| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/time/time.h" |
| |
| #if !defined(STARBOARD) |
| #include <time.h> |
| #endif |
| |
| #include <limits> |
| #include <string> |
| |
| #include "base/build_time.h" |
| #include "base/compiler_specific.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "base/strings/stringprintf.h" |
| #include "base/threading/platform_thread.h" |
| #include "base/time/time_override.h" |
| #include "build/build_config.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| #if defined(STARBOARD) |
| #include "starboard/common/time.h" |
| #include "starboard/types.h" |
| #include "base/test/time_helpers.h" |
| #elif defined(OS_ANDROID) |
| #include "base/android/jni_android.h" |
| #elif defined(OS_IOS) |
| #include "base/ios/ios_util.h" |
| #elif defined(OS_WIN) |
| #include <windows.h> |
| #endif |
| |
| namespace base { |
| |
| namespace { |
| |
| TEST(TimeTestOutOfBounds, FromExplodedOutOfBoundsTime) { |
| // FromUTCExploded must set time to Time(0) and failure, if the day is set to |
| // 31 on a 28-30 day month. Test |exploded| returns Time(0) on 31st of |
| // February and 31st of April. New implementation handles this. |
| |
| const struct DateTestData { |
| Time::Exploded explode; |
| bool is_valid; |
| } kDateTestData[] = { |
| // 31st of February |
| {{2016, 2, 0, 31, 12, 30, 0, 0}, true}, |
| // 31st of April |
| {{2016, 4, 0, 31, 8, 43, 0, 0}, true}, |
| // Negative month |
| {{2016, -5, 0, 2, 4, 10, 0, 0}, false}, |
| // Negative date of month |
| {{2016, 6, 0, -15, 2, 50, 0, 0}, false}, |
| // Negative hours |
| {{2016, 7, 0, 10, -11, 29, 0, 0}, false}, |
| // Negative minutes |
| {{2016, 3, 0, 14, 10, -29, 0, 0}, false}, |
| // Negative seconds |
| {{2016, 10, 0, 25, 7, 47, -30, 0}, false}, |
| // Negative milliseconds |
| {{2016, 10, 0, 25, 7, 47, 20, -500}, false}, |
| // Hours are too large |
| {{2016, 7, 0, 10, 26, 29, 0, 0}, false}, |
| // Minutes are too large |
| {{2016, 3, 0, 14, 10, 78, 0, 0}, false}, |
| // Seconds are too large |
| {{2016, 10, 0, 25, 7, 47, 234, 0}, false}, |
| // Milliseconds are too large |
| {{2016, 10, 0, 25, 6, 31, 23, 1643}, false}, |
| // Test overflow. Time is valid, but overflow case |
| // results in Time(0). |
| {{9840633, 1, 0, 1, 1, 1, 0, 0}, true}, |
| // Underflow will fail as well. |
| {{-9840633, 1, 0, 1, 1, 1, 0, 0}, true}, |
| // Test integer overflow and underflow cases for the values themselves. |
| {{std::numeric_limits<int>::min(), 1, 0, 1, 1, 1, 0, 0}, true}, |
| {{std::numeric_limits<int>::max(), 1, 0, 1, 1, 1, 0, 0}, true}, |
| {{2016, std::numeric_limits<int>::min(), 0, 1, 1, 1, 0, 0}, false}, |
| {{2016, std::numeric_limits<int>::max(), 0, 1, 1, 1, 0, 0}, false}, |
| }; |
| |
| for (const auto& test : kDateTestData) { |
| EXPECT_EQ(test.explode.HasValidValues(), test.is_valid); |
| |
| base::Time result; |
| EXPECT_FALSE(base::Time::FromUTCExploded(test.explode, &result)); |
| EXPECT_TRUE(result.is_null()); |
| EXPECT_FALSE(base::Time::FromLocalExploded(test.explode, &result)); |
| EXPECT_TRUE(result.is_null()); |
| } |
| } |
| |
| // Specialized test fixture allowing time strings without timezones to be |
| // tested by comparing them to a known time in the local zone. |
| // See also pr_time_unittests.cc |
| class TimeTest : public testing::Test { |
| protected: |
| void SetUp() override { |
| #if defined(STARBOARD) |
| // Since we don't have access to mktime, let's use time_helpers to do the |
| // same thing in a portable way. |
| comparison_time_local_ = base::test::time_helpers::TestDateToTime( |
| base::test::time_helpers::kTimeZoneLocal); |
| comparison_time_pdt_ = base::test::time_helpers::TestDateToTime( |
| base::test::time_helpers::kTimeZonePacific); |
| #else // defined(STARBOARD) |
| // Use mktime to get a time_t, and turn it into a PRTime by converting |
| // seconds to microseconds. Use 15th Oct 2007 12:45:00 local. This |
| // must be a time guaranteed to be outside of a DST fallback hour in |
| // any timezone. |
| struct tm local_comparison_tm = { |
| 0, // second |
| 45, // minute |
| 12, // hour |
| 15, // day of month |
| 10 - 1, // month |
| 2007 - 1900, // year |
| 0, // day of week (ignored, output only) |
| 0, // day of year (ignored, output only) |
| -1 // DST in effect, -1 tells mktime to figure it out |
| }; |
| |
| time_t converted_time = mktime(&local_comparison_tm); |
| ASSERT_GT(converted_time, 0); |
| comparison_time_local_ = Time::FromTimeT(converted_time); |
| |
| // time_t representation of 15th Oct 2007 12:45:00 PDT |
| comparison_time_pdt_ = Time::FromTimeT(1192477500); |
| #endif |
| } |
| |
| Time comparison_time_local_; |
| Time comparison_time_pdt_; |
| }; |
| |
| // Test conversion to/from TimeDeltas elapsed since the Windows epoch. |
