|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "net/third_party/quic/core/quic_framer.h" | 
|  |  | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <memory> | 
|  |  | 
|  | #include "net/third_party/quic/core/crypto/crypto_framer.h" | 
|  | #include "net/third_party/quic/core/crypto/crypto_handshake_message.h" | 
|  | #include "net/third_party/quic/core/crypto/crypto_protocol.h" | 
|  | #include "net/third_party/quic/core/crypto/null_decrypter.h" | 
|  | #include "net/third_party/quic/core/crypto/null_encrypter.h" | 
|  | #include "net/third_party/quic/core/crypto/quic_decrypter.h" | 
|  | #include "net/third_party/quic/core/crypto/quic_encrypter.h" | 
|  | #include "net/third_party/quic/core/crypto/quic_random.h" | 
|  | #include "net/third_party/quic/core/quic_connection_id.h" | 
|  | #include "net/third_party/quic/core/quic_data_reader.h" | 
|  | #include "net/third_party/quic/core/quic_data_writer.h" | 
|  | #include "net/third_party/quic/core/quic_socket_address_coder.h" | 
|  | #include "net/third_party/quic/core/quic_stream_frame_data_producer.h" | 
|  | #include "net/third_party/quic/core/quic_types.h" | 
|  | #include "net/third_party/quic/core/quic_utils.h" | 
|  | #include "net/third_party/quic/core/quic_versions.h" | 
|  | #include "net/third_party/quic/platform/api/quic_aligned.h" | 
|  | #include "net/third_party/quic/platform/api/quic_bug_tracker.h" | 
|  | #include "net/third_party/quic/platform/api/quic_client_stats.h" | 
|  | #include "net/third_party/quic/platform/api/quic_endian.h" | 
|  | #include "net/third_party/quic/platform/api/quic_fallthrough.h" | 
|  | #include "net/third_party/quic/platform/api/quic_flag_utils.h" | 
|  | #include "net/third_party/quic/platform/api/quic_flags.h" | 
|  | #include "net/third_party/quic/platform/api/quic_logging.h" | 
|  | #include "net/third_party/quic/platform/api/quic_map_util.h" | 
|  | #include "net/third_party/quic/platform/api/quic_ptr_util.h" | 
|  | #include "net/third_party/quic/platform/api/quic_stack_trace.h" | 
|  | #include "net/third_party/quic/platform/api/quic_str_cat.h" | 
|  | #include "net/third_party/quic/platform/api/quic_string.h" | 
|  | #include "net/third_party/quic/platform/api/quic_text_utils.h" | 
|  | #include "starboard/memory.h" | 
|  |  | 
|  | namespace quic { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | #define ENDPOINT \ | 
|  | (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") | 
|  |  | 
|  | // How much to shift the timestamp in the IETF Ack frame. | 
|  | // TODO(fkastenholz) when we get real IETF QUIC, need to get | 
|  | // the currect shift from the transport parameters. | 
|  | const int kIetfAckTimestampShift = 3; | 
|  |  | 
|  | // Number of bits the packet number length bits are shifted from the right | 
|  | // edge of the header. | 
|  | const uint8_t kPublicHeaderSequenceNumberShift = 4; | 
|  |  | 
|  | // There are two interpretations for the Frame Type byte in the QUIC protocol, | 
|  | // resulting in two Frame Types: Special Frame Types and Regular Frame Types. | 
|  | // | 
|  | // Regular Frame Types use the Frame Type byte simply. Currently defined | 
|  | // Regular Frame Types are: | 
|  | // Padding            : 0b 00000000 (0x00) | 
|  | // ResetStream        : 0b 00000001 (0x01) | 
|  | // ConnectionClose    : 0b 00000010 (0x02) | 
|  | // GoAway             : 0b 00000011 (0x03) | 
|  | // WindowUpdate       : 0b 00000100 (0x04) | 
|  | // Blocked            : 0b 00000101 (0x05) | 
|  | // | 
|  | // Special Frame Types encode both a Frame Type and corresponding flags | 
|  | // all in the Frame Type byte. Currently defined Special Frame Types | 
|  | // are: | 
|  | // Stream             : 0b 1xxxxxxx | 
|  | // Ack                : 0b 01xxxxxx | 
|  | // | 
|  | // Semantics of the flag bits above (the x bits) depends on the frame type. | 
|  |  | 
|  | // Masks to determine if the frame type is a special use | 
|  | // and for specific special frame types. | 
|  | const uint8_t kQuicFrameTypeBrokenMask = 0xE0;   // 0b 11100000 | 
|  | const uint8_t kQuicFrameTypeSpecialMask = 0xC0;  // 0b 11000000 | 
|  | const uint8_t kQuicFrameTypeStreamMask = 0x80; | 
|  | const uint8_t kQuicFrameTypeAckMask = 0x40; | 
|  | static_assert(kQuicFrameTypeSpecialMask == | 
|  | (kQuicFrameTypeStreamMask | kQuicFrameTypeAckMask), | 
|  | "Invalid kQuicFrameTypeSpecialMask"); | 
|  |  | 
|  | // The stream type format is 1FDOOOSS, where | 
|  | //    F is the fin bit. | 
|  | //    D is the data length bit (0 or 2 bytes). | 
|  | //    OO/OOO are the size of the offset. | 
|  | //    SS is the size of the stream ID. | 
|  | // Note that the stream encoding can not be determined by inspection. It can | 
|  | // be determined only by knowing the QUIC Version. | 
|  | // Stream frame relative shifts and masks for interpreting the stream flags. | 
|  | // StreamID may be 1, 2, 3, or 4 bytes. | 
|  | const uint8_t kQuicStreamIdShift = 2; | 
|  | const uint8_t kQuicStreamIDLengthMask = 0x03; | 
|  |  | 
|  | // Offset may be 0, 2, 4, or 8 bytes. | 
|  | const uint8_t kQuicStreamShift = 3; | 
|  | const uint8_t kQuicStreamOffsetMask = 0x07; | 
|  |  | 
|  | // Data length may be 0 or 2 bytes. | 
|  | const uint8_t kQuicStreamDataLengthShift = 1; | 
|  | const uint8_t kQuicStreamDataLengthMask = 0x01; | 
|  |  | 
|  | // Fin bit may be set or not. | 
|  | const uint8_t kQuicStreamFinShift = 1; | 
|  | const uint8_t kQuicStreamFinMask = 0x01; | 
|  |  | 
|  | // The format is 01M0LLOO, where | 
|  | //   M if set, there are multiple ack blocks in the frame. | 
|  | //  LL is the size of the largest ack field. | 
|  | //  OO is the size of the ack blocks offset field. | 
|  | // packet number size shift used in AckFrames. | 
|  | const uint8_t kQuicSequenceNumberLengthNumBits = 2; | 
|  | const uint8_t kActBlockLengthOffset = 0; | 
|  | const uint8_t kLargestAckedOffset = 2; | 
|  |  | 
|  | // Acks may have only one ack block. | 
|  | const uint8_t kQuicHasMultipleAckBlocksOffset = 5; | 
|  |  | 
|  | // Timestamps are 4 bytes followed by 2 bytes. | 
|  | const uint8_t kQuicNumTimestampsLength = 1; | 
|  | const uint8_t kQuicFirstTimestampLength = 4; | 
|  | const uint8_t kQuicTimestampLength = 2; | 
|  | // Gaps between packet numbers are 1 byte. | 
|  | const uint8_t kQuicTimestampPacketNumberGapLength = 1; | 
|  |  | 
|  | // Maximum length of encoded error strings. | 
|  | const int kMaxErrorStringLength = 256; | 
|  |  | 
|  | const uint8_t kConnectionIdLengthAdjustment = 3; | 
|  | const uint8_t kDestinationConnectionIdLengthMask = 0xF0; | 
|  | const uint8_t kSourceConnectionIdLengthMask = 0x0F; | 
|  |  | 
|  | // Returns the absolute value of the difference between |a| and |b|. | 
|  | uint64_t Delta(uint64_t a, uint64_t b) { | 
|  | // Since these are unsigned numbers, we can't just return abs(a - b) | 
|  | if (a < b) { | 
|  | return b - a; | 
|  | } | 
|  | return a - b; | 
|  | } | 
|  |  | 
|  | uint64_t ClosestTo(uint64_t target, uint64_t a, uint64_t b) { | 
|  | return (Delta(target, a) < Delta(target, b)) ? a : b; | 
|  | } | 
|  |  | 
|  | uint64_t PacketNumberIntervalLength( | 
|  | const QuicInterval<QuicPacketNumber>& interval) { | 
|  | if (interval.Empty()) { | 
|  | return 0u; | 
|  | } | 
|  | return interval.max() - interval.min(); | 
|  | } | 
|  |  | 
|  | QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) { | 
|  | switch (flags & PACKET_FLAGS_8BYTE_PACKET) { | 
|  | case PACKET_FLAGS_8BYTE_PACKET: | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_4BYTE_PACKET: | 
|  | return PACKET_4BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_2BYTE_PACKET: | 
|  | return PACKET_2BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_1BYTE_PACKET: | 
|  | return PACKET_1BYTE_PACKET_NUMBER; | 
|  | default: | 
|  | QUIC_BUG << "Unreachable case statement."; | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | } | 
|  | } | 
|  |  | 
|  | QuicPacketNumberLength ReadAckPacketNumberLength(QuicTransportVersion version, | 
|  | uint8_t flags) { | 
|  | switch (flags & PACKET_FLAGS_8BYTE_PACKET) { | 
|  | case PACKET_FLAGS_8BYTE_PACKET: | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_4BYTE_PACKET: | 
|  | return PACKET_4BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_2BYTE_PACKET: | 
|  | return PACKET_2BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_1BYTE_PACKET: | 
|  | return PACKET_1BYTE_PACKET_NUMBER; | 
|  | default: | 
|  | QUIC_BUG << "Unreachable case statement."; | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint8_t PacketNumberLengthToOnWireValue( | 
|  | QuicTransportVersion version, | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | if (version > QUIC_VERSION_44) { | 
|  | return packet_number_length - 1; | 
|  | } | 
|  | switch (packet_number_length) { | 
|  | case PACKET_1BYTE_PACKET_NUMBER: | 
|  | return 0; | 
|  | case PACKET_2BYTE_PACKET_NUMBER: | 
|  | return 1; | 
|  | case PACKET_4BYTE_PACKET_NUMBER: | 
|  | return 2; | 
|  | default: | 
|  | QUIC_BUG << "Invalid packet number length."; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GetShortHeaderPacketNumberLength( | 
|  | QuicTransportVersion version, | 
|  | uint8_t type, | 
|  | bool infer_packet_header_type_from_version, | 
|  | QuicPacketNumberLength* packet_number_length) { | 
|  | DCHECK(!(type & FLAGS_LONG_HEADER)); | 
|  | const bool two_bits_packet_number_length = | 
|  | infer_packet_header_type_from_version ? version > QUIC_VERSION_44 | 
|  | : (type & FLAGS_FIXED_BIT); | 
|  | if (two_bits_packet_number_length) { | 
|  | *packet_number_length = | 
|  | static_cast<QuicPacketNumberLength>((type & 0x03) + 1); | 
|  | return true; | 
|  | } | 
|  | switch (type & 0x07) { | 
|  | case 0: | 
|  | *packet_number_length = PACKET_1BYTE_PACKET_NUMBER; | 
|  | break; | 
|  | case 1: | 
|  | *packet_number_length = PACKET_2BYTE_PACKET_NUMBER; | 
|  | break; | 
|  | case 2: | 
|  | *packet_number_length = PACKET_4BYTE_PACKET_NUMBER; | 
|  | break; | 
|  | default: | 
|  | *packet_number_length = PACKET_6BYTE_PACKET_NUMBER; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint8_t LongHeaderTypeToOnWireValue(QuicTransportVersion version, | 
|  | QuicLongHeaderType type) { | 
|  | switch (type) { | 
|  | case INITIAL: | 
|  | return version > QUIC_VERSION_44 ? 0 : 0x7F; | 
|  | case ZERO_RTT_PROTECTED: | 
|  | return version > QUIC_VERSION_44 ? 1 << 4 : 0x7C; | 
|  | case HANDSHAKE: | 
|  | return version > QUIC_VERSION_44 ? 2 << 4 : 0x7D; | 
|  | case RETRY: | 
|  | return version > QUIC_VERSION_44 ? 3 << 4 : 0x7E; | 
|  | case VERSION_NEGOTIATION: | 
|  | return 0xF0;  // Value does not matter | 
|  | default: | 
|  | QUIC_BUG << "Invalid long header type: " << type; | 
|  | return 0xFF; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GetLongHeaderType(QuicTransportVersion version, | 
|  | uint8_t type, | 
|  | QuicLongHeaderType* long_header_type) { | 
|  | DCHECK((type & FLAGS_LONG_HEADER) && version != QUIC_VERSION_UNSUPPORTED); | 
|  | if (version > QUIC_VERSION_44) { | 
|  | switch ((type & 0x30) >> 4) { | 
|  | case 0: | 
|  | *long_header_type = INITIAL; | 
|  | break; | 
|  | case 1: | 
|  | *long_header_type = ZERO_RTT_PROTECTED; | 
|  | break; | 
|  | case 2: | 
|  | *long_header_type = HANDSHAKE; | 
|  | break; | 
|  | case 3: | 
|  | *long_header_type = RETRY; | 
|  | break; | 
|  | default: | 
|  | QUIC_BUG << "Unreachable statement"; | 
|  | *long_header_type = VERSION_NEGOTIATION; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (type & 0x7F) { | 
|  | case 0x7F: | 
|  | *long_header_type = INITIAL; | 
|  | break; | 
|  | case 0x7C: | 
|  | *long_header_type = ZERO_RTT_PROTECTED; | 
|  | break; | 
|  | case 0x7D: | 
|  | *long_header_type = HANDSHAKE; | 
|  | break; | 
|  | case 0x7E: | 
|  | *long_header_type = RETRY; | 
|  | break; | 
|  | default: | 
|  | // Invalid packet header type. Whether a packet is version negotiation is | 
|  | // determined by the version field. | 
|  | *long_header_type = INVALID_PACKET_TYPE; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | QuicPacketNumberLength GetLongHeaderPacketNumberLength( | 
|  | QuicTransportVersion version, | 
|  | uint8_t type) { | 
|  | if (version > QUIC_VERSION_44) { | 
|  | return static_cast<QuicPacketNumberLength>((type & 0x03) + 1); | 
|  | } | 
|  | return PACKET_4BYTE_PACKET_NUMBER; | 
|  | } | 
|  |  | 
|  | QuicStringPiece TruncateErrorString(QuicStringPiece error) { | 
|  | if (error.length() <= kMaxErrorStringLength) { | 
|  | return error; | 
|  | } | 
|  | return QuicStringPiece(error.data(), kMaxErrorStringLength); | 
|  | } | 
|  |  | 
|  | size_t TruncatedErrorStringSize(const QuicStringPiece& error) { | 
|  | if (error.length() < kMaxErrorStringLength) { | 
|  | return error.length(); | 
|  | } | 
|  | return kMaxErrorStringLength; | 
|  | } | 
|  |  | 
|  | uint8_t GetConnectionIdLengthValue(QuicConnectionIdLength length) { | 
|  | if (length == 0) { | 
|  | return 0; | 
|  | } | 
|  | return static_cast<uint8_t>(length - kConnectionIdLengthAdjustment); | 
|  | } | 
|  |  | 
|  | bool IsValidPacketNumberLength(QuicPacketNumberLength packet_number_length) { | 
|  | size_t length = packet_number_length; | 
|  | return length == 1 || length == 2 || length == 4 || length == 6 || | 
|  | length == 8; | 
|  | } | 
|  |  | 
|  | bool IsValidFullPacketNumber(uint64_t full_packet_number, | 
|  | QuicTransportVersion version) { | 
|  | return full_packet_number > 0 || | 
|  | (GetQuicRestartFlag(quic_uint64max_uninitialized_pn) && | 
|  | version == QUIC_VERSION_99); | 
|  | } | 
|  |  | 
|  | // Convert a stream ID to a count of streams, for IETF QUIC/Version 99 only. | 
|  | // There is no need to take into account whether the ID is for uni- or | 
|  | // bi-directional streams, or whether it's server- or client- initiated.  It | 
|  | // always returns a valid count. | 
|  | QuicStreamId StreamIdToCount(QuicTransportVersion version, | 
|  | QuicStreamId stream_id) { | 
|  | DCHECK_EQ(QUIC_VERSION_99, version); | 
|  | if ((stream_id & 0x3) == 0) { | 
|  | return (stream_id / QuicUtils::StreamIdDelta(version)); | 
|  | } | 
|  | return (stream_id / QuicUtils::StreamIdDelta(version)) + 1; | 
|  | } | 
|  |  | 
|  | // Returns the maximum value that a stream count may have, taking into account | 
|  | // the fact that bidirectional, client initiated, streams have one fewer stream | 
|  | // available than the others. This is because the old crypto streams, with ID == | 
|  | // 0 are not included in the count. | 
|  | // The version is not included in the call, nor does the method take the version | 
|  | // into account, because this is called only from code used for IETF QUIC. | 
|  | // TODO(fkastenholz): Remove this method and replace calls to it with direct | 
|  | // references to kMaxQuicStreamIdCount when streamid 0 becomes a normal stream | 
|  | // id. | 
|  | QuicStreamId GetMaxStreamCount(bool unidirectional, Perspective perspective) { | 
|  | if (!unidirectional && perspective == Perspective::IS_CLIENT) { | 
|  | return kMaxQuicStreamId >> 2; | 
|  | } | 
|  | return (kMaxQuicStreamId >> 2) + 1; | 
|  | } | 
|  |  | 
|  | // Convert a stream count to the maximum stream ID for that count. | 
|  | // Needs to know whether the resulting stream ID  should be uni-directional, | 
|  | // bi-directional, server-initiated, or client-initiated. | 
|  | // Returns true if it works, false if not. The only error condition is that | 
|  | // the stream_count is too big and it would generate a stream id that is larger | 
|  | // than the implementation's maximum stream id value. | 
|  | bool StreamCountToId(QuicStreamId stream_count, | 
|  | bool unidirectional, | 
|  | Perspective perspective, | 
|  | QuicTransportVersion version, | 
|  | QuicStreamId* generated_stream_id) { | 
|  | DCHECK_EQ(QUIC_VERSION_99, version); | 
|  | // TODO(fkastenholz): when the MAX_STREAMS and STREAMS_BLOCKED frames | 
|  | // are connected all the way up to the stream_id_manager, handle count==0 | 
|  | // properly (interpret it as "can open 0 streams") and the count being too | 
|  | // large (close the connection). | 
|  | if ((stream_count == 0) || | 
|  | (stream_count > GetMaxStreamCount(unidirectional, perspective))) { | 
|  | return false; | 
|  | } | 
|  | *generated_stream_id = | 
|  | ((unidirectional) | 
|  | ? QuicUtils::GetFirstUnidirectionalStreamId(version, perspective) | 
|  | : QuicUtils::GetFirstBidirectionalStreamId(version, perspective)) + | 
|  | ((stream_count - 1) * QuicUtils::StreamIdDelta(version)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AppendIetfConnectionIdsNew(bool version_flag, | 
|  | QuicConnectionId destination_connection_id, | 
|  | QuicConnectionId source_connection_id, | 
|  | QuicDataWriter* writer) { | 
|  | if (!version_flag) { | 
|  | return writer->WriteConnectionId(destination_connection_id); | 
|  | } | 
|  |  | 
|  | // Compute connection ID length byte. | 
|  | uint8_t dcil = GetConnectionIdLengthValue( | 
|  | static_cast<QuicConnectionIdLength>(destination_connection_id.length())); | 
|  | uint8_t scil = GetConnectionIdLengthValue( | 
|  | static_cast<QuicConnectionIdLength>(source_connection_id.length())); | 
|  | uint8_t connection_id_length = dcil << 4 | scil; | 
|  |  | 
|  | return writer->WriteUInt8(connection_id_length) && | 
|  | writer->WriteConnectionId(destination_connection_id) && | 
|  | writer->WriteConnectionId(source_connection_id); | 
|  | } | 
|  |  | 
|  | enum class DroppedPacketReason { | 
|  | // General errors | 
|  | INVALID_PUBLIC_HEADER, | 
|  | VERSION_MISMATCH, | 
|  | // Version negotiation packet errors | 
|  | INVALID_VERSION_NEGOTIATION_PACKET, | 
|  | // Public reset packet errors, pre-v44 | 
|  | INVALID_PUBLIC_RESET_PACKET, | 
|  | // Data packet errors | 
|  | INVALID_PACKET_NUMBER, | 
|  | INVALID_DIVERSIFICATION_NONCE, | 
|  | DECRYPTION_FAILURE, | 
|  | NUM_REASONS, | 
|  | }; | 
|  |  | 
|  | void RecordDroppedPacketReason(DroppedPacketReason reason) { | 
|  | QUIC_CLIENT_HISTOGRAM_ENUM("QuicDroppedPacketReason", reason, | 
|  | DroppedPacketReason::NUM_REASONS, | 
|  | "The reason a packet was not processed. Recorded " | 
|  | "each time such a packet is dropped"); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions, | 
|  | QuicTime creation_time, | 
|  | Perspective perspective) | 
|  | : visitor_(nullptr), | 
|  | error_(QUIC_NO_ERROR), | 
|  | last_serialized_connection_id_(EmptyQuicConnectionId()), | 
|  | last_version_label_(0), | 
|  | version_(PROTOCOL_UNSUPPORTED, QUIC_VERSION_UNSUPPORTED), | 
|  | supported_versions_(supported_versions), | 
|  | decrypter_level_(ENCRYPTION_NONE), | 
|  | alternative_decrypter_level_(ENCRYPTION_NONE), | 
|  | alternative_decrypter_latch_(false), | 
|  | perspective_(perspective), | 
|  | validate_flags_(true), | 
|  | process_timestamps_(false), | 
|  | creation_time_(creation_time), | 
|  | last_timestamp_(QuicTime::Delta::Zero()), | 
|  | first_sending_packet_number_(FirstSendingPacketNumber()), | 
|  | data_producer_(nullptr), | 
|  | infer_packet_header_type_from_version_(perspective == | 
|  | Perspective::IS_CLIENT) { | 
|  | DCHECK(!supported_versions.empty()); | 
|  | version_ = supported_versions_[0]; | 
|  | decrypter_ = QuicMakeUnique<NullDecrypter>(perspective); | 
|  | encrypter_[ENCRYPTION_NONE] = QuicMakeUnique<NullEncrypter>(perspective); | 
|  | } | 
|  |  | 
|  | QuicFramer::~QuicFramer() {} | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version, | 
|  | QuicStreamId stream_id, | 
|  | QuicStreamOffset offset, | 
|  | bool last_frame_in_packet, | 
|  | QuicPacketLength data_length) { | 
|  | if (version == QUIC_VERSION_99) { | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_id) + | 
|  | (last_frame_in_packet | 
|  | ? 0 | 
|  | : QuicDataWriter::GetVarInt62Len(data_length)) + | 
|  | (offset != 0 ? QuicDataWriter::GetVarInt62Len(offset) : 0); | 
|  | } | 
|  | return kQuicFrameTypeSize + GetStreamIdSize(stream_id) + | 
|  | GetStreamOffsetSize(version, offset) + | 
|  | (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinCryptoFrameSize(QuicStreamOffset offset, | 
|  | QuicPacketLength data_length) { | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(offset) + | 
|  | QuicDataWriter::GetVarInt62Len(data_length); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMessageFrameSize(QuicTransportVersion version, | 
|  | bool last_frame_in_packet, | 
|  | QuicByteCount length) { | 
|  | QUIC_BUG_IF(version <= QUIC_VERSION_44) | 
|  | << "Try to serialize MESSAGE frame in " << version; | 
|  | return kQuicFrameTypeSize + | 
|  | (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(length)) + | 
|  | length; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinAckFrameSize( | 
|  | QuicTransportVersion version, | 
|  | QuicPacketNumberLength largest_observed_length) { | 
|  | if (version == QUIC_VERSION_99) { | 
|  | // The minimal ack frame consists of the following four fields: Largest | 
|  | // Acknowledged, ACK Delay, ACK Block Count, and First ACK Block. Minimum | 
|  | // size of each is 1 byte. | 
|  | return kQuicFrameTypeSize + 4; | 
|  | } | 
|  | size_t min_size = kQuicFrameTypeSize + largest_observed_length + | 
|  | kQuicDeltaTimeLargestObservedSize; | 
|  | return min_size + kQuicNumTimestampsSize; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStopWaitingFrameSize( | 
|  | QuicTransportVersion version, | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | size_t min_size = kQuicFrameTypeSize + packet_number_length; | 
|  | return min_size; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetRstStreamFrameSize(QuicTransportVersion version, | 
|  | const QuicRstStreamFrame& frame) { | 
|  | if (version == QUIC_VERSION_99) { | 
|  | return QuicDataWriter::GetVarInt62Len(frame.stream_id) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.byte_offset) + | 
|  | kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize; | 
|  | } | 
|  | return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize + | 
|  | kQuicErrorCodeSize; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinConnectionCloseFrameSize( | 
|  | QuicTransportVersion version, | 
|  | const QuicConnectionCloseFrame& frame) { | 
|  | if (version == QUIC_VERSION_99) { | 
|  | return QuicDataWriter::GetVarInt62Len( | 
|  | TruncatedErrorStringSize(frame.error_details)) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.frame_type) + | 
|  | kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize; | 
|  | } | 
|  | return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinApplicationCloseFrameSize( | 
|  | QuicTransportVersion version, | 
|  | const QuicApplicationCloseFrame& frame) { | 
|  | if (version != QUIC_VERSION_99) { | 
|  | QUIC_BUG << "In version " << version | 
|  | << " - not 99 - and tried to serialize ApplicationClose."; | 
|  | } | 
|  | return QuicDataWriter::GetVarInt62Len( | 
|  | TruncatedErrorStringSize(frame.error_details)) + | 
|  | kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinGoAwayFrameSize() { | 
|  | return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize + | 
|  | kQuicMaxStreamIdSize; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetWindowUpdateFrameSize( | 
|  | QuicTransportVersion version, | 
|  | const QuicWindowUpdateFrame& frame) { | 
|  | if (version != QUIC_VERSION_99) { | 
|  | return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize; | 
|  | } | 
|  | if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { | 
|  | // Frame would be a MAX DATA frame, which has only a Maximum Data field. | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.byte_offset); | 
|  | } | 
|  | // Frame would be MAX STREAM DATA, has Maximum Stream Data and Stream ID | 
|  | // fields. | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.byte_offset) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.stream_id); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMaxStreamsFrameSize(QuicTransportVersion version, | 
|  | const QuicMaxStreamIdFrame& frame) { | 
|  | if (version != QUIC_VERSION_99) { | 
|  | QUIC_BUG << "In version " << version | 
|  | << " - not 99 - and tried to serialize MaxStreamId Frame."; | 
|  | } | 
|  |  | 
|  | // Convert from the stream id on which the connection is blocked to a count | 
|  | QuicStreamId stream_count = StreamIdToCount(version, frame.max_stream_id); | 
|  |  | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_count); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStreamsBlockedFrameSize( | 
|  | QuicTransportVersion version, | 
|  | const QuicStreamIdBlockedFrame& frame) { | 
|  | if (version != QUIC_VERSION_99) { | 
|  | QUIC_BUG << "In version " << version | 
|  | << " - not 99 - and tried to serialize StreamIdBlocked Frame."; | 
|  | } | 
|  |  | 
|  | // Convert from the stream id on which the connection is blocked to a count | 
|  | QuicStreamId stream_count = StreamIdToCount(version, frame.stream_id); | 
|  |  | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_count); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetBlockedFrameSize(QuicTransportVersion version, | 
|  | const QuicBlockedFrame& frame) { | 
|  | if (version != QUIC_VERSION_99) { | 
|  | return kQuicFrameTypeSize + kQuicMaxStreamIdSize; | 
|  | } | 
|  | if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { | 
|  | // return size of IETF QUIC Blocked frame | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset); | 
