 |         if (isa<Instruction>(V)) { | 
 |           MessagesStr << *V << '\n'; | 
 |         } else { | 
 |           V->printAsOperand(MessagesStr, true, Mod); | 
 |           MessagesStr << '\n'; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     /// A check failed, so printout out the condition and the message. | 
 |     /// | 
 |     /// This provides a nice place to put a breakpoint if you want to see why | 
 |     /// something is not correct. | 
 |     void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; } | 
 |  | 
 |     /// A check failed (with values to print). | 
 |     /// | 
 |     /// This calls the Message-only version so that the above is easier to set | 
 |     /// a breakpoint on. | 
 |     template <typename T1, typename... Ts> | 
 |     void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) { | 
 |       CheckFailed(Message); | 
 |       WriteValues({V1, Vs...}); | 
 |     } | 
 |   }; | 
 | } // end anonymous namespace | 
 |  | 
 | char Lint::ID = 0; | 
 | INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR", | 
 |                       false, true) | 
 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
 | INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR", | 
 |                     false, true) | 
 |  | 
 | // Assert - We know that cond should be true, if not print an error message. | 
 | #define Assert(C, ...) \ | 
 |     do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) | 
 |  | 
 | // Lint::run - This is the main Analysis entry point for a | 
 | // function. | 
 | // | 
 | bool Lint::runOnFunction(Function &F) { | 
 |   Mod = F.getParent(); | 
 |   DL = &F.getParent()->getDataLayout(); | 
 |   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
 |   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
 |   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
 |   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
 |   visit(F); | 
 |   dbgs() << MessagesStr.str(); | 
 |   Messages.clear(); | 
 |   return false; | 
 | } | 
 |  | 
 | void Lint::visitFunction(Function &F) { | 
 |   // This isn't undefined behavior, it's just a little unusual, and it's a | 
 |   // fairly common mistake to neglect to name a function. | 
 |   Assert(F.hasName() || F.hasLocalLinkage(), | 
 |          "Unusual: Unnamed function with non-local linkage", &F); | 
 |  | 
 |   // TODO: Check for irreducible control flow. | 
 | } | 
 |  | 
 | void Lint::visitCallSite(CallSite CS) { | 
 |   Instruction &I = *CS.getInstruction(); | 
 |   Value *Callee = CS.getCalledValue(); | 
 |  | 
 |   visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr, | 
 |                        MemRef::Callee); | 
 |  | 
 |   if (Function *F = dyn_cast<Function>(findValue(Callee, | 
 |                                                  /*OffsetOk=*/false))) { | 
 |     Assert(CS.getCallingConv() == F->getCallingConv(), | 
 |            "Undefined behavior: Caller and callee calling convention differ", | 
 |            &I); | 
 |  | 
 |     FunctionType *FT = F->getFunctionType(); | 
 |     unsigned NumActualArgs = CS.arg_size(); | 
 |  | 
 |     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs | 
 |                           : FT->getNumParams() == NumActualArgs, | 
 |            "Undefined behavior: Call argument count mismatches callee " | 
 |            "argument count", | 
 |            &I); | 
 |  | 
 |     Assert(FT->getReturnType() == I.getType(), | 
 |            "Undefined behavior: Call return type mismatches " | 
 |            "callee return type", | 
 |            &I); | 
 |  | 
 |     // Check argument types (in case the callee was casted) and attributes. | 
 |     // TODO: Verify that caller and callee attributes are compatible. | 
 |     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); | 
 |     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); | 
 |     for (; AI != AE; ++AI) { | 
 |       Value *Actual = *AI; | 
 |       if (PI != PE) { | 
 |         Argument *Formal = &*PI++; | 
 |         Assert(Formal->getType() == Actual->getType(), | 
 |                "Undefined behavior: Call argument type mismatches " | 
 |                "callee parameter type", | 
 |                &I); | 
 |  | 
 |         // Check that noalias arguments don't alias other arguments. This is | 