| // Conversions should be idempotent and non-lossy. |
| TEST_F(TimeTest, DeltaSinceWindowsEpoch) { |
| const TimeDelta delta = TimeDelta::FromMicroseconds(123); |
| EXPECT_EQ(delta, |
| Time::FromDeltaSinceWindowsEpoch(delta).ToDeltaSinceWindowsEpoch()); |
| |
| const Time now = Time::Now(); |
| const Time actual = |
| Time::FromDeltaSinceWindowsEpoch(now.ToDeltaSinceWindowsEpoch()); |
| EXPECT_EQ(now, actual); |
| |
| // Null times should remain null after a round-trip conversion. This is an |
| // important invariant for the common use case of serialization + |
| // deserialization. |
| const Time should_be_null = |
| Time::FromDeltaSinceWindowsEpoch(Time().ToDeltaSinceWindowsEpoch()); |
| EXPECT_TRUE(should_be_null.is_null()); |
| } |
| |
| // Test conversion to/from time_t. |
| TEST_F(TimeTest, TimeT) { |
| EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT()); |
| EXPECT_EQ(10.0, Time().FromTimeT(10).ToDoubleT()); |
| |
| // Conversions of 0 should stay 0. |
| EXPECT_EQ(0, Time().ToTimeT()); |
| EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue()); |
| } |
| |
| #if !defined(STARBOARD) |
| |
| // Test conversions to/from time_t and exploding/unexploding (utc time). |
| TEST_F(TimeTest, UTCTimeT) { |
| // C library time and exploded time. |
| time_t now_t_1 = time(nullptr); |
| struct tm tms; |
| #if defined(OS_WIN) |
| gmtime_s(&tms, &now_t_1); |
| #elif defined(OS_POSIX) || defined(OS_FUCHSIA) |
| gmtime_r(&now_t_1, &tms); |
| #endif |
| |
| // Convert to ours. |
| Time our_time_1 = Time::FromTimeT(now_t_1); |
| Time::Exploded exploded; |
| our_time_1.UTCExplode(&exploded); |
| |
| // This will test both our exploding and our time_t -> Time conversion. |
| EXPECT_EQ(tms.tm_year + 1900, exploded.year); |
| EXPECT_EQ(tms.tm_mon + 1, exploded.month); |
| EXPECT_EQ(tms.tm_mday, exploded.day_of_month); |
| EXPECT_EQ(tms.tm_hour, exploded.hour); |
| EXPECT_EQ(tms.tm_min, exploded.minute); |
| EXPECT_EQ(tms.tm_sec, exploded.second); |
| |
| // Convert exploded back to the time struct. |
| Time our_time_2; |
| EXPECT_TRUE(Time::FromUTCExploded(exploded, &our_time_2)); |
| EXPECT_TRUE(our_time_1 == our_time_2); |
| |
| time_t now_t_2 = our_time_2.ToTimeT(); |
| EXPECT_EQ(now_t_1, now_t_2); |
| } |
| |
| // Test conversions to/from time_t and exploding/unexploding (local time). |
| TEST_F(TimeTest, LocalTimeT) { |
| #if defined(OS_IOS) && TARGET_OS_SIMULATOR |
| // The function CFTimeZoneCopySystem() fails to determine the system timezone |
| // when running iOS 11.0 simulator on an host running High Sierra and return |
| // the "GMT" timezone. This causes Time::LocalExplode and localtime_r values |
| // to differ by the local timezone offset. Disable the test if simulating |
| // iOS 10.0 as it is not possible to check the version of the host mac. |
| // TODO(crbug.com/782033): remove this once support for iOS pre-11.0 is |
| // dropped or when the bug in CFTimeZoneCopySystem() is fixed. |
| if (ios::IsRunningOnIOS10OrLater() && !ios::IsRunningOnIOS11OrLater()) { |
| return; |
| } |
| #endif |
| |
| // C library time and exploded time. |
| time_t now_t_1 = time(nullptr); |
| struct tm tms; |
| #if defined(OS_WIN) |
| localtime_s(&tms, &now_t_1); |
| #elif defined(OS_POSIX) || defined(OS_FUCHSIA) |
| localtime_r(&now_t_1, &tms); |
| #endif |
| |
| // Convert to ours. |
| Time our_time_1 = Time::FromTimeT(now_t_1); |
| Time::Exploded exploded; |
| our_time_1.LocalExplode(&exploded); |
| |
| // This will test both our exploding and our time_t -> Time conversion. |
| EXPECT_EQ(tms.tm_year + 1900, exploded.year); |
| EXPECT_EQ(tms.tm_mon + 1, exploded.month); |
| EXPECT_EQ(tms.tm_mday, exploded.day_of_month); |
| EXPECT_EQ(tms.tm_hour, exploded.hour); |
| EXPECT_EQ(tms.tm_min, exploded.minute); |
| EXPECT_EQ(tms.tm_sec, exploded.second); |
| |
| // Convert exploded back to the time struct. |
| Time our_time_2; |
| EXPECT_TRUE(Time::FromLocalExploded(exploded, &our_time_2)); |
| EXPECT_TRUE(our_time_1 == our_time_2); |
| |
| time_t now_t_2 = our_time_2.ToTimeT(); |
| EXPECT_EQ(now_t_1, now_t_2); |
| } |
| |
| #endif // !defined(STARBOARD) |
| |
| // Test conversions to/from javascript time. |
| TEST_F(TimeTest, JsTime) { |
| Time epoch = Time::FromJsTime(0.0); |
| EXPECT_EQ(epoch, Time::UnixEpoch()); |
| Time t = Time::FromJsTime(700000.3); |
| EXPECT_EQ(700.0003, t.ToDoubleT()); |
| t = Time::FromDoubleT(800.73); |
| EXPECT_EQ(800730.0, t.ToJsTime()); |
| } |
| |
| #if defined(OS_POSIX) || defined(OS_FUCHSIA) |
| TEST_F(TimeTest, FromTimeVal) { |
| Time now = Time::Now(); |
| Time also_now = Time::FromTimeVal(now.ToTimeVal()); |
| EXPECT_EQ(now, also_now); |
| } |
| #endif // defined(OS_POSIX) || defined(OS_FUCHSIA) |
| |