|  | } | 
|  | // return size of IETF QUIC Stream Blocked frame. | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.stream_id); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStopSendingFrameSize(const QuicStopSendingFrame& frame) { | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_id) + | 
|  | sizeof(QuicApplicationErrorCode); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetPathChallengeFrameSize( | 
|  | const QuicPathChallengeFrame& frame) { | 
|  | return kQuicFrameTypeSize + sizeof(frame.data_buffer); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetPathResponseFrameSize( | 
|  | const QuicPathResponseFrame& frame) { | 
|  | return kQuicFrameTypeSize + sizeof(frame.data_buffer); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetRetransmittableControlFrameSize( | 
|  | QuicTransportVersion version, | 
|  | const QuicFrame& frame) { | 
|  | switch (frame.type) { | 
|  | case PING_FRAME: | 
|  | // Ping has no payload. | 
|  | return kQuicFrameTypeSize; | 
|  | case RST_STREAM_FRAME: | 
|  | return GetRstStreamFrameSize(version, *frame.rst_stream_frame); | 
|  | case CONNECTION_CLOSE_FRAME: | 
|  | return GetMinConnectionCloseFrameSize(version, | 
|  | *frame.connection_close_frame) + | 
|  | TruncatedErrorStringSize( | 
|  | frame.connection_close_frame->error_details); | 
|  | case GOAWAY_FRAME: | 
|  | return GetMinGoAwayFrameSize() + | 
|  | TruncatedErrorStringSize(frame.goaway_frame->reason_phrase); | 
|  | case WINDOW_UPDATE_FRAME: | 
|  | // For version 99, this could be either a MAX DATA or MAX STREAM DATA. | 
|  | // GetWindowUpdateFrameSize figures this out and returns the correct | 
|  | // length. | 
|  | return GetWindowUpdateFrameSize(version, *frame.window_update_frame); | 
|  | case BLOCKED_FRAME: | 
|  | return GetBlockedFrameSize(version, *frame.blocked_frame); | 
|  | case APPLICATION_CLOSE_FRAME: | 
|  | return GetMinApplicationCloseFrameSize(version, | 
|  | *frame.application_close_frame) + | 
|  | TruncatedErrorStringSize( | 
|  | frame.application_close_frame->error_details); | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | return GetNewConnectionIdFrameSize(*frame.new_connection_id_frame); | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | return GetRetireConnectionIdFrameSize(*frame.retire_connection_id_frame); | 
|  | case NEW_TOKEN_FRAME: | 
|  | return GetNewTokenFrameSize(*frame.new_token_frame); | 
|  | case MAX_STREAM_ID_FRAME: | 
|  | return GetMaxStreamsFrameSize(version, frame.max_stream_id_frame); | 
|  | case STREAM_ID_BLOCKED_FRAME: | 
|  | return GetStreamsBlockedFrameSize(version, frame.stream_id_blocked_frame); | 
|  | case PATH_RESPONSE_FRAME: | 
|  | return GetPathResponseFrameSize(*frame.path_response_frame); | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | return GetPathChallengeFrameSize(*frame.path_challenge_frame); | 
|  | case STOP_SENDING_FRAME: | 
|  | return GetStopSendingFrameSize(*frame.stop_sending_frame); | 
|  |  | 
|  | case STREAM_FRAME: | 
|  | case ACK_FRAME: | 
|  | case STOP_WAITING_FRAME: | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | case PADDING_FRAME: | 
|  | case MESSAGE_FRAME: | 
|  | case CRYPTO_FRAME: | 
|  | case NUM_FRAME_TYPES: | 
|  | DCHECK(false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Not reachable, but some Chrome compilers can't figure that out.  *sigh* | 
|  | DCHECK(false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) { | 
|  | // Sizes are 1 through 4 bytes. | 
|  | for (int i = 1; i <= 4; ++i) { | 
|  | stream_id >>= 8; | 
|  | if (stream_id == 0) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | QUIC_BUG << "Failed to determine StreamIDSize."; | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStreamOffsetSize(QuicTransportVersion version, | 
|  | QuicStreamOffset offset) { | 
|  | // 0 is a special case. | 
|  | if (offset == 0) { | 
|  | return 0; | 
|  | } | 
|  | // 2 through 8 are the remaining sizes. | 
|  | offset >>= 8; | 
|  | for (int i = 2; i <= 8; ++i) { | 
|  | offset >>= 8; | 
|  | if (offset == 0) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | QUIC_BUG << "Failed to determine StreamOffsetSize."; | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetNewConnectionIdFrameSize( | 
|  | const QuicNewConnectionIdFrame& frame) { | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.sequence_number) + | 
|  | kConnectionIdLengthSize + frame.connection_id.length() + | 
|  | sizeof(frame.stateless_reset_token); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetRetireConnectionIdFrameSize( | 
|  | const QuicRetireConnectionIdFrame& frame) { | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.sequence_number); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetNewTokenFrameSize(const QuicNewTokenFrame& frame) { | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.token.length()) + | 
|  | frame.token.length(); | 
|  | } | 
|  |  | 
|  | // TODO(nharper): Change this method to take a ParsedQuicVersion. | 
|  | bool QuicFramer::IsSupportedTransportVersion( | 
|  | const QuicTransportVersion version) const { | 
|  | for (ParsedQuicVersion supported_version : supported_versions_) { | 
|  | if (version == supported_version.transport_version) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const { | 
|  | for (const ParsedQuicVersion& supported_version : supported_versions_) { | 
|  | if (version == supported_version) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetSerializedFrameLength( | 
|  | const QuicFrame& frame, | 
|  | size_t free_bytes, | 
|  | bool first_frame, | 
|  | bool last_frame, | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | // Prevent a rare crash reported in b/19458523. | 
|  | if (frame.type == ACK_FRAME && frame.ack_frame == nullptr) { | 
|  | QUIC_BUG << "Cannot compute the length of a null ack frame. free_bytes:" | 
|  | << free_bytes << " first_frame:" << first_frame | 
|  | << " last_frame:" << last_frame | 
|  | << " seq num length:" << packet_number_length; | 
|  | set_error(QUIC_INTERNAL_ERROR); | 
|  | visitor_->OnError(this); | 
|  | return 0; | 
|  | } | 
|  | if (frame.type == PADDING_FRAME) { | 
|  | if (frame.padding_frame.num_padding_bytes == -1) { | 
|  | // Full padding to the end of the packet. | 
|  | return free_bytes; | 
|  | } else { | 
|  | // Lite padding. | 
|  | return free_bytes < | 
|  | static_cast<size_t>(frame.padding_frame.num_padding_bytes) | 
|  | ? free_bytes | 
|  | : frame.padding_frame.num_padding_bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t frame_len = | 
|  | ComputeFrameLength(frame, last_frame, packet_number_length); | 
|  | if (frame_len <= free_bytes) { | 
|  | // Frame fits within packet. Note that acks may be truncated. | 
|  | return frame_len; | 
|  | } | 
|  | // Only truncate the first frame in a packet, so if subsequent ones go | 
|  | // over, stop including more frames. | 
|  | if (!first_frame) { | 
|  | return 0; | 
|  | } | 
|  | bool can_truncate = | 
|  | frame.type == ACK_FRAME && | 
|  | free_bytes >= GetMinAckFrameSize(version_.transport_version, | 
|  | PACKET_6BYTE_PACKET_NUMBER); | 
|  | if (can_truncate) { | 
|  | // Truncate the frame so the packet will not exceed kMaxPacketSize. | 
|  | // Note that we may not use every byte of the writer in this case. | 
|  | QUIC_DLOG(INFO) << ENDPOINT | 
|  | << "Truncating large frame, free bytes: " << free_bytes; | 
|  | return free_bytes; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | QuicFramer::AckFrameInfo::AckFrameInfo() | 
|  | : max_block_length(0), first_block_length(0), num_ack_blocks(0) {} | 
|  |  | 
|  | QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default; | 
|  |  | 
|  | QuicFramer::AckFrameInfo::~AckFrameInfo() {} | 
|  |  | 
|  | bool QuicFramer::WriteIetfLongHeaderLength(const QuicPacketHeader& header, | 
|  | QuicDataWriter* writer, | 
|  | size_t length_field_offset, | 
|  | EncryptionLevel level) { | 
|  | if (!QuicVersionHasLongHeaderLengths(transport_version()) || | 
|  | !header.version_flag || length_field_offset == 0) { | 
|  | return true; | 
|  | } | 
|  | if (writer->length() < length_field_offset || | 
|  | writer->length() - length_field_offset < | 
|  | kQuicDefaultLongHeaderLengthLength) { | 
|  | set_detailed_error("Invalid length_field_offset."); | 
|  | QUIC_BUG << "Invalid length_field_offset."; | 
|  | return false; | 
|  | } | 
|  | size_t length_to_write = writer->length() - length_field_offset - | 
|  | kQuicDefaultLongHeaderLengthLength; | 
|  | // Add length of auth tag. | 
|  | length_to_write = GetCiphertextSize(level, length_to_write); | 
|  |  | 
|  | QuicDataWriter length_writer(writer->length() - length_field_offset, | 
|  | writer->data() + length_field_offset); | 
|  | if (!length_writer.WriteVarInt62(length_to_write, | 
|  | kQuicDefaultLongHeaderLengthLength)) { | 
|  | set_detailed_error("Failed to overwrite long header length."); | 
|  | QUIC_BUG << "Failed to overwrite long header length."; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header, | 
|  | const QuicFrames& frames, | 
|  | char* buffer, | 
|  | size_t packet_length, | 
|  | EncryptionLevel level) { | 
|  | QuicDataWriter writer(packet_length, buffer); | 
|  | size_t length_field_offset = 0; | 
|  | if (!AppendPacketHeader(header, &writer, &length_field_offset)) { | 
|  | QUIC_BUG << "AppendPacketHeader failed"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (transport_version() == QUIC_VERSION_99) { | 
|  | if (AppendIetfFrames(frames, &writer) == 0) { | 
|  | return 0; | 
|  | } | 
|  | if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset, | 
|  | level)) { | 
|  | return 0; | 
|  | } | 
|  | return writer.length(); | 
|  | } | 
|  | // TODO(dschinazi) if we enable long header lengths before v99, we need to | 
|  | // add support for fixing up lengths in QuicFramer::BuildDataPacket. | 
|  | DCHECK(!QuicVersionHasLongHeaderLengths(transport_version())); | 
|  |  | 
|  | size_t i = 0; | 
|  | for (const QuicFrame& frame : frames) { | 
|  | // Determine if we should write stream frame length in header. | 
|  | const bool last_frame_in_packet = i == frames.size() - 1; | 
|  | if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) { | 
|  | QUIC_BUG << "AppendTypeByte failed"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (frame.type) { | 
|  | case PADDING_FRAME: | 
|  | if (!AppendPaddingFrame(frame.padding_frame, &writer)) { | 
|  | QUIC_BUG << "AppendPaddingFrame of " | 
|  | << frame.padding_frame.num_padding_bytes << " failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STREAM_FRAME: | 
|  | if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, | 
|  | &writer)) { | 
|  | QUIC_BUG << "AppendStreamFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case ACK_FRAME: | 
|  | if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) { | 
|  | QUIC_BUG << "AppendAckFrameAndTypeByte failed: " << detailed_error_; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STOP_WAITING_FRAME: | 
|  | if (!AppendStopWaitingFrame(header, frame.stop_waiting_frame, | 
|  | &writer)) { | 
|  | QUIC_BUG << "AppendStopWaitingFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | // MTU discovery frames are serialized as ping frames. | 
|  | QUIC_FALLTHROUGH_INTENDED; | 
|  | case PING_FRAME: | 
|  | // Ping has no payload. | 
|  | break; | 
|  | case RST_STREAM_FRAME: | 
|  | if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) { | 
|  | QUIC_BUG << "AppendRstStreamFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case CONNECTION_CLOSE_FRAME: | 
|  | if (!AppendConnectionCloseFrame(*frame.connection_close_frame, | 
|  | &writer)) { | 
|  | QUIC_BUG << "AppendConnectionCloseFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case GOAWAY_FRAME: | 
|  | if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) { | 
|  | QUIC_BUG << "AppendGoAwayFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case WINDOW_UPDATE_FRAME: | 
|  | if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) { | 
|  | QUIC_BUG << "AppendWindowUpdateFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case BLOCKED_FRAME: | 
|  | if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) { | 
|  | QUIC_BUG << "AppendBlockedFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case APPLICATION_CLOSE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append APPLICATION_CLOSE frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append NEW_CONNECTION_ID frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append RETIRE_CONNECTION_ID frame and not in version " | 
|  | "99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case NEW_TOKEN_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append NEW_TOKEN_ID frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case MAX_STREAM_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append MAX_STREAM_ID frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case STREAM_ID_BLOCKED_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STREAM_ID_BLOCKED frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PATH_RESPONSE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append PATH_RESPONSE frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append PATH_CHALLENGE frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case STOP_SENDING_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STOP_SENDING frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case MESSAGE_FRAME: | 
|  | if (!AppendMessageFrameAndTypeByte(*frame.message_frame, | 
|  | last_frame_in_packet, &writer)) { | 
|  | QUIC_BUG << "AppendMessageFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case CRYPTO_FRAME: | 
|  | if (version_.transport_version < QUIC_VERSION_47) { | 
|  | set_detailed_error( | 
|  | "Attempt to append CRYPTO frame in version prior to 47."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | } | 
|  | if (!AppendCryptoFrame(*frame.crypto_frame, &writer)) { | 
|  | QUIC_BUG << "AppendCryptoFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; | 
|  | return 0; | 
|  | } | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return writer.length(); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::AppendIetfFrames(const QuicFrames& frames, | 
|  | QuicDataWriter* writer) { | 
|  | size_t i = 0; | 
|  | for (const QuicFrame& frame : frames) { | 
|  | // Determine if we should write stream frame length in header. | 
|  | const bool last_frame_in_packet = i == frames.size() - 1; | 
|  | if (!AppendIetfTypeByte(frame, last_frame_in_packet, writer)) { | 
|  | QUIC_BUG << "AppendIetfTypeByte failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (frame.type) { | 
|  | case PADDING_FRAME: | 
|  | if (!AppendPaddingFrame(frame.padding_frame, writer)) { | 
|  | QUIC_BUG << "AppendPaddingFrame of " | 
|  | << frame.padding_frame.num_padding_bytes | 
|  | << " failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STREAM_FRAME: | 
|  | if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, | 
|  | writer)) { | 
|  | QUIC_BUG << "AppendStreamFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case ACK_FRAME: | 
|  | if (!AppendIetfAckFrameAndTypeByte(*frame.ack_frame, writer)) { | 
|  | QUIC_BUG << "AppendAckFrameAndTypeByte failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STOP_WAITING_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STOP WAITING frame in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | // MTU discovery frames are serialized as ping frames. | 
|  | QUIC_FALLTHROUGH_INTENDED; | 
|  | case PING_FRAME: | 
|  | // Ping has no payload. | 
|  | break; | 
|  | case RST_STREAM_FRAME: | 
|  | if (!AppendRstStreamFrame(*frame.rst_stream_frame, writer)) { | 
|  | QUIC_BUG << "AppendRstStreamFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case CONNECTION_CLOSE_FRAME: | 
|  | if (!AppendConnectionCloseFrame(*frame.connection_close_frame, | 
|  | writer)) { | 
|  | QUIC_BUG << "AppendConnectionCloseFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case GOAWAY_FRAME: | 
|  | set_detailed_error("Attempt to append GOAWAY frame in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case WINDOW_UPDATE_FRAME: | 
|  | // Depending on whether there is a stream ID or not, will be either a | 
|  | // MAX STREAM DATA frame or a MAX DATA frame. | 
|  | if (frame.window_update_frame->stream_id == | 
|  | QuicUtils::GetInvalidStreamId(transport_version())) { | 
|  | if (!AppendMaxDataFrame(*frame.window_update_frame, writer)) { | 
|  | QUIC_BUG << "AppendMaxDataFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (!AppendMaxStreamDataFrame(*frame.window_update_frame, writer)) { | 
|  | QUIC_BUG << "AppendMaxStreamDataFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case BLOCKED_FRAME: | 
|  | if (!AppendBlockedFrame(*frame.blocked_frame, writer)) { | 
|  | QUIC_BUG << "AppendBlockedFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case APPLICATION_CLOSE_FRAME: | 
|  | if (!AppendApplicationCloseFrame(*frame.application_close_frame, | 
|  | writer)) { | 
|  | QUIC_BUG << "AppendApplicationCloseFrame failed: " | 
|  | << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case MAX_STREAM_ID_FRAME: | 
|  | if (!AppendMaxStreamsFrame(frame.max_stream_id_frame, writer)) { | 
|  | QUIC_BUG << "AppendMaxStreamsFrame failed" << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STREAM_ID_BLOCKED_FRAME: | 
|  | if (!AppendStreamsBlockedFrame(frame.stream_id_blocked_frame, writer)) { | 
|  | QUIC_BUG << "AppendStreamsBlockedFrame failed" << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | if (!AppendNewConnectionIdFrame(*frame.new_connection_id_frame, | 
|  | writer)) { | 
|  | QUIC_BUG << "AppendNewConnectionIdFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | if (!AppendRetireConnectionIdFrame(*frame.retire_connection_id_frame, | 
|  | writer)) { | 
|  | QUIC_BUG << "AppendRetireConnectionIdFrame failed: " | 
|  | << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case NEW_TOKEN_FRAME: | 
|  | if (!AppendNewTokenFrame(*frame.new_token_frame, writer)) { | 
|  | QUIC_BUG << "AppendNewTokenFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STOP_SENDING_FRAME: | 
|  | if (!AppendStopSendingFrame(*frame.stop_sending_frame, writer)) { | 
|  | QUIC_BUG << "AppendStopSendingFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | if (!AppendPathChallengeFrame(*frame.path_challenge_frame, writer)) { | 
|  | QUIC_BUG << "AppendPathChallengeFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case PATH_RESPONSE_FRAME: | 
|  | if (!AppendPathResponseFrame(*frame.path_response_frame, writer)) { | 
|  | QUIC_BUG << "AppendPathResponseFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case MESSAGE_FRAME: | 
|  | if (!AppendMessageFrameAndTypeByte(*frame.message_frame, | 
|  | last_frame_in_packet, writer)) { | 
|  | QUIC_BUG << "AppendMessageFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case CRYPTO_FRAME: | 
|  | if (!AppendCryptoFrame(*frame.crypto_frame, writer)) { | 
|  | QUIC_BUG << "AppendCryptoFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | set_detailed_error("Tried to append unknown frame type."); | 
|  | QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; | 
|  | return 0; | 
|  | } | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return writer->length(); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::BuildConnectivityProbingPacketNew( | 
|  | const QuicPacketHeader& header, | 
|  | char* buffer, | 
|  | size_t packet_length, | 
|  | EncryptionLevel level) { | 
|  | QuicFrames frames; | 
|  |  | 
|  | // Write a PING frame, which has no data payload. | 
|  | QuicPingFrame ping_frame; | 
|  | frames.push_back(QuicFrame(ping_frame)); | 
|  |  | 
|  | // Add padding to the rest of the packet. | 
|  | QuicPaddingFrame padding_frame; | 
|  | frames.push_back(QuicFrame(padding_frame)); | 
|  |  | 
|  | return BuildDataPacket(header, frames, buffer, packet_length, level); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::BuildConnectivityProbingPacket( | 
|  | const QuicPacketHeader& header, | 
|  | char* buffer, | 
|  | size_t packet_length, | 
|  | EncryptionLevel level) { | 
|  | if (transport_version() == QUIC_VERSION_99 || | 
|  | QuicVersionHasLongHeaderLengths(transport_version()) || | 
|  | GetQuicReloadableFlag(quic_simplify_build_connectivity_probing_packet)) { | 
|  | QUIC_RELOADABLE_FLAG_COUNT(quic_simplify_build_connectivity_probing_packet); | 
|  | // TODO(rch): Remove this method when the flag is deprecated. | 
|  | return BuildConnectivityProbingPacketNew(header, buffer, packet_length, | 
|  | level); | 
|  | } | 
|  |  | 
|  | QuicDataWriter writer(packet_length, buffer); | 
|  |  | 
|  | if (!AppendPacketHeader(header, &writer, nullptr)) { | 
|  | QUIC_BUG << "AppendPacketHeader failed"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Write a PING frame, which has no data payload. | 
|  | QuicPingFrame ping_frame; | 
|  | if (!AppendTypeByte(QuicFrame(ping_frame), false, &writer)) { | 
|  | QUIC_BUG << "AppendTypeByte failed for ping frame in probing packet"; | 
|  | return 0; | 
|  | } | 
|  | // Add padding to the rest of the packet. | 
|  | QuicPaddingFrame padding_frame; | 
|  | if (!AppendTypeByte(QuicFrame(padding_frame), true, &writer)) { | 
|  | QUIC_BUG << "AppendTypeByte failed for padding frame in probing packet"; | 
|  | return 0; | 
|  | } | 
|  | if (!AppendPaddingFrame(padding_frame, &writer)) { | 
|  | QUIC_BUG << "AppendPaddingFrame of " << padding_frame.num_padding_bytes | 
|  | << " failed"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return writer.length(); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::BuildPaddedPathChallengePacket( | 
|  | const QuicPacketHeader& header, | 
|  | char* buffer, | 
|  | size_t packet_length, | 
|  | QuicPathFrameBuffer* payload, | 
|  | QuicRandom* randomizer, | 
|  | EncryptionLevel level) { | 
|  | if (version_.transport_version != QUIC_VERSION_99) { | 
|  | QUIC_BUG << "Attempt to build a PATH_CHALLENGE Connectivity Probing " | 
|  | "packet and not doing IETF QUIC"; | 
|  | return 0; | 
|  | } | 
|  | QuicFrames frames; | 
|  |  | 
|  | // Write a PATH_CHALLENGE frame, which has a random 8-byte payload | 
|  | randomizer->RandBytes(payload->data(), payload->size()); | 
|  |  | 
|  | QuicPathChallengeFrame path_challenge_frame(0, *payload); | 
|  | frames.push_back(QuicFrame(&path_challenge_frame)); | 
|  |  | 
|  | // Add padding to the rest of the packet in order to assess Path MTU | 
|  | // characteristics. | 
|  | QuicPaddingFrame padding_frame; | 
|  | frames.push_back(QuicFrame(padding_frame)); | 
|  |  | 
|  | return BuildDataPacket(header, frames, buffer, packet_length, level); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::BuildPathResponsePacket( | 
|  | const QuicPacketHeader& header, | 
|  | char* buffer, | 
|  | size_t packet_length, | 
|  | const QuicDeque<QuicPathFrameBuffer>& payloads, | 
|  | const bool is_padded, | 
|  | EncryptionLevel level) { | 
|  | if (payloads.empty()) { | 
|  | QUIC_BUG | 
|  | << "Attempt to generate connectivity response with no request payloads"; | 
|  | return 0; | 
|  | } | 
|  | if (version_.transport_version != QUIC_VERSION_99) { | 
|  | QUIC_BUG << "Attempt to build a PATH_RESPONSE Connectivity Probing " | 
|  | "packet and not doing IETF QUIC"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | std::vector<std::unique_ptr<QuicPathResponseFrame>> path_response_frames; | 
|  | for (const QuicPathFrameBuffer& payload : payloads) { | 
|  | // Note that the control frame ID can be 0 since this is not retransmitted. | 
|  | path_response_frames.push_back( | 
|  | QuicMakeUnique<QuicPathResponseFrame>(0, payload)); | 
|  | } | 
|  |  | 
|  | QuicFrames frames; | 
|  | for (const std::unique_ptr<QuicPathResponseFrame>& path_response_frame : | 
|  | path_response_frames) { | 
|  | frames.push_back(QuicFrame(path_response_frame.get())); | 
|  | } | 
|  |  | 
|  | if (is_padded) { | 
|  | // Add padding to the rest of the packet in order to assess Path MTU | 
|  | // characteristics. | 
|  | QuicPaddingFrame padding_frame; | 
|  | frames.push_back(QuicFrame(padding_frame)); | 
|  | } | 
|  |  | 
|  | return BuildDataPacket(header, frames, buffer, packet_length, level); | 
|  | } | 
|  |  | 
|  | // static | 
|  | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildPublicResetPacket( | 
|  | const QuicPublicResetPacket& packet) { | 
|  | CryptoHandshakeMessage reset; | 
|  | reset.set_tag(kPRST); | 
|  | reset.SetValue(kRNON, packet.nonce_proof); | 
|  | if (packet.client_address.host().address_family() != | 
|  | IpAddressFamily::IP_UNSPEC) { | 
|  | // packet.client_address is non-empty. | 
|  | QuicSocketAddressCoder address_coder(packet.client_address); | 
|  | QuicString serialized_address = address_coder.Encode(); | 
|  | if (serialized_address.empty()) { | 
|  | return nullptr; | 
|  | } | 
|  | reset.SetStringPiece(kCADR, serialized_address); | 
|  | } | 
|  | if (!packet.endpoint_id.empty()) { | 
|  | reset.SetStringPiece(kEPID, packet.endpoint_id); | 
|  | } | 
|  | const QuicData& reset_serialized = reset.GetSerialized(); | 
|  |  | 
|  | size_t len = kPublicFlagsSize + packet.connection_id.length() + | 
|  | reset_serialized.length(); | 
|  | std::unique_ptr<char[]> buffer(new char[len]); | 
|  | // Endianness is not a concern here, as writer is not going to write integers | 