 |         // not fully precise because we don't know the sizes of the dereferenced | 
 |         // memory regions. | 
 |         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) { | 
 |           AttributeList PAL = CS.getAttributes(); | 
 |           unsigned ArgNo = 0; | 
 |           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) { | 
 |             // Skip ByVal arguments since they will be memcpy'd to the callee's | 
 |             // stack so we're not really passing the pointer anyway. | 
 |             if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal)) | 
 |               continue; | 
 |             if (AI != BI && (*BI)->getType()->isPointerTy()) { | 
 |               AliasResult Result = AA->alias(*AI, *BI); | 
 |               Assert(Result != MustAlias && Result != PartialAlias, | 
 |                      "Unusual: noalias argument aliases another argument", &I); | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         // Check that an sret argument points to valid memory. | 
 |         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { | 
 |           Type *Ty = | 
 |             cast<PointerType>(Formal->getType())->getElementType(); | 
 |           visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty), | 
 |                                DL->getABITypeAlignment(Ty), Ty, | 
 |                                MemRef::Read | MemRef::Write); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (CS.isCall()) { | 
 |     const CallInst *CI = cast<CallInst>(CS.getInstruction()); | 
 |     if (CI->isTailCall()) { | 
 |       const AttributeList &PAL = CI->getAttributes(); | 
 |       unsigned ArgNo = 0; | 
 |       for (Value *Arg : CS.args()) { | 
 |         // Skip ByVal arguments since they will be memcpy'd to the callee's | 
 |         // stack anyway. | 
 |         if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal)) | 
 |           continue; | 
 |         Value *Obj = findValue(Arg, /*OffsetOk=*/true); | 
 |         Assert(!isa<AllocaInst>(Obj), | 
 |                "Undefined behavior: Call with \"tail\" keyword references " | 
 |                "alloca", | 
 |                &I); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |  | 
 |   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) | 
 |     switch (II->getIntrinsicID()) { | 
 |     default: break; | 
 |  | 
 |     // TODO: Check more intrinsics | 
 |  | 
 |     case Intrinsic::memcpy: { | 
 |       MemCpyInst *MCI = cast<MemCpyInst>(&I); | 
 |       // TODO: If the size is known, use it. | 
 |       visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize, | 
 |                            MCI->getDestAlignment(), nullptr, MemRef::Write); | 
 |       visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize, | 
 |                            MCI->getSourceAlignment(), nullptr, MemRef::Read); | 
 |  | 
 |       // Check that the memcpy arguments don't overlap. The AliasAnalysis API | 
 |       // isn't expressive enough for what we really want to do. Known partial | 
 |       // overlap is not distinguished from the case where nothing is known. | 
 |       uint64_t Size = 0; | 
 |       if (const ConstantInt *Len = | 
 |               dyn_cast<ConstantInt>(findValue(MCI->getLength(), | 
 |                                               /*OffsetOk=*/false))) | 
 |         if (Len->getValue().isIntN(32)) | 
 |           Size = Len->getValue().getZExtValue(); | 
 |       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != | 
 |                  MustAlias, | 
 |              "Undefined behavior: memcpy source and destination overlap", &I); | 
 |       break; | 
 |     } | 
 |     case Intrinsic::memmove: { | 
 |       MemMoveInst *MMI = cast<MemMoveInst>(&I); | 
 |       // TODO: If the size is known, use it. | 
 |       visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize, | 
 |                            MMI->getDestAlignment(), nullptr, MemRef::Write); | 
 |       visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize, | 
 |                            MMI->getSourceAlignment(), nullptr, MemRef::Read); | 
 |       break; | 
 |     } | 
 |     case Intrinsic::memset: { | 
 |       MemSetInst *MSI = cast<MemSetInst>(&I); | 