| TEST_F(TimeTest, FromExplodedWithMilliseconds) { |
| // Some platform implementations of FromExploded are liable to drop |
| // milliseconds if we aren't careful. |
| Time now = Time::NowFromSystemTime(); |
| Time::Exploded exploded1 = {0}; |
| now.UTCExplode(&exploded1); |
| exploded1.millisecond = 500; |
| Time time; |
| EXPECT_TRUE(Time::FromUTCExploded(exploded1, &time)); |
| Time::Exploded exploded2 = {0}; |
| time.UTCExplode(&exploded2); |
| EXPECT_EQ(exploded1.millisecond, exploded2.millisecond); |
| } |
| |
| TEST_F(TimeTest, ZeroIsSymmetric) { |
| Time zero_time(Time::FromTimeT(0)); |
| EXPECT_EQ(0, zero_time.ToTimeT()); |
| |
| EXPECT_EQ(0.0, zero_time.ToDoubleT()); |
| } |
| |
| TEST_F(TimeTest, LocalExplode) { |
| Time a = Time::Now(); |
| Time::Exploded exploded; |
| a.LocalExplode(&exploded); |
| |
| Time b; |
| EXPECT_TRUE(Time::FromLocalExploded(exploded, &b)); |
| |
| // The exploded structure doesn't have microseconds, and on Mac & Linux, the |
| // internal OS conversion uses seconds, which will cause truncation. So we |
| // can only make sure that the delta is within one second. |
| EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); |
| } |
| |
| TEST_F(TimeTest, UTCExplode) { |
| Time a = Time::Now(); |
| Time::Exploded exploded; |
| a.UTCExplode(&exploded); |
| |
| Time b; |
| EXPECT_TRUE(Time::FromUTCExploded(exploded, &b)); |
| EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); |
| } |
| |
| TEST_F(TimeTest, UTCMidnight) { |
| Time::Exploded exploded; |
| Time::Now().UTCMidnight().UTCExplode(&exploded); |
| EXPECT_EQ(0, exploded.hour); |
| EXPECT_EQ(0, exploded.minute); |
| EXPECT_EQ(0, exploded.second); |
| EXPECT_EQ(0, exploded.millisecond); |
| } |
| |
| TEST_F(TimeTest, LocalMidnight) { |
| Time::Exploded exploded; |
| Time::Now().LocalMidnight().LocalExplode(&exploded); |
| EXPECT_EQ(0, exploded.hour); |
| EXPECT_EQ(0, exploded.minute); |
| EXPECT_EQ(0, exploded.second); |
| EXPECT_EQ(0, exploded.millisecond); |
| } |
| |
| #if defined(STARBOARD) |
| TEST_F(TimeTest, ParseTimeTest1) { |
| Time now = Time::Now(); |
| |
| Time parsed_time; |
| std::string formatted = base::test::time_helpers::TimeFormatUTC(now); |
| EXPECT_TRUE(Time::FromUTCString(formatted.c_str(), &parsed_time)); |
| EXPECT_GE(1, (now - parsed_time).InSecondsF()); |
| EXPECT_GE(1, (parsed_time - now).InSecondsF()); |
| |
| formatted = base::test::time_helpers::TimeFormatLocal(now); |
| EXPECT_TRUE(Time::FromString(formatted.c_str(), &parsed_time)); |
| EXPECT_GE(1, (now - parsed_time).InSecondsF()); |
| EXPECT_GE(1, (parsed_time - now).InSecondsF()); |
| } |
| #else // !defined(STARBOARD) |
| TEST_F(TimeTest, ParseTimeTest1) { |
| time_t current_time = 0; |
| time(¤t_time); |
| |
| struct tm local_time = {}; |
| char time_buf[64] = {}; |
| #if defined(OS_WIN) |
| localtime_s(&local_time, ¤t_time); |
| asctime_s(time_buf, arraysize(time_buf), &local_time); |
| #elif defined(OS_POSIX) || defined(OS_FUCHSIA) |
| localtime_r(¤t_time, &local_time); |
| asctime_r(&local_time, time_buf); |
| #endif |
| |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString(time_buf, &parsed_time)); |
| EXPECT_EQ(current_time, parsed_time.ToTimeT()); |
| } |
| #endif // !defined(STARBOARD) |
| |
| TEST_F(TimeTest, DayOfWeekSunday) { |
| Time time; |
| EXPECT_TRUE(Time::FromString("Sun, 06 May 2012 12:00:00 GMT", &time)); |
| Time::Exploded exploded; |
| time.UTCExplode(&exploded); |
| EXPECT_EQ(0, exploded.day_of_week); |
| } |
| |
| TEST_F(TimeTest, DayOfWeekWednesday) { |
| Time time; |
| EXPECT_TRUE(Time::FromString("Wed, 09 May 2012 12:00:00 GMT", &time)); |
| Time::Exploded exploded; |
| time.UTCExplode(&exploded); |
| EXPECT_EQ(3, exploded.day_of_week); |
| } |
| |
| TEST_F(TimeTest, DayOfWeekSaturday) { |
| Time time; |
| EXPECT_TRUE(Time::FromString("Sat, 12 May 2012 12:00:00 GMT", &time)); |
| Time::Exploded exploded; |
| time.UTCExplode(&exploded); |
| EXPECT_EQ(6, exploded.day_of_week); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTest2) { |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString("Mon, 15 Oct 2007 19:45:00 GMT", &parsed_time)); |
| EXPECT_EQ(comparison_time_pdt_, parsed_time); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTest3) { |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString("15 Oct 07 12:45:00", &parsed_time)); |
| EXPECT_EQ(comparison_time_local_, parsed_time); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTest4) { |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString("15 Oct 07 19:45 GMT", &parsed_time)); |
| EXPECT_EQ(comparison_time_pdt_, parsed_time); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTest5) { |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString("Mon Oct 15 12:45 PDT 2007", &parsed_time)); |