|  | // or floating numbers. | 
|  | QuicDataWriter writer(len, buffer.get()); | 
|  |  | 
|  | uint8_t flags = static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_RST | | 
|  | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID); | 
|  | // This hack makes post-v33 public reset packet look like pre-v33 packets. | 
|  | flags |= static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); | 
|  | if (!writer.WriteUInt8(flags)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!writer.WriteConnectionId(packet.connection_id)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); | 
|  | } | 
|  |  | 
|  | // static | 
|  | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildIetfStatelessResetPacket( | 
|  | QuicConnectionId connection_id, | 
|  | QuicUint128 stateless_reset_token) { | 
|  | QUIC_DVLOG(1) << "Building IETF stateless reset packet."; | 
|  | size_t len = kPacketHeaderTypeSize + kMinRandomBytesLengthInStatelessReset + | 
|  | sizeof(stateless_reset_token); | 
|  | std::unique_ptr<char[]> buffer(new char[len]); | 
|  | QuicDataWriter writer(len, buffer.get()); | 
|  |  | 
|  | uint8_t type = 0; | 
|  | type |= FLAGS_FIXED_BIT; | 
|  | type |= FLAGS_SHORT_HEADER_RESERVED_1; | 
|  | type |= FLAGS_SHORT_HEADER_RESERVED_2; | 
|  | type |= PacketNumberLengthToOnWireValue(QUIC_VERSION_UNSUPPORTED, | 
|  | PACKET_1BYTE_PACKET_NUMBER); | 
|  |  | 
|  | // Append type byte. | 
|  | if (!writer.WriteUInt8(type)) { | 
|  | return nullptr; | 
|  | } | 
|  | // Append random bytes. | 
|  | if (!writer.WriteRandomBytes(QuicRandom::GetInstance(), | 
|  | kMinRandomBytesLengthInStatelessReset)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Append stateless reset token. | 
|  | if (!writer.WriteBytes(&stateless_reset_token, | 
|  | sizeof(stateless_reset_token))) { | 
|  | return nullptr; | 
|  | } | 
|  | return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); | 
|  | } | 
|  |  | 
|  | // static | 
|  | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildVersionNegotiationPacket( | 
|  | QuicConnectionId connection_id, | 
|  | bool ietf_quic, | 
|  | const ParsedQuicVersionVector& versions) { | 
|  | if (ietf_quic) { | 
|  | return BuildIetfVersionNegotiationPacket(connection_id, versions); | 
|  | } | 
|  | DCHECK(!versions.empty()); | 
|  | size_t len = kPublicFlagsSize + connection_id.length() + | 
|  | versions.size() * kQuicVersionSize; | 
|  | std::unique_ptr<char[]> buffer(new char[len]); | 
|  | // Endianness is not a concern here, version negotiation packet does not have | 
|  | // integers or floating numbers. | 
|  | QuicDataWriter writer(len, buffer.get()); | 
|  |  | 
|  | uint8_t flags = static_cast<uint8_t>( | 
|  | PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID | | 
|  | // TODO(rch): Remove this QUIC_VERSION_32 is retired. | 
|  | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); | 
|  | if (!writer.WriteUInt8(flags)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!writer.WriteConnectionId(connection_id)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | for (const ParsedQuicVersion& version : versions) { | 
|  | // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. | 
|  | if (!writer.WriteTag( | 
|  | QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); | 
|  | } | 
|  |  | 
|  | // static | 
|  | std::unique_ptr<QuicEncryptedPacket> | 
|  | QuicFramer::BuildIetfVersionNegotiationPacket( | 
|  | QuicConnectionId connection_id, | 
|  | const ParsedQuicVersionVector& versions) { | 
|  | QUIC_DVLOG(1) << "Building IETF version negotiation packet."; | 
|  | DCHECK(!versions.empty()); | 
|  | size_t len = kPacketHeaderTypeSize + kConnectionIdLengthSize + | 
|  | connection_id.length() + | 
|  | (versions.size() + 1) * kQuicVersionSize; | 
|  | std::unique_ptr<char[]> buffer(new char[len]); | 
|  | QuicDataWriter writer(len, buffer.get()); | 
|  |  | 
|  | // TODO(fayang): Randomly select a value for the type. | 
|  | uint8_t type = static_cast<uint8_t>(FLAGS_LONG_HEADER | VERSION_NEGOTIATION); | 
|  | if (!writer.WriteUInt8(type)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!writer.WriteUInt32(0)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!GetQuicReloadableFlag(quic_use_new_append_connection_id)) { | 
|  | if (!AppendIetfConnectionId(true, EmptyQuicConnectionId(), | 
|  | PACKET_0BYTE_CONNECTION_ID, connection_id, | 
|  | PACKET_8BYTE_CONNECTION_ID, &writer)) { | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 1, 2); | 
|  | if (!AppendIetfConnectionIdsNew(true, EmptyQuicConnectionId(), | 
|  | connection_id, &writer)) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const ParsedQuicVersion& version : versions) { | 
|  | // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. | 
|  | if (!writer.WriteTag( | 
|  | QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) { | 
|  | QuicDataReader reader(packet.data(), packet.length()); | 
|  |  | 
|  | bool packet_has_ietf_packet_header = false; | 
|  | if (infer_packet_header_type_from_version_) { | 
|  | packet_has_ietf_packet_header = | 
|  | version_.transport_version > QUIC_VERSION_43; | 
|  | } else if (!reader.IsDoneReading()) { | 
|  | uint8_t type = reader.PeekByte(); | 
|  | packet_has_ietf_packet_header = QuicUtils::IsIetfPacketHeader(type); | 
|  | } | 
|  | if (packet_has_ietf_packet_header) { | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Processing IETF QUIC packet."; | 
|  | } | 
|  |  | 
|  | visitor_->OnPacket(); | 
|  |  | 
|  | QuicPacketHeader header; | 
|  | if (!ProcessPublicHeader(&reader, packet_has_ietf_packet_header, &header)) { | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: " | 
|  | << detailed_error_; | 
|  | DCHECK_NE("", detailed_error_); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_HEADER); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnUnauthenticatedPublicHeader(header)) { | 
|  | // The visitor suppresses further processing of the packet. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (perspective_ == Perspective::IS_SERVER && header.version_flag && | 
|  | header.version != version_) { | 
|  | if (!visitor_->OnProtocolVersionMismatch(header.version, header.form)) { | 
|  | RecordDroppedPacketReason(DroppedPacketReason::VERSION_MISMATCH); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool rv; | 
|  | if (IsVersionNegotiation(header, packet_has_ietf_packet_header)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Received version negotiation packet"; | 
|  | rv = ProcessVersionNegotiationPacket(&reader, header); | 
|  | } else if (header.reset_flag) { | 
|  | rv = ProcessPublicResetPacket(&reader, header); | 
|  | } else if (packet.length() <= kMaxPacketSize) { | 
|  | // The optimized decryption algorithm implementations run faster when | 
|  | // operating on aligned memory. | 
|  | QUIC_CACHELINE_ALIGNED char buffer[kMaxPacketSize]; | 
|  | if (packet_has_ietf_packet_header) { | 
|  | rv = ProcessIetfDataPacket(&reader, &header, packet, buffer, | 
|  | kMaxPacketSize); | 
|  | } else { | 
|  | rv = ProcessDataPacket(&reader, &header, packet, buffer, kMaxPacketSize); | 
|  | } | 
|  | } else { | 
|  | std::unique_ptr<char[]> large_buffer(new char[packet.length()]); | 
|  | if (packet_has_ietf_packet_header) { | 
|  | rv = ProcessIetfDataPacket(&reader, &header, packet, large_buffer.get(), | 
|  | packet.length()); | 
|  | } else { | 
|  | rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(), | 
|  | packet.length()); | 
|  | } | 
|  | QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger" | 
|  | << "than kMaxPacketSize. packet size:" << packet.length(); | 
|  | } | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessVersionNegotiationPacket( | 
|  | QuicDataReader* reader, | 
|  | const QuicPacketHeader& header) { | 
|  | DCHECK_EQ(Perspective::IS_CLIENT, perspective_); | 
|  |  | 
|  | QuicVersionNegotiationPacket packet(header.destination_connection_id); | 
|  | // Try reading at least once to raise error if the packet is invalid. | 
|  | do { | 
|  | QuicVersionLabel version_label; | 
|  | if (!reader->ReadTag(&version_label)) { | 
|  | set_detailed_error("Unable to read supported version in negotiation."); | 
|  | RecordDroppedPacketReason( | 
|  | DroppedPacketReason::INVALID_VERSION_NEGOTIATION_PACKET); | 
|  | return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); | 
|  | } | 
|  | // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed. | 
|  | version_label = QuicEndian::NetToHost32(version_label); | 
|  | packet.versions.push_back(ParseQuicVersionLabel(version_label)); | 
|  | } while (!reader->IsDoneReading()); | 
|  |  | 
|  | visitor_->OnVersionNegotiationPacket(packet); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::MaybeProcessIetfInitialRetryToken( | 
|  | QuicDataReader* encrypted_reader, | 
|  | QuicPacketHeader* header) { | 
|  | if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) || | 
|  | header->form != IETF_QUIC_LONG_HEADER_PACKET || | 
|  | header->long_packet_type != INITIAL) { | 
|  | return true; | 
|  | } | 
|  | uint64_t retry_token_length = 0; | 
|  | header->retry_token_length_length = encrypted_reader->PeekVarInt62Length(); | 
|  | if (!encrypted_reader->ReadVarInt62(&retry_token_length)) { | 
|  | set_detailed_error("Unable to read INITIAL retry token length."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | header->retry_token = encrypted_reader->PeekRemainingPayload(); | 
|  | // Safety check to avoid spending ressources if malformed. | 
|  | // At this point header->retry_token contains the rest of the packet | 
|  | // so its length() is the amount of data remaining in the packet. | 
|  | if (retry_token_length > header->retry_token.length()) { | 
|  | set_detailed_error("INITIAL token length longer than packet."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | // Resize retry_token to make it only contain the retry token. | 
|  | header->retry_token.remove_suffix(header->retry_token.length() - | 
|  | retry_token_length); | 
|  | // Advance encrypted_reader by retry_token_length. | 
|  | uint8_t wasted_byte; | 
|  | for (uint64_t i = 0; i < retry_token_length; ++i) { | 
|  | if (!encrypted_reader->ReadUInt8(&wasted_byte)) { | 
|  | set_detailed_error("Unable to read INITIAL retry token."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Seeks the current packet to check for a coalesced packet at the end. | 
|  | // If the IETF length field only spans part of the outer packet, | 
|  | // then there is a coalesced packet after this one. | 
|  | void QuicFramer::MaybeProcessCoalescedPacket( | 
|  | const QuicDataReader& encrypted_reader, | 
|  | uint64_t remaining_bytes_length, | 
|  | const QuicPacketHeader& header) { | 
|  | if (header.remaining_packet_length >= remaining_bytes_length) { | 
|  | // There is no coalesced packet. | 
|  | return; | 
|  | } | 
|  |  | 
|  | QuicStringPiece remaining_data = encrypted_reader.PeekRemainingPayload(); | 
|  | DCHECK_EQ(remaining_data.length(), remaining_bytes_length); | 
|  |  | 
|  | const char* coalesced_data = | 
|  | remaining_data.data() + header.remaining_packet_length; | 
|  | uint64_t coalesced_data_length = | 
|  | remaining_bytes_length - header.remaining_packet_length; | 
|  | QuicDataReader coalesced_reader(coalesced_data, coalesced_data_length); | 
|  |  | 
|  | QuicPacketHeader coalesced_header; | 
|  | if (!ProcessIetfPacketHeader(&coalesced_reader, &coalesced_header)) { | 
|  | QUIC_PEER_BUG << ENDPOINT | 
|  | << "Failed to parse received coalesced header of length " | 
|  | << coalesced_data_length << ": " | 
|  | << QuicTextUtils::HexEncode(coalesced_data, | 
|  | coalesced_data_length) | 
|  | << " previous header was " << header; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (coalesced_header.destination_connection_id != | 
|  | header.destination_connection_id || | 
|  | (coalesced_header.form != IETF_QUIC_SHORT_HEADER_PACKET && | 
|  | coalesced_header.version != header.version)) { | 
|  | QUIC_PEER_BUG << ENDPOINT << "Received mismatched coalesced header " | 
|  | << coalesced_header << " previous header was " << header; | 
|  | return; | 
|  | } | 
|  |  | 
|  | QuicEncryptedPacket coalesced_packet(coalesced_data, coalesced_data_length, | 
|  | /*owns_buffer=*/false); | 
|  | visitor_->OnCoalescedPacket(coalesced_packet); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::MaybeProcessIetfLength(QuicDataReader* encrypted_reader, | 
|  | QuicPacketHeader* header) { | 
|  | if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) || | 
|  | header->form != IETF_QUIC_LONG_HEADER_PACKET || | 
|  | (header->long_packet_type != INITIAL && | 
|  | header->long_packet_type != HANDSHAKE && | 
|  | header->long_packet_type != ZERO_RTT_PROTECTED)) { | 
|  | return true; | 
|  | } | 
|  | header->length_length = encrypted_reader->PeekVarInt62Length(); | 
|  | if (!encrypted_reader->ReadVarInt62(&header->remaining_packet_length)) { | 
|  | set_detailed_error("Unable to read long header payload length."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | uint64_t remaining_bytes_length = encrypted_reader->BytesRemaining(); | 
|  | if (header->remaining_packet_length > remaining_bytes_length) { | 
|  | set_detailed_error("Long header payload length longer than packet."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | MaybeProcessCoalescedPacket(*encrypted_reader, remaining_bytes_length, | 
|  | *header); | 
|  |  | 
|  | if (!encrypted_reader->TruncateRemaining(header->remaining_packet_length)) { | 
|  | set_detailed_error("Length TruncateRemaining failed."); | 
|  | QUIC_BUG << "Length TruncateRemaining failed."; | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfDataPacket(QuicDataReader* encrypted_reader, | 
|  | QuicPacketHeader* header, | 
|  | const QuicEncryptedPacket& packet, | 
|  | char* decrypted_buffer, | 
|  | size_t buffer_length) { | 
|  | DCHECK_NE(GOOGLE_QUIC_PACKET, header->form); | 
|  | DCHECK(!header->has_possible_stateless_reset_token); | 
|  | header->retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; | 
|  | header->retry_token = QuicStringPiece(); | 
|  | header->length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; | 
|  | header->remaining_packet_length = 0; | 
|  | if (header->form == IETF_QUIC_SHORT_HEADER_PACKET && | 
|  | perspective_ == Perspective::IS_CLIENT) { | 
|  | // Peek possible stateless reset token. Will only be used on decryption | 
|  | // failure. | 
|  | QuicStringPiece remaining = encrypted_reader->PeekRemainingPayload(); | 
|  | if (remaining.length() >= sizeof(header->possible_stateless_reset_token)) { | 
|  | header->has_possible_stateless_reset_token = true; | 
|  | memcpy( | 
|  | &header->possible_stateless_reset_token, | 
|  | &remaining.data()[remaining.length() - | 
|  | sizeof(header->possible_stateless_reset_token)], | 
|  | sizeof(header->possible_stateless_reset_token)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MaybeProcessIetfInitialRetryToken(encrypted_reader, header)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!MaybeProcessIetfLength(encrypted_reader, header)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (header->form == IETF_QUIC_SHORT_HEADER_PACKET || | 
|  | header->long_packet_type != VERSION_NEGOTIATION) { | 
|  | // Process packet number. | 
|  | QuicPacketNumber base_packet_number = largest_packet_number_; | 
|  | uint64_t full_packet_number; | 
|  | if (!ProcessAndCalculatePacketNumber( | 
|  | encrypted_reader, header->packet_number_length, base_packet_number, | 
|  | &full_packet_number)) { | 
|  | set_detailed_error("Unable to read packet number."); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | if (!IsValidFullPacketNumber(full_packet_number, transport_version())) { | 
|  | if (IsIetfStatelessResetPacket(*header)) { | 
|  | // This is a stateless reset packet. | 
|  | QuicIetfStatelessResetPacket packet( | 
|  | *header, header->possible_stateless_reset_token); | 
|  | visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); | 
|  | return true; | 
|  | } | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); | 
|  | set_detailed_error("packet numbers cannot be 0."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | header->packet_number = QuicPacketNumber(full_packet_number); | 
|  | } | 
|  |  | 
|  | // A nonce should only present in SHLO from the server to the client when | 
|  | // using QUIC crypto. | 
|  | if (header->form == IETF_QUIC_LONG_HEADER_PACKET && | 
|  | header->long_packet_type == ZERO_RTT_PROTECTED && | 
|  | perspective_ == Perspective::IS_CLIENT && | 
|  | version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { | 
|  | if (!encrypted_reader->ReadBytes( | 
|  | reinterpret_cast<uint8_t*>(last_nonce_.data()), | 
|  | last_nonce_.size())) { | 
|  | set_detailed_error("Unable to read nonce."); | 
|  | RecordDroppedPacketReason( | 
|  | DroppedPacketReason::INVALID_DIVERSIFICATION_NONCE); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | header->nonce = &last_nonce_; | 
|  | } else { | 
|  | header->nonce = nullptr; | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnUnauthenticatedHeader(*header)) { | 
|  | set_detailed_error( | 
|  | "Visitor asked to stop processing of unauthenticated header."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload(); | 
|  | QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket( | 
|  | version_.transport_version, packet, | 
|  | GetIncludedDestinationConnectionIdLength(*header), | 
|  | GetIncludedSourceConnectionIdLength(*header), header->version_flag, | 
|  | header->nonce != nullptr, header->packet_number_length, | 
|  | header->retry_token_length_length, header->retry_token.length(), | 
|  | header->length_length); | 
|  |  | 
|  | size_t decrypted_length = 0; | 
|  | if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, | 
|  | buffer_length, &decrypted_length)) { | 
|  | if (IsIetfStatelessResetPacket(*header)) { | 
|  | // This is a stateless reset packet. | 
|  | QuicIetfStatelessResetPacket packet( | 
|  | *header, header->possible_stateless_reset_token); | 
|  | visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); | 
|  | return true; | 
|  | } | 
|  | set_detailed_error("Unable to decrypt payload."); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); | 
|  | return RaiseError(QUIC_DECRYPTION_FAILURE); | 
|  | } | 
|  | QuicDataReader reader(decrypted_buffer, decrypted_length); | 
|  |  | 
|  | // Update the largest packet number after we have decrypted the packet | 
|  | // so we are confident is not attacker controlled. | 
|  | if (largest_packet_number_.IsInitialized()) { | 
|  | largest_packet_number_ = | 
|  | std::max(header->packet_number, largest_packet_number_); | 
|  | } else { | 
|  | largest_packet_number_ = header->packet_number; | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnPacketHeader(*header)) { | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); | 
|  | // The visitor suppresses further processing of the packet. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (packet.length() > kMaxPacketSize) { | 
|  | // If the packet has gotten this far, it should not be too large. | 
|  | QUIC_BUG << "Packet too large:" << packet.length(); | 
|  | return RaiseError(QUIC_PACKET_TOO_LARGE); | 
|  | } | 
|  |  | 
|  | // Handle the payload. | 
|  | if (version_.transport_version == QUIC_VERSION_99) { | 
|  | if (!ProcessIetfFrameData(&reader, *header)) { | 
|  | DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessIetfFrameData sets the error. | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " | 
|  | << detailed_error_; | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!ProcessFrameData(&reader, *header)) { | 
|  | DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error. | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " | 
|  | << detailed_error_; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | visitor_->OnPacketComplete(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader, | 
|  | QuicPacketHeader* header, | 
|  | const QuicEncryptedPacket& packet, | 
|  | char* decrypted_buffer, | 
|  | size_t buffer_length) { | 
|  | if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) { | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DVLOG(1) | 
|  | << ENDPOINT | 
|  | << "Unable to process packet header. Stopping parsing. Error: " | 
|  | << detailed_error_; | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload(); | 
|  | QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket( | 
|  | version_.transport_version, packet, | 
|  | GetIncludedDestinationConnectionIdLength(*header), | 
|  | GetIncludedSourceConnectionIdLength(*header), header->version_flag, | 
|  | header->nonce != nullptr, header->packet_number_length, | 
|  | header->retry_token_length_length, header->retry_token.length(), | 
|  | header->length_length); | 
|  |  | 
|  | size_t decrypted_length = 0; | 
|  | if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, | 
|  | buffer_length, &decrypted_length)) { | 
|  | RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); | 
|  | set_detailed_error("Unable to decrypt payload."); | 
|  | return RaiseError(QUIC_DECRYPTION_FAILURE); | 
|  | } | 
|  |  | 
|  | QuicDataReader reader(decrypted_buffer, decrypted_length); | 
|  |  | 
|  | // Update the largest packet number after we have decrypted the packet | 
|  | // so we are confident is not attacker controlled. | 
|  | if (largest_packet_number_.IsInitialized()) { | 
|  | largest_packet_number_ = | 
|  | std::max(header->packet_number, largest_packet_number_); | 
|  | } else { | 
|  | largest_packet_number_ = header->packet_number; | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnPacketHeader(*header)) { | 
|  | // The visitor suppresses further processing of the packet. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (packet.length() > kMaxPacketSize) { | 
|  | // If the packet has gotten this far, it should not be too large. | 
|  | QUIC_BUG << "Packet too large:" << packet.length(); | 
|  | return RaiseError(QUIC_PACKET_TOO_LARGE); | 
|  | } | 
|  |  | 
|  | // Handle the payload. | 
|  | if (!ProcessFrameData(&reader, *header)) { | 
|  | DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error. | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " | 
|  | << detailed_error_; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | visitor_->OnPacketComplete(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader, | 
|  | const QuicPacketHeader& header) { | 
|  | QuicPublicResetPacket packet(header.destination_connection_id); | 
|  |  | 
|  | std::unique_ptr<CryptoHandshakeMessage> reset( | 
|  | CryptoFramer::ParseMessage(reader->ReadRemainingPayload())); | 
|  | if (!reset.get()) { | 
|  | set_detailed_error("Unable to read reset message."); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); | 
|  | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); | 
|  | } | 
|  | if (reset->tag() != kPRST) { | 
|  | set_detailed_error("Incorrect message tag."); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); | 
|  | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); | 
|  | } | 
|  |  | 
|  | if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) { | 
|  | set_detailed_error("Unable to read nonce proof."); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); | 
|  | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); | 
|  | } | 
|  | // TODO(satyamshekhar): validate nonce to protect against DoS. | 
|  |  | 
|  | QuicStringPiece address; | 
|  | if (reset->GetStringPiece(kCADR, &address)) { | 
|  | QuicSocketAddressCoder address_coder; | 
|  | if (address_coder.Decode(address.data(), address.length())) { | 
|  | packet.client_address = | 
|  | QuicSocketAddress(address_coder.ip(), address_coder.port()); | 
|  | } | 
|  | } | 
|  |  | 
|  | QuicStringPiece endpoint_id; | 
|  | if (perspective_ == Perspective::IS_CLIENT && | 
|  | reset->GetStringPiece(kEPID, &endpoint_id)) { | 
|  | packet.endpoint_id = QuicString(endpoint_id); | 
|  | packet.endpoint_id += '\0'; | 
|  | } | 
|  |  | 
|  | visitor_->OnPublicResetPacket(packet); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::IsIetfStatelessResetPacket( | 
|  | const QuicPacketHeader& header) const { | 
|  | QUIC_BUG_IF(header.has_possible_stateless_reset_token && | 
|  | perspective_ != Perspective::IS_CLIENT) | 
|  | << "has_possible_stateless_reset_token can only be true at client side."; | 
|  | return header.form == IETF_QUIC_SHORT_HEADER_PACKET && | 
|  | header.has_possible_stateless_reset_token && | 
|  | visitor_->IsValidStatelessResetToken( | 
|  | header.possible_stateless_reset_token); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::HasEncrypterOfEncryptionLevel(EncryptionLevel level) const { | 
|  | return encrypter_[level] != nullptr; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header, | 
|  | QuicDataWriter* writer, | 
|  | size_t* length_field_offset) { | 
|  | if (transport_version() > QUIC_VERSION_43) { | 
|  | return AppendIetfPacketHeader(header, writer, length_field_offset); | 
|  | } | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header; | 
|  | uint8_t public_flags = 0; | 
|  | if (header.reset_flag) { | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_RST; | 
|  | } | 
|  | if (header.version_flag) { | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_VERSION; | 
|  | } | 
|  |  | 
|  | public_flags |= GetPacketNumberFlags(header.packet_number_length) | 