 |       // TODO: If the size is known, use it. | 
 |       visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize, | 
 |                            MSI->getDestAlignment(), nullptr, MemRef::Write); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Intrinsic::vastart: | 
 |       Assert(I.getParent()->getParent()->isVarArg(), | 
 |              "Undefined behavior: va_start called in a non-varargs function", | 
 |              &I); | 
 |  | 
 |       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, | 
 |                            nullptr, MemRef::Read | MemRef::Write); | 
 |       break; | 
 |     case Intrinsic::vacopy: | 
 |       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, | 
 |                            nullptr, MemRef::Write); | 
 |       visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0, | 
 |                            nullptr, MemRef::Read); | 
 |       break; | 
 |     case Intrinsic::vaend: | 
 |       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, | 
 |                            nullptr, MemRef::Read | MemRef::Write); | 
 |       break; | 
 |  | 
 |     case Intrinsic::stackrestore: | 
 |       // Stackrestore doesn't read or write memory, but it sets the | 
 |       // stack pointer, which the compiler may read from or write to | 
 |       // at any time, so check it for both readability and writeability. | 
 |       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, | 
 |                            nullptr, MemRef::Read | MemRef::Write); | 
 |       break; | 
 |     } | 
 | } | 
 |  | 
 | void Lint::visitCallInst(CallInst &I) { | 
 |   return visitCallSite(&I); | 
 | } | 
 |  | 
 | void Lint::visitInvokeInst(InvokeInst &I) { | 
 |   return visitCallSite(&I); | 
 | } | 
 |  | 
 | void Lint::visitReturnInst(ReturnInst &I) { | 
 |   Function *F = I.getParent()->getParent(); | 
 |   Assert(!F->doesNotReturn(), | 
 |          "Unusual: Return statement in function with noreturn attribute", &I); | 
 |  | 
 |   if (Value *V = I.getReturnValue()) { | 
 |     Value *Obj = findValue(V, /*OffsetOk=*/true); | 
 |     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I); | 
 |   } | 
 | } | 
 |  | 
 | // TODO: Check that the reference is in bounds. | 
 | // TODO: Check readnone/readonly function attributes. | 
 | void Lint::visitMemoryReference(Instruction &I, | 
 |                                 Value *Ptr, uint64_t Size, unsigned Align, | 
 |                                 Type *Ty, unsigned Flags) { | 
 |   // If no memory is being referenced, it doesn't matter if the pointer | 
 |   // is valid. | 
 |   if (Size == 0) | 
 |     return; | 
 |  | 
 |   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); | 
 |   Assert(!isa<ConstantPointerNull>(UnderlyingObject), | 
 |          "Undefined behavior: Null pointer dereference", &I); | 
 |   Assert(!isa<UndefValue>(UnderlyingObject), | 
 |          "Undefined behavior: Undef pointer dereference", &I); | 
 |   Assert(!isa<ConstantInt>(UnderlyingObject) || | 
 |              !cast<ConstantInt>(UnderlyingObject)->isMinusOne(), | 
 |          "Unusual: All-ones pointer dereference", &I); | 
 |   Assert(!isa<ConstantInt>(UnderlyingObject) || | 
 |              !cast<ConstantInt>(UnderlyingObject)->isOne(), | 
 |          "Unusual: Address one pointer dereference", &I); | 
 |  | 
 |   if (Flags & MemRef::Write) { | 
 |     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) | 
 |       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory", | 
 |              &I); | 
 |     Assert(!isa<Function>(UnderlyingObject) && | 
 |                !isa<BlockAddress>(UnderlyingObject), | 
 |            "Undefined behavior: Write to text section", &I); | 
 |   } | 
 |   if (Flags & MemRef::Read) { | 
 |     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body", | 
 |            &I); | 
 |     Assert(!isa<BlockAddress>(UnderlyingObject), | 
 |            "Undefined behavior: Load from block address", &I); | 
 |   } | 
 |   if (Flags & MemRef::Callee) { | 
 |     Assert(!isa<BlockAddress>(UnderlyingObject), | 
 |            "Undefined behavior: Call to block address", &I); | 
 |   } | 
 |   if (Flags & MemRef::Branchee) { | 
 |     Assert(!isa<Constant>(UnderlyingObject) || | 
 |                isa<BlockAddress>(UnderlyingObject), | 
