| /* Copyright (c) 2011 Xiph.Org Foundation | 
 |    Written by Jean-Marc Valin */ | 
 | /* | 
 |    Redistribution and use in source and binary forms, with or without | 
 |    modification, are permitted provided that the following conditions | 
 |    are met: | 
 |  | 
 |    - Redistributions of source code must retain the above copyright | 
 |    notice, this list of conditions and the following disclaimer. | 
 |  | 
 |    - Redistributions in binary form must reproduce the above copyright | 
 |    notice, this list of conditions and the following disclaimer in the | 
 |    documentation and/or other materials provided with the distribution. | 
 |  | 
 |    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 |    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR | 
 |    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
 |    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
 |    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
 |    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
 |    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
 |    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
 |    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | */ | 
 |  | 
 | #ifdef HAVE_CONFIG_H | 
 | #include "config.h" | 
 | #endif | 
 |  | 
 | #define ANALYSIS_C | 
 |  | 
 | #include <stdio.h> | 
 |  | 
 | #include "mathops.h" | 
 | #include "kiss_fft.h" | 
 | #include "celt.h" | 
 | #include "modes.h" | 
 | #include "arch.h" | 
 | #include "quant_bands.h" | 
 | #include "analysis.h" | 
 | #include "mlp.h" | 
 | #include "stack_alloc.h" | 
 | #include "float_cast.h" | 
 |  | 
 | #ifndef M_PI | 
 | #define M_PI 3.141592653 | 
 | #endif | 
 |  | 
 | #ifndef DISABLE_FLOAT_API | 
 |  | 
 | #define TRANSITION_PENALTY 10 | 
 |  | 
 | static const float dct_table[128] = { | 
 |         0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, | 
 |         0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, | 
 |         0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f, | 
 |        -0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f, | 
 |         0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f, | 
 |        -0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f, | 
 |         0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f, | 
 |         0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f, | 
 |         0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f, | 
 |         0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f, | 
 |         0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f, | 
 |        -0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f, | 
 |         0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f, | 
 |        -0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f, | 
 |         0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f, | 
 |         0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f, | 
 | }; | 
 |  | 
 | static const float analysis_window[240] = { | 
 |       0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f, | 
 |       0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f, | 
 |       0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f, | 
 |       0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f, | 
 |       0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f, | 
 |       0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f, | 
 |       0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f, | 
 |       0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f, | 
 |       0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f, | 
 |       0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f, | 
 |       0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f, | 
 |       0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f, | 
 |       0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f, | 
 |       0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f, | 
 |       0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f, | 
 |       0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f, | 
 |       0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f, | 
 |       0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f, | 
 |       0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f, | 
 |       0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f, | 
 |       0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f, | 
 |       0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f, | 
 |       0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f, | 
 |       0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f, | 
 |       0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f, | 