|  | << kPublicHeaderSequenceNumberShift; | 
|  |  | 
|  | if (header.nonce != nullptr) { | 
|  | DCHECK_EQ(Perspective::IS_SERVER, perspective_); | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_NONCE; | 
|  | } | 
|  | DCHECK_EQ(CONNECTION_ID_ABSENT, header.source_connection_id_included); | 
|  | switch (header.destination_connection_id_included) { | 
|  | case CONNECTION_ID_ABSENT: | 
|  | if (!writer->WriteUInt8(public_flags | | 
|  | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case CONNECTION_ID_PRESENT: | 
|  | QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion( | 
|  | header.destination_connection_id, transport_version())) | 
|  | << "AppendPacketHeader: attempted to use connection ID " | 
|  | << header.destination_connection_id | 
|  | << " which is invalid with version " | 
|  | << QuicVersionToString(transport_version()); | 
|  |  | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; | 
|  | if (perspective_ == Perspective::IS_CLIENT) { | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD; | 
|  | } | 
|  | if (!writer->WriteUInt8(public_flags) || | 
|  | !writer->WriteConnectionId(header.destination_connection_id)) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | last_serialized_connection_id_ = header.destination_connection_id; | 
|  |  | 
|  | if (header.version_flag) { | 
|  | DCHECK_EQ(Perspective::IS_CLIENT, perspective_); | 
|  | QuicVersionLabel version_label = CreateQuicVersionLabel(version_); | 
|  | // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. | 
|  | if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QUIC_DVLOG(1) << ENDPOINT << "label = '" | 
|  | << QuicVersionLabelToString(version_label) << "'"; | 
|  | } | 
|  |  | 
|  | if (header.nonce != nullptr && | 
|  | !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!AppendPacketNumber(header.packet_number_length, header.packet_number, | 
|  | writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header, | 
|  | QuicDataWriter* writer) { | 
|  | uint8_t type = 0; | 
|  | if (transport_version() > QUIC_VERSION_44) { | 
|  | if (header.version_flag) { | 
|  | type = static_cast<uint8_t>( | 
|  | FLAGS_LONG_HEADER | FLAGS_FIXED_BIT | | 
|  | LongHeaderTypeToOnWireValue(transport_version(), | 
|  | header.long_packet_type) | | 
|  | PacketNumberLengthToOnWireValue(transport_version(), | 
|  | header.packet_number_length)); | 
|  | } else { | 
|  | type = static_cast<uint8_t>( | 
|  | FLAGS_FIXED_BIT | | 
|  | PacketNumberLengthToOnWireValue(transport_version(), | 
|  | header.packet_number_length)); | 
|  | } | 
|  | return writer->WriteUInt8(type); | 
|  | } | 
|  |  | 
|  | if (header.version_flag) { | 
|  | type = static_cast<uint8_t>( | 
|  | FLAGS_LONG_HEADER | LongHeaderTypeToOnWireValue( | 
|  | transport_version(), header.long_packet_type)); | 
|  | DCHECK_EQ(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length); | 
|  | } else { | 
|  | type |= FLAGS_SHORT_HEADER_RESERVED_1; | 
|  | type |= FLAGS_SHORT_HEADER_RESERVED_2; | 
|  | DCHECK_GE(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length); | 
|  | type |= PacketNumberLengthToOnWireValue(transport_version(), | 
|  | header.packet_number_length); | 
|  | } | 
|  | return writer->WriteUInt8(type); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfPacketHeader(const QuicPacketHeader& header, | 
|  | QuicDataWriter* writer, | 
|  | size_t* length_field_offset) { | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Appending IETF header: " << header; | 
|  | QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion( | 
|  | header.destination_connection_id, transport_version())) | 
|  | << "AppendIetfPacketHeader: attempted to use connection ID " | 
|  | << header.destination_connection_id << " which is invalid with version " | 
|  | << QuicVersionToString(transport_version()); | 
|  | if (!AppendIetfHeaderTypeByte(header, writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (header.version_flag) { | 
|  | // Append version for long header. | 
|  | QuicVersionLabel version_label = CreateQuicVersionLabel(version_); | 
|  | // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. | 
|  | if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Append connection ID. | 
|  | if (!QuicUtils::VariableLengthConnectionIdAllowedForVersion( | 
|  | transport_version()) && | 
|  | !GetQuicReloadableFlag(quic_use_new_append_connection_id)) { | 
|  | if (!AppendIetfConnectionId( | 
|  | header.version_flag, header.destination_connection_id, | 
|  | GetIncludedDestinationConnectionIdLength(header), | 
|  | header.source_connection_id, | 
|  | GetIncludedSourceConnectionIdLength(header), writer)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 2, 2); | 
|  | if (!AppendIetfConnectionIdsNew( | 
|  | header.version_flag, | 
|  | header.destination_connection_id_included != CONNECTION_ID_ABSENT | 
|  | ? header.destination_connection_id | 
|  | : EmptyQuicConnectionId(), | 
|  | header.source_connection_id_included != CONNECTION_ID_ABSENT | 
|  | ? header.source_connection_id | 
|  | : EmptyQuicConnectionId(), | 
|  | writer)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | last_serialized_connection_id_ = header.destination_connection_id; | 
|  |  | 
|  | if (QuicVersionHasLongHeaderLengths(transport_version()) && | 
|  | header.version_flag) { | 
|  | if (header.long_packet_type == INITIAL) { | 
|  | // Write retry token length. | 
|  | if (!writer->WriteVarInt62(header.retry_token.length(), | 
|  | header.retry_token_length_length)) { | 
|  | return false; | 
|  | } | 
|  | // Write retry token. | 
|  | if (!header.retry_token.empty() && | 
|  | !writer->WriteStringPiece(header.retry_token)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (length_field_offset != nullptr) { | 
|  | *length_field_offset = writer->length(); | 
|  | } | 
|  | // Add fake length to reserve two bytes to add length in later. | 
|  | writer->WriteVarInt62(256); | 
|  | } else if (length_field_offset != nullptr) { | 
|  | *length_field_offset = 0; | 
|  | } | 
|  |  | 
|  | // Append packet number. | 
|  | if (!AppendPacketNumber(header.packet_number_length, header.packet_number, | 
|  | writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!header.version_flag) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (header.nonce != nullptr) { | 
|  | DCHECK(header.version_flag); | 
|  | DCHECK_EQ(ZERO_RTT_PROTECTED, header.long_packet_type); | 
|  | DCHECK_EQ(Perspective::IS_SERVER, perspective_); | 
|  | if (!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const QuicTime::Delta QuicFramer::CalculateTimestampFromWire( | 
|  | uint32_t time_delta_us) { | 
|  | // The new time_delta might have wrapped to the next epoch, or it | 
|  | // might have reverse wrapped to the previous epoch, or it might | 
|  | // remain in the same epoch. Select the time closest to the previous | 
|  | // time. | 
|  | // | 
|  | // epoch_delta is the delta between epochs. A delta is 4 bytes of | 
|  | // microseconds. | 
|  | const uint64_t epoch_delta = UINT64_C(1) << 32; | 
|  | uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1); | 
|  | // Wrapping is safe here because a wrapped value will not be ClosestTo below. | 
|  | uint64_t prev_epoch = epoch - epoch_delta; | 
|  | uint64_t next_epoch = epoch + epoch_delta; | 
|  |  | 
|  | uint64_t time = ClosestTo( | 
|  | last_timestamp_.ToMicroseconds(), epoch + time_delta_us, | 
|  | ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us, | 
|  | next_epoch + time_delta_us)); | 
|  |  | 
|  | return QuicTime::Delta::FromMicroseconds(time); | 
|  | } | 
|  |  | 
|  | uint64_t QuicFramer::CalculatePacketNumberFromWire( | 
|  | QuicPacketNumberLength packet_number_length, | 
|  | QuicPacketNumber base_packet_number, | 
|  | uint64_t packet_number) const { | 
|  | // The new packet number might have wrapped to the next epoch, or | 
|  | // it might have reverse wrapped to the previous epoch, or it might | 
|  | // remain in the same epoch.  Select the packet number closest to the | 
|  | // next expected packet number, the previous packet number plus 1. | 
|  |  | 
|  | // epoch_delta is the delta between epochs the packet number was serialized | 
|  | // with, so the correct value is likely the same epoch as the last sequence | 
|  | // number or an adjacent epoch. | 
|  | if (!base_packet_number.IsInitialized()) { | 
|  | return packet_number; | 
|  | } | 
|  | const uint64_t epoch_delta = UINT64_C(1) << (8 * packet_number_length); | 
|  | uint64_t next_packet_number = base_packet_number.ToUint64() + 1; | 
|  | uint64_t epoch = base_packet_number.ToUint64() & ~(epoch_delta - 1); | 
|  | uint64_t prev_epoch = epoch - epoch_delta; | 
|  | uint64_t next_epoch = epoch + epoch_delta; | 
|  |  | 
|  | return ClosestTo(next_packet_number, epoch + packet_number, | 
|  | ClosestTo(next_packet_number, prev_epoch + packet_number, | 
|  | next_epoch + packet_number)); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader, | 
|  | bool packet_has_ietf_packet_header, | 
|  | QuicPacketHeader* header) { | 
|  | if (packet_has_ietf_packet_header) { | 
|  | return ProcessIetfPacketHeader(reader, header); | 
|  | } | 
|  | DCHECK(!QuicUtils::VariableLengthConnectionIdAllowedForVersion( | 
|  | transport_version())); | 
|  | uint8_t public_flags; | 
|  | if (!reader->ReadBytes(&public_flags, 1)) { | 
|  | set_detailed_error("Unable to read public flags."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0; | 
|  | header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0; | 
|  |  | 
|  | if (validate_flags_ && !header->version_flag && | 
|  | public_flags > PACKET_PUBLIC_FLAGS_MAX) { | 
|  | set_detailed_error("Illegal public flags value."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (header->reset_flag && header->version_flag) { | 
|  | set_detailed_error("Got version flag in reset packet"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) { | 
|  | case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID: | 
|  | if (!reader->ReadConnectionId(&header->destination_connection_id, | 
|  | kQuicDefaultConnectionIdLength)) { | 
|  | set_detailed_error("Unable to read ConnectionId."); | 
|  | return false; | 
|  | } | 
|  | header->destination_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | break; | 
|  | case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID: | 
|  | header->destination_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | header->destination_connection_id = last_serialized_connection_id_; | 
|  | break; | 
|  | } | 
|  |  | 
|  | header->packet_number_length = ReadSequenceNumberLength( | 
|  | public_flags >> kPublicHeaderSequenceNumberShift); | 
|  |  | 
|  | // Read the version only if the packet is from the client. | 
|  | // version flag from the server means version negotiation packet. | 
|  | if (header->version_flag && perspective_ == Perspective::IS_SERVER) { | 
|  | QuicVersionLabel version_label; | 
|  | if (!reader->ReadTag(&version_label)) { | 
|  | set_detailed_error("Unable to read protocol version."); | 
|  | return false; | 
|  | } | 
|  | // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed. | 
|  | version_label = QuicEndian::NetToHost32(version_label); | 
|  |  | 
|  | // If the version from the new packet is the same as the version of this | 
|  | // framer, then the public flags should be set to something we understand. | 
|  | // If not, this raises an error. | 
|  | last_version_label_ = version_label; | 
|  | ParsedQuicVersion version = ParseQuicVersionLabel(version_label); | 
|  | if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) { | 
|  | set_detailed_error("Illegal public flags value."); | 
|  | return false; | 
|  | } | 
|  | header->version = version; | 
|  | } | 
|  |  | 
|  | // A nonce should only be present in packets from the server to the client, | 
|  | // which are neither version negotiation nor public reset packets. | 
|  | if (public_flags & PACKET_PUBLIC_FLAGS_NONCE && | 
|  | !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) && | 
|  | !(public_flags & PACKET_PUBLIC_FLAGS_RST) && | 
|  | // The nonce flag from a client is ignored and is assumed to be an older | 
|  | // client indicating an eight-byte connection ID. | 
|  | perspective_ == Perspective::IS_CLIENT) { | 
|  | if (!reader->ReadBytes(reinterpret_cast<uint8_t*>(last_nonce_.data()), | 
|  | last_nonce_.size())) { | 
|  | set_detailed_error("Unable to read nonce."); | 
|  | return false; | 
|  | } | 
|  | header->nonce = &last_nonce_; | 
|  | } else { | 
|  | header->nonce = nullptr; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength( | 
|  | QuicTransportVersion version, | 
|  | QuicPacketNumber packet_number) { | 
|  | DCHECK(packet_number.IsInitialized()); | 
|  | if (packet_number < QuicPacketNumber(1 << (PACKET_1BYTE_PACKET_NUMBER * 8))) { | 
|  | return PACKET_1BYTE_PACKET_NUMBER; | 
|  | } else if (packet_number < | 
|  | QuicPacketNumber(1 << (PACKET_2BYTE_PACKET_NUMBER * 8))) { | 
|  | return PACKET_2BYTE_PACKET_NUMBER; | 
|  | } else if (packet_number < | 
|  | QuicPacketNumber(UINT64_C(1) | 
|  | << (PACKET_4BYTE_PACKET_NUMBER * 8))) { | 
|  | return PACKET_4BYTE_PACKET_NUMBER; | 
|  | } else { | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | } | 
|  | } | 
|  |  | 
|  | // static | 
|  | uint8_t QuicFramer::GetPacketNumberFlags( | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | switch (packet_number_length) { | 
|  | case PACKET_1BYTE_PACKET_NUMBER: | 
|  | return PACKET_FLAGS_1BYTE_PACKET; | 
|  | case PACKET_2BYTE_PACKET_NUMBER: | 
|  | return PACKET_FLAGS_2BYTE_PACKET; | 
|  | case PACKET_4BYTE_PACKET_NUMBER: | 
|  | return PACKET_FLAGS_4BYTE_PACKET; | 
|  | case PACKET_6BYTE_PACKET_NUMBER: | 
|  | case PACKET_8BYTE_PACKET_NUMBER: | 
|  | return PACKET_FLAGS_8BYTE_PACKET; | 
|  | default: | 
|  | QUIC_BUG << "Unreachable case statement."; | 
|  | return PACKET_FLAGS_8BYTE_PACKET; | 
|  | } | 
|  | } | 
|  |  | 
|  | // static | 
|  | QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo( | 
|  | const QuicAckFrame& frame) { | 
|  | AckFrameInfo new_ack_info; | 
|  | if (frame.packets.Empty()) { | 
|  | return new_ack_info; | 
|  | } | 
|  | // The first block is the last interval. It isn't encoded with the gap-length | 
|  | // encoding, so skip it. | 
|  | new_ack_info.first_block_length = frame.packets.LastIntervalLength(); | 
|  | auto itr = frame.packets.rbegin(); | 
|  | QuicPacketNumber previous_start = itr->min(); | 
|  | new_ack_info.max_block_length = PacketNumberIntervalLength(*itr); | 
|  | ++itr; | 
|  |  | 
|  | // Don't do any more work after getting information for 256 ACK blocks; any | 
|  | // more can't be encoded anyway. | 
|  | for (; itr != frame.packets.rend() && | 
|  | new_ack_info.num_ack_blocks < std::numeric_limits<uint8_t>::max(); | 
|  | previous_start = itr->min(), ++itr) { | 
|  | const auto& interval = *itr; | 
|  | const QuicPacketCount total_gap = previous_start - interval.max(); | 
|  | new_ack_info.num_ack_blocks += | 
|  | (total_gap + std::numeric_limits<uint8_t>::max() - 1) / | 
|  | std::numeric_limits<uint8_t>::max(); | 
|  | new_ack_info.max_block_length = std::max( | 
|  | new_ack_info.max_block_length, PacketNumberIntervalLength(interval)); | 
|  | } | 
|  | return new_ack_info; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader, | 
|  | QuicPacketHeader* header) { | 
|  | QuicPacketNumber base_packet_number = largest_packet_number_; | 
|  | uint64_t full_packet_number; | 
|  | if (!ProcessAndCalculatePacketNumber( | 
|  | encrypted_reader, header->packet_number_length, base_packet_number, | 
|  | &full_packet_number)) { | 
|  | set_detailed_error("Unable to read packet number."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | if (!IsValidFullPacketNumber(full_packet_number, transport_version())) { | 
|  | set_detailed_error("packet numbers cannot be 0."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | header->packet_number = QuicPacketNumber(full_packet_number); | 
|  |  | 
|  | if (!visitor_->OnUnauthenticatedHeader(*header)) { | 
|  | set_detailed_error( | 
|  | "Visitor asked to stop processing of unauthenticated header."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfHeaderTypeByte(QuicDataReader* reader, | 
|  | QuicPacketHeader* header) { | 
|  | uint8_t type; | 
|  | if (!reader->ReadBytes(&type, 1)) { | 
|  | set_detailed_error("Unable to read type."); | 
|  | return false; | 
|  | } | 
|  | // Determine whether this is a long or short header. | 
|  | header->form = type & FLAGS_LONG_HEADER ? IETF_QUIC_LONG_HEADER_PACKET | 
|  | : IETF_QUIC_SHORT_HEADER_PACKET; | 
|  | if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { | 
|  | // Version is always present in long headers. | 
|  | header->version_flag = true; | 
|  | // Long header packets received by client must include 8-byte source | 
|  | // connection ID, and those received by server must include 8-byte | 
|  | // destination connection ID. | 
|  | header->destination_connection_id_included = | 
|  | perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT | 
|  | : CONNECTION_ID_PRESENT; | 
|  | header->source_connection_id_included = | 
|  | perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_PRESENT | 
|  | : CONNECTION_ID_ABSENT; | 
|  | // Read version tag. | 
|  | QuicVersionLabel version_label; | 
|  | if (!reader->ReadTag(&version_label)) { | 
|  | set_detailed_error("Unable to read protocol version."); | 
|  | return false; | 
|  | } | 
|  | // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed. | 
|  | version_label = QuicEndian::NetToHost32(version_label); | 
|  | if (!version_label) { | 
|  | // Version label is 0 indicating this is a version negotiation packet. | 
|  | header->long_packet_type = VERSION_NEGOTIATION; | 
|  | } else { | 
|  | header->version = ParseQuicVersionLabel(version_label); | 
|  | if (header->version.transport_version != QUIC_VERSION_UNSUPPORTED) { | 
|  | if (header->version.transport_version > QUIC_VERSION_44 && | 
|  | !(type & FLAGS_FIXED_BIT)) { | 
|  | set_detailed_error("Fixed bit is 0 in long header."); | 
|  | return false; | 
|  | } | 
|  | if (!GetLongHeaderType(header->version.transport_version, type, | 
|  | &header->long_packet_type)) { | 
|  | set_detailed_error("Illegal long header type value."); | 
|  | return false; | 
|  | } | 
|  | header->packet_number_length = GetLongHeaderPacketNumberLength( | 
|  | header->version.transport_version, type); | 
|  | } | 
|  | } | 
|  | if (header->long_packet_type != VERSION_NEGOTIATION) { | 
|  | // Do not save version of version negotiation packet. | 
|  | last_version_label_ = version_label; | 
|  | } | 
|  |  | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Received IETF long header: " | 
|  | << QuicUtils::QuicLongHeaderTypetoString( | 
|  | header->long_packet_type); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Received IETF short header"; | 
|  | // Version is not present in short headers. | 
|  | header->version_flag = false; | 
|  | // Connection ID length depends on the perspective. Client does not expect | 
|  | // destination connection ID, and server expects destination connection ID. | 
|  | header->destination_connection_id_included = | 
|  | perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT | 
|  | : CONNECTION_ID_PRESENT; | 
|  | header->source_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | if (infer_packet_header_type_from_version_ && | 
|  | transport_version() > QUIC_VERSION_44 && !(type & FLAGS_FIXED_BIT)) { | 
|  | set_detailed_error("Fixed bit is 0 in short header."); | 
|  | return false; | 
|  | } | 
|  | if (!GetShortHeaderPacketNumberLength(transport_version(), type, | 
|  | infer_packet_header_type_from_version_, | 
|  | &header->packet_number_length)) { | 
|  | set_detailed_error("Illegal short header type value."); | 
|  | return false; | 
|  | } | 
|  | QUIC_DVLOG(1) << "packet_number_length = " << header->packet_number_length; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader, | 
|  | QuicPacketHeader* header) { | 
|  | if (!ProcessIetfHeaderTypeByte(reader, header)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint8_t destination_connection_id_length = | 
|  | header->destination_connection_id_included == CONNECTION_ID_PRESENT | 
|  | ? kQuicDefaultConnectionIdLength | 
|  | : 0; | 
|  | uint8_t source_connection_id_length = | 
|  | header->source_connection_id_included == CONNECTION_ID_PRESENT | 
|  | ? kQuicDefaultConnectionIdLength | 
|  | : 0; | 
|  | if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { | 
|  | // Read and validate connection ID length. | 
|  | uint8_t connection_id_lengths_byte; | 
|  | if (!reader->ReadBytes(&connection_id_lengths_byte, 1)) { | 
|  | set_detailed_error("Unable to read ConnectionId length."); | 
|  | return false; | 
|  | } | 
|  | uint8_t dcil = | 
|  | (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4; | 
|  | if (dcil != 0) { | 
|  | dcil += kConnectionIdLengthAdjustment; | 
|  | } | 
|  | uint8_t scil = connection_id_lengths_byte & kSourceConnectionIdLengthMask; | 
|  | if (scil != 0) { | 
|  | scil += kConnectionIdLengthAdjustment; | 
|  | } | 
|  | if (dcil != destination_connection_id_length || | 
|  | scil != source_connection_id_length) { | 
|  | // Long header packets received by client must include 8-byte source | 
|  | // connection ID, and those received by server must include 8-byte | 
|  | // destination connection ID. | 
|  | QUIC_DVLOG(1) << "dcil: " << static_cast<uint32_t>(dcil) | 
|  | << ", scil: " << static_cast<uint32_t>(scil); | 
|  | set_detailed_error("Invalid ConnectionId length."); | 
|  | return false; | 
|  | } | 
|  | destination_connection_id_length = dcil; | 
|  | source_connection_id_length = scil; | 
|  | } | 
|  |  | 
|  | // Read connection ID. | 
|  | if (!reader->ReadConnectionId(&header->destination_connection_id, | 
|  | destination_connection_id_length)) { | 
|  | set_detailed_error("Unable to read Destination ConnectionId."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadConnectionId(&header->source_connection_id, | 
|  | source_connection_id_length)) { | 
|  | set_detailed_error("Unable to read Source ConnectionId."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (header->source_connection_id_included == CONNECTION_ID_PRESENT) { | 
|  | // Set destination connection ID to source connection ID. | 
|  | DCHECK_EQ(EmptyQuicConnectionId(), header->destination_connection_id); | 
|  | header->destination_connection_id = header->source_connection_id; | 
|  | } else if (header->destination_connection_id_included == | 
|  | CONNECTION_ID_ABSENT) { | 
|  | header->destination_connection_id = last_serialized_connection_id_; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessAndCalculatePacketNumber( | 
|  | QuicDataReader* reader, | 
|  | QuicPacketNumberLength packet_number_length, | 
|  | QuicPacketNumber base_packet_number, | 
|  | uint64_t* packet_number) { | 
|  | uint64_t wire_packet_number; | 
|  | if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(ianswett): Explore the usefulness of trying multiple packet numbers | 
|  | // in case the first guess is incorrect. | 
|  | *packet_number = CalculatePacketNumberFromWire( | 
|  | packet_number_length, base_packet_number, wire_packet_number); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessFrameData(QuicDataReader* reader, | 
|  | const QuicPacketHeader& header) { | 
|  | DCHECK_NE(QUIC_VERSION_99, version_.transport_version) | 
|  | << "Version 99 negotiated, but not processing frames as version 99."; | 
|  | if (reader->IsDoneReading()) { | 
|  | set_detailed_error("Packet has no frames."); | 
|  | return RaiseError(QUIC_MISSING_PAYLOAD); | 
|  | } | 
|  | while (!reader->IsDoneReading()) { | 
|  | uint8_t frame_type; | 
|  | if (!reader->ReadBytes(&frame_type, 1)) { | 
|  | set_detailed_error("Unable to read frame type."); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | const uint8_t special_mask = transport_version() <= QUIC_VERSION_44 | 
|  | ? kQuicFrameTypeBrokenMask | 
|  | : kQuicFrameTypeSpecialMask; | 
|  | if (frame_type & special_mask) { | 
|  | // Stream Frame | 
|  | if (frame_type & kQuicFrameTypeStreamMask) { | 
|  | QuicStreamFrame frame; | 
|  | if (!ProcessStreamFrame(reader, frame_type, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_STREAM_DATA); | 
|  | } | 
|  | if (!visitor_->OnStreamFrame(frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Ack Frame | 
|  | if (frame_type & kQuicFrameTypeAckMask) { | 
|  | if (!ProcessAckFrame(reader, frame_type)) { | 
|  | return RaiseError(QUIC_INVALID_ACK_DATA); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // This was a special frame type that did not match any | 
|  | // of the known ones. Error. | 
|  | set_detailed_error("Illegal frame type."); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " | 
|  | << static_cast<int>(frame_type); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  |  | 
|  | switch (frame_type) { | 
|  | case PADDING_FRAME: { | 
|  | QuicPaddingFrame frame; | 
|  | ProcessPaddingFrame(reader, &frame); | 
|  | if (!visitor_->OnPaddingFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case RST_STREAM_FRAME: { | 
|  | QuicRstStreamFrame frame; | 
|  | if (!ProcessRstStreamFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_RST_STREAM_DATA); | 
|  | } | 