 |            "Undefined behavior: Branch to non-blockaddress", &I); | 
 |   } | 
 |  | 
 |   // Check for buffer overflows and misalignment. | 
 |   // Only handles memory references that read/write something simple like an | 
 |   // alloca instruction or a global variable. | 
 |   int64_t Offset = 0; | 
 |   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) { | 
 |     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is | 
 |     // something we can handle and if so extract the size of this base object | 
 |     // along with its alignment. | 
 |     uint64_t BaseSize = MemoryLocation::UnknownSize; | 
 |     unsigned BaseAlign = 0; | 
 |  | 
 |     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { | 
 |       Type *ATy = AI->getAllocatedType(); | 
 |       if (!AI->isArrayAllocation() && ATy->isSized()) | 
 |         BaseSize = DL->getTypeAllocSize(ATy); | 
 |       BaseAlign = AI->getAlignment(); | 
 |       if (BaseAlign == 0 && ATy->isSized()) | 
 |         BaseAlign = DL->getABITypeAlignment(ATy); | 
 |     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { | 
 |       // If the global may be defined differently in another compilation unit | 
 |       // then don't warn about funky memory accesses. | 
 |       if (GV->hasDefinitiveInitializer()) { | 
 |         Type *GTy = GV->getValueType(); | 
 |         if (GTy->isSized()) | 
 |           BaseSize = DL->getTypeAllocSize(GTy); | 
 |         BaseAlign = GV->getAlignment(); | 
 |         if (BaseAlign == 0 && GTy->isSized()) | 
 |           BaseAlign = DL->getABITypeAlignment(GTy); | 
 |       } | 
 |     } | 
 |  | 
 |     // Accesses from before the start or after the end of the object are not | 
 |     // defined. | 
 |     Assert(Size == MemoryLocation::UnknownSize || | 
 |                BaseSize == MemoryLocation::UnknownSize || | 
 |                (Offset >= 0 && Offset + Size <= BaseSize), | 
 |            "Undefined behavior: Buffer overflow", &I); | 
 |  | 
 |     // Accesses that say that the memory is more aligned than it is are not | 
 |     // defined. | 
 |     if (Align == 0 && Ty && Ty->isSized()) | 
 |       Align = DL->getABITypeAlignment(Ty); | 
 |     Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset), | 
 |            "Undefined behavior: Memory reference address is misaligned", &I); | 
 |   } | 
 | } | 
 |  | 
 | void Lint::visitLoadInst(LoadInst &I) { | 
 |   visitMemoryReference(I, I.getPointerOperand(), | 
 |                        DL->getTypeStoreSize(I.getType()), I.getAlignment(), | 
 |                        I.getType(), MemRef::Read); | 
 | } | 
 |  | 
 | void Lint::visitStoreInst(StoreInst &I) { | 
 |   visitMemoryReference(I, I.getPointerOperand(), | 
 |                        DL->getTypeStoreSize(I.getOperand(0)->getType()), | 
 |                        I.getAlignment(), | 
 |                        I.getOperand(0)->getType(), MemRef::Write); | 
 | } | 
 |  | 
 | void Lint::visitXor(BinaryOperator &I) { | 
 |   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), | 
 |          "Undefined result: xor(undef, undef)", &I); | 
 | } | 
 |  | 
 | void Lint::visitSub(BinaryOperator &I) { | 
 |   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), | 
 |          "Undefined result: sub(undef, undef)", &I); | 
 | } | 
 |  | 
 | void Lint::visitLShr(BinaryOperator &I) { | 
 |   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), | 
 |                                                         /*OffsetOk=*/false))) | 
 |     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
 |            "Undefined result: Shift count out of range", &I); | 
 | } | 
 |  | 
 | void Lint::visitAShr(BinaryOperator &I) { | 
 |   if (ConstantInt *CI = | 
 |           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
 |     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
 |            "Undefined result: Shift count out of range", &I); | 
 | } | 
 |  | 
 | void Lint::visitShl(BinaryOperator &I) { | 
 |   if (ConstantInt *CI = | 
 |           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
 |     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
 |            "Undefined result: Shift count out of range", &I); | 
 | } | 
 |  | 
 | static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, | 