| EXPECT_EQ(comparison_time_pdt_, parsed_time); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTest6) { |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString("Monday, Oct 15, 2007 12:45 PM", &parsed_time)); |
| EXPECT_EQ(comparison_time_local_, parsed_time); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTest7) { |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString("10/15/07 12:45:00 PM", &parsed_time)); |
| EXPECT_EQ(comparison_time_local_, parsed_time); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTest8) { |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString("15-OCT-2007 12:45pm", &parsed_time)); |
| EXPECT_EQ(comparison_time_local_, parsed_time); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTest9) { |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString("16 Oct 2007 4:45-JST (Tuesday)", &parsed_time)); |
| EXPECT_EQ(comparison_time_pdt_, parsed_time); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTest10) { |
| Time parsed_time; |
| EXPECT_TRUE(Time::FromString("15/10/07 12:45", &parsed_time)); |
| EXPECT_EQ(parsed_time, comparison_time_local_); |
| } |
| |
| // Test some of edge cases around epoch, etc. |
| TEST_F(TimeTest, ParseTimeTestEpoch0) { |
| Time parsed_time; |
| |
| // time_t == epoch == 0 |
| EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:00 +0100 1970", |
| &parsed_time)); |
| EXPECT_EQ(0, parsed_time.ToTimeT()); |
| EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:00 GMT 1970", |
| &parsed_time)); |
| EXPECT_EQ(0, parsed_time.ToTimeT()); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTestEpoch1) { |
| Time parsed_time; |
| |
| // time_t == 1 second after epoch == 1 |
| EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:01 +0100 1970", |
| &parsed_time)); |
| EXPECT_EQ(1, parsed_time.ToTimeT()); |
| EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:01 GMT 1970", |
| &parsed_time)); |
| EXPECT_EQ(1, parsed_time.ToTimeT()); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTestEpoch2) { |
| Time parsed_time; |
| |
| // time_t == 2 seconds after epoch == 2 |
| EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:02 +0100 1970", |
| &parsed_time)); |
| EXPECT_EQ(2, parsed_time.ToTimeT()); |
| EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:02 GMT 1970", |
| &parsed_time)); |
| EXPECT_EQ(2, parsed_time.ToTimeT()); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTestEpochNeg1) { |
| Time parsed_time; |
| |
| // time_t == 1 second before epoch == -1 |
| EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:59 +0100 1970", |
| &parsed_time)); |
| EXPECT_EQ(-1, parsed_time.ToTimeT()); |
| EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 1969", |
| &parsed_time)); |
| EXPECT_EQ(-1, parsed_time.ToTimeT()); |
| } |
| |
| // If time_t is 32 bits, a date after year 2038 will overflow time_t and |
| // cause timegm() to return -1. The parsed time should not be 1 second |
| // before epoch. |
| TEST_F(TimeTest, ParseTimeTestEpochNotNeg1) { |
| Time parsed_time; |
| |
| EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 2100", |
| &parsed_time)); |
| EXPECT_NE(-1, parsed_time.ToTimeT()); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTestEpochNeg2) { |
| Time parsed_time; |
| |
| // time_t == 2 seconds before epoch == -2 |
| EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:58 +0100 1970", |
| &parsed_time)); |
| EXPECT_EQ(-2, parsed_time.ToTimeT()); |
| EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:58 GMT 1969", |
| &parsed_time)); |
| EXPECT_EQ(-2, parsed_time.ToTimeT()); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTestEpoch1960) { |
| Time parsed_time; |
| |
| // time_t before Epoch, in 1960 |
| EXPECT_TRUE(Time::FromString("Wed Jun 29 19:40:01 +0100 1960", |
| &parsed_time)); |
| EXPECT_EQ(-299999999, parsed_time.ToTimeT()); |
| EXPECT_TRUE(Time::FromString("Wed Jun 29 18:40:01 GMT 1960", |
| &parsed_time)); |
| EXPECT_EQ(-299999999, parsed_time.ToTimeT()); |
| EXPECT_TRUE(Time::FromString("Wed Jun 29 17:40:01 GMT 1960", |
| &parsed_time)); |
| EXPECT_EQ(-300003599, parsed_time.ToTimeT()); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTestEmpty) { |
| Time parsed_time; |
| EXPECT_FALSE(Time::FromString("", &parsed_time)); |
| } |
| |
| TEST_F(TimeTest, ParseTimeTestInvalidString) { |
| Time parsed_time; |
| EXPECT_FALSE(Time::FromString("Monday morning 2000", &parsed_time)); |
| } |
| |
| TEST_F(TimeTest, ExplodeBeforeUnixEpoch) { |
| static const int kUnixEpochYear = 1970; // In case this changes (ha!). |
| Time t; |
| Time::Exploded exploded; |
| |
| t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1969-12-31 23:59:59 999 milliseconds (and 999 microseconds). |