|  | if (!visitor_->OnRstStreamFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case CONNECTION_CLOSE_FRAME: { | 
|  | QuicConnectionCloseFrame frame; | 
|  | if (!ProcessConnectionCloseFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnConnectionCloseFrame(frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case GOAWAY_FRAME: { | 
|  | QuicGoAwayFrame goaway_frame; | 
|  | if (!ProcessGoAwayFrame(reader, &goaway_frame)) { | 
|  | return RaiseError(QUIC_INVALID_GOAWAY_DATA); | 
|  | } | 
|  | if (!visitor_->OnGoAwayFrame(goaway_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case WINDOW_UPDATE_FRAME: { | 
|  | QuicWindowUpdateFrame window_update_frame; | 
|  | if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) { | 
|  | return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA); | 
|  | } | 
|  | if (!visitor_->OnWindowUpdateFrame(window_update_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case BLOCKED_FRAME: { | 
|  | QuicBlockedFrame blocked_frame; | 
|  | if (!ProcessBlockedFrame(reader, &blocked_frame)) { | 
|  | return RaiseError(QUIC_INVALID_BLOCKED_DATA); | 
|  | } | 
|  | if (!visitor_->OnBlockedFrame(blocked_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case STOP_WAITING_FRAME: { | 
|  | QuicStopWaitingFrame stop_waiting_frame; | 
|  | if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) { | 
|  | return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); | 
|  | } | 
|  | if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | case PING_FRAME: { | 
|  | // Ping has no payload. | 
|  | QuicPingFrame ping_frame; | 
|  | if (!visitor_->OnPingFrame(ping_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | case IETF_EXTENSION_MESSAGE_NO_LENGTH: | 
|  | QUIC_FALLTHROUGH_INTENDED; | 
|  | case IETF_EXTENSION_MESSAGE: { | 
|  | QuicMessageFrame message_frame; | 
|  | if (!ProcessMessageFrame(reader, | 
|  | frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH, | 
|  | &message_frame)) { | 
|  | return RaiseError(QUIC_INVALID_MESSAGE_DATA); | 
|  | } | 
|  | if (!visitor_->OnMessageFrame(message_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CRYPTO_FRAME: { | 
|  | if (version_.transport_version < QUIC_VERSION_47) { | 
|  | set_detailed_error("Illegal frame type."); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | QuicCryptoFrame frame; | 
|  | if (!ProcessCryptoFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | if (!visitor_->OnCryptoFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | set_detailed_error("Illegal frame type."); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " | 
|  | << static_cast<int>(frame_type); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfFrameData(QuicDataReader* reader, | 
|  | const QuicPacketHeader& header) { | 
|  | DCHECK_EQ(QUIC_VERSION_99, version_.transport_version) | 
|  | << "Attempt to process frames as IETF frames but version is " | 
|  | << version_.transport_version << ", not 99."; | 
|  | if (reader->IsDoneReading()) { | 
|  | set_detailed_error("Packet has no frames."); | 
|  | return RaiseError(QUIC_MISSING_PAYLOAD); | 
|  | } | 
|  | while (!reader->IsDoneReading()) { | 
|  | uint64_t frame_type; | 
|  | // Will be the number of bytes into which frame_type was encoded. | 
|  | size_t encoded_bytes = reader->BytesRemaining(); | 
|  | if (!reader->ReadVarInt62(&frame_type)) { | 
|  | set_detailed_error("Unable to read frame type."); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  |  | 
|  | // Is now the number of bytes into which the frame type was encoded. | 
|  | encoded_bytes -= reader->BytesRemaining(); | 
|  |  | 
|  | // Check that the frame type is minimally encoded. | 
|  | if (encoded_bytes != | 
|  | static_cast<size_t>(QuicDataWriter::GetVarInt62Len(frame_type))) { | 
|  | // The frame type was not minimally encoded. | 
|  | set_detailed_error("Frame type not minimally encoded."); | 
|  | return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION); | 
|  | } | 
|  |  | 
|  | if (IS_IETF_STREAM_FRAME(frame_type)) { | 
|  | QuicStreamFrame frame; | 
|  | if (!ProcessIetfStreamFrame(reader, frame_type, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_STREAM_DATA); | 
|  | } | 
|  | if (!visitor_->OnStreamFrame(frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | switch (frame_type) { | 
|  | case IETF_PADDING: { | 
|  | QuicPaddingFrame frame; | 
|  | ProcessPaddingFrame(reader, &frame); | 
|  | if (!visitor_->OnPaddingFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_RST_STREAM: { | 
|  | QuicRstStreamFrame frame; | 
|  | if (!ProcessIetfResetStreamFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_RST_STREAM_DATA); | 
|  | } | 
|  | if (!visitor_->OnRstStreamFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_CONNECTION_CLOSE: { | 
|  | QuicConnectionCloseFrame frame; | 
|  | if (!ProcessIetfConnectionCloseFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); | 
|  | } | 
|  | if (!visitor_->OnConnectionCloseFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_APPLICATION_CLOSE: { | 
|  | QuicApplicationCloseFrame frame; | 
|  | if (!ProcessApplicationCloseFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_APPLICATION_CLOSE_DATA); | 
|  | } | 
|  | if (!visitor_->OnApplicationCloseFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_MAX_DATA: { | 
|  | QuicWindowUpdateFrame frame; | 
|  | if (!ProcessMaxDataFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_MAX_DATA_FRAME_DATA); | 
|  | } | 
|  | // TODO(fkastenholz): Or should we create a new visitor function, | 
|  | // OnMaxDataFrame()? | 
|  | if (!visitor_->OnWindowUpdateFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_MAX_STREAM_DATA: { | 
|  | QuicWindowUpdateFrame frame; | 
|  | if (!ProcessMaxStreamDataFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA); | 
|  | } | 
|  | // TODO(fkastenholz): Or should we create a new visitor function, | 
|  | // OnMaxStreamDataFrame()? | 
|  | if (!visitor_->OnWindowUpdateFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_MAX_STREAMS_BIDIRECTIONAL: | 
|  | case IETF_MAX_STREAMS_UNIDIRECTIONAL: { | 
|  | QuicMaxStreamIdFrame frame; | 
|  | if (!ProcessMaxStreamsFrame(reader, &frame, frame_type)) { | 
|  | return RaiseError(QUIC_MAX_STREAM_ID_DATA); | 
|  | } | 
|  | QUIC_CODE_COUNT_N(max_stream_id_received, 1, 2); | 
|  | if (!visitor_->OnMaxStreamIdFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_PING: { | 
|  | // Ping has no payload. | 
|  | QuicPingFrame ping_frame; | 
|  | if (!visitor_->OnPingFrame(ping_frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_BLOCKED: { | 
|  | QuicBlockedFrame frame; | 
|  | if (!ProcessIetfBlockedFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_BLOCKED_DATA); | 
|  | } | 
|  | if (!visitor_->OnBlockedFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_STREAM_BLOCKED: { | 
|  | QuicBlockedFrame frame; | 
|  | if (!ProcessStreamBlockedFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_STREAM_BLOCKED_DATA); | 
|  | } | 
|  | if (!visitor_->OnBlockedFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_STREAMS_BLOCKED_UNIDIRECTIONAL: | 
|  | case IETF_STREAMS_BLOCKED_BIDIRECTIONAL: { | 
|  | QuicStreamIdBlockedFrame frame; | 
|  | if (!ProcessStreamsBlockedFrame(reader, &frame, frame_type)) { | 
|  | return RaiseError(QUIC_STREAM_ID_BLOCKED_DATA); | 
|  | } | 
|  | QUIC_CODE_COUNT_N(stream_id_blocked_received, 1, 2); | 
|  | if (!visitor_->OnStreamIdBlockedFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_NEW_CONNECTION_ID: { | 
|  | QuicNewConnectionIdFrame frame; | 
|  | if (!ProcessNewConnectionIdFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_NEW_CONNECTION_ID_DATA); | 
|  | } | 
|  | if (!visitor_->OnNewConnectionIdFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_RETIRE_CONNECTION_ID: { | 
|  | QuicRetireConnectionIdFrame frame; | 
|  | if (!ProcessRetireConnectionIdFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA); | 
|  | } | 
|  | if (!visitor_->OnRetireConnectionIdFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_NEW_TOKEN: { | 
|  | QuicNewTokenFrame frame; | 
|  | if (!ProcessNewTokenFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_NEW_TOKEN); | 
|  | } | 
|  | if (!visitor_->OnNewTokenFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_STOP_SENDING: { | 
|  | QuicStopSendingFrame frame; | 
|  | if (!ProcessStopSendingFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_STOP_SENDING_FRAME_DATA); | 
|  | } | 
|  | if (!visitor_->OnStopSendingFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_ACK_ECN: | 
|  | case IETF_ACK: { | 
|  | QuicAckFrame frame; | 
|  | if (!ProcessIetfAckFrame(reader, frame_type, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_ACK_DATA); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_PATH_CHALLENGE: { | 
|  | QuicPathChallengeFrame frame; | 
|  | if (!ProcessPathChallengeFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_PATH_CHALLENGE_DATA); | 
|  | } | 
|  | if (!visitor_->OnPathChallengeFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_PATH_RESPONSE: { | 
|  | QuicPathResponseFrame frame; | 
|  | if (!ProcessPathResponseFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_PATH_RESPONSE_DATA); | 
|  | } | 
|  | if (!visitor_->OnPathResponseFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_EXTENSION_MESSAGE_NO_LENGTH: | 
|  | QUIC_FALLTHROUGH_INTENDED; | 
|  | case IETF_EXTENSION_MESSAGE: { | 
|  | QuicMessageFrame message_frame; | 
|  | if (!ProcessMessageFrame( | 
|  | reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH, | 
|  | &message_frame)) { | 
|  | return RaiseError(QUIC_INVALID_MESSAGE_DATA); | 
|  | } | 
|  | if (!visitor_->OnMessageFrame(message_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_CRYPTO: { | 
|  | QuicCryptoFrame frame; | 
|  | if (!ProcessCryptoFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | if (!visitor_->OnCryptoFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | set_detailed_error("Illegal frame type."); | 
|  | QUIC_DLOG(WARNING) | 
|  | << ENDPOINT | 
|  | << "Illegal frame type: " << static_cast<int>(frame_type); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Create a mask that sets the last |num_bits| to 1 and the rest to 0. | 
|  | inline uint8_t GetMaskFromNumBits(uint8_t num_bits) { | 
|  | return (1u << num_bits) - 1; | 
|  | } | 
|  |  | 
|  | // Extract |num_bits| from |flags| offset by |offset|. | 
|  | uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) { | 
|  | return (flags >> offset) & GetMaskFromNumBits(num_bits); | 
|  | } | 
|  |  | 
|  | // Extract the bit at position |offset| from |flags| as a bool. | 
|  | bool ExtractBit(uint8_t flags, uint8_t offset) { | 
|  | return ((flags >> offset) & GetMaskFromNumBits(1)) != 0; | 
|  | } | 
|  |  | 
|  | // Set |num_bits|, offset by |offset| to |val| in |flags|. | 
|  | void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) { | 
|  | DCHECK_LE(val, GetMaskFromNumBits(num_bits)); | 
|  | *flags |= val << offset; | 
|  | } | 
|  |  | 
|  | // Set the bit at position |offset| to |val| in |flags|. | 
|  | void SetBit(uint8_t* flags, bool val, uint8_t offset) { | 
|  | SetBits(flags, val ? 1 : 0, 1, offset); | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader, | 
|  | uint8_t frame_type, | 
|  | QuicStreamFrame* frame) { | 
|  | uint8_t stream_flags = frame_type; | 
|  |  | 
|  | uint8_t stream_id_length = 0; | 
|  | uint8_t offset_length = 4; | 
|  | bool has_data_length = true; | 
|  | stream_flags &= ~kQuicFrameTypeStreamMask; | 
|  |  | 
|  | // Read from right to left: StreamID, Offset, Data Length, Fin. | 
|  | stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1; | 
|  | stream_flags >>= kQuicStreamIdShift; | 
|  |  | 
|  | offset_length = (stream_flags & kQuicStreamOffsetMask); | 
|  | // There is no encoding for 1 byte, only 0 and 2 through 8. | 
|  | if (offset_length > 0) { | 
|  | offset_length += 1; | 
|  | } | 
|  | stream_flags >>= kQuicStreamShift; | 
|  |  | 
|  | has_data_length = | 
|  | (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask; | 
|  | stream_flags >>= kQuicStreamDataLengthShift; | 
|  |  | 
|  | frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift; | 
|  |  | 
|  | uint64_t stream_id; | 
|  | if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) { | 
|  | set_detailed_error("Unable to read stream_id."); | 
|  | return false; | 
|  | } | 
|  | frame->stream_id = static_cast<QuicStreamId>(stream_id); | 
|  |  | 
|  | if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) { | 
|  | set_detailed_error("Unable to read offset."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(ianswett): Don't use QuicStringPiece as an intermediary. | 
|  | QuicStringPiece data; | 
|  | if (has_data_length) { | 
|  | if (!reader->ReadStringPiece16(&data)) { | 
|  | set_detailed_error("Unable to read frame data."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) { | 
|  | set_detailed_error("Unable to read frame data."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | frame->data_buffer = data.data(); | 
|  | frame->data_length = static_cast<uint16_t>(data.length()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader, | 
|  | uint8_t frame_type, | 
|  | QuicStreamFrame* frame) { | 
|  | // Read stream id from the frame. It's always present. | 
|  | if (!reader->ReadVarIntStreamId(&frame->stream_id)) { | 
|  | set_detailed_error("Unable to read stream_id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we have a data offset, read it. If not, set to 0. | 
|  | if (frame_type & IETF_STREAM_FRAME_OFF_BIT) { | 
|  | if (!reader->ReadVarInt62(&frame->offset)) { | 
|  | set_detailed_error("Unable to read stream data offset."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // no offset in the frame, ensure it's 0 in the Frame. | 
|  | frame->offset = 0; | 
|  | } | 
|  |  | 
|  | // If we have a data length, read it. If not, set to 0. | 
|  | if (frame_type & IETF_STREAM_FRAME_LEN_BIT) { | 
|  | QuicIetfStreamDataLength length; | 
|  | if (!reader->ReadVarInt62(&length)) { | 
|  | set_detailed_error("Unable to read stream data length."); | 
|  | return false; | 
|  | } | 
|  | if (length > 0xffff) { | 
|  | set_detailed_error("Stream data length is too large."); | 
|  | return false; | 
|  | } | 
|  | frame->data_length = length; | 
|  | } else { | 
|  | // no length in the frame, it is the number of bytes remaining in the | 
|  | // packet. | 
|  | frame->data_length = reader->BytesRemaining(); | 
|  | } | 
|  |  | 
|  | if (frame_type & IETF_STREAM_FRAME_FIN_BIT) { | 
|  | frame->fin = true; | 
|  | } else { | 
|  | frame->fin = false; | 
|  | } | 
|  |  | 
|  | // TODO(ianswett): Don't use QuicStringPiece as an intermediary. | 
|  | QuicStringPiece data; | 
|  | if (!reader->ReadStringPiece(&data, frame->data_length)) { | 
|  | set_detailed_error("Unable to read frame data."); | 
|  | return false; | 
|  | } | 
|  | frame->data_buffer = data.data(); | 
|  | frame->data_length = static_cast<QuicIetfStreamDataLength>(data.length()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessCryptoFrame(QuicDataReader* reader, | 
|  | QuicCryptoFrame* frame) { | 
|  | if (!reader->ReadVarInt62(&frame->offset)) { | 
|  | set_detailed_error("Unable to read crypto data offset."); | 
|  | return false; | 
|  | } | 
|  | uint64_t len; | 
|  | if (!reader->ReadVarInt62(&len) || | 
|  | len > std::numeric_limits<QuicPacketLength>::max()) { | 
|  | set_detailed_error("Invalid data length."); | 
|  | return false; | 
|  | } | 
|  | frame->data_length = len; | 
|  |  | 
|  | // TODO(ianswett): Don't use QuicStringPiece as an intermediary. | 
|  | QuicStringPiece data; | 
|  | if (!reader->ReadStringPiece(&data, frame->data_length)) { | 
|  | set_detailed_error("Unable to read frame data."); | 
|  | return false; | 
|  | } | 
|  | frame->data_buffer = data.data(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type) { | 
|  | const bool has_ack_blocks = | 
|  | ExtractBit(frame_type, kQuicHasMultipleAckBlocksOffset); | 
|  | uint8_t num_ack_blocks = 0; | 
|  | uint8_t num_received_packets = 0; | 
|  |  | 
|  | // Determine the two lengths from the frame type: largest acked length, | 
|  | // ack block length. | 
|  | const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength( | 
|  | version_.transport_version, | 
|  | ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, | 
|  | kActBlockLengthOffset)); | 
|  | const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength( | 
|  | version_.transport_version, | 
|  | ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, | 
|  | kLargestAckedOffset)); | 
|  |  | 
|  | uint64_t largest_acked; | 
|  | if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) { | 
|  | set_detailed_error("Unable to read largest acked."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (largest_acked < first_sending_packet_number_.ToUint64()) { | 
|  | // Connection always sends packet starting from kFirstSendingPacketNumber > | 
|  | // 0, peer has observed an unsent packet. | 
|  | set_detailed_error("Largest acked is 0."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t ack_delay_time_us; | 
|  | if (!reader->ReadUFloat16(&ack_delay_time_us)) { | 
|  | set_detailed_error("Unable to read ack delay time."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnAckFrameStart( | 
|  | QuicPacketNumber(largest_acked), | 
|  | ack_delay_time_us == kUFloat16MaxValue | 
|  | ? QuicTime::Delta::Infinite() | 
|  | : QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) { | 
|  | // The visitor suppresses further processing of the packet. Although this is | 
|  | // not a parsing error, returns false as this is in middle of processing an | 
|  | // ack frame, | 
|  | set_detailed_error("Visitor suppresses further processing of ack frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) { | 
|  | set_detailed_error("Unable to read num of ack blocks."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t first_block_length; | 
|  | if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) { | 
|  | set_detailed_error("Unable to read first ack block length."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (first_block_length == 0) { | 
|  | set_detailed_error("First block length is zero."); | 
|  | return false; | 
|  | } | 
|  | bool first_ack_block_underflow = first_block_length > largest_acked + 1; | 
|  | if (first_block_length + first_sending_packet_number_.ToUint64() > | 
|  | largest_acked + 1) { | 
|  | first_ack_block_underflow = true; | 
|  | } | 
|  | if (first_ack_block_underflow) { | 
|  | set_detailed_error(QuicStrCat("Underflow with first ack block length ", | 
|  | first_block_length, " largest acked is ", | 
|  | largest_acked, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t first_received = largest_acked + 1 - first_block_length; | 
|  | if (!visitor_->OnAckRange(QuicPacketNumber(first_received), | 
|  | QuicPacketNumber(largest_acked + 1))) { | 
|  | // The visitor suppresses further processing of the packet. Although | 
|  | // this is not a parsing error, returns false as this is in middle | 
|  | // of processing an ack frame, | 
|  | set_detailed_error("Visitor suppresses further processing of ack frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (num_ack_blocks > 0) { | 
|  | for (size_t i = 0; i < num_ack_blocks; ++i) { | 
|  | uint8_t gap = 0; | 
|  | if (!reader->ReadUInt8(&gap)) { | 
|  | set_detailed_error("Unable to read gap to next ack block."); | 
|  | return false; | 
|  | } | 
|  | uint64_t current_block_length; | 
|  | if (!reader->ReadBytesToUInt64(ack_block_length, ¤t_block_length)) { | 
|  | set_detailed_error("Unable to ack block length."); | 
|  | return false; | 
|  | } | 
|  | bool ack_block_underflow = first_received < gap + current_block_length; | 
|  | if (first_received < gap + current_block_length + | 
|  | first_sending_packet_number_.ToUint64()) { | 
|  | ack_block_underflow = true; | 
|  | } | 
|  | if (ack_block_underflow) { | 
|  | set_detailed_error( | 
|  | QuicStrCat("Underflow with ack block length ", current_block_length, | 
|  | ", end of block is ", first_received - gap, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | first_received -= (gap + current_block_length); | 
|  | if (current_block_length > 0) { | 
|  | if (!visitor_->OnAckRange( | 
|  | QuicPacketNumber(first_received), | 
|  | QuicPacketNumber(first_received) + current_block_length)) { | 
|  | // The visitor suppresses further processing of the packet. Although | 
|  | // this is not a parsing error, returns false as this is in middle | 
|  | // of processing an ack frame, | 
|  | set_detailed_error( | 
|  | "Visitor suppresses further processing of ack frame."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!reader->ReadUInt8(&num_received_packets)) { | 
|  | set_detailed_error("Unable to read num received packets."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ProcessTimestampsInAckFrame(num_received_packets, | 
|  | QuicPacketNumber(largest_acked), reader)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Done processing the ACK frame. | 
|  | return visitor_->OnAckFrameEnd(QuicPacketNumber(first_received)); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets, | 
|  | QuicPacketNumber largest_acked, | 
|  | QuicDataReader* reader) { | 
|  | if (num_received_packets == 0) { | 
|  | return true; | 
|  | } | 
|  | uint8_t delta_from_largest_observed; | 
|  | if (!reader->ReadUInt8(&delta_from_largest_observed)) { | 
|  | set_detailed_error("Unable to read sequence delta in received packets."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (largest_acked.ToUint64() <= delta_from_largest_observed) { | 
|  | set_detailed_error(QuicStrCat("delta_from_largest_observed too high: ", | 
|  | delta_from_largest_observed, | 
|  | ", largest_acked: ", largest_acked.ToUint64()) | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Time delta from the framer creation. | 
|  | uint32_t time_delta_us; | 
|  | if (!reader->ReadUInt32(&time_delta_us)) { | 
|  | set_detailed_error("Unable to read time delta in received packets."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicPacketNumber seq_num = largest_acked - delta_from_largest_observed; | 
|  | if (process_timestamps_) { | 
|  | last_timestamp_ = CalculateTimestampFromWire(time_delta_us); | 
|  |  | 
|  | visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); | 
|  | } | 
|  |  | 
|  | for (uint8_t i = 1; i < num_received_packets; ++i) { | 
|  | if (!reader->ReadUInt8(&delta_from_largest_observed)) { | 
|  | set_detailed_error("Unable to read sequence delta in received packets."); | 
|  | return false; | 
|  | } | 
|  | if (largest_acked.ToUint64() <= delta_from_largest_observed) { | 
|  | set_detailed_error( | 
|  | QuicStrCat("delta_from_largest_observed too high: ", | 
|  | delta_from_largest_observed, | 
|  | ", largest_acked: ", largest_acked.ToUint64()) | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  | seq_num = largest_acked - delta_from_largest_observed; | 
|  |  | 
|  | // Time delta from the previous timestamp. | 
|  | uint64_t incremental_time_delta_us; | 
|  | if (!reader->ReadUFloat16(&incremental_time_delta_us)) { | 
|  | set_detailed_error( | 
|  | "Unable to read incremental time delta in received packets."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (process_timestamps_) { | 
|  | last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds( | 
|  | incremental_time_delta_us); | 
|  | visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader, | 
|  | uint64_t frame_type, | 
|  | QuicAckFrame* ack_frame) { | 
|  | uint64_t largest_acked; | 
|  | if (!reader->ReadVarInt62(&largest_acked)) { | 
|  | set_detailed_error("Unable to read largest acked."); | 
|  | return false; | 
|  | } | 
|  | if (largest_acked < first_sending_packet_number_.ToUint64()) { | 
|  | // Connection always sends packet starting from kFirstSendingPacketNumber > | 
|  | // 0, peer has observed an unsent packet. | 
|  | set_detailed_error("Largest acked is 0."); | 
|  | return false; | 
|  | } | 
|  | ack_frame->largest_acked = static_cast<QuicPacketNumber>(largest_acked); | 
|  | uint64_t ack_delay_time_in_us; | 
|  | if (!reader->ReadVarInt62(&ack_delay_time_in_us)) { | 
|  | set_detailed_error("Unable to read ack delay time."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(fkastenholz) when we get real IETF QUIC, need to get | 
|  | // the currect shift from the transport parameters. | 
|  | if (ack_delay_time_in_us == kVarInt62MaxValue) { | 
|  | ack_frame->ack_delay_time = QuicTime::Delta::Infinite(); | 
|  | } else { | 
|  | ack_delay_time_in_us = (ack_delay_time_in_us << kIetfAckTimestampShift); | 
|  | ack_frame->ack_delay_time = | 
|  | QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us); | 
|  | } | 
|  | if (frame_type == IETF_ACK_ECN) { | 
|  | ack_frame->ecn_counters_populated = true; | 
|  | if (!reader->ReadVarInt62(&ack_frame->ect_0_count)) { | 
|  | set_detailed_error("Unable to read ack ect_0_count."); | 
|  | return false; | 
|  | } | 
|  | if (!reader->ReadVarInt62(&ack_frame->ect_1_count)) { | 
|  | set_detailed_error("Unable to read ack ect_1_count."); | 
|  | return false; | 
|  | } | 
|  | if (!reader->ReadVarInt62(&ack_frame->ecn_ce_count)) { | 
|  | set_detailed_error("Unable to read ack ecn_ce_count."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | ack_frame->ecn_counters_populated = false; | 