 |       0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f, | 
 |       0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f, | 
 |       0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f, | 
 |       0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f, | 
 |       0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f, | 
 | }; | 
 |  | 
 | static const int tbands[NB_TBANDS+1] = { | 
 |       4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240 | 
 | }; | 
 |  | 
 | #define NB_TONAL_SKIP_BANDS 9 | 
 |  | 
 | static opus_val32 silk_resampler_down2_hp( | 
 |     opus_val32                  *S,                 /* I/O  State vector [ 2 ]                                          */ | 
 |     opus_val32                  *out,               /* O    Output signal [ floor(len/2) ]                              */ | 
 |     const opus_val32            *in,                /* I    Input signal [ len ]                                        */ | 
 |     int                         inLen               /* I    Number of input samples                                     */ | 
 | ) | 
 | { | 
 |     int k, len2 = inLen/2; | 
 |     opus_val32 in32, out32, out32_hp, Y, X; | 
 |     opus_val64 hp_ener = 0; | 
 |     /* Internal variables and state are in Q10 format */ | 
 |     for( k = 0; k < len2; k++ ) { | 
 |         /* Convert to Q10 */ | 
 |         in32 = in[ 2 * k ]; | 
 |  | 
 |         /* All-pass section for even input sample */ | 
 |         Y      = SUB32( in32, S[ 0 ] ); | 
 |         X      = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y); | 
 |         out32  = ADD32( S[ 0 ], X ); | 
 |         S[ 0 ] = ADD32( in32, X ); | 
 |         out32_hp = out32; | 
 |         /* Convert to Q10 */ | 
 |         in32 = in[ 2 * k + 1 ]; | 
 |  | 
 |         /* All-pass section for odd input sample, and add to output of previous section */ | 
 |         Y      = SUB32( in32, S[ 1 ] ); | 
 |         X      = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); | 
 |         out32  = ADD32( out32, S[ 1 ] ); | 
 |         out32  = ADD32( out32, X ); | 
 |         S[ 1 ] = ADD32( in32, X ); | 
 |  | 
 |         Y      = SUB32( -in32, S[ 2 ] ); | 
 |         X      = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); | 
 |         out32_hp  = ADD32( out32_hp, S[ 2 ] ); | 
 |         out32_hp  = ADD32( out32_hp, X ); | 
 |         S[ 2 ] = ADD32( -in32, X ); | 
 |  | 
 |         hp_ener += out32_hp*(opus_val64)out32_hp; | 
 |         /* Add, convert back to int16 and store to output */ | 
 |         out[ k ] = HALF32(out32); | 
 |     } | 
 | #ifdef FIXED_POINT | 
 |     /* len2 can be up to 480, so we shift by 8 more to make it fit. */ | 
 |     hp_ener = hp_ener >> (2*SIG_SHIFT + 8); | 
 | #endif | 
 |     return (opus_val32)hp_ener; | 
 | } | 
 |  | 
 | static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs) | 
 | { | 
 |    VARDECL(opus_val32, tmp); | 
 |    opus_val32 scale; | 
 |    int j; | 
 |    opus_val32 ret = 0; | 
 |    SAVE_STACK; | 
 |  | 
 |    if (subframe==0) return 0; | 
 |    if (Fs == 48000) | 
 |    { | 
 |       subframe *= 2; | 
 |       offset *= 2; | 
 |    } else if (Fs == 16000) { | 
 |       subframe = subframe*2/3; | 
 |       offset = offset*2/3; | 
 |    } | 
 |    ALLOC(tmp, subframe, opus_val32); | 
 |  | 
 |    downmix(_x, tmp, subframe, offset, c1, c2, C); | 
 | #ifdef FIXED_POINT | 
 |    scale = (1<<SIG_SHIFT); | 
 | #else | 
 |    scale = 1.f/32768; | 
 | #endif | 
 |    if (c2==-2) | 
 |       scale /= C; | 
 |    else if (c2>-1) | 
 |       scale /= 2; | 
 |    for (j=0;j<subframe;j++) | 
 |       tmp[j] *= scale; | 
 |    if (Fs == 48000) | 
 |    { | 
 |       ret = silk_resampler_down2_hp(S, y, tmp, subframe); | 
 |    } else if (Fs == 24000) { | 
 |       OPUS_COPY(y, tmp, subframe); | 
 |    } else if (Fs == 16000) { | 
 |       VARDECL(opus_val32, tmp3x); | 
 |       ALLOC(tmp3x, 3*subframe, opus_val32); | 
 |       /* Don't do this at home! This resampler is horrible and it's only (barely) | 
 |          usable for the purpose of the analysis because we don't care about all | 
 |          the aliasing between 8 kHz and 12 kHz. */ | 
 |       for (j=0;j<subframe;j++) | 
 |       { | 
 |          tmp3x[3*j] = tmp[j]; | 
 |          tmp3x[3*j+1] = tmp[j]; | 
 |          tmp3x[3*j+2] = tmp[j]; | 
 |       } | 
 |       silk_resampler_down2_hp(S, y, tmp3x, 3*subframe); | 
 |    } | 
 |    RESTORE_STACK; | 
 |    return ret; | 
 | } | 
 |  | 
 | void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs) | 
 | { | 
 |   /* Initialize reusable fields. */ | 
 |   tonal->arch = opus_select_arch(); | 
 |   tonal->Fs = Fs; | 
 |   /* Clear remaining fields. */ | 
 |   tonality_analysis_reset(tonal); | 
 | } | 
 |  | 
 | void tonality_analysis_reset(TonalityAnalysisState *tonal) | 