| EXPECT_EQ(kUnixEpochYear - 1, exploded.year); |
| EXPECT_EQ(12, exploded.month); |
| EXPECT_EQ(31, exploded.day_of_month); |
| EXPECT_EQ(23, exploded.hour); |
| EXPECT_EQ(59, exploded.minute); |
| EXPECT_EQ(59, exploded.second); |
| EXPECT_EQ(999, exploded.millisecond); |
| |
| t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1000); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1969-12-31 23:59:59 999 milliseconds. |
| EXPECT_EQ(kUnixEpochYear - 1, exploded.year); |
| EXPECT_EQ(12, exploded.month); |
| EXPECT_EQ(31, exploded.day_of_month); |
| EXPECT_EQ(23, exploded.hour); |
| EXPECT_EQ(59, exploded.minute); |
| EXPECT_EQ(59, exploded.second); |
| EXPECT_EQ(999, exploded.millisecond); |
| |
| t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1001); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1969-12-31 23:59:59 998 milliseconds (and 999 microseconds). |
| EXPECT_EQ(kUnixEpochYear - 1, exploded.year); |
| EXPECT_EQ(12, exploded.month); |
| EXPECT_EQ(31, exploded.day_of_month); |
| EXPECT_EQ(23, exploded.hour); |
| EXPECT_EQ(59, exploded.minute); |
| EXPECT_EQ(59, exploded.second); |
| EXPECT_EQ(998, exploded.millisecond); |
| |
| t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1000); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1969-12-31 23:59:59. |
| EXPECT_EQ(kUnixEpochYear - 1, exploded.year); |
| EXPECT_EQ(12, exploded.month); |
| EXPECT_EQ(31, exploded.day_of_month); |
| EXPECT_EQ(23, exploded.hour); |
| EXPECT_EQ(59, exploded.minute); |
| EXPECT_EQ(59, exploded.second); |
| EXPECT_EQ(0, exploded.millisecond); |
| |
| t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1001); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1969-12-31 23:59:58 999 milliseconds. |
| EXPECT_EQ(kUnixEpochYear - 1, exploded.year); |
| EXPECT_EQ(12, exploded.month); |
| EXPECT_EQ(31, exploded.day_of_month); |
| EXPECT_EQ(23, exploded.hour); |
| EXPECT_EQ(59, exploded.minute); |
| EXPECT_EQ(58, exploded.second); |
| EXPECT_EQ(999, exploded.millisecond); |
| |
| // Make sure we still handle at/after Unix epoch correctly. |
| t = Time::UnixEpoch(); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1970-12-31 00:00:00 0 milliseconds. |
| EXPECT_EQ(kUnixEpochYear, exploded.year); |
| EXPECT_EQ(1, exploded.month); |
| EXPECT_EQ(1, exploded.day_of_month); |
| EXPECT_EQ(0, exploded.hour); |
| EXPECT_EQ(0, exploded.minute); |
| EXPECT_EQ(0, exploded.second); |
| EXPECT_EQ(0, exploded.millisecond); |
| |
| t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1970-01-01 00:00:00 0 milliseconds (and 1 microsecond). |
| EXPECT_EQ(kUnixEpochYear, exploded.year); |
| EXPECT_EQ(1, exploded.month); |
| EXPECT_EQ(1, exploded.day_of_month); |
| EXPECT_EQ(0, exploded.hour); |
| EXPECT_EQ(0, exploded.minute); |
| EXPECT_EQ(0, exploded.second); |
| EXPECT_EQ(0, exploded.millisecond); |
| |
| t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1000); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1970-01-01 00:00:00 1 millisecond. |
| EXPECT_EQ(kUnixEpochYear, exploded.year); |
| EXPECT_EQ(1, exploded.month); |
| EXPECT_EQ(1, exploded.day_of_month); |
| EXPECT_EQ(0, exploded.hour); |
| EXPECT_EQ(0, exploded.minute); |
| EXPECT_EQ(0, exploded.second); |
| EXPECT_EQ(1, exploded.millisecond); |
| |
| t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1000); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1970-01-01 00:00:01. |
| EXPECT_EQ(kUnixEpochYear, exploded.year); |
| EXPECT_EQ(1, exploded.month); |
| EXPECT_EQ(1, exploded.day_of_month); |
| EXPECT_EQ(0, exploded.hour); |
| EXPECT_EQ(0, exploded.minute); |
| EXPECT_EQ(1, exploded.second); |
| EXPECT_EQ(0, exploded.millisecond); |
| |
| t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1001); |
| t.UTCExplode(&exploded); |
| EXPECT_TRUE(exploded.HasValidValues()); |
| // Should be 1970-01-01 00:00:01 1 millisecond. |
| EXPECT_EQ(kUnixEpochYear, exploded.year); |
| EXPECT_EQ(1, exploded.month); |
| EXPECT_EQ(1, exploded.day_of_month); |
| EXPECT_EQ(0, exploded.hour); |
| EXPECT_EQ(0, exploded.minute); |
| EXPECT_EQ(1, exploded.second); |
| EXPECT_EQ(1, exploded.millisecond); |
| } |
| |
| TEST_F(TimeTest, Max) { |
| Time max = Time::Max(); |
| EXPECT_TRUE(max.is_max()); |
| EXPECT_EQ(max, Time::Max()); |
| EXPECT_GT(max, Time::Now()); |
| EXPECT_GT(max, Time()); |
| } |
| |
| TEST_F(TimeTest, MaxConversions) { |
| Time t = Time::Max(); |
| EXPECT_EQ(std::numeric_limits<int64_t>::max(), t.ToInternalValue()); |
| |
| t = Time::FromDoubleT(std::numeric_limits<double>::infinity()); |
| EXPECT_TRUE(t.is_max()); |
| EXPECT_EQ(std::numeric_limits<double>::infinity(), t.ToDoubleT()); |
| |
| t = Time::FromJsTime(std::numeric_limits<double>::infinity()); |
| EXPECT_TRUE(t.is_max()); |