|  | ack_frame->ect_0_count = 0; | 
|  | ack_frame->ect_1_count = 0; | 
|  | ack_frame->ecn_ce_count = 0; | 
|  | } | 
|  | if (!visitor_->OnAckFrameStart(QuicPacketNumber(largest_acked), | 
|  | ack_frame->ack_delay_time)) { | 
|  | // The visitor suppresses further processing of the packet. Although this is | 
|  | // not a parsing error, returns false as this is in middle of processing an | 
|  | // ACK frame. | 
|  | set_detailed_error("Visitor suppresses further processing of ACK frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Get number of ACK blocks from the packet. | 
|  | uint64_t ack_block_count; | 
|  | if (!reader->ReadVarInt62(&ack_block_count)) { | 
|  | set_detailed_error("Unable to read ack block count."); | 
|  | return false; | 
|  | } | 
|  | // There always is a first ACK block, which is the (number of packets being | 
|  | // acked)-1, up to and including the packet at largest_acked. Therefore if the | 
|  | // value is 0, then only largest is acked. If it is 1, then largest-1, | 
|  | // largest] are acked, etc | 
|  | uint64_t ack_block_value; | 
|  | if (!reader->ReadVarInt62(&ack_block_value)) { | 
|  | set_detailed_error("Unable to read first ack block length."); | 
|  | return false; | 
|  | } | 
|  | // Calculate the packets being acked in the first block. | 
|  | //  +1 because AddRange implementation requires [low,high) | 
|  | uint64_t block_high = largest_acked + 1; | 
|  | uint64_t block_low = largest_acked - ack_block_value; | 
|  |  | 
|  | // ack_block_value is the number of packets preceding the | 
|  | // largest_acked packet which are in the block being acked. Thus, | 
|  | // its maximum value is largest_acked-1. Test this, reporting an | 
|  | // error if the value is wrong. | 
|  | if (ack_block_value + first_sending_packet_number_.ToUint64() > | 
|  | largest_acked) { | 
|  | set_detailed_error(QuicStrCat("Underflow with first ack block length ", | 
|  | ack_block_value + 1, " largest acked is ", | 
|  | largest_acked, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnAckRange(QuicPacketNumber(block_low), | 
|  | QuicPacketNumber(block_high))) { | 
|  | // The visitor suppresses further processing of the packet. Although | 
|  | // this is not a parsing error, returns false as this is in middle | 
|  | // of processing an ACK frame. | 
|  | set_detailed_error("Visitor suppresses further processing of ACK frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | while (ack_block_count != 0) { | 
|  | uint64_t gap_block_value; | 
|  | // Get the sizes of the gap and ack blocks, | 
|  | if (!reader->ReadVarInt62(&gap_block_value)) { | 
|  | set_detailed_error("Unable to read gap block value."); | 
|  | return false; | 
|  | } | 
|  | // It's an error if the gap is larger than the space from packet | 
|  | // number 0 to the start of the block that's just been acked, PLUS | 
|  | // there must be space for at least 1 packet to be acked. For | 
|  | // example, if block_low is 10 and gap_block_value is 9, it means | 
|  | // the gap block is 10 packets long, leaving no room for a packet | 
|  | // to be acked. Thus, gap_block_value+2 can not be larger than | 
|  | // block_low. | 
|  | // The test is written this way to detect wrap-arounds. | 
|  | if ((gap_block_value + 2) > block_low) { | 
|  | set_detailed_error( | 
|  | QuicStrCat("Underflow with gap block length ", gap_block_value + 1, | 
|  | " previous ack block start is ", block_low, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Adjust block_high to be the top of the next ack block. | 
|  | // There is a gap of |gap_block_value| packets between the bottom | 
|  | // of ack block N and top of block N+1.  Note that gap_block_value | 
|  | // is he size of the gap minus 1 (per the QUIC protocol), and | 
|  | // block_high is the packet number of the first packet of the gap | 
|  | // (per the implementation of OnAckRange/AddAckRange, below). | 
|  | block_high = block_low - 1 - gap_block_value; | 
|  |  | 
|  | if (!reader->ReadVarInt62(&ack_block_value)) { | 
|  | set_detailed_error("Unable to read ack block value."); | 
|  | return false; | 
|  | } | 
|  | if (ack_block_value + first_sending_packet_number_.ToUint64() > | 
|  | (block_high - 1)) { | 
|  | set_detailed_error( | 
|  | QuicStrCat("Underflow with ack block length ", ack_block_value + 1, | 
|  | " latest ack block end is ", block_high - 1, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  | // Calculate the low end of the new nth ack block. The +1 is | 
|  | // because the encoded value is the blocksize-1. | 
|  | block_low = block_high - 1 - ack_block_value; | 
|  | if (!visitor_->OnAckRange(QuicPacketNumber(block_low), | 
|  | QuicPacketNumber(block_high))) { | 
|  | // The visitor suppresses further processing of the packet. Although | 
|  | // this is not a parsing error, returns false as this is in middle | 
|  | // of processing an ACK frame. | 
|  | set_detailed_error("Visitor suppresses further processing of ACK frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Another one done. | 
|  | ack_block_count--; | 
|  | } | 
|  |  | 
|  | return visitor_->OnAckFrameEnd(QuicPacketNumber(block_low)); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader, | 
|  | const QuicPacketHeader& header, | 
|  | QuicStopWaitingFrame* stop_waiting) { | 
|  | uint64_t least_unacked_delta; | 
|  | if (!reader->ReadBytesToUInt64(header.packet_number_length, | 
|  | &least_unacked_delta)) { | 
|  | set_detailed_error("Unable to read least unacked delta."); | 
|  | return false; | 
|  | } | 
|  | if (header.packet_number.ToUint64() <= least_unacked_delta) { | 
|  | set_detailed_error("Invalid unacked delta."); | 
|  | return false; | 
|  | } | 
|  | stop_waiting->least_unacked = header.packet_number - least_unacked_delta; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader, | 
|  | QuicRstStreamFrame* frame) { | 
|  | if (!reader->ReadUInt32(&frame->stream_id)) { | 
|  | set_detailed_error("Unable to read stream_id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadUInt64(&frame->byte_offset)) { | 
|  | set_detailed_error("Unable to read rst stream sent byte offset."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint32_t error_code; | 
|  | if (!reader->ReadUInt32(&error_code)) { | 
|  | set_detailed_error("Unable to read rst stream error code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (error_code >= QUIC_STREAM_LAST_ERROR) { | 
|  | // Ignore invalid stream error code if any. | 
|  | error_code = QUIC_STREAM_LAST_ERROR; | 
|  | } | 
|  |  | 
|  | frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader, | 
|  | QuicConnectionCloseFrame* frame) { | 
|  | uint32_t error_code; | 
|  | if (!reader->ReadUInt32(&error_code)) { | 
|  | set_detailed_error("Unable to read connection close error code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (error_code >= QUIC_LAST_ERROR) { | 
|  | // Ignore invalid QUIC error code if any. | 
|  | error_code = QUIC_LAST_ERROR; | 
|  | } | 
|  |  | 
|  | frame->error_code = static_cast<QuicErrorCode>(error_code); | 
|  |  | 
|  | QuicStringPiece error_details; | 
|  | if (!reader->ReadStringPiece16(&error_details)) { | 
|  | set_detailed_error("Unable to read connection close error details."); | 
|  | return false; | 
|  | } | 
|  | frame->error_details = QuicString(error_details); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader, | 
|  | QuicGoAwayFrame* frame) { | 
|  | uint32_t error_code; | 
|  | if (!reader->ReadUInt32(&error_code)) { | 
|  | set_detailed_error("Unable to read go away error code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (error_code >= QUIC_LAST_ERROR) { | 
|  | // Ignore invalid QUIC error code if any. | 
|  | error_code = QUIC_LAST_ERROR; | 
|  | } | 
|  | frame->error_code = static_cast<QuicErrorCode>(error_code); | 
|  |  | 
|  | uint32_t stream_id; | 
|  | if (!reader->ReadUInt32(&stream_id)) { | 
|  | set_detailed_error("Unable to read last good stream id."); | 
|  | return false; | 
|  | } | 
|  | frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id); | 
|  |  | 
|  | QuicStringPiece reason_phrase; | 
|  | if (!reader->ReadStringPiece16(&reason_phrase)) { | 
|  | set_detailed_error("Unable to read goaway reason."); | 
|  | return false; | 
|  | } | 
|  | frame->reason_phrase = QuicString(reason_phrase); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader, | 
|  | QuicWindowUpdateFrame* frame) { | 
|  | if (!reader->ReadUInt32(&frame->stream_id)) { | 
|  | set_detailed_error("Unable to read stream_id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadUInt64(&frame->byte_offset)) { | 
|  | set_detailed_error("Unable to read window byte_offset."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader, | 
|  | QuicBlockedFrame* frame) { | 
|  | DCHECK_NE(QUIC_VERSION_99, version_.transport_version) | 
|  | << "Attempt to process non-IETF frames but version is 99"; | 
|  |  | 
|  | if (!reader->ReadUInt32(&frame->stream_id)) { | 
|  | set_detailed_error("Unable to read stream_id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader, | 
|  | QuicPaddingFrame* frame) { | 
|  | // Type byte has been read. | 
|  | frame->num_padding_bytes = 1; | 
|  | uint8_t next_byte; | 
|  | while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) { | 
|  | reader->ReadBytes(&next_byte, 1); | 
|  | DCHECK_EQ(0x00, next_byte); | 
|  | ++frame->num_padding_bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessMessageFrame(QuicDataReader* reader, | 
|  | bool no_message_length, | 
|  | QuicMessageFrame* frame) { | 
|  | if (no_message_length) { | 
|  | QuicStringPiece remaining(reader->ReadRemainingPayload()); | 
|  | frame->data = remaining.data(); | 
|  | frame->message_length = remaining.length(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint64_t message_length; | 
|  | if (!reader->ReadVarInt62(&message_length)) { | 
|  | set_detailed_error("Unable to read message length"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicStringPiece message_piece; | 
|  | if (!reader->ReadStringPiece(&message_piece, message_length)) { | 
|  | set_detailed_error("Unable to read message data"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | frame->data = message_piece.data(); | 
|  | frame->message_length = message_length; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | QuicStringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket( | 
|  | QuicTransportVersion version, | 
|  | const QuicEncryptedPacket& encrypted, | 
|  | QuicConnectionIdLength destination_connection_id_length, | 
|  | QuicConnectionIdLength source_connection_id_length, | 
|  | bool includes_version, | 
|  | bool includes_diversification_nonce, | 
|  | QuicPacketNumberLength packet_number_length, | 
|  | QuicVariableLengthIntegerLength retry_token_length_length, | 
|  | uint64_t retry_token_length, | 
|  | QuicVariableLengthIntegerLength length_length) { | 
|  | // TODO(ianswett): This is identical to QuicData::AssociatedData. | 
|  | return QuicStringPiece( | 
|  | encrypted.data(), | 
|  | GetStartOfEncryptedData(version, destination_connection_id_length, | 
|  | source_connection_id_length, includes_version, | 
|  | includes_diversification_nonce, | 
|  | packet_number_length, retry_token_length_length, | 
|  | retry_token_length, length_length)); | 
|  | } | 
|  |  | 
|  | void QuicFramer::SetDecrypter(EncryptionLevel level, | 
|  | std::unique_ptr<QuicDecrypter> decrypter) { | 
|  | DCHECK(alternative_decrypter_ == nullptr); | 
|  | DCHECK_GE(level, decrypter_level_); | 
|  | decrypter_ = std::move(decrypter); | 
|  | decrypter_level_ = level; | 
|  | } | 
|  |  | 
|  | void QuicFramer::SetAlternativeDecrypter( | 
|  | EncryptionLevel level, | 
|  | std::unique_ptr<QuicDecrypter> decrypter, | 
|  | bool latch_once_used) { | 
|  | alternative_decrypter_ = std::move(decrypter); | 
|  | alternative_decrypter_level_ = level; | 
|  | alternative_decrypter_latch_ = latch_once_used; | 
|  | } | 
|  |  | 
|  | const QuicDecrypter* QuicFramer::decrypter() const { | 
|  | return decrypter_.get(); | 
|  | } | 
|  |  | 
|  | const QuicDecrypter* QuicFramer::alternative_decrypter() const { | 
|  | return alternative_decrypter_.get(); | 
|  | } | 
|  |  | 
|  | void QuicFramer::SetEncrypter(EncryptionLevel level, | 
|  | std::unique_ptr<QuicEncrypter> encrypter) { | 
|  | DCHECK_GE(level, 0); | 
|  | DCHECK_LT(level, NUM_ENCRYPTION_LEVELS); | 
|  | encrypter_[level] = std::move(encrypter); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::EncryptInPlace(EncryptionLevel level, | 
|  | QuicPacketNumber packet_number, | 
|  | size_t ad_len, | 
|  | size_t total_len, | 
|  | size_t buffer_len, | 
|  | char* buffer) { | 
|  | DCHECK(packet_number.IsInitialized()); | 
|  | size_t output_length = 0; | 
|  | if (!encrypter_[level]->EncryptPacket( | 
|  | packet_number.ToUint64(), | 
|  | QuicStringPiece(buffer, ad_len),  // Associated data | 
|  | QuicStringPiece(buffer + ad_len, total_len - ad_len),  // Plaintext | 
|  | buffer + ad_len,  // Destination buffer | 
|  | &output_length, buffer_len - ad_len)) { | 
|  | RaiseError(QUIC_ENCRYPTION_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ad_len + output_length; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::EncryptPayload(EncryptionLevel level, | 
|  | QuicPacketNumber packet_number, | 
|  | const QuicPacket& packet, | 
|  | char* buffer, | 
|  | size_t buffer_len) { | 
|  | DCHECK(packet_number.IsInitialized()); | 
|  | DCHECK(encrypter_[level] != nullptr); | 
|  |  | 
|  | QuicStringPiece associated_data = | 
|  | packet.AssociatedData(version_.transport_version); | 
|  | // Copy in the header, because the encrypter only populates the encrypted | 
|  | // plaintext content. | 
|  | const size_t ad_len = associated_data.length(); | 
|  | memmove(buffer, associated_data.data(), ad_len); | 
|  | // Encrypt the plaintext into the buffer. | 
|  | size_t output_length = 0; | 
|  | if (!encrypter_[level]->EncryptPacket( | 
|  | packet_number.ToUint64(), associated_data, | 
|  | packet.Plaintext(version_.transport_version), buffer + ad_len, | 
|  | &output_length, buffer_len - ad_len)) { | 
|  | RaiseError(QUIC_ENCRYPTION_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ad_len + output_length; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetCiphertextSize(EncryptionLevel level, | 
|  | size_t plaintext_size) const { | 
|  | return encrypter_[level]->GetCiphertextSize(plaintext_size); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { | 
|  | // In order to keep the code simple, we don't have the current encryption | 
|  | // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12. | 
|  | size_t min_plaintext_size = ciphertext_size; | 
|  |  | 
|  | for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) { | 
|  | if (encrypter_[i] != nullptr) { | 
|  | size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size); | 
|  | if (size < min_plaintext_size) { | 
|  | min_plaintext_size = size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return min_plaintext_size; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::DecryptPayload(QuicStringPiece encrypted, | 
|  | QuicStringPiece associated_data, | 
|  | const QuicPacketHeader& header, | 
|  | char* decrypted_buffer, | 
|  | size_t buffer_length, | 
|  | size_t* decrypted_length) { | 
|  | DCHECK(decrypter_ != nullptr); | 
|  |  | 
|  | bool success = decrypter_->DecryptPacket( | 
|  | header.packet_number.ToUint64(), associated_data, encrypted, | 
|  | decrypted_buffer, decrypted_length, buffer_length); | 
|  | if (success) { | 
|  | visitor_->OnDecryptedPacket(decrypter_level_); | 
|  | } else if (alternative_decrypter_ != nullptr) { | 
|  | if (header.nonce != nullptr) { | 
|  | DCHECK_EQ(perspective_, Perspective::IS_CLIENT); | 
|  | alternative_decrypter_->SetDiversificationNonce(*header.nonce); | 
|  | } | 
|  | bool try_alternative_decryption = true; | 
|  | if (alternative_decrypter_level_ == ENCRYPTION_ZERO_RTT) { | 
|  | if (perspective_ == Perspective::IS_CLIENT) { | 
|  | if (header.nonce == nullptr) { | 
|  | // Can not use INITIAL decryption without a diversification nonce. | 
|  | try_alternative_decryption = false; | 
|  | } | 
|  | } else { | 
|  | DCHECK(header.nonce == nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (try_alternative_decryption) { | 
|  | success = alternative_decrypter_->DecryptPacket( | 
|  | header.packet_number.ToUint64(), associated_data, encrypted, | 
|  | decrypted_buffer, decrypted_length, buffer_length); | 
|  | } | 
|  | if (success) { | 
|  | visitor_->OnDecryptedPacket(alternative_decrypter_level_); | 
|  | if (alternative_decrypter_latch_) { | 
|  | // Switch to the alternative decrypter and latch so that we cannot | 
|  | // switch back. | 
|  | decrypter_ = std::move(alternative_decrypter_); | 
|  | decrypter_level_ = alternative_decrypter_level_; | 
|  | alternative_decrypter_level_ = ENCRYPTION_NONE; | 
|  | } else { | 
|  | // Switch the alternative decrypter so that we use it first next time. | 
|  | decrypter_.swap(alternative_decrypter_); | 
|  | EncryptionLevel level = alternative_decrypter_level_; | 
|  | alternative_decrypter_level_ = decrypter_level_; | 
|  | decrypter_level_ = level; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!success) { | 
|  | QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for packet_number:" | 
|  | << header.packet_number; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetIetfAckFrameSize(const QuicAckFrame& frame) { | 
|  | // Type byte, largest_acked, and delay_time are straight-forward. | 
|  | size_t ack_frame_size = kQuicFrameTypeSize; | 
|  | QuicPacketNumber largest_acked = LargestAcked(frame); | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(largest_acked.ToUint64()); | 
|  | uint64_t ack_delay_time_us; | 
|  | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); | 
|  | ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift; | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(ack_delay_time_us); | 
|  |  | 
|  | // If |ecn_counters_populated| is true and any of the ecn counters is non-0 | 
|  | // then the ecn counters are included... | 
|  | if (frame.ecn_counters_populated && | 
|  | (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_0_count); | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_1_count); | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count); | 
|  | } | 
|  |  | 
|  | // The rest (ack_block_count, first_ack_block, and additional ack | 
|  | // blocks, if any) depends: | 
|  | uint64_t ack_block_count = frame.packets.NumIntervals(); | 
|  | if (ack_block_count == 0) { | 
|  | // If the QuicAckFrame has no Intervals, then it is interpreted | 
|  | // as an ack of a single packet at QuicAckFrame.largest_acked. | 
|  | // The resulting ack will consist of only the frame's | 
|  | // largest_ack & first_ack_block fields. The first ack block will be 0 | 
|  | // (indicating a single packet) and the ack block_count will be 0. | 
|  | // Each 0 takes 1 byte when VarInt62 encoded. | 
|  | ack_frame_size += 2; | 
|  | return ack_frame_size; | 
|  | } | 
|  |  | 
|  | auto itr = frame.packets.rbegin(); | 
|  | QuicPacketNumber ack_block_largest = largest_acked; | 
|  | QuicPacketNumber ack_block_smallest; | 
|  | if ((itr->max() - 1) == largest_acked) { | 
|  | // If largest_acked + 1 is equal to the Max() of the first Interval | 
|  | // in the QuicAckFrame then the first Interval is the first ack block of the | 
|  | // frame; remaining Intervals are additional ack blocks.  The QuicAckFrame's | 
|  | // first Interval is encoded in the frame's largest_acked/first_ack_block, | 
|  | // the remaining Intervals are encoded in additional ack blocks in the | 
|  | // frame, and the packet's ack_block_count is the number of QuicAckFrame | 
|  | // Intervals - 1. | 
|  | ack_block_smallest = itr->min(); | 
|  | itr++; | 
|  | ack_block_count--; | 
|  | } else { | 
|  | // If QuicAckFrame.largest_acked is NOT equal to the Max() of | 
|  | // the first Interval then it is interpreted as acking a single | 
|  | // packet at QuicAckFrame.largest_acked, with additional | 
|  | // Intervals indicating additional ack blocks. The encoding is | 
|  | //  a) The packet's largest_acked is the QuicAckFrame's largest | 
|  | //     acked, | 
|  | //  b) the first ack block size is 0, | 
|  | //  c) The packet's ack_block_count is the number of QuicAckFrame | 
|  | //     Intervals, and | 
|  | //  d) The QuicAckFrame Intervals are encoded in additional ack | 
|  | //     blocks in the packet. | 
|  | ack_block_smallest = largest_acked; | 
|  | } | 
|  | size_t ack_block_count_size = QuicDataWriter::GetVarInt62Len(ack_block_count); | 
|  | ack_frame_size += ack_block_count_size; | 
|  |  | 
|  | uint64_t first_ack_block = ack_block_largest - ack_block_smallest; | 
|  | size_t first_ack_block_size = QuicDataWriter::GetVarInt62Len(first_ack_block); | 
|  | ack_frame_size += first_ack_block_size; | 
|  |  | 
|  | // Account for the remaining Intervals, if any. | 
|  | while (ack_block_count != 0) { | 
|  | uint64_t gap_size = ack_block_smallest - itr->max(); | 
|  | // Decrement per the protocol specification | 
|  | size_t size_of_gap_size = QuicDataWriter::GetVarInt62Len(gap_size - 1); | 
|  | ack_frame_size += size_of_gap_size; | 
|  |  | 
|  | uint64_t block_size = itr->max() - itr->min(); | 
|  | // Decrement per the protocol specification | 
|  | size_t size_of_block_size = QuicDataWriter::GetVarInt62Len(block_size - 1); | 
|  | ack_frame_size += size_of_block_size; | 
|  |  | 
|  | ack_block_smallest = itr->min(); | 
|  | itr++; | 
|  | ack_block_count--; | 
|  | } | 
|  |  | 
|  | return ack_frame_size; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetAckFrameSize( | 
|  | const QuicAckFrame& ack, | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | DCHECK(!ack.packets.Empty()); | 
|  | size_t ack_size = 0; | 
|  |  | 
|  | if (version_.transport_version == QUIC_VERSION_99) { | 
|  | return GetIetfAckFrameSize(ack); | 
|  | } | 
|  | AckFrameInfo ack_info = GetAckFrameInfo(ack); | 
|  | QuicPacketNumberLength largest_acked_length = | 
|  | GetMinPacketNumberLength(version_.transport_version, LargestAcked(ack)); | 
|  | QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength( | 
|  | version_.transport_version, QuicPacketNumber(ack_info.max_block_length)); | 
|  |  | 
|  | ack_size = | 
|  | GetMinAckFrameSize(version_.transport_version, largest_acked_length); | 
|  | // First ack block length. | 
|  | ack_size += ack_block_length; | 
|  | if (ack_info.num_ack_blocks != 0) { | 
|  | ack_size += kNumberOfAckBlocksSize; | 
|  | ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) * | 
|  | (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); | 
|  | } | 
|  |  | 
|  | // Include timestamps. | 
|  | if (process_timestamps_) { | 
|  | ack_size += GetAckFrameTimeStampSize(ack); | 
|  | } | 
|  |  | 
|  | return ack_size; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) { | 
|  | if (ack.received_packet_times.empty()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return kQuicNumTimestampsLength + kQuicFirstTimestampLength + | 
|  | (kQuicTimestampLength + kQuicTimestampPacketNumberGapLength) * | 
|  | (ack.received_packet_times.size() - 1); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::ComputeFrameLength( | 
|  | const QuicFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | switch (frame.type) { | 
|  | case STREAM_FRAME: | 
|  | return GetMinStreamFrameSize( | 
|  | version_.transport_version, frame.stream_frame.stream_id, | 
|  | frame.stream_frame.offset, last_frame_in_packet, | 
|  | frame.stream_frame.data_length) + | 
|  | frame.stream_frame.data_length; | 
|  | case CRYPTO_FRAME: | 
|  | return GetMinCryptoFrameSize(frame.crypto_frame->offset, | 
|  | frame.crypto_frame->data_length) + | 
|  | frame.crypto_frame->data_length; | 
|  | case ACK_FRAME: { | 
|  | return GetAckFrameSize(*frame.ack_frame, packet_number_length); | 
|  | } | 
|  | case STOP_WAITING_FRAME: | 
|  | return GetStopWaitingFrameSize(version_.transport_version, | 
|  | packet_number_length); | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | // MTU discovery frames are serialized as ping frames. | 
|  | return kQuicFrameTypeSize; | 
|  | case MESSAGE_FRAME: | 
|  | return GetMessageFrameSize(version_.transport_version, | 
|  | last_frame_in_packet, | 
|  | frame.message_frame->message_length); | 
|  | case PADDING_FRAME: | 
|  | DCHECK(false); | 
|  | return 0; | 
|  | default: | 
|  | return GetRetransmittableControlFrameSize(version_.transport_version, | 
|  | frame); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendTypeByte(const QuicFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicDataWriter* writer) { | 
|  | if (version_.transport_version == QUIC_VERSION_99) { | 
|  | return AppendIetfTypeByte(frame, last_frame_in_packet, writer); | 
|  | } | 
|  | uint8_t type_byte = 0; | 
|  | switch (frame.type) { | 
|  | case STREAM_FRAME: | 
|  | type_byte = | 
|  | GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); | 
|  | break; | 
|  | case ACK_FRAME: | 
|  | return true; | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | type_byte = static_cast<uint8_t>(PING_FRAME); | 
|  | break; | 
|  |  | 