 | { | 
 |   /* Clear non-reusable fields. */ | 
 |   char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START; | 
 |   OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal)); | 
 | } | 
 |  | 
 | void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len) | 
 | { | 
 |    int pos; | 
 |    int curr_lookahead; | 
 |    float tonality_max; | 
 |    float tonality_avg; | 
 |    int tonality_count; | 
 |    int i; | 
 |    int pos0; | 
 |    float prob_avg; | 
 |    float prob_count; | 
 |    float prob_min, prob_max; | 
 |    float vad_prob; | 
 |    int mpos, vpos; | 
 |    int bandwidth_span; | 
 |  | 
 |    pos = tonal->read_pos; | 
 |    curr_lookahead = tonal->write_pos-tonal->read_pos; | 
 |    if (curr_lookahead<0) | 
 |       curr_lookahead += DETECT_SIZE; | 
 |  | 
 |    /* On long frames, look at the second analysis window rather than the first. */ | 
 |    if (len > tonal->Fs/50 && pos != tonal->write_pos) | 
 |    { | 
 |       pos++; | 
 |       if (pos==DETECT_SIZE) | 
 |          pos=0; | 
 |    } | 
 |    if (pos == tonal->write_pos) | 
 |       pos--; | 
 |    if (pos<0) | 
 |       pos = DETECT_SIZE-1; | 
 |    pos0 = pos; | 
 |    OPUS_COPY(info_out, &tonal->info[pos], 1); | 
 |    tonality_max = tonality_avg = info_out->tonality; | 
 |    tonality_count = 1; | 
 |    /* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */ | 
 |    bandwidth_span = 6; | 
 |    /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */ | 
 |    for (i=0;i<3;i++) | 
 |    { | 
 |       pos++; | 
 |       if (pos==DETECT_SIZE) | 
 |          pos = 0; | 
 |       if (pos == tonal->write_pos) | 
 |          break; | 
 |       tonality_max = MAX32(tonality_max, tonal->info[pos].tonality); | 
 |       tonality_avg += tonal->info[pos].tonality; | 
 |       tonality_count++; | 
 |       info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); | 
 |       bandwidth_span--; | 
 |    } | 
 |    pos = pos0; | 
 |    /* Look back in time to see if any has a wider bandwidth than the current frame. */ | 
 |    for (i=0;i<bandwidth_span;i++) | 
 |    { | 
 |       pos--; | 
 |       if (pos < 0) | 
 |          pos = DETECT_SIZE-1; | 
 |       if (pos == tonal->write_pos) | 
 |          break; | 
 |       info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); | 
 |    } | 
 |    info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f); | 
 |  | 
 |    mpos = vpos = pos0; | 
 |    /* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and | 
 |       ~1 frame delay in the VAD prob. */ | 
 |    if (curr_lookahead > 15) | 
 |    { | 
 |       mpos += 5; | 
 |       if (mpos>=DETECT_SIZE) | 
 |          mpos -= DETECT_SIZE; | 
 |       vpos += 1; | 
 |       if (vpos>=DETECT_SIZE) | 
 |          vpos -= DETECT_SIZE; | 
 |    } | 
 |  | 
 |    /* The following calculations attempt to minimize a "badness function" | 
 |       for the transition. When switching from speech to music, the badness | 
 |       of switching at frame k is | 
 |       b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) | 
 |       where | 
 |       v_i is the activity probability (VAD) at frame i, | 
 |       p_i is the music probability at frame i | 
 |       T is the probability threshold for switching | 
 |       S is the penalty for switching during active audio rather than silence | 
 |       the current frame has index i=0 | 
 |  | 
 |       Rather than apply badness to directly decide when to switch, what we compute | 
 |       instead is the threshold for which the optimal switching point is now. When | 
 |       considering whether to switch now (frame 0) or at frame k, we have: | 
 |       S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) | 
 |       which gives us: | 
 |       T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i ) | 
 |       We take the min threshold across all positive values of k (up to the maximum | 
 |       amount of lookahead we have) to give us the threshold for which the current | 
 |       frame is the optimal switch point. | 
 |  | 
 |       The last step is that we need to consider whether we want to switch at all. | 
 |       For that we use the average of the music probability over the entire window. | 
 |       If the threshold is higher than that average we're not going to | 
 |       switch, so we compute a min with the average as well. The result of all these | 
 |       min operations is music_prob_min, which gives the threshold for switching to music | 
 |       if we're currently encoding for speech. | 
 |  | 
 |       We do the exact opposite to compute music_prob_max which is used for switching | 
 |       from music to speech. | 
 |     */ | 
 |    prob_min = 1.f; | 
 |    prob_max = 0.f; | 
 |    vad_prob = tonal->info[vpos].activity_probability; | 