| EXPECT_EQ(std::numeric_limits<double>::infinity(), t.ToJsTime()); |
| |
| t = Time::FromTimeT(std::numeric_limits<time_t>::max()); |
| EXPECT_TRUE(t.is_max()); |
| EXPECT_EQ(std::numeric_limits<time_t>::max(), t.ToTimeT()); |
| |
| #if defined(OS_POSIX) || defined(OS_FUCHSIA) |
| struct timeval tval; |
| tval.tv_sec = std::numeric_limits<time_t>::max(); |
| tval.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1; |
| t = Time::FromTimeVal(tval); |
| EXPECT_TRUE(t.is_max()); |
| tval = t.ToTimeVal(); |
| EXPECT_EQ(std::numeric_limits<time_t>::max(), tval.tv_sec); |
| EXPECT_EQ(static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1, |
| tval.tv_usec); |
| #endif |
| |
| #if defined(OS_MACOSX) |
| t = Time::FromCFAbsoluteTime(std::numeric_limits<CFAbsoluteTime>::infinity()); |
| EXPECT_TRUE(t.is_max()); |
| EXPECT_EQ(std::numeric_limits<CFAbsoluteTime>::infinity(), |
| t.ToCFAbsoluteTime()); |
| #endif |
| |
| #if defined(OS_WIN) |
| FILETIME ftime; |
| ftime.dwHighDateTime = std::numeric_limits<DWORD>::max(); |
| ftime.dwLowDateTime = std::numeric_limits<DWORD>::max(); |
| t = Time::FromFileTime(ftime); |
| EXPECT_TRUE(t.is_max()); |
| ftime = t.ToFileTime(); |
| EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwHighDateTime); |
| EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwLowDateTime); |
| #endif |
| } |
| |
| #if defined(OS_MACOSX) |
| TEST_F(TimeTest, TimeTOverflow) { |
| Time t = Time::FromInternalValue(std::numeric_limits<int64_t>::max() - 1); |
| EXPECT_FALSE(t.is_max()); |
| EXPECT_EQ(std::numeric_limits<time_t>::max(), t.ToTimeT()); |
| } |
| #endif |
| |
| #if defined(OS_ANDROID) |
| TEST_F(TimeTest, FromLocalExplodedCrashOnAndroid) { |
| // This crashed inside Time:: FromLocalExploded() on Android 4.1.2. |
| // See http://crbug.com/287821 |
| Time::Exploded midnight = {2013, // year |
| 10, // month |
| 0, // day_of_week |
| 13, // day_of_month |
| 0, // hour |
| 0, // minute |
| 0, // second |
| }; |
| // The string passed to putenv() must be a char* and the documentation states |
| // that it 'becomes part of the environment', so use a static buffer. |
| static char buffer[] = "TZ=America/Santiago"; |
| putenv(buffer); |
| tzset(); |
| Time t; |
| EXPECT_TRUE(Time::FromLocalExploded(midnight, &t)); |
| EXPECT_EQ(1381633200, t.ToTimeT()); |
| } |
| #endif // OS_ANDROID |
| |
| TEST_F(TimeTest, FromExploded_MinMax) { |
| Time::Exploded exploded = {0}; |
| exploded.month = 1; |
| exploded.day_of_month = 1; |
| |
| Time parsed_time; |
| |
| if (Time::kExplodedMinYear != std::numeric_limits<int>::min()) { |
| exploded.year = Time::kExplodedMinYear; |
| EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time)); |
| #if defined(OS_POSIX) || defined(OS_FUCHSIA) |
| // On Windows, January 1, 1601 00:00:00 is actually the null time. |
| EXPECT_FALSE(parsed_time.is_null()); |
| #endif |
| |
| #if !defined(OS_ANDROID) && !defined(OS_MACOSX) && !defined(STARBOARD) |
| // The dates earlier than |kExplodedMinYear| that don't work are OS version |
| // dependent on Android and Mac (for example, macOS 10.13 seems to support |
| // dates before 1902). |
| exploded.year--; |
| EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time)); |
| EXPECT_TRUE(parsed_time.is_null()); |
| #endif |
| } |
| |
| if (Time::kExplodedMaxYear != std::numeric_limits<int>::max()) { |
| exploded.year = Time::kExplodedMaxYear; |
| exploded.month = 12; |
| exploded.day_of_month = 31; |
| exploded.hour = 23; |
| exploded.minute = 59; |
| exploded.second = 59; |
| exploded.millisecond = 999; |
| EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time)); |
| EXPECT_FALSE(parsed_time.is_null()); |
| |
| exploded.year++; |
| #ifndef STARBOARD |
| // Cobalt's Raspi platform can have time older than 1901-01-01 or later |
| // than 2038-12-31. |
| EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time)); |
| EXPECT_TRUE(parsed_time.is_null()); |
| #endif |
| } |
| } |
| |
| class TimeOverride { |
| public: |
| static Time Now() { |
| now_time_ += TimeDelta::FromSeconds(1); |
| return now_time_; |
| } |
| |
| static Time now_time_; |
| }; |
| |
| // static |
| Time TimeOverride::now_time_; |
| |
| // GetBuildTime is not supported by Starboard. |
| #ifndef STARBOARD |
| TEST_F(TimeTest, NowOverride) { |
| TimeOverride::now_time_ = Time::UnixEpoch(); |
| |
| // Choose a reference time that we know to be in the past but close to now. |
| Time build_time = GetBuildTime(); |
| |
| // Override is not active. All Now() methods should return a time greater than |
| // the build time. |
| EXPECT_LT(build_time, Time::Now()); |
| EXPECT_GT(Time::Max(), Time::Now()); |
| EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride()); |
| EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride()); |