|  | case APPLICATION_CLOSE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append APPLICATION_CLOSE frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append NEW_CONNECTION_ID frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append RETIRE_CONNECTION_ID frame and not in version " | 
|  | "99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case NEW_TOKEN_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append NEW_TOKEN frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case MAX_STREAM_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append MAX_STREAM_ID frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case STREAM_ID_BLOCKED_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STREAM_ID_BLOCKED frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PATH_RESPONSE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append PATH_RESPONSE frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append PATH_CHALLENGE frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case STOP_SENDING_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STOP_SENDING frame and not in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case MESSAGE_FRAME: | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | type_byte = static_cast<uint8_t>(frame.type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return writer->WriteUInt8(type_byte); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfTypeByte(const QuicFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicDataWriter* writer) { | 
|  | uint8_t type_byte = 0; | 
|  | switch (frame.type) { | 
|  | case PADDING_FRAME: | 
|  | type_byte = IETF_PADDING; | 
|  | break; | 
|  | case RST_STREAM_FRAME: | 
|  | type_byte = IETF_RST_STREAM; | 
|  | break; | 
|  | case CONNECTION_CLOSE_FRAME: | 
|  | type_byte = IETF_CONNECTION_CLOSE; | 
|  | break; | 
|  | case GOAWAY_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to create non-version-99 GOAWAY frame in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case WINDOW_UPDATE_FRAME: | 
|  | // Depending on whether there is a stream ID or not, will be either a | 
|  | // MAX_STREAM_DATA frame or a MAX_DATA frame. | 
|  | if (frame.window_update_frame->stream_id == | 
|  | QuicUtils::GetInvalidStreamId(transport_version())) { | 
|  | type_byte = IETF_MAX_DATA; | 
|  | } else { | 
|  | type_byte = IETF_MAX_STREAM_DATA; | 
|  | } | 
|  | break; | 
|  | case BLOCKED_FRAME: | 
|  | if (frame.blocked_frame->stream_id == | 
|  | QuicUtils::GetInvalidStreamId(transport_version())) { | 
|  | type_byte = IETF_BLOCKED; | 
|  | } else { | 
|  | type_byte = IETF_STREAM_BLOCKED; | 
|  | } | 
|  | break; | 
|  | case STOP_WAITING_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append type byte of STOP WAITING frame in version 99."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PING_FRAME: | 
|  | type_byte = IETF_PING; | 
|  | break; | 
|  | case STREAM_FRAME: | 
|  | type_byte = | 
|  | GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); | 
|  | break; | 
|  | case ACK_FRAME: | 
|  | // Do nothing here, AppendIetfAckFrameAndTypeByte() will put the type byte | 
|  | // in the buffer. | 
|  | return true; | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | // The path MTU discovery frame is encoded as a PING frame on the wire. | 
|  | type_byte = IETF_PING; | 
|  | break; | 
|  | case APPLICATION_CLOSE_FRAME: | 
|  | type_byte = IETF_APPLICATION_CLOSE; | 
|  | break; | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | type_byte = IETF_NEW_CONNECTION_ID; | 
|  | break; | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | type_byte = IETF_RETIRE_CONNECTION_ID; | 
|  | break; | 
|  | case NEW_TOKEN_FRAME: | 
|  | type_byte = IETF_NEW_TOKEN; | 
|  | break; | 
|  | case MAX_STREAM_ID_FRAME: | 
|  | if (QuicUtils::IsBidirectionalStreamId( | 
|  | frame.max_stream_id_frame.max_stream_id)) { | 
|  | type_byte = IETF_MAX_STREAMS_BIDIRECTIONAL; | 
|  | } else { | 
|  | type_byte = IETF_MAX_STREAMS_UNIDIRECTIONAL; | 
|  | } | 
|  | break; | 
|  | case STREAM_ID_BLOCKED_FRAME: | 
|  | if (QuicUtils::IsBidirectionalStreamId( | 
|  | frame.max_stream_id_frame.max_stream_id)) { | 
|  | type_byte = IETF_STREAMS_BLOCKED_BIDIRECTIONAL; | 
|  | } else { | 
|  | type_byte = IETF_STREAMS_BLOCKED_UNIDIRECTIONAL; | 
|  | } | 
|  | break; | 
|  | case PATH_RESPONSE_FRAME: | 
|  | type_byte = IETF_PATH_RESPONSE; | 
|  | break; | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | type_byte = IETF_PATH_CHALLENGE; | 
|  | break; | 
|  | case STOP_SENDING_FRAME: | 
|  | type_byte = IETF_STOP_SENDING; | 
|  | break; | 
|  | case MESSAGE_FRAME: | 
|  | return true; | 
|  | case CRYPTO_FRAME: | 
|  | type_byte = IETF_CRYPTO; | 
|  | break; | 
|  | default: | 
|  | QUIC_BUG << "Attempt to generate a frame type for an unsupported value: " | 
|  | << frame.type; | 
|  | return false; | 
|  | } | 
|  | return writer->WriteUInt8(type_byte); | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length, | 
|  | QuicPacketNumber packet_number, | 
|  | QuicDataWriter* writer) { | 
|  | DCHECK(packet_number.IsInitialized()); | 
|  | if (!IsValidPacketNumberLength(packet_number_length)) { | 
|  | QUIC_BUG << "Invalid packet_number_length: " << packet_number_length; | 
|  | return false; | 
|  | } | 
|  | return writer->WriteBytesToUInt64(packet_number_length, | 
|  | packet_number.ToUint64()); | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::AppendStreamId(size_t stream_id_length, | 
|  | QuicStreamId stream_id, | 
|  | QuicDataWriter* writer) { | 
|  | if (stream_id_length == 0 || stream_id_length > 4) { | 
|  | QUIC_BUG << "Invalid stream_id_length: " << stream_id_length; | 
|  | return false; | 
|  | } | 
|  | return writer->WriteBytesToUInt64(stream_id_length, stream_id); | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::AppendStreamOffset(size_t offset_length, | 
|  | QuicStreamOffset offset, | 
|  | QuicDataWriter* writer) { | 
|  | if (offset_length == 1 || offset_length > 8) { | 
|  | QUIC_BUG << "Invalid stream_offset_length: " << offset_length; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return writer->WriteBytesToUInt64(offset_length, offset); | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::AppendAckBlock(uint8_t gap, | 
|  | QuicPacketNumberLength length_length, | 
|  | uint64_t length, | 
|  | QuicDataWriter* writer) { | 
|  | if (length == 0) { | 
|  | if (!IsValidPacketNumberLength(length_length)) { | 
|  | QUIC_BUG << "Invalid packet_number_length: " << length_length; | 
|  | return false; | 
|  | } | 
|  | return writer->WriteUInt8(gap) && | 
|  | writer->WriteBytesToUInt64(length_length, length); | 
|  | } | 
|  | return writer->WriteUInt8(gap) && | 
|  | AppendPacketNumber(length_length, QuicPacketNumber(length), writer); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame, | 
|  | bool no_stream_frame_length, | 
|  | QuicDataWriter* writer) { | 
|  | if (version_.transport_version == QUIC_VERSION_99) { | 
|  | return AppendIetfStreamFrame(frame, no_stream_frame_length, writer); | 
|  | } | 
|  | if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id, | 
|  | writer)) { | 
|  | QUIC_BUG << "Writing stream id size failed."; | 
|  | return false; | 
|  | } | 
|  | if (!AppendStreamOffset( | 
|  | GetStreamOffsetSize(version_.transport_version, frame.offset), | 
|  | frame.offset, writer)) { | 
|  | QUIC_BUG << "Writing offset size failed."; | 
|  | return false; | 
|  | } | 
|  | if (!no_stream_frame_length) { | 
|  | if ((frame.data_length > std::numeric_limits<uint16_t>::max()) || | 
|  | !writer->WriteUInt16(static_cast<uint16_t>(frame.data_length))) { | 
|  | QUIC_BUG << "Writing stream frame length failed"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (data_producer_ != nullptr) { | 
|  | DCHECK_EQ(nullptr, frame.data_buffer); | 
|  | if (frame.data_length == 0) { | 
|  | return true; | 
|  | } | 
|  | if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, | 
|  | frame.data_length, | 
|  | writer) != WRITE_SUCCESS) { | 
|  | QUIC_BUG << "Writing frame data failed."; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { | 
|  | QUIC_BUG << "Writing frame data failed."; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::AppendIetfConnectionId( | 
|  | bool version_flag, | 
|  | QuicConnectionId destination_connection_id, | 
|  | QuicConnectionIdLength destination_connection_id_length, | 
|  | QuicConnectionId source_connection_id, | 
|  | QuicConnectionIdLength source_connection_id_length, | 
|  | QuicDataWriter* writer) { | 
|  | if (version_flag) { | 
|  | // Append connection ID length byte. | 
|  | uint8_t dcil = GetConnectionIdLengthValue(destination_connection_id_length); | 
|  | uint8_t scil = GetConnectionIdLengthValue(source_connection_id_length); | 
|  | uint8_t connection_id_length = dcil << 4 | scil; | 
|  | if (!writer->WriteBytes(&connection_id_length, 1)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (destination_connection_id_length == PACKET_8BYTE_CONNECTION_ID && | 
|  | !writer->WriteConnectionId(destination_connection_id)) { | 
|  | return false; | 
|  | } | 
|  | if (source_connection_id_length == PACKET_8BYTE_CONNECTION_ID && | 
|  | !writer->WriteConnectionId(source_connection_id)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendNewTokenFrame(const QuicNewTokenFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.token.length()))) { | 
|  | set_detailed_error("Writing token length failed."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteBytes(frame.token.data(), frame.token.length())) { | 
|  | set_detailed_error("Writing token buffer failed."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessNewTokenFrame(QuicDataReader* reader, | 
|  | QuicNewTokenFrame* frame) { | 
|  | uint64_t length; | 
|  | if (!reader->ReadVarInt62(&length)) { | 
|  | set_detailed_error("Unable to read new token length."); | 
|  | return false; | 
|  | } | 
|  | if (length > kMaxNewTokenTokenLength) { | 
|  | set_detailed_error("Token length larger than maximum."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(ianswett): Don't use QuicStringPiece as an intermediary. | 
|  | QuicStringPiece data; | 
|  | if (!reader->ReadStringPiece(&data, length)) { | 
|  | set_detailed_error("Unable to read new token data."); | 
|  | return false; | 
|  | } | 
|  | frame->token = QuicString(data); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Add a new ietf-format stream frame. | 
|  | // Bits controlling whether there is a frame-length and frame-offset | 
|  | // are in the QuicStreamFrame. | 
|  | bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) { | 
|  | set_detailed_error("Writing stream id failed."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (frame.offset != 0) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) { | 
|  | set_detailed_error("Writing data offset failed."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!last_frame_in_packet) { | 
|  | if (!writer->WriteVarInt62(frame.data_length)) { | 
|  | set_detailed_error("Writing data length failed."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (frame.data_length == 0) { | 
|  | return true; | 
|  | } | 
|  | if (data_producer_ == nullptr) { | 
|  | if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { | 
|  | set_detailed_error("Writing frame data failed."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | DCHECK_EQ(nullptr, frame.data_buffer); | 
|  |  | 
|  | if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, | 
|  | frame.data_length, | 
|  | writer) != WRITE_SUCCESS) { | 
|  | set_detailed_error("Writing frame data failed."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendCryptoFrame(const QuicCryptoFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) { | 
|  | set_detailed_error("Writing data offset failed."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.data_length))) { | 
|  | set_detailed_error("Writing data length failed."); | 
|  | return false; | 
|  | } | 
|  | if (data_producer_ == nullptr) { | 
|  | if (frame.data_buffer == nullptr || | 
|  | !writer->WriteBytes(frame.data_buffer, frame.data_length)) { | 
|  | set_detailed_error("Writing frame data failed."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | DCHECK_EQ(nullptr, frame.data_buffer); | 
|  | if (!data_producer_->WriteCryptoData(frame.level, frame.offset, | 
|  | frame.data_length, writer)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void QuicFramer::set_version(const ParsedQuicVersion version) { | 
|  | DCHECK(IsSupportedVersion(version)) << ParsedQuicVersionToString(version); | 
|  | version_ = version; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (transport_version() == QUIC_VERSION_99) { | 
|  | return AppendIetfAckFrameAndTypeByte(frame, writer); | 
|  | } | 
|  |  | 
|  | const AckFrameInfo new_ack_info = GetAckFrameInfo(frame); | 
|  | QuicPacketNumber largest_acked = LargestAcked(frame); | 
|  | QuicPacketNumberLength largest_acked_length = | 
|  | GetMinPacketNumberLength(version_.transport_version, largest_acked); | 
|  | QuicPacketNumberLength ack_block_length = | 
|  | GetMinPacketNumberLength(version_.transport_version, | 
|  | QuicPacketNumber(new_ack_info.max_block_length)); | 
|  | // Calculate available bytes for timestamps and ack blocks. | 
|  | int32_t available_timestamp_and_ack_block_bytes = | 
|  | writer->capacity() - writer->length() - ack_block_length - | 
|  | GetMinAckFrameSize(version_.transport_version, largest_acked_length) - | 
|  | (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0); | 
|  | DCHECK_LE(0, available_timestamp_and_ack_block_bytes); | 
|  |  | 
|  | // Write out the type byte by setting the low order bits and doing shifts | 
|  | // to make room for the next bit flags to be set. | 
|  | // Whether there are multiple ack blocks. | 
|  | uint8_t type_byte = 0; | 
|  | SetBit(&type_byte, new_ack_info.num_ack_blocks != 0, | 
|  | kQuicHasMultipleAckBlocksOffset); | 
|  |  | 
|  | SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length), | 
|  | kQuicSequenceNumberLengthNumBits, kLargestAckedOffset); | 
|  |  | 
|  | SetBits(&type_byte, GetPacketNumberFlags(ack_block_length), | 
|  | kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset); | 
|  |  | 
|  | type_byte |= kQuicFrameTypeAckMask; | 
|  |  | 
|  | if (!writer->WriteUInt8(type_byte)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes / | 
|  | (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); | 
|  |  | 
|  | // Number of ack blocks. | 
|  | size_t num_ack_blocks = | 
|  | std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks); | 
|  | if (num_ack_blocks > std::numeric_limits<uint8_t>::max()) { | 
|  | num_ack_blocks = std::numeric_limits<uint8_t>::max(); | 
|  | } | 
|  |  | 
|  | // Largest acked. | 
|  | if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Largest acked delta time. | 
|  | uint64_t ack_delay_time_us = kUFloat16MaxValue; | 
|  | if (!frame.ack_delay_time.IsInfinite()) { | 
|  | DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); | 
|  | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); | 
|  | } | 
|  | if (!writer->WriteUFloat16(ack_delay_time_us)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (num_ack_blocks > 0) { | 
|  | if (!writer->WriteBytes(&num_ack_blocks, 1)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // First ack block length. | 
|  | if (!AppendPacketNumber(ack_block_length, | 
|  | QuicPacketNumber(new_ack_info.first_block_length), | 
|  | writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Ack blocks. | 
|  | if (num_ack_blocks > 0) { | 
|  | size_t num_ack_blocks_written = 0; | 
|  | // Append, in descending order from the largest ACKed packet, a series of | 
|  | // ACK blocks that represents the successfully acknoweldged packets. Each | 
|  | // appended gap/block length represents a descending delta from the previous | 
|  | // block. i.e.: | 
|  | // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---| | 
|  | // For gaps larger than can be represented by a single encoded gap, a 0 | 
|  | // length gap of the maximum is used, i.e.: | 
|  | // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---| | 
|  | auto itr = frame.packets.rbegin(); | 
|  | QuicPacketNumber previous_start = itr->min(); | 
|  | ++itr; | 
|  |  | 
|  | for (; | 
|  | itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks; | 
|  | previous_start = itr->min(), ++itr) { | 
|  | const auto& interval = *itr; | 
|  | const uint64_t total_gap = previous_start - interval.max(); | 
|  | const size_t num_encoded_gaps = | 
|  | (total_gap + std::numeric_limits<uint8_t>::max() - 1) / | 
|  | std::numeric_limits<uint8_t>::max(); | 
|  | DCHECK_LE(0u, num_encoded_gaps); | 
|  |  | 
|  | // Append empty ACK blocks because the gap is longer than a single gap. | 
|  | for (size_t i = 1; | 
|  | i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks; | 
|  | ++i) { | 
|  | if (!AppendAckBlock(std::numeric_limits<uint8_t>::max(), | 
|  | ack_block_length, 0, writer)) { | 
|  | return false; | 
|  | } | 
|  | ++num_ack_blocks_written; | 
|  | } | 
|  | if (num_ack_blocks_written >= num_ack_blocks) { | 
|  | if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) { | 
|  | QUIC_BUG << "Wrote " << num_ack_blocks_written | 
|  | << ", expected to write " << num_ack_blocks; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | const uint8_t last_gap = | 
|  | total_gap - | 
|  | (num_encoded_gaps - 1) * std::numeric_limits<uint8_t>::max(); | 
|  | // Append the final ACK block with a non-empty size. | 
|  | if (!AppendAckBlock(last_gap, ack_block_length, | 
|  | PacketNumberIntervalLength(interval), writer)) { | 
|  | return false; | 
|  | } | 
|  | ++num_ack_blocks_written; | 
|  | } | 
|  | DCHECK_EQ(num_ack_blocks, num_ack_blocks_written); | 
|  | } | 
|  | // Timestamps. | 
|  | // If we don't process timestamps or if we don't have enough available space | 
|  | // to append all the timestamps, don't append any of them. | 
|  | if (process_timestamps_ && writer->capacity() - writer->length() >= | 
|  | GetAckFrameTimeStampSize(frame)) { | 
|  | if (!AppendTimestampsToAckFrame(frame, writer)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | uint8_t num_received_packets = 0; | 
|  | if (!writer->WriteBytes(&num_received_packets, 1)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | DCHECK_GE(std::numeric_limits<uint8_t>::max(), | 
|  | frame.received_packet_times.size()); | 
|  | // num_received_packets is only 1 byte. | 
|  | if (frame.received_packet_times.size() > | 
|  | std::numeric_limits<uint8_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint8_t num_received_packets = frame.received_packet_times.size(); | 
|  | if (!writer->WriteBytes(&num_received_packets, 1)) { | 
|  | return false; | 
|  | } | 
|  | if (num_received_packets == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | auto it = frame.received_packet_times.begin(); | 
|  | QuicPacketNumber packet_number = it->first; | 
|  | uint64_t delta_from_largest_observed = LargestAcked(frame) - packet_number; | 
|  |  | 
|  | DCHECK_GE(std::numeric_limits<uint8_t>::max(), delta_from_largest_observed); | 
|  | if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteUInt8(delta_from_largest_observed)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Use the lowest 4 bytes of the time delta from the creation_time_. | 
|  | const uint64_t time_epoch_delta_us = UINT64_C(1) << 32; | 
|  | uint32_t time_delta_us = | 
|  | static_cast<uint32_t>((it->second - creation_time_).ToMicroseconds() & | 
|  | (time_epoch_delta_us - 1)); | 
|  | if (!writer->WriteUInt32(time_delta_us)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicTime prev_time = it->second; | 
|  |  | 
|  | for (++it; it != frame.received_packet_times.end(); ++it) { | 
|  | packet_number = it->first; | 
|  | delta_from_largest_observed = LargestAcked(frame) - packet_number; | 
|  |  | 
|  | if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteUInt8(delta_from_largest_observed)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds(); | 
|  | prev_time = it->second; | 
|  | if (!writer->WriteUFloat16(frame_time_delta_us)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header, | 
|  | const QuicStopWaitingFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | DCHECK_GE(QUIC_VERSION_43, version_.transport_version); | 
|  | DCHECK(frame.least_unacked.IsInitialized() && | 
|  | header.packet_number >= frame.least_unacked); | 
|  | const uint64_t least_unacked_delta = | 
|  | header.packet_number - frame.least_unacked; | 
|  | const uint64_t length_shift = header.packet_number_length * 8; | 
|  |  | 
|  | if (least_unacked_delta >> length_shift > 0) { | 
|  | QUIC_BUG << "packet_number_length " << header.packet_number_length | 
|  | << " is too small for least_unacked_delta: " << least_unacked_delta | 
|  | << " packet_number:" << header.packet_number | 
|  | << " least_unacked:" << frame.least_unacked | 
|  | << " version:" << version_.transport_version; | 
|  | return false; | 
|  | } | 
|  | if (least_unacked_delta == 0) { | 
|  | return writer->WriteBytesToUInt64(header.packet_number_length, | 
|  | least_unacked_delta); | 
|  | } | 
|  | if (!AppendPacketNumber(header.packet_number_length, | 
|  | QuicPacketNumber(least_unacked_delta), writer)) { | 
|  | QUIC_BUG << " seq failed: " << header.packet_number_length; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int QuicFramer::CalculateIetfAckBlockCount(const QuicAckFrame& frame, | 
|  | QuicDataWriter* writer, | 
|  | size_t available_space) { | 
|  | // Number of blocks requested in the frame | 
|  | uint64_t ack_block_count = frame.packets.NumIntervals(); | 
|  |  | 
|  | auto itr = frame.packets.rbegin(); | 
|  |  | 
|  | int actual_block_count = 1; | 
|  | uint64_t block_length = itr->max() - itr->min(); | 
|  | size_t encoded_size = QuicDataWriter::GetVarInt62Len(block_length); | 
|  | if (encoded_size > available_space) { | 
|  | return 0; | 
|  | } | 
|  | available_space -= encoded_size; | 
|  | QuicPacketNumber previous_ack_end = itr->min(); | 
|  | ack_block_count--; | 
|  |  | 
|  | while (ack_block_count) { | 
|  | // Each block is a gap followed by another ACK. Calculate each value, | 
|  | // determine the encoded lengths, and check against the available space. | 
|  | itr++; | 
|  | size_t gap = previous_ack_end - itr->max() - 1; | 
|  | encoded_size = QuicDataWriter::GetVarInt62Len(gap); | 
|  |  | 
|  | // Add the ACK block. | 
|  | block_length = itr->max() - itr->min(); | 
|  | encoded_size += QuicDataWriter::GetVarInt62Len(block_length); | 
|  |  | 
|  | if (encoded_size > available_space) { | 
|  | // No room for this block, so what we've | 
|  | // done up to now is all that can be done. | 
|  | return actual_block_count; | 
|  | } | 
|  | available_space -= encoded_size; | 
|  | actual_block_count++; | 
|  | previous_ack_end = itr->min(); | 
|  | ack_block_count--; | 
|  | } | 
|  | // Ran through the whole thing! We can do all blocks. | 
|  | return actual_block_count; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | // Assume frame is an IETF_ACK frame. If |ecn_counters_populated| is true and | 
|  | // any of the ECN counters is non-0 then turn it into an IETF_ACK+ECN frame. | 
|  | uint8_t type = IETF_ACK; | 
|  | if (frame.ecn_counters_populated && | 
|  | (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { | 
|  | type = IETF_ACK_ECN; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteUInt8(type)) { | 
|  | set_detailed_error("No room for frame-type"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicPacketNumber largest_acked = LargestAcked(frame); | 
|  | if (!writer->WriteVarInt62(largest_acked.ToUint64())) { | 
|  | set_detailed_error("No room for largest-acked in ack frame"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t ack_delay_time_us = kVarInt62MaxValue; | 
|  | if (!frame.ack_delay_time.IsInfinite()) { | 
|  | DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); | 
|  | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); | 
|  | // TODO(fkastenholz): Use the shift from TLS transport parameters. | 
|  | ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteVarInt62(ack_delay_time_us)) { | 
|  | set_detailed_error("No room for ack-delay in ack frame"); | 
|  | return false; | 
|  | } | 
|  | if (type == IETF_ACK_ECN) { | 
|  | // Encode the ACK ECN fields | 
|  | if (!writer->WriteVarInt62(frame.ect_0_count)) { | 
|  | set_detailed_error("No room for ect_0_count in ack frame"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.ect_1_count)) { | 
|  | set_detailed_error("No room for ect_1_count in ack frame"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.ecn_ce_count)) { | 
|  | set_detailed_error("No room for ecn_ce_count in ack frame"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t ack_block_count = frame.packets.NumIntervals(); | 
|  | if (ack_block_count == 0) { | 
|  | // If the QuicAckFrame has no Intervals, then it is interpreted | 
|  | // as an ack of a single packet at QuicAckFrame.largest_acked. | 
|  | // The resulting ack will consist of only the frame's | 
|  | // largest_ack & first_ack_block fields. The first ack block will be 0 | 
|  | // (indicating a single packet) and the ack block_count will be 0. | 
|  | if (!writer->WriteVarInt62(0)) { | 
|  | set_detailed_error("No room for ack block count in ack frame"); | 
|  | return false; | 
|  | } | 
|  | // size of the first block is 1 packet | 
|  | if (!writer->WriteVarInt62(0)) { | 