 |    prob_count = MAX16(.1f, vad_prob); | 
 |    prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob; | 
 |    while (1) | 
 |    { | 
 |       float pos_vad; | 
 |       mpos++; | 
 |       if (mpos==DETECT_SIZE) | 
 |          mpos = 0; | 
 |       if (mpos == tonal->write_pos) | 
 |          break; | 
 |       vpos++; | 
 |       if (vpos==DETECT_SIZE) | 
 |          vpos = 0; | 
 |       if (vpos == tonal->write_pos) | 
 |          break; | 
 |       pos_vad = tonal->info[vpos].activity_probability; | 
 |       prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min); | 
 |       prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max); | 
 |       prob_count += MAX16(.1f, pos_vad); | 
 |       prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob; | 
 |    } | 
 |    info_out->music_prob = prob_avg/prob_count; | 
 |    prob_min = MIN16(prob_avg/prob_count, prob_min); | 
 |    prob_max = MAX16(prob_avg/prob_count, prob_max); | 
 |    prob_min = MAX16(prob_min, 0.f); | 
 |    prob_max = MIN16(prob_max, 1.f); | 
 |  | 
 |    /* If we don't have enough look-ahead, do our best to make a decent decision. */ | 
 |    if (curr_lookahead < 10) | 
 |    { | 
 |       float pmin, pmax; | 
 |       pmin = prob_min; | 
 |       pmax = prob_max; | 
 |       pos = pos0; | 
 |       /* Look for min/max in the past. */ | 
 |       for (i=0;i<IMIN(tonal->count-1, 15);i++) | 
 |       { | 
 |          pos--; | 
 |          if (pos < 0) | 
 |             pos = DETECT_SIZE-1; | 
 |          pmin = MIN16(pmin, tonal->info[pos].music_prob); | 
 |          pmax = MAX16(pmax, tonal->info[pos].music_prob); | 
 |       } | 
 |       /* Bias against switching on active audio. */ | 
 |       pmin = MAX16(0.f, pmin - .1f*vad_prob); | 
 |       pmax = MIN16(1.f, pmax + .1f*vad_prob); | 
 |       prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min); | 
 |       prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max); | 
 |    } | 
 |    info_out->music_prob_min = prob_min; | 
 |    info_out->music_prob_max = prob_max; | 
 |  | 
 |    /* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */ | 
 |    tonal->read_subframe += len/(tonal->Fs/400); | 
 |    while (tonal->read_subframe>=8) | 
 |    { | 
 |       tonal->read_subframe -= 8; | 
 |       tonal->read_pos++; | 
 |    } | 
 |    if (tonal->read_pos>=DETECT_SIZE) | 
 |       tonal->read_pos-=DETECT_SIZE; | 
 | } | 
 |  | 
 | static const float std_feature_bias[9] = { | 
 |       5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f, | 
 |       2.163313f, 1.260756f, 1.116868f, 1.918795f | 
 | }; | 
 |  | 
 | #define LEAKAGE_OFFSET 2.5f | 
 | #define LEAKAGE_SLOPE 2.f | 
 |  | 
 | #ifdef FIXED_POINT | 
 | /* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to | 
 |    compensate for that in the energy. */ | 
 | #define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT))) | 
 | #define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e)) | 
 | #else | 
 | #define SCALE_ENER(e) (e) | 
 | #endif | 
 |  | 
 | static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix) | 
 | { | 
 |     int i, b; | 
 |     const kiss_fft_state *kfft; | 
 |     VARDECL(kiss_fft_cpx, in); | 
 |     VARDECL(kiss_fft_cpx, out); | 
 |     int N = 480, N2=240; | 
 |     float * OPUS_RESTRICT A = tonal->angle; | 
 |     float * OPUS_RESTRICT dA = tonal->d_angle; | 
 |     float * OPUS_RESTRICT d2A = tonal->d2_angle; | 
 |     VARDECL(float, tonality); | 
 |     VARDECL(float, noisiness); | 
 |     float band_tonality[NB_TBANDS]; | 
 |     float logE[NB_TBANDS]; | 
 |     float BFCC[8]; | 
 |     float features[25]; | 
 |     float frame_tonality; | 
 |     float max_frame_tonality; | 
 |     /*float tw_sum=0;*/ | 
 |     float frame_noisiness; | 
 |     const float pi4 = (float)(M_PI*M_PI*M_PI*M_PI); | 
 |     float slope=0; | 
 |     float frame_stationarity; | 
 |     float relativeE; | 
 |     float frame_probs[2]; | 
 |     float alpha, alphaE, alphaE2; | 
 |     float frame_loudness; | 
 |     float bandwidth_mask; | 
 |     int is_masked[NB_TBANDS+1]; | 
 |     int bandwidth=0; | 
 |     float maxE = 0; | 
 |     float noise_floor; | 
 |     int remaining; | 
 |     AnalysisInfo *info; | 
 |     float hp_ener; | 
 |     float tonality2[240]; | 
 |     float midE[8]; | 
 |     float spec_variability=0; | 
 |     float band_log2[NB_TBANDS+1]; | 
 |     float leakage_from[NB_TBANDS+1]; | 
 |     float leakage_to[NB_TBANDS+1]; | 
 |     float layer_out[MAX_NEURONS]; | 
 |     float below_max_pitch; | 
 |     float above_max_pitch; | 
 |     SAVE_STACK; | 
 |  | 
 |     alpha = 1.f/IMIN(10, 1+tonal->count); | 
 |     alphaE = 1.f/IMIN(25, 1+tonal->count); | 
 |     /* Noise floor related decay for bandwidth detection: -2.2 dB/second */ | 
 |     alphaE2 = 1.f/IMIN(100, 1+tonal->count); | 