 |                    AssumptionCache *AC) { | 
 |   // Assume undef could be zero. | 
 |   if (isa<UndefValue>(V)) | 
 |     return true; | 
 |  | 
 |   VectorType *VecTy = dyn_cast<VectorType>(V->getType()); | 
 |   if (!VecTy) { | 
 |     KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT); | 
 |     return Known.isZero(); | 
 |   } | 
 |  | 
 |   // Per-component check doesn't work with zeroinitializer | 
 |   Constant *C = dyn_cast<Constant>(V); | 
 |   if (!C) | 
 |     return false; | 
 |  | 
 |   if (C->isZeroValue()) | 
 |     return true; | 
 |  | 
 |   // For a vector, KnownZero will only be true if all values are zero, so check | 
 |   // this per component | 
 |   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) { | 
 |     Constant *Elem = C->getAggregateElement(I); | 
 |     if (isa<UndefValue>(Elem)) | 
 |       return true; | 
 |  | 
 |     KnownBits Known = computeKnownBits(Elem, DL); | 
 |     if (Known.isZero()) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void Lint::visitSDiv(BinaryOperator &I) { | 
 |   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), | 
 |          "Undefined behavior: Division by zero", &I); | 
 | } | 
 |  | 
 | void Lint::visitUDiv(BinaryOperator &I) { | 
 |   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), | 
 |          "Undefined behavior: Division by zero", &I); | 
 | } | 
 |  | 
 | void Lint::visitSRem(BinaryOperator &I) { | 
 |   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), | 
 |          "Undefined behavior: Division by zero", &I); | 
 | } | 
 |  | 
 | void Lint::visitURem(BinaryOperator &I) { | 
 |   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), | 
 |          "Undefined behavior: Division by zero", &I); | 
 | } | 
 |  | 
 | void Lint::visitAllocaInst(AllocaInst &I) { | 
 |   if (isa<ConstantInt>(I.getArraySize())) | 
 |     // This isn't undefined behavior, it's just an obvious pessimization. | 
 |     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), | 
 |            "Pessimization: Static alloca outside of entry block", &I); | 
 |  | 
 |   // TODO: Check for an unusual size (MSB set?) | 
 | } | 
 |  | 
 | void Lint::visitVAArgInst(VAArgInst &I) { | 
 |   visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0, | 
 |                        nullptr, MemRef::Read | MemRef::Write); | 
 | } | 
 |  | 
 | void Lint::visitIndirectBrInst(IndirectBrInst &I) { | 
 |   visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0, | 
 |                        nullptr, MemRef::Branchee); | 
 |  | 
 |   Assert(I.getNumDestinations() != 0, | 
 |          "Undefined behavior: indirectbr with no destinations", &I); | 
 | } | 
 |  | 
 | void Lint::visitExtractElementInst(ExtractElementInst &I) { | 
 |   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), | 
 |                                                         /*OffsetOk=*/false))) | 
 |     Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()), | 
 |            "Undefined result: extractelement index out of range", &I); | 
 | } | 
 |  | 
 | void Lint::visitInsertElementInst(InsertElementInst &I) { | 
 |   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2), | 
 |                                                         /*OffsetOk=*/false))) | 
 |     Assert(CI->getValue().ult(I.getType()->getNumElements()), | 
 |            "Undefined result: insertelement index out of range", &I); | 
 | } | 
 |  | 
 | void Lint::visitUnreachableInst(UnreachableInst &I) { | 
 |   // This isn't undefined behavior, it's merely suspicious. | 
 |   Assert(&I == &I.getParent()->front() || | 
 |              std::prev(I.getIterator())->mayHaveSideEffects(), | 
 |          "Unusual: unreachable immediately preceded by instruction without " | 
 |          "side effects", | 
 |          &I); | 
 | } | 
 |  | 
 | /// findValue - Look through bitcasts and simple memory reference patterns | 
 | /// to identify an equivalent, but more informative, value.  If OffsetOk | 
 | /// is true, look through getelementptrs with non-zero offsets too. | 
 | /// | 
 | /// Most analysis passes don't require this logic, because instcombine | 
 | /// will simplify most of these kinds of things away. But it's a goal of | 
 | /// this Lint pass to be useful even on non-optimized IR. | 