|  | set_detailed_error("No room for first ack block in ack frame"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | // Case 2 or 3 | 
|  | auto itr = frame.packets.rbegin(); | 
|  |  | 
|  | QuicPacketNumber ack_block_largest(largest_acked); | 
|  | QuicPacketNumber ack_block_smallest; | 
|  | if ((itr->max() - 1) == QuicPacketNumber(largest_acked)) { | 
|  | // If largest_acked + 1 is equal to the Max() of the first Interval | 
|  | // in the QuicAckFrame then the first Interval is the first ack block of the | 
|  | // frame; remaining Intervals are additional ack blocks.  The QuicAckFrame's | 
|  | // first Interval is encoded in the frame's largest_acked/first_ack_block, | 
|  | // the remaining Intervals are encoded in additional ack blocks in the | 
|  | // frame, and the packet's ack_block_count is the number of QuicAckFrame | 
|  | // Intervals - 1. | 
|  | ack_block_smallest = itr->min(); | 
|  | itr++; | 
|  | ack_block_count--; | 
|  | } else { | 
|  | // If QuicAckFrame.largest_acked is NOT equal to the Max() of | 
|  | // the first Interval then it is interpreted as acking a single | 
|  | // packet at QuicAckFrame.largest_acked, with additional | 
|  | // Intervals indicating additional ack blocks. The encoding is | 
|  | //  a) The packet's largest_acked is the QuicAckFrame's largest | 
|  | //     acked, | 
|  | //  b) the first ack block size is 0, | 
|  | //  c) The packet's ack_block_count is the number of QuicAckFrame | 
|  | //     Intervals, and | 
|  | //  d) The QuicAckFrame Intervals are encoded in additional ack | 
|  | //     blocks in the packet. | 
|  | ack_block_smallest = largest_acked; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteVarInt62(ack_block_count)) { | 
|  | set_detailed_error("No room for ack block count in ack frame"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t first_ack_block = ack_block_largest - ack_block_smallest; | 
|  | if (!writer->WriteVarInt62(first_ack_block)) { | 
|  | set_detailed_error("No room for first ack block in ack frame"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // For the remaining QuicAckFrame Intervals, if any | 
|  | while (ack_block_count != 0) { | 
|  | uint64_t gap_size = ack_block_smallest - itr->max(); | 
|  | if (!writer->WriteVarInt62(gap_size - 1)) { | 
|  | set_detailed_error("No room for gap block in ack frame"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t block_size = itr->max() - itr->min(); | 
|  | if (!writer->WriteVarInt62(block_size - 1)) { | 
|  | set_detailed_error("No room for nth ack block in ack frame"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ack_block_smallest = itr->min(); | 
|  | itr++; | 
|  | ack_block_count--; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (version_.transport_version == QUIC_VERSION_99) { | 
|  | return AppendIetfResetStreamFrame(frame, writer); | 
|  | } | 
|  | if (!writer->WriteUInt32(frame.stream_id)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteUInt64(frame.byte_offset)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint32_t error_code = static_cast<uint32_t>(frame.error_code); | 
|  | if (!writer->WriteUInt32(error_code)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendConnectionCloseFrame( | 
|  | const QuicConnectionCloseFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (version_.transport_version == QUIC_VERSION_99) { | 
|  | return AppendIetfConnectionCloseFrame(frame, writer); | 
|  | } | 
|  | uint32_t error_code = static_cast<uint32_t>(frame.error_code); | 
|  | if (!writer->WriteUInt32(error_code)) { | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | uint32_t error_code = static_cast<uint32_t>(frame.error_code); | 
|  | if (!writer->WriteUInt32(error_code)) { | 
|  | return false; | 
|  | } | 
|  | uint32_t stream_id = static_cast<uint32_t>(frame.last_good_stream_id); | 
|  | if (!writer->WriteUInt32(stream_id)) { | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); | 
|  | if (!writer->WriteUInt32(stream_id)) { | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteUInt64(frame.byte_offset)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (version_.transport_version == QUIC_VERSION_99) { | 
|  | if (frame.stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { | 
|  | return AppendIetfBlockedFrame(frame, writer); | 
|  | } | 
|  | return AppendStreamBlockedFrame(frame, writer); | 
|  | } | 
|  | uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); | 
|  | if (!writer->WriteUInt32(stream_id)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (frame.num_padding_bytes == 0) { | 
|  | return false; | 
|  | } | 
|  | if (frame.num_padding_bytes < 0) { | 
|  | QUIC_BUG_IF(frame.num_padding_bytes != -1); | 
|  | writer->WritePadding(); | 
|  | return true; | 
|  | } | 
|  | // Please note, num_padding_bytes includes type byte which has been written. | 
|  | return writer->WritePaddingBytes(frame.num_padding_bytes - 1); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendMessageFrameAndTypeByte(const QuicMessageFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicDataWriter* writer) { | 
|  | uint8_t type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH | 
|  | : IETF_EXTENSION_MESSAGE; | 
|  | if (!writer->WriteUInt8(type_byte)) { | 
|  | return false; | 
|  | } | 
|  | if (!last_frame_in_packet && !writer->WriteVarInt62(frame.message_length)) { | 
|  | return false; | 
|  | } | 
|  | for (const auto& slice : frame.message_data) { | 
|  | if (!writer->WriteBytes(slice.data(), slice.length())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::RaiseError(QuicErrorCode error) { | 
|  | QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error) | 
|  | << " detail: " << detailed_error_; | 
|  | set_error(error); | 
|  | visitor_->OnError(this); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::IsVersionNegotiation( | 
|  | const QuicPacketHeader& header, | 
|  | bool packet_has_ietf_packet_header) const { | 
|  | if (perspective_ == Perspective::IS_SERVER) { | 
|  | return false; | 
|  | } | 
|  | if (!packet_has_ietf_packet_header) { | 
|  | return header.version_flag; | 
|  | } | 
|  | if (header.form == IETF_QUIC_SHORT_HEADER_PACKET) { | 
|  | return false; | 
|  | } | 
|  | return header.long_packet_type == VERSION_NEGOTIATION; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::StartsWithChlo(QuicStreamId id, | 
|  | QuicStreamOffset offset) const { | 
|  | if (data_producer_ == nullptr) { | 
|  | QUIC_BUG << "Does not have data producer."; | 
|  | return false; | 
|  | } | 
|  | char buf[sizeof(kCHLO)]; | 
|  | QuicDataWriter writer(sizeof(kCHLO), buf); | 
|  | if (data_producer_->WriteStreamData(id, offset, sizeof(kCHLO), &writer) != | 
|  | WRITE_SUCCESS) { | 
|  | QUIC_BUG << "Failed to write data for stream " << id << " with offset " | 
|  | << offset << " data_length = " << sizeof(kCHLO); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return strncmp(buf, reinterpret_cast<const char*>(&kCHLO), sizeof(kCHLO)) == | 
|  | 0; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfConnectionCloseFrame( | 
|  | const QuicConnectionCloseFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteUInt16(static_cast<const uint16_t>(frame.error_code))) { | 
|  | set_detailed_error("Can not write connection close frame error code"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.frame_type)) { | 
|  | set_detailed_error("Writing frame type failed."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteStringPieceVarInt62( | 
|  | TruncateErrorString(frame.error_details))) { | 
|  | set_detailed_error("Can not write connection close phrase"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendApplicationCloseFrame( | 
|  | const QuicApplicationCloseFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteUInt16(static_cast<const uint16_t>(frame.error_code))) { | 
|  | set_detailed_error("Can not write application close frame error code"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteStringPieceVarInt62( | 
|  | TruncateErrorString(frame.error_details))) { | 
|  | set_detailed_error("Can not write application close phrase"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfConnectionCloseFrame( | 
|  | QuicDataReader* reader, | 
|  | QuicConnectionCloseFrame* frame) { | 
|  | uint16_t code; | 
|  | if (!reader->ReadUInt16(&code)) { | 
|  | set_detailed_error("Unable to read connection close error code."); | 
|  | return false; | 
|  | } | 
|  | frame->ietf_error_code = static_cast<QuicIetfTransportErrorCodes>(code); | 
|  |  | 
|  | if (!reader->ReadVarInt62(&frame->frame_type)) { | 
|  | set_detailed_error("Unable to read connection close frame type."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t phrase_length; | 
|  | if (!reader->ReadVarInt62(&phrase_length)) { | 
|  | set_detailed_error("Unable to read connection close error details."); | 
|  | return false; | 
|  | } | 
|  | QuicStringPiece phrase; | 
|  | if (!reader->ReadStringPiece(&phrase, static_cast<size_t>(phrase_length))) { | 
|  | set_detailed_error("Unable to read connection close error details."); | 
|  | return false; | 
|  | } | 
|  | frame->error_details = QuicString(phrase); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessApplicationCloseFrame( | 
|  | QuicDataReader* reader, | 
|  | QuicApplicationCloseFrame* frame) { | 
|  | uint16_t code; | 
|  | if (!reader->ReadUInt16(&code)) { | 
|  | set_detailed_error("Unable to read application close error code."); | 
|  | return false; | 
|  | } | 
|  | frame->error_code = static_cast<QuicErrorCode>(code); | 
|  |  | 
|  | uint64_t phrase_length; | 
|  | if (!reader->ReadVarInt62(&phrase_length)) { | 
|  | set_detailed_error("Unable to read application close error details."); | 
|  | return false; | 
|  | } | 
|  | QuicStringPiece phrase; | 
|  | if (!reader->ReadStringPiece(&phrase, static_cast<size_t>(phrase_length))) { | 
|  | set_detailed_error("Unable to read application close error details."); | 
|  | return false; | 
|  | } | 
|  | frame->error_details = QuicString(phrase); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // IETF Quic Path Challenge/Response frames. | 
|  | bool QuicFramer::ProcessPathChallengeFrame(QuicDataReader* reader, | 
|  | QuicPathChallengeFrame* frame) { | 
|  | if (!reader->ReadBytes(frame->data_buffer.data(), | 
|  | frame->data_buffer.size())) { | 
|  | set_detailed_error("Can not read path challenge data."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessPathResponseFrame(QuicDataReader* reader, | 
|  | QuicPathResponseFrame* frame) { | 
|  | if (!reader->ReadBytes(frame->data_buffer.data(), | 
|  | frame->data_buffer.size())) { | 
|  | set_detailed_error("Can not read path response data."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendPathChallengeFrame(const QuicPathChallengeFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { | 
|  | set_detailed_error("Writing Path Challenge data failed."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendPathResponseFrame(const QuicPathResponseFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { | 
|  | set_detailed_error("Writing Path Response data failed."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Add a new ietf-format stream reset frame. | 
|  | // General format is | 
|  | //    stream id | 
|  | //    application error code | 
|  | //    final offset | 
|  | bool QuicFramer::AppendIetfResetStreamFrame(const QuicRstStreamFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) { | 
|  | set_detailed_error("Writing reset-stream stream id failed."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteUInt16(frame.ietf_error_code)) { | 
|  | set_detailed_error("Writing reset-stream error code failed."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.byte_offset))) { | 
|  | set_detailed_error("Writing reset-stream final-offset failed."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfResetStreamFrame(QuicDataReader* reader, | 
|  | QuicRstStreamFrame* frame) { | 
|  | // Get Stream ID from frame. ReadVarIntStreamID returns false | 
|  | // if either A) there is a read error or B) the resulting value of | 
|  | // the Stream ID is larger than the maximum allowed value. | 
|  | if (!reader->ReadVarIntStreamId(&frame->stream_id)) { | 
|  | set_detailed_error("Unable to read rst stream stream id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadUInt16(&frame->ietf_error_code)) { | 
|  | set_detailed_error("Unable to read rst stream error code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadVarInt62(&frame->byte_offset)) { | 
|  | set_detailed_error("Unable to read rst stream sent byte offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessStopSendingFrame( | 
|  | QuicDataReader* reader, | 
|  | QuicStopSendingFrame* stop_sending_frame) { | 
|  | if (!reader->ReadVarIntStreamId(&stop_sending_frame->stream_id)) { | 
|  | set_detailed_error("Unable to read stop sending stream id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadUInt16(&stop_sending_frame->application_error_code)) { | 
|  | set_detailed_error("Unable to read stop sending application error code."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStopSendingFrame( | 
|  | const QuicStopSendingFrame& stop_sending_frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(stop_sending_frame.stream_id)) { | 
|  | set_detailed_error("Can not write stop sending stream id"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteUInt16(stop_sending_frame.application_error_code)) { | 
|  | set_detailed_error("Can not write application error code"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Append/process IETF-Format MAX_DATA Frame | 
|  | bool QuicFramer::AppendMaxDataFrame(const QuicWindowUpdateFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.byte_offset)) { | 
|  | set_detailed_error("Can not write MAX_DATA byte-offset"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessMaxDataFrame(QuicDataReader* reader, | 
|  | QuicWindowUpdateFrame* frame) { | 
|  | frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); | 
|  | if (!reader->ReadVarInt62(&frame->byte_offset)) { | 
|  | set_detailed_error("Can not read MAX_DATA byte-offset"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Append/process IETF-Format MAX_STREAM_DATA Frame | 
|  | bool QuicFramer::AppendMaxStreamDataFrame(const QuicWindowUpdateFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.stream_id)) { | 
|  | set_detailed_error("Can not write MAX_STREAM_DATA stream id"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.byte_offset)) { | 
|  | set_detailed_error("Can not write MAX_STREAM_DATA byte-offset"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessMaxStreamDataFrame(QuicDataReader* reader, | 
|  | QuicWindowUpdateFrame* frame) { | 
|  | if (!reader->ReadVarIntStreamId(&frame->stream_id)) { | 
|  | set_detailed_error("Can not read MAX_STREAM_DATA stream id"); | 
|  | return false; | 
|  | } | 
|  | if (!reader->ReadVarInt62(&frame->byte_offset)) { | 
|  | set_detailed_error("Can not read MAX_STREAM_DATA byte-count"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendMaxStreamsFrame(const QuicMaxStreamIdFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | // Convert from the stream id on which the connection is blocked to a count | 
|  | QuicStreamId stream_count = | 
|  | StreamIdToCount(version_.transport_version, frame.max_stream_id); | 
|  |  | 
|  | if (!writer->WriteVarInt62(stream_count)) { | 
|  | set_detailed_error("Can not write MAX_STREAMS stream count"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessMaxStreamsFrame(QuicDataReader* reader, | 
|  | QuicMaxStreamIdFrame* frame, | 
|  | uint64_t frame_type) { | 
|  | QuicStreamId received_stream_count; | 
|  | if (!reader->ReadVarIntStreamId(&received_stream_count)) { | 
|  | set_detailed_error("Can not read MAX_STREAMS stream count."); | 
|  | return false; | 
|  | } | 
|  | // TODO(fkastenholz): handle properly when the STREAMS_BLOCKED | 
|  | // frame is implemented and passed up to the stream ID manager. | 
|  | if (received_stream_count == 0) { | 
|  | set_detailed_error("MAX_STREAMS stream count of 0 not supported."); | 
|  | return false; | 
|  | } | 
|  | // Note that this code assumes that the only possible error that | 
|  | // StreamCountToId can detect is that the stream count is too big or is 0. | 
|  | // Too big is prevented by passing in the minimum of the received count | 
|  | // and the maximum supported count, ensuring that the stream ID is | 
|  | // pegged at the maximum allowed ID. | 
|  | // count==0 is handled above, so that detailed_error_ may be set | 
|  | // properly. | 
|  | return StreamCountToId( | 
|  | std::min( | 
|  | received_stream_count, | 
|  | GetMaxStreamCount((frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL), | 
|  | perspective_)), | 
|  | /*unidirectional=*/(frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL), | 
|  | perspective_, version_.transport_version, &frame->max_stream_id); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfBlockedFrame(const QuicBlockedFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.offset)) { | 
|  | set_detailed_error("Can not write blocked offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfBlockedFrame(QuicDataReader* reader, | 
|  | QuicBlockedFrame* frame) { | 
|  | // Indicates that it is a BLOCKED frame (as opposed to STREAM_BLOCKED). | 
|  | frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); | 
|  | if (!reader->ReadVarInt62(&frame->offset)) { | 
|  | set_detailed_error("Can not read blocked offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStreamBlockedFrame(const QuicBlockedFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.stream_id)) { | 
|  | set_detailed_error("Can not write stream blocked stream id."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.offset)) { | 
|  | set_detailed_error("Can not write stream blocked offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessStreamBlockedFrame(QuicDataReader* reader, | 
|  | QuicBlockedFrame* frame) { | 
|  | if (!reader->ReadVarIntStreamId(&frame->stream_id)) { | 
|  | set_detailed_error("Can not read stream blocked stream id."); | 
|  | return false; | 
|  | } | 
|  | if (!reader->ReadVarInt62(&frame->offset)) { | 
|  | set_detailed_error("Can not read stream blocked offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStreamsBlockedFrame( | 
|  | const QuicStreamIdBlockedFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | // Convert from the stream id on which the connection is blocked to a count | 
|  | QuicStreamId stream_count = | 
|  | StreamIdToCount(version_.transport_version, frame.stream_id); | 
|  |  | 
|  | if (!writer->WriteVarInt62(stream_count)) { | 
|  | set_detailed_error("Can not write STREAMS_BLOCKED stream count"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessStreamsBlockedFrame(QuicDataReader* reader, | 
|  | QuicStreamIdBlockedFrame* frame, | 
|  | uint64_t frame_type) { | 
|  | QuicStreamId received_stream_count; | 
|  | if (!reader->ReadVarIntStreamId(&received_stream_count)) { | 
|  | set_detailed_error("Can not read STREAMS_BLOCKED stream id."); | 
|  | return false; | 
|  | } | 
|  | // TODO(fkastenholz): handle properly when the STREAMS_BLOCKED | 
|  | // frame is implemented and passed up to the stream ID manager. | 
|  | if (received_stream_count == 0) { | 
|  | set_detailed_error("STREAMS_BLOCKED stream count 0 not supported."); | 
|  | return false; | 
|  | } | 
|  | // TODO(fkastenholz): handle properly when the STREAMS_BLOCKED | 
|  | // frame is implemented and passed up to the stream ID manager. | 
|  | if (received_stream_count > | 
|  | GetMaxStreamCount((frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL), | 
|  | ((perspective_ == Perspective::IS_CLIENT) | 
|  | ? Perspective::IS_SERVER | 
|  | : Perspective::IS_CLIENT))) { | 
|  | // If stream count is such that the resulting stream ID would exceed our | 
|  | // implementation limit, generate an error. | 
|  | set_detailed_error( | 
|  | "STREAMS_BLOCKED stream count exceeds implementation limit."); | 
|  | return false; | 
|  | } | 
|  | // Convert the stream count to an ID that can be used. | 
|  | // The STREAMS_BLOCKED frame is a request for more streams | 
|  | // that the peer will initiate. If this node is a client, it | 
|  | // means that the peer is a server, and wants server-initiated | 
|  | // stream IDs. | 
|  | return StreamCountToId( | 
|  | received_stream_count, | 
|  | /*unidirectional=*/(frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL), | 
|  | (perspective_ == Perspective::IS_CLIENT) ? Perspective::IS_SERVER | 
|  | : Perspective::IS_CLIENT, | 
|  | version_.transport_version, &frame->stream_id); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendNewConnectionIdFrame( | 
|  | const QuicNewConnectionIdFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.sequence_number)) { | 
|  | set_detailed_error("Can not write New Connection ID sequence number"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteUInt8(frame.connection_id.length())) { | 
|  | set_detailed_error( | 
|  | "Can not write New Connection ID frame connection ID Length"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteConnectionId(frame.connection_id)) { | 
|  | set_detailed_error("Can not write New Connection ID frame connection ID"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteBytes( | 
|  | static_cast<const void*>(&frame.stateless_reset_token), | 
|  | sizeof(frame.stateless_reset_token))) { | 
|  | set_detailed_error("Can not write New Connection ID Reset Token"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessNewConnectionIdFrame(QuicDataReader* reader, | 
|  | QuicNewConnectionIdFrame* frame) { | 
|  | if (!reader->ReadVarInt62(&frame->sequence_number)) { | 
|  | set_detailed_error( | 
|  | "Unable to read new connection ID frame sequence number."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint8_t connection_id_length; | 
|  | if (!reader->ReadUInt8(&connection_id_length)) { | 
|  | set_detailed_error( | 
|  | "Unable to read new connection ID frame connection id length."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(dschinazi) b/120240679 - remove this check | 
|  | if (connection_id_length != kQuicDefaultConnectionIdLength) { | 
|  | set_detailed_error("Invalid new connection ID length."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadConnectionId(&frame->connection_id, connection_id_length)) { | 
|  | set_detailed_error("Unable to read new connection ID frame connection id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadBytes(&frame->stateless_reset_token, | 
|  | sizeof(frame->stateless_reset_token))) { | 
|  | set_detailed_error("Can not read new connection ID frame reset token."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendRetireConnectionIdFrame( | 
|  | const QuicRetireConnectionIdFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.sequence_number)) { | 
|  | set_detailed_error("Can not write Retire Connection ID sequence number"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessRetireConnectionIdFrame( | 
|  | QuicDataReader* reader, | 
|  | QuicRetireConnectionIdFrame* frame) { | 
|  | if (!reader->ReadVarInt62(&frame->sequence_number)) { | 
|  | set_detailed_error( | 
|  | "Unable to read retire connection ID frame sequence number."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint8_t QuicFramer::GetStreamFrameTypeByte(const QuicStreamFrame& frame, | 
|  | bool last_frame_in_packet) const { | 
|  | if (version_.transport_version == QUIC_VERSION_99) { | 
|  | return GetIetfStreamFrameTypeByte(frame, last_frame_in_packet); | 
|  | } | 
|  | uint8_t type_byte = 0; | 
|  | // Fin bit. | 
|  | type_byte |= frame.fin ? kQuicStreamFinMask : 0; | 
|  |  | 
|  | // Data Length bit. | 
|  | type_byte <<= kQuicStreamDataLengthShift; | 
|  | type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask; | 
|  |  | 
|  | // Offset 3 bits. | 
|  | type_byte <<= kQuicStreamShift; | 
|  | const size_t offset_len = | 
|  | GetStreamOffsetSize(version_.transport_version, frame.offset); | 
|  | if (offset_len > 0) { | 
|  | type_byte |= offset_len - 1; | 
|  | } | 
|  |  | 
|  | // stream id 2 bits. | 
|  | type_byte <<= kQuicStreamIdShift; | 
|  | type_byte |= GetStreamIdSize(frame.stream_id) - 1; | 
|  | type_byte |= kQuicFrameTypeStreamMask;  // Set Stream Frame Type to 1. | 
|  |  | 
|  | return type_byte; | 
|  | } | 
|  |  | 
|  | uint8_t QuicFramer::GetIetfStreamFrameTypeByte( | 
|  | const QuicStreamFrame& frame, | 
|  | bool last_frame_in_packet) const { | 
|  | DCHECK_EQ(QUIC_VERSION_99, version_.transport_version); | 
|  | uint8_t type_byte = IETF_STREAM; | 
|  | if (!last_frame_in_packet) { | 
|  | type_byte |= IETF_STREAM_FRAME_LEN_BIT; | 
|  | } | 
|  | if (frame.offset != 0) { | 
|  | type_byte |= IETF_STREAM_FRAME_OFF_BIT; | 
|  | } | 
|  | if (frame.fin) { | 
|  | type_byte |= IETF_STREAM_FRAME_FIN_BIT; | 
|  | } | 
|  | return type_byte; | 
|  | } | 
|  |  | 
|  | void QuicFramer::InferPacketHeaderTypeFromVersion() { | 
|  | // This function should only be called when server connection negotiates the | 
|  | // version. | 
|  | DCHECK(perspective_ == Perspective::IS_SERVER && | 
|  | !infer_packet_header_type_from_version_); | 
|  | infer_packet_header_type_from_version_ = true; | 
|  | } | 
|  |  | 
|  | #undef ENDPOINT  // undef for jumbo builds | 
|  | }  // namespace quic |