 |     if (tonal->count <= 1) alphaE2 = 1; | 
 |  | 
 |     if (tonal->Fs == 48000) | 
 |     { | 
 |        /* len and offset are now at 24 kHz. */ | 
 |        len/= 2; | 
 |        offset /= 2; | 
 |     } else if (tonal->Fs == 16000) { | 
 |        len = 3*len/2; | 
 |        offset = 3*offset/2; | 
 |     } | 
 |  | 
 |     kfft = celt_mode->mdct.kfft[0]; | 
 |     if (tonal->count==0) | 
 |        tonal->mem_fill = 240; | 
 |     tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x, | 
 |           &tonal->inmem[tonal->mem_fill], tonal->downmix_state, | 
 |           IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs); | 
 |     if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE) | 
 |     { | 
 |        tonal->mem_fill += len; | 
 |        /* Don't have enough to update the analysis */ | 
 |        RESTORE_STACK; | 
 |        return; | 
 |     } | 
 |     hp_ener = tonal->hp_ener_accum; | 
 |     info = &tonal->info[tonal->write_pos++]; | 
 |     if (tonal->write_pos>=DETECT_SIZE) | 
 |        tonal->write_pos-=DETECT_SIZE; | 
 |  | 
 |     ALLOC(in, 480, kiss_fft_cpx); | 
 |     ALLOC(out, 480, kiss_fft_cpx); | 
 |     ALLOC(tonality, 240, float); | 
 |     ALLOC(noisiness, 240, float); | 
 |     for (i=0;i<N2;i++) | 
 |     { | 
 |        float w = analysis_window[i]; | 
 |        in[i].r = (kiss_fft_scalar)(w*tonal->inmem[i]); | 
 |        in[i].i = (kiss_fft_scalar)(w*tonal->inmem[N2+i]); | 
 |        in[N-i-1].r = (kiss_fft_scalar)(w*tonal->inmem[N-i-1]); | 
 |        in[N-i-1].i = (kiss_fft_scalar)(w*tonal->inmem[N+N2-i-1]); | 
 |     } | 
 |     OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240); | 
 |     remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill); | 
 |     tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x, | 
 |           &tonal->inmem[240], tonal->downmix_state, remaining, | 
 |           offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs); | 
 |     tonal->mem_fill = 240 + remaining; | 
 |     opus_fft(kfft, in, out, tonal->arch); | 
 | #ifndef FIXED_POINT | 
 |     /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */ | 
 |     if (celt_isnan(out[0].r)) | 
 |     { | 
 |        info->valid = 0; | 
 |        RESTORE_STACK; | 
 |        return; | 
 |     } | 
 | #endif | 
 |  | 
 |     for (i=1;i<N2;i++) | 
 |     { | 
 |        float X1r, X2r, X1i, X2i; | 
 |        float angle, d_angle, d2_angle; | 
 |        float angle2, d_angle2, d2_angle2; | 
 |        float mod1, mod2, avg_mod; | 
 |        X1r = (float)out[i].r+out[N-i].r; | 
 |        X1i = (float)out[i].i-out[N-i].i; | 
 |        X2r = (float)out[i].i+out[N-i].i; | 
 |        X2i = (float)out[N-i].r-out[i].r; | 
 |  | 
 |        angle = (float)(.5f/M_PI)*fast_atan2f(X1i, X1r); | 
 |        d_angle = angle - A[i]; | 
 |        d2_angle = d_angle - dA[i]; | 
 |  | 
 |        angle2 = (float)(.5f/M_PI)*fast_atan2f(X2i, X2r); | 
 |        d_angle2 = angle2 - angle; | 
 |        d2_angle2 = d_angle2 - d_angle; | 
 |  | 
 |        mod1 = d2_angle - (float)float2int(d2_angle); | 
 |        noisiness[i] = ABS16(mod1); | 
 |        mod1 *= mod1; | 
 |        mod1 *= mod1; | 
 |  | 
 |        mod2 = d2_angle2 - (float)float2int(d2_angle2); | 
 |        noisiness[i] += ABS16(mod2); | 
 |        mod2 *= mod2; | 
 |        mod2 *= mod2; | 
 |  | 
 |        avg_mod = .25f*(d2A[i]+mod1+2*mod2); | 
 |        /* This introduces an extra delay of 2 frames in the detection. */ | 
 |        tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f; | 
 |        /* No delay on this detection, but it's less reliable. */ | 
 |        tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f; | 
 |  | 
 |        A[i] = angle2; | 
 |        dA[i] = d_angle2; | 
 |        d2A[i] = mod2; | 
 |     } | 
 |     for (i=2;i<N2-1;i++) | 
 |     { | 
 |        float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1])); | 
 |        tonality[i] = .9f*MAX32(tonality[i], tt-.1f); | 
 |     } | 
 |     frame_tonality = 0; | 
 |     max_frame_tonality = 0; | 
 |     /*tw_sum = 0;*/ | 
 |     info->activity = 0; | 
 |     frame_noisiness = 0; | 
 |     frame_stationarity = 0; | 
 |     if (!tonal->count) | 
 |     { | 
 |        for (b=0;b<NB_TBANDS;b++) | 
 |        { | 
 |           tonal->lowE[b] = 1e10; | 
 |           tonal->highE[b] = -1e10; | 
 |        } | 
 |     } | 
 |     relativeE = 0; | 
 |     frame_loudness = 0; | 
 |     /* The energy of the very first band is special because of DC. */ | 
 |     { | 
 |        float E = 0; | 
 |        float X1r, X2r; | 
 |        X1r = 2*(float)out[0].r; | 
 |        X2r = 2*(float)out[0].i; | 
 |        E = X1r*X1r + X2r*X2r; | 
 |        for (i=1;i<4;i++) | 
 |        { | 
 |           float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r | 
