blob: 16c525945f5ff3bb638afb87711bae6c2f7d67e5 [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cstdint>
#include "src/assembler-inl.h"
#include "src/objects-inl.h"
#include "src/wasm/wasm-objects.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/wasm-run-utils.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
/**
* We test the interface from Wasm compiled code to the Wasm interpreter by
* building a module with two functions. The external function is called from
* this test, and will be compiled code. It takes its arguments and passes them
* on to the internal function, which will be redirected to the interpreter.
* If the internal function has an i64 parameter, is has to be replaced by two
* i32 parameters on the external function.
* The internal function just converts all its arguments to f64, sums them up
* and returns the sum.
*/
namespace {
template <typename T>
class ArgPassingHelper {
public:
ArgPassingHelper(WasmRunnerBase& runner, WasmFunctionCompiler& inner_compiler,
std::initializer_list<uint8_t> bytes_inner_function,
std::initializer_list<uint8_t> bytes_outer_function,
const T& expected_lambda)
: isolate_(runner.main_isolate()),
expected_lambda_(expected_lambda),
debug_info_(WasmInstanceObject::GetOrCreateDebugInfo(
runner.builder().instance_object())) {
std::vector<uint8_t> inner_code{bytes_inner_function};
inner_compiler.Build(inner_code.data(),
inner_code.data() + inner_code.size());
std::vector<uint8_t> outer_code{bytes_outer_function};
runner.Build(outer_code.data(), outer_code.data() + outer_code.size());
int funcs_to_redict[] = {static_cast<int>(inner_compiler.function_index())};
runner.builder().Link();
WasmDebugInfo::RedirectToInterpreter(debug_info_,
ArrayVector(funcs_to_redict));
main_fun_wrapper_ = runner.builder().WrapCode(runner.function_index());
}
template <typename... Args>
void CheckCall(Args... args) {
Handle<Object> arg_objs[] = {isolate_->factory()->NewNumber(args)...};
uint64_t num_interpreted_before = debug_info_->NumInterpretedCalls();
Handle<Object> global(isolate_->context()->global_object(), isolate_);
MaybeHandle<Object> retval = Execution::Call(
isolate_, main_fun_wrapper_, global, arraysize(arg_objs), arg_objs);
uint64_t num_interpreted_after = debug_info_->NumInterpretedCalls();
// Check that we really went through the interpreter.
CHECK_EQ(num_interpreted_before + 1, num_interpreted_after);
// Check the result.
double result = retval.ToHandleChecked()->Number();
double expected = expected_lambda_(args...);
CHECK_DOUBLE_EQ(expected, result);
}
private:
Isolate* isolate_;
T expected_lambda_;
Handle<WasmDebugInfo> debug_info_;
Handle<JSFunction> main_fun_wrapper_;
};
template <typename T>
static ArgPassingHelper<T> GetHelper(
WasmRunnerBase& runner, WasmFunctionCompiler& inner_compiler,
std::initializer_list<uint8_t> bytes_inner_function,
std::initializer_list<uint8_t> bytes_outer_function,
const T& expected_lambda) {
return ArgPassingHelper<T>(runner, inner_compiler, bytes_inner_function,
bytes_outer_function, expected_lambda);
}
} // namespace
// Pass int32_t, return int32_t.
TEST(TestArgumentPassing_int32) {
WasmRunner<int32_t, int32_t> runner(kExecuteTurbofan);
WasmFunctionCompiler& f2 = runner.NewFunction<int32_t, int32_t>();
auto helper = GetHelper(
runner, f2,
{// Return 2*<0> + 1.
WASM_I32_ADD(WASM_I32_MUL(WASM_I32V_1(2), WASM_GET_LOCAL(0)), WASM_ONE)},
{// Call f2 with param <0>.
WASM_GET_LOCAL(0), WASM_CALL_FUNCTION0(f2.function_index())},
[](int32_t a) { return 2 * a + 1; });
FOR_INT32_INPUTS(v) { helper.CheckCall(*v); }
}
// Pass int64_t, return double.
TEST(TestArgumentPassing_double_int64) {
WasmRunner<double, int32_t, int32_t> runner(kExecuteTurbofan);
WasmFunctionCompiler& f2 = runner.NewFunction<double, int64_t>();
auto helper = GetHelper(
runner, f2,
{// Return (double)<0>.
WASM_F64_SCONVERT_I64(WASM_GET_LOCAL(0))},
{// Call f2 with param (<0> | (<1> << 32)).
WASM_I64_IOR(WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(0)),
WASM_I64_SHL(WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(1)),
WASM_I64V_1(32))),
WASM_CALL_FUNCTION0(f2.function_index())},
[](int32_t a, int32_t b) {
int64_t a64 = static_cast<int64_t>(a) & 0xFFFFFFFF;
int64_t b64 = static_cast<int64_t>(b) << 32;
return static_cast<double>(a64 | b64);
});
FOR_INT32_INPUTS(v1) {
FOR_INT32_INPUTS(v2) { helper.CheckCall(*v1, *v2); }
}
FOR_INT64_INPUTS(v) {
int32_t v1 = static_cast<int32_t>(*v);
int32_t v2 = static_cast<int32_t>(*v >> 32);
helper.CheckCall(v1, v2);
helper.CheckCall(v2, v1);
}
}
// Pass double, return int64_t.