| EXPECT_LT(build_time, Time::NowFromSystemTime()); |
| EXPECT_GT(Time::Max(), Time::NowFromSystemTime()); |
| EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride()); |
| EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride()); |
| |
| { |
| // Set override. |
| subtle::ScopedTimeClockOverrides overrides(&TimeOverride::Now, nullptr, |
| nullptr); |
| |
| // Overridden value is returned and incremented when Now() or |
| // NowFromSystemTime() is called. |
| EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(1), Time::Now()); |
| EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(2), Time::Now()); |
| EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(3), |
| Time::NowFromSystemTime()); |
| EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(4), |
| Time::NowFromSystemTime()); |
| |
| // IgnoringOverride methods still return real time. |
| EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride()); |
| EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride()); |
| EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride()); |
| EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride()); |
| |
| // IgnoringOverride methods didn't call NowOverrideClock::Now(). |
| EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(5), Time::Now()); |
| EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(6), |
| Time::NowFromSystemTime()); |
| } |
| |
| // All methods return real time again. |
| EXPECT_LT(build_time, Time::Now()); |
| EXPECT_GT(Time::Max(), Time::Now()); |
| EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride()); |
| EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride()); |
| EXPECT_LT(build_time, Time::NowFromSystemTime()); |
| EXPECT_GT(Time::Max(), Time::NowFromSystemTime()); |
| EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride()); |
| EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride()); |
| } |
| #endif |
| |
| TEST(TimeTicks, Deltas) { |
| for (int index = 0; index < 50; index++) { |
| TimeTicks ticks_start = TimeTicks::Now(); |
| base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(10)); |
| TimeTicks ticks_stop = TimeTicks::Now(); |
| TimeDelta delta = ticks_stop - ticks_start; |
| // Note: Although we asked for a 10ms sleep, if the |
| // time clock has a finer granularity than the Sleep() |
| // clock, it is quite possible to wakeup early. Here |
| // is how that works: |
| // Time(ms timer) Time(us timer) |
| // 5 5010 |
| // 6 6010 |
| // 7 7010 |
| // 8 8010 |
| // 9 9000 |
| // Elapsed 4ms 3990us |
| // |
| // Unfortunately, our InMilliseconds() function truncates |
| // rather than rounds. We should consider fixing this |
| // so that our averages come out better. |
| EXPECT_GE(delta.InMilliseconds(), 9); |
| EXPECT_GE(delta.InMicroseconds(), 9000); |
| EXPECT_EQ(delta.InSeconds(), 0); |
| } |
| } |
| |
| static void HighResClockTest(TimeTicks (*GetTicks)()) { |
| // IsHighResolution() is false on some systems. Since the product still works |
| // even if it's false, it makes this entire test questionable. |
| if (!TimeTicks::IsHighResolution()) |
| return; |
| |
| // Why do we loop here? |
| // We're trying to measure that intervals increment in a VERY small amount |
| // of time -- less than 15ms. Unfortunately, if we happen to have a |
| // context switch in the middle of our test, the context switch could easily |
| // exceed our limit. So, we iterate on this several times. As long as we're |
| // able to detect the fine-granularity timers at least once, then the test |
| // has succeeded. |
| |
| const int kTargetGranularityUs = 15000; // 15ms |
| |
| bool success = false; |
| int retries = 100; // Arbitrary. |
| TimeDelta delta; |
| while (!success && retries--) { |
| TimeTicks ticks_start = GetTicks(); |
| // Loop until we can detect that the clock has changed. Non-HighRes timers |
| // will increment in chunks, e.g. 15ms. By spinning until we see a clock |
| // change, we detect the minimum time between measurements. |
| do { |
| delta = GetTicks() - ticks_start; |
| } while (delta.InMilliseconds() == 0); |
| |
| if (delta.InMicroseconds() <= kTargetGranularityUs) |
| success = true; |
| } |
| |
| // In high resolution mode, we expect to see the clock increment |
| // in intervals less than 15ms. |
| EXPECT_TRUE(success); |
| } |
| |
| TEST(TimeTicks, HighRes) { |
| HighResClockTest(&TimeTicks::Now); |
| } |
| |
| class TimeTicksOverride { |
| public: |
| static TimeTicks Now() { |
| now_ticks_ += TimeDelta::FromSeconds(1); |
| return now_ticks_; |
| } |
| |
| static TimeTicks now_ticks_; |
| }; |
| |
| // static |
| TimeTicks TimeTicksOverride::now_ticks_; |
| |
| TEST(TimeTicks, NowOverride) { |
| TimeTicksOverride::now_ticks_ = TimeTicks::Min(); |