 |                      + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; | 
 |           E += binE; | 
 |        } | 
 |        E = SCALE_ENER(E); | 
 |        band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f); | 
 |     } | 
 |     for (b=0;b<NB_TBANDS;b++) | 
 |     { | 
 |        float E=0, tE=0, nE=0; | 
 |        float L1, L2; | 
 |        float stationarity; | 
 |        for (i=tbands[b];i<tbands[b+1];i++) | 
 |        { | 
 |           float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r | 
 |                      + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; | 
 |           binE = SCALE_ENER(binE); | 
 |           E += binE; | 
 |           tE += binE*MAX32(0, tonality[i]); | 
 |           nE += binE*2.f*(.5f-noisiness[i]); | 
 |        } | 
 | #ifndef FIXED_POINT | 
 |        /* Check for extreme band energies that could cause NaNs later. */ | 
 |        if (!(E<1e9f) || celt_isnan(E)) | 
 |        { | 
 |           info->valid = 0; | 
 |           RESTORE_STACK; | 
 |           return; | 
 |        } | 
 | #endif | 
 |  | 
 |        tonal->E[tonal->E_count][b] = E; | 
 |        frame_noisiness += nE/(1e-15f+E); | 
 |  | 
 |        frame_loudness += (float)sqrt(E+1e-10f); | 
 |        logE[b] = (float)log(E+1e-10f); | 
 |        band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f); | 
 |        tonal->logE[tonal->E_count][b] = logE[b]; | 
 |        if (tonal->count==0) | 
 |           tonal->highE[b] = tonal->lowE[b] = logE[b]; | 
 |        if (tonal->highE[b] > tonal->lowE[b] + 7.5) | 
 |        { | 
 |           if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b]) | 
 |              tonal->highE[b] -= .01f; | 
 |           else | 
 |              tonal->lowE[b] += .01f; | 
 |        } | 
 |        if (logE[b] > tonal->highE[b]) | 
 |        { | 
 |           tonal->highE[b] = logE[b]; | 
 |           tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]); | 
 |        } else if (logE[b] < tonal->lowE[b]) | 
 |        { | 
 |           tonal->lowE[b] = logE[b]; | 
 |           tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]); | 
 |        } | 
 |        relativeE += (logE[b]-tonal->lowE[b])/(1e-15f + (tonal->highE[b]-tonal->lowE[b])); | 
 |  | 
 |        L1=L2=0; | 
 |        for (i=0;i<NB_FRAMES;i++) | 
 |        { | 
 |           L1 += (float)sqrt(tonal->E[i][b]); | 
 |           L2 += tonal->E[i][b]; | 
 |        } | 
 |  | 
 |        stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2)); | 
 |        stationarity *= stationarity; | 
 |        stationarity *= stationarity; | 
 |        frame_stationarity += stationarity; | 
 |        /*band_tonality[b] = tE/(1e-15+E)*/; | 
 |        band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b]); | 
 | #if 0 | 
 |        if (b>=NB_TONAL_SKIP_BANDS) | 
 |        { | 
 |           frame_tonality += tweight[b]*band_tonality[b]; | 
 |           tw_sum += tweight[b]; | 
 |        } | 
 | #else | 
 |        frame_tonality += band_tonality[b]; | 
 |        if (b>=NB_TBANDS-NB_TONAL_SKIP_BANDS) | 
 |           frame_tonality -= band_tonality[b-NB_TBANDS+NB_TONAL_SKIP_BANDS]; | 
 | #endif | 
 |        max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality); | 
 |        slope += band_tonality[b]*(b-8); | 
 |        /*printf("%f %f ", band_tonality[b], stationarity);*/ | 
 |        tonal->prev_band_tonality[b] = band_tonality[b]; | 
 |     } | 
 |  | 
 |     leakage_from[0] = band_log2[0]; | 
 |     leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET; | 
 |     for (b=1;b<NB_TBANDS+1;b++) | 
 |     { | 
 |        float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4; | 
 |        leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]); | 
 |        leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET); | 
 |     } | 
 |     for (b=NB_TBANDS-2;b>=0;b--) | 
 |     { | 
 |        float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4; | 
 |        leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]); | 
 |        leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]); | 
 |     } | 
 |     celt_assert(NB_TBANDS+1 <= LEAK_BANDS); | 
 |     for (b=0;b<NB_TBANDS+1;b++) | 
 |     { | 
 |        /* leak_boost[] is made up of two terms. The first, based on leakage_to[], | 
 |           represents the boost needed to overcome the amount of analysis leakage | 
 |           cause in a weaker band b by louder neighbouring bands. | 
 |           The second, based on leakage_from[], applies to a loud band b for | 
 |           which the quantization noise causes synthesis leakage to the weaker | 
 |           neighbouring bands. */ | 
 |        float boost = MAX16(0, leakage_to[b] - band_log2[b]) + | 
 |              MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET)); | 