TEST(TestArgumentPassing_int64_double) {
// Outer function still returns double.
WasmRunner<double, double> runner(kExecuteTurbofan);
WasmFunctionCompiler& f2 = runner.NewFunction<int64_t, double>();
auto helper = GetHelper(
runner, f2,
{// Return (int64_t)<0>.
WASM_I64_SCONVERT_F64(WASM_GET_LOCAL(0))},
{// Call f2 with param <0>, convert returned value back to double.
WASM_F64_SCONVERT_I64(WASM_SEQ(
WASM_GET_LOCAL(0), WASM_CALL_FUNCTION0(f2.function_index())))},
[](double d) { return d; });
for (int64_t i : compiler::ValueHelper::int64_vector()) {
helper.CheckCall(i);
}
}
// Pass float, return double.
TEST(TestArgumentPassing_float_double) {
WasmRunner<double, float> runner(kExecuteTurbofan);
WasmFunctionCompiler& f2 = runner.NewFunction<double, float>();
auto helper = GetHelper(
runner, f2,
{// Return 2*(double)<0> + 1.
WASM_F64_ADD(
WASM_F64_MUL(WASM_F64(2), WASM_F64_CONVERT_F32(WASM_GET_LOCAL(0))),
WASM_F64(1))},
{// Call f2 with param <0>.
WASM_GET_LOCAL(0), WASM_CALL_FUNCTION0(f2.function_index())},
[](float f) { return 2. * static_cast<double>(f) + 1.; });
FOR_FLOAT32_INPUTS(f) { helper.CheckCall(*f); }
}
// Pass two doubles, return double.
TEST(TestArgumentPassing_double_double) {
WasmRunner<double, double, double> runner(kExecuteTurbofan);
WasmFunctionCompiler& f2 = runner.NewFunction<double, double, double>();
auto helper = GetHelper(runner, f2,
{// Return <0> + <1>.
WASM_F64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))},
{// Call f2 with params <0>, <1>.
WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_CALL_FUNCTION0(f2.function_index())},
[](double a, double b) { return a + b; });
FOR_FLOAT64_INPUTS(d1) {
FOR_FLOAT64_INPUTS(d2) { helper.CheckCall(*d1, *d2); }
}
}
// Pass int32_t, int64_t, float and double, return double.
TEST(TestArgumentPassing_AllTypes) {
// The second and third argument will be combined to an i64.
WasmRunner<double, int32_t, int32_t, int32_t, float, double> runner(
kExecuteTurbofan);
WasmFunctionCompiler& f2 =
runner.NewFunction<double, int32_t, int64_t, float, double>();
auto helper = GetHelper(
runner, f2,
{
// Convert all arguments to double, add them and return the sum.
WASM_F64_ADD( // <0+1+2> + <3>
WASM_F64_ADD( // <0+1> + <2>
WASM_F64_ADD( // <0> + <1>
WASM_F64_SCONVERT_I32(
WASM_GET_LOCAL(0)), // <0> to double
WASM_F64_SCONVERT_I64(
WASM_GET_LOCAL(1))), // <1> to double
WASM_F64_CONVERT_F32(WASM_GET_LOCAL(2))), // <2> to double
WASM_GET_LOCAL(3)) // <3>
},
{WASM_GET_LOCAL(0), // first arg
WASM_I64_IOR(WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(1)), // second arg
WASM_I64_SHL(WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(2)),
WASM_I64V_1(32))),
WASM_GET_LOCAL(3), // third arg
WASM_GET_LOCAL(4), // fourth arg
WASM_CALL_FUNCTION0(f2.function_index())},
[](int32_t a, int32_t b, int32_t c, float d, double e) {
return 0. + a + (static_cast<int64_t>(b) & 0xFFFFFFFF) +
((static_cast<int64_t>(c) & 0xFFFFFFFF) << 32) + d + e;
});
auto CheckCall = [&](int32_t a, int64_t b, float c, double d) {
int32_t b0 = static_cast<int32_t>(b);
int32_t b1 = static_cast<int32_t>(b >> 32);
helper.CheckCall(a, b0, b1, c, d);
helper.CheckCall(a, b1, b0, c, d);
};
Vector<const int32_t> test_values_i32 = compiler::ValueHelper::int32_vector();
Vector<const int64_t> test_values_i64 = compiler::ValueHelper::int64_vector();
Vector<const float> test_values_f32 = compiler::ValueHelper::float32_vector();
Vector<const double> test_values_f64 =
compiler::ValueHelper::float64_vector();
size_t max_len =
std::max(std::max(test_values_i32.size(), test_values_i64.size()),
std::max(test_values_f32.size(), test_values_f64.size()));
for (size_t i = 0; i < max_len; ++i) {
int32_t i32 = test_values_i32[i % test_values_i32.size()];
int64_t i64 = test_values_i64[i % test_values_i64.size()];
float f32 = test_values_f32[i % test_values_f32.size()];
double f64 = test_values_f64[i % test_values_f64.size()];
CheckCall(i32, i64, f32, f64);
}
}
} // namespace wasm
} // namespace internal
} // namespace v8