 | Value *Lint::findValue(Value *V, bool OffsetOk) const { | 
 |   SmallPtrSet<Value *, 4> Visited; | 
 |   return findValueImpl(V, OffsetOk, Visited); | 
 | } | 
 |  | 
 | /// findValueImpl - Implementation helper for findValue. | 
 | Value *Lint::findValueImpl(Value *V, bool OffsetOk, | 
 |                            SmallPtrSetImpl<Value *> &Visited) const { | 
 |   // Detect self-referential values. | 
 |   if (!Visited.insert(V).second) | 
 |     return UndefValue::get(V->getType()); | 
 |  | 
 |   // TODO: Look through sext or zext cast, when the result is known to | 
 |   // be interpreted as signed or unsigned, respectively. | 
 |   // TODO: Look through eliminable cast pairs. | 
 |   // TODO: Look through calls with unique return values. | 
 |   // TODO: Look through vector insert/extract/shuffle. | 
 |   V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts(); | 
 |   if (LoadInst *L = dyn_cast<LoadInst>(V)) { | 
 |     BasicBlock::iterator BBI = L->getIterator(); | 
 |     BasicBlock *BB = L->getParent(); | 
 |     SmallPtrSet<BasicBlock *, 4> VisitedBlocks; | 
 |     for (;;) { | 
 |       if (!VisitedBlocks.insert(BB).second) | 
 |         break; | 
 |       if (Value *U = | 
 |           FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA)) | 
 |         return findValueImpl(U, OffsetOk, Visited); | 
 |       if (BBI != BB->begin()) break; | 
 |       BB = BB->getUniquePredecessor(); | 
 |       if (!BB) break; | 
 |       BBI = BB->end(); | 
 |     } | 
 |   } else if (PHINode *PN = dyn_cast<PHINode>(V)) { | 
 |     if (Value *W = PN->hasConstantValue()) | 
 |       if (W != V) | 
 |         return findValueImpl(W, OffsetOk, Visited); | 
 |   } else if (CastInst *CI = dyn_cast<CastInst>(V)) { | 
 |     if (CI->isNoopCast(*DL)) | 
 |       return findValueImpl(CI->getOperand(0), OffsetOk, Visited); | 
 |   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { | 
 |     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(), | 
 |                                      Ex->getIndices())) | 
 |       if (W != V) | 
 |         return findValueImpl(W, OffsetOk, Visited); | 
 |   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
 |     // Same as above, but for ConstantExpr instead of Instruction. | 
 |     if (Instruction::isCast(CE->getOpcode())) { | 
 |       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), | 
 |                                CE->getOperand(0)->getType(), CE->getType(), | 
 |                                *DL)) | 
 |         return findValueImpl(CE->getOperand(0), OffsetOk, Visited); | 
 |     } else if (CE->getOpcode() == Instruction::ExtractValue) { | 
 |       ArrayRef<unsigned> Indices = CE->getIndices(); | 
 |       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices)) | 
 |         if (W != V) | 
 |           return findValueImpl(W, OffsetOk, Visited); | 
 |     } | 
 |   } | 
 |  | 
 |   // As a last resort, try SimplifyInstruction or constant folding. | 
 |   if (Instruction *Inst = dyn_cast<Instruction>(V)) { | 
 |     if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC})) | 
 |       return findValueImpl(W, OffsetOk, Visited); | 
 |   } else if (auto *C = dyn_cast<Constant>(V)) { | 
 |     if (Value *W = ConstantFoldConstant(C, *DL, TLI)) | 
 |       if (W && W != V) | 
 |         return findValueImpl(W, OffsetOk, Visited); | 
 |   } | 
 |  | 
 |   return V; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Implement the public interfaces to this file... | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | FunctionPass *llvm::createLintPass() { | 
 |   return new Lint(); | 
 | } | 
 |  | 
 | /// lintFunction - Check a function for errors, printing messages on stderr. | 
 | /// | 
 | void llvm::lintFunction(const Function &f) { | 
 |   Function &F = const_cast<Function&>(f); | 
 |   assert(!F.isDeclaration() && "Cannot lint external functions"); | 
 |  | 
 |   legacy::FunctionPassManager FPM(F.getParent()); | 
 |   Lint *V = new Lint(); | 
 |   FPM.add(V); | 
 |   FPM.run(F); | 
 | } | 
 |  | 
 | /// lintModule - Check a module for errors, printing messages on stderr. | 
 | /// | 
 | void llvm::lintModule(const Module &M) { | 
 |   legacy::PassManager PM; | 
 |   Lint *V = new Lint(); | 
 |   PM.add(V); | 
 |   PM.run(const_cast<Module&>(M)); | 
 | } |