 |        info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost)); | 
 |     } | 
 |     for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0; | 
 |  | 
 |     for (i=0;i<NB_FRAMES;i++) | 
 |     { | 
 |        int j; | 
 |        float mindist = 1e15f; | 
 |        for (j=0;j<NB_FRAMES;j++) | 
 |        { | 
 |           int k; | 
 |           float dist=0; | 
 |           for (k=0;k<NB_TBANDS;k++) | 
 |           { | 
 |              float tmp; | 
 |              tmp = tonal->logE[i][k] - tonal->logE[j][k]; | 
 |              dist += tmp*tmp; | 
 |           } | 
 |           if (j!=i) | 
 |              mindist = MIN32(mindist, dist); | 
 |        } | 
 |        spec_variability += mindist; | 
 |     } | 
 |     spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS); | 
 |     bandwidth_mask = 0; | 
 |     bandwidth = 0; | 
 |     maxE = 0; | 
 |     noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8))); | 
 |     noise_floor *= noise_floor; | 
 |     below_max_pitch=0; | 
 |     above_max_pitch=0; | 
 |     for (b=0;b<NB_TBANDS;b++) | 
 |     { | 
 |        float E=0; | 
 |        float Em; | 
 |        int band_start, band_end; | 
 |        /* Keep a margin of 300 Hz for aliasing */ | 
 |        band_start = tbands[b]; | 
 |        band_end = tbands[b+1]; | 
 |        for (i=band_start;i<band_end;i++) | 
 |        { | 
 |           float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r | 
 |                      + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; | 
 |           E += binE; | 
 |        } | 
 |        E = SCALE_ENER(E); | 
 |        maxE = MAX32(maxE, E); | 
 |        if (band_start < 64) | 
 |        { | 
 |           below_max_pitch += E; | 
 |        } else { | 
 |           above_max_pitch += E; | 
 |        } | 
 |        tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); | 
 |        Em = MAX32(E, tonal->meanE[b]); | 
 |        /* Consider the band "active" only if all these conditions are met: | 
 |           1) less than 90 dB below the peak band (maximal masking possible considering | 
 |              both the ATH and the loudness-dependent slope of the spreading function) | 
 |           2) above the PCM quantization noise floor | 
 |           We use b+1 because the first CELT band isn't included in tbands[] | 
 |        */ | 
 |        if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start))) | 
 |           bandwidth = b+1; | 
 |        /* Check if the band is masked (see below). */ | 
 |        is_masked[b] = E < (tonal->prev_bandwidth >= b+1  ? .01f : .05f)*bandwidth_mask; | 
 |        /* Use a simple follower with 13 dB/Bark slope for spreading function. */ | 
 |        bandwidth_mask = MAX32(.05f*bandwidth_mask, E); | 
 |     } | 
 |     /* Special case for the last two bands, for which we don't have spectrum but only | 
 |        the energy above 12 kHz. The difficulty here is that the high-pass we use | 
 |        leaks some LF energy, so we need to increase the threshold without accidentally cutting | 
 |        off the band. */ | 
 |     if (tonal->Fs == 48000) { | 
 |        float noise_ratio; | 
 |        float Em; | 
 |        float E = hp_ener*(1.f/(60*60)); | 
 |        noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f; | 
 |  | 
 | #ifdef FIXED_POINT | 
 |        /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */ | 
 |        E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE); | 
 | #endif | 
 |        above_max_pitch += E; | 
 |        tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); | 
 |        Em = MAX32(E, tonal->meanE[b]); | 
 |        if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160) | 
 |           bandwidth = 20; | 
 |        /* Check if the band is masked (see below). */ | 
 |        is_masked[b] = E < (tonal->prev_bandwidth == 20  ? .01f : .05f)*bandwidth_mask; | 
 |     } | 
 |     if (above_max_pitch > below_max_pitch) | 
 |        info->max_pitch_ratio = below_max_pitch/above_max_pitch; | 
 |     else | 
 |        info->max_pitch_ratio = 1; | 
 |     /* In some cases, resampling aliasing can create a small amount of energy in the first band | 
 |        being cut. So if the last band is masked, we don't include it.  */ | 
 |     if (bandwidth == 20 && is_masked[NB_TBANDS]) | 
 |        bandwidth-=2; | 
 |     else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1]) | 
 |        bandwidth--; | 
 |     if (tonal->count<=2) | 
 |        bandwidth = 20; | 
 |     frame_loudness = 20*(float)log10(frame_loudness); | 
 |     tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness); | 
 |     tonal->lowECount *= (1-alphaE); | 
 |     if (frame_loudness < tonal->Etracker-30) | 
 |        tonal->lowECount += alphaE; | 
 |  | 
 |     for (i=0;i<8;i++) | 
 |     { | 
 |        float sum=0; | 
 |        for (b=0;b<16;b++) | 
 |           sum += dct_table[i*16+b]*logE[b]; | 
 |        BFCC[i] = sum; | 
 |     } | 
 |     for (i=0;i<8;i++) | 
 |     { | 
 |        float sum=0; | 
 |        for (b=0;b<16;b++) | 
 |           sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]); | 
 |        midE[i] = sum; | 
 |     } | 
 |  | 
 |     frame_stationarity /= NB_TBANDS; | 
 |     relativeE /= NB_TBANDS; | 
 |     if (tonal->count<10) | 
 |        relativeE = .5f; | 
 |     frame_noisiness /= NB_TBANDS; | 
 | #if 1 | 
 |     info->activity = frame_noisiness + (1-frame_noisiness)*relativeE; | 
 | #else | 
 |     info->activity = .5*(1+frame_noisiness-frame_stationarity); | 
 | #endif | 
 |     frame_tonality = (max_frame_tonality/(NB_TBANDS-NB_TONAL_SKIP_BANDS)); | 
 |     frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f); | 
 |     tonal->prev_tonality = frame_tonality; | 
 |  | 
 |     slope /= 8*8; | 
 |     info->tonality_slope = slope; | 
 |  | 
 |     tonal->E_count = (tonal->E_count+1)%NB_FRAMES; | 
 |     tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX); | 
 |     info->tonality = frame_tonality; | 
 |  | 
 |     for (i=0;i<4;i++) | 
 |        features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i]; | 
 |  | 
 |     for (i=0;i<4;i++) | 
 |        tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i]; | 
 |  | 
 |     for (i=0;i<4;i++) | 
 |         features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]); | 
 |     for (i=0;i<3;i++) | 
 |         features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8]; | 
 |  | 
 |     if (tonal->count > 5) | 
 |     { | 
 |        for (i=0;i<9;i++) | 
 |           tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i]; | 
 |     } | 
 |     for (i=0;i<4;i++) | 
 |        features[i] = BFCC[i]-midE[i]; | 
 |  | 
 |     for (i=0;i<8;i++) | 
 |     { | 
 |        tonal->mem[i+24] = tonal->mem[i+16]; | 
 |        tonal->mem[i+16] = tonal->mem[i+8]; | 
 |        tonal->mem[i+8] = tonal->mem[i]; | 
 |        tonal->mem[i] = BFCC[i]; | 
 |     } | 
 |     for (i=0;i<9;i++) | 
 |        features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i]; | 
 |     features[18] = spec_variability - 0.78f; | 
 |     features[20] = info->tonality - 0.154723f; | 
 |     features[21] = info->activity - 0.724643f; | 
 |     features[22] = frame_stationarity - 0.743717f; | 
 |     features[23] = info->tonality_slope + 0.069216f; | 
 |     features[24] = tonal->lowECount - 0.067930f; | 
 |  | 
 |     compute_dense(&layer0, layer_out, features); | 
 |     compute_gru(&layer1, tonal->rnn_state, layer_out); | 
 |     compute_dense(&layer2, frame_probs, tonal->rnn_state); | 
 |  | 
 |     /* Probability of speech or music vs noise */ | 
 |     info->activity_probability = frame_probs[1]; | 
 |     /* It seems like the RNN tends to have a bias towards speech and this | 
 |        warping of the probabilities compensates for it. */ | 
 |     info->music_prob = MAX16(1.f-10.f*(1.f-frame_probs[0]), MIN16(10.f*frame_probs[0], .12f+.69f*frame_probs[0]*(2.f-frame_probs[0]))); | 
 |  | 
 |     /*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/ | 
 | #ifdef MLP_TRAINING | 
 |     for (i=0;i<25;i++) | 
 |        printf("%f ", features[i]); | 
 |     printf("\n"); | 
 | #endif | 
 |  | 
 |     info->bandwidth = bandwidth; | 
 |     tonal->prev_bandwidth = bandwidth; | 
 |     /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/ | 
 |     info->noisiness = frame_noisiness; | 
 |     info->valid = 1; | 
 |     RESTORE_STACK; | 
 | } | 
 |  | 
 | void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, const void *analysis_pcm, | 
 |                  int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs, | 
 |                  int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info) | 
 | { | 
 |    int offset; | 
 |    int pcm_len; | 
 |  | 
 |    analysis_frame_size -= analysis_frame_size&1; | 
 |    if (analysis_pcm != NULL) | 
 |    { | 
 |       /* Avoid overflow/wrap-around of the analysis buffer */ | 
 |       analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size); | 
 |  | 
 |       pcm_len = analysis_frame_size - analysis->analysis_offset; | 
 |       offset = analysis->analysis_offset; | 
 |       while (pcm_len>0) { | 
 |          tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix); | 
 |          offset += Fs/50; | 
 |          pcm_len -= Fs/50; | 
 |       } | 
 |       analysis->analysis_offset = analysis_frame_size; | 
 |  | 
 |       analysis->analysis_offset -= frame_size; | 
 |    } | 
 |  | 
 |    analysis_info->valid = 0; | 
 |    tonality_get_info(analysis, analysis_info, frame_size); | 
 | } | 
 |  | 
 | #endif /* DISABLE_FLOAT_API */ |