| |
| // Override is not active. All Now() methods should return a sensible value. |
| EXPECT_LT(TimeTicks::Min(), TimeTicks::UnixEpoch()); |
| EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now()); |
| EXPECT_GT(TimeTicks::Max(), TimeTicks::Now()); |
| EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride()); |
| EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride()); |
| |
| { |
| // Set override. |
| subtle::ScopedTimeClockOverrides overrides(nullptr, &TimeTicksOverride::Now, |
| nullptr); |
| |
| // Overridden value is returned and incremented when Now() is called. |
| EXPECT_EQ(TimeTicks::Min() + TimeDelta::FromSeconds(1), TimeTicks::Now()); |
| EXPECT_EQ(TimeTicks::Min() + TimeDelta::FromSeconds(2), TimeTicks::Now()); |
| |
| // NowIgnoringOverride() still returns real ticks. |
| EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride()); |
| EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride()); |
| |
| // IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks(). |
| EXPECT_EQ(TimeTicks::Min() + TimeDelta::FromSeconds(3), TimeTicks::Now()); |
| } |
| |
| // All methods return real ticks again. |
| EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now()); |
| EXPECT_GT(TimeTicks::Max(), TimeTicks::Now()); |
| EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride()); |
| EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride()); |
| } |
| |
| class ThreadTicksOverride { |
| public: |
| static ThreadTicks Now() { |
| now_ticks_ += TimeDelta::FromSeconds(1); |
| return now_ticks_; |
| } |
| |
| static ThreadTicks now_ticks_; |
| }; |
| |
| // static |
| ThreadTicks ThreadTicksOverride::now_ticks_; |
| |
| // IOS doesn't support ThreadTicks::Now(). |
| #if defined(OS_IOS) |
| #define MAYBE_NowOverride DISABLED_NowOverride |
| #else |
| #define MAYBE_NowOverride NowOverride |
| #endif |
| TEST(ThreadTicks, MAYBE_NowOverride) { |
| if (starboard::CurrentMonotonicThreadTime() == 0) { |
| SB_LOG(INFO) << "Time thread now not supported. Test skipped."; |
| return; |
| } |
| |
| ThreadTicksOverride::now_ticks_ = ThreadTicks::Min(); |
| |
| // Override is not active. All Now() methods should return a sensible value. |
| ThreadTicks initial_thread_ticks = ThreadTicks::Now(); |
| EXPECT_LE(initial_thread_ticks, ThreadTicks::Now()); |
| EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now()); |
| EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride()); |
| EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride()); |
| |
| { |
| // Set override. |
| subtle::ScopedTimeClockOverrides overrides(nullptr, nullptr, |
| &ThreadTicksOverride::Now); |
| |
| // Overridden value is returned and incremented when Now() is called. |
| EXPECT_EQ(ThreadTicks::Min() + TimeDelta::FromSeconds(1), |
| ThreadTicks::Now()); |
| EXPECT_EQ(ThreadTicks::Min() + TimeDelta::FromSeconds(2), |
| ThreadTicks::Now()); |
| |
| // NowIgnoringOverride() still returns real ticks. |
| EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride()); |
| EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride()); |
| |
| // IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks(). |
| EXPECT_EQ(ThreadTicks::Min() + TimeDelta::FromSeconds(3), |
| ThreadTicks::Now()); |
| } |
| |
| // All methods return real ticks again. |
| EXPECT_LE(initial_thread_ticks, ThreadTicks::Now()); |
| EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now()); |
| EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride()); |
| EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride()); |
| } |
| |
| TEST(ThreadTicks, ThreadNow) { |
| if (ThreadTicks::IsSupported()) { |
| ThreadTicks::WaitUntilInitialized(); |
| TimeTicks begin = TimeTicks::Now(); |
| ThreadTicks begin_thread = ThreadTicks::Now(); |
| // Make sure that ThreadNow value is non-zero. |
| EXPECT_GT(begin_thread, ThreadTicks()); |
| // Sleep for 10 milliseconds to get the thread de-scheduled. |
| base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(10)); |
| ThreadTicks end_thread = ThreadTicks::Now(); |
| TimeTicks end = TimeTicks::Now(); |
| TimeDelta delta = end - begin; |
| TimeDelta delta_thread = end_thread - begin_thread; |
| // Make sure that some thread time have elapsed. |
| EXPECT_GE(delta_thread.InMicroseconds(), 0); |
| // But the thread time is at least 9ms less than clock time. |
| TimeDelta difference = delta - delta_thread; |
| EXPECT_GE(difference.InMicroseconds(), 9000); |
| } |
| } |
| |
| TEST(TimeTicks, SnappedToNextTickBasic) { |
| base::TimeTicks phase = base::TimeTicks::FromInternalValue(4000); |
| base::TimeDelta interval = base::TimeDelta::FromMicroseconds(1000); |
| base::TimeTicks timestamp; |
| |
| // Timestamp in previous interval. |
| timestamp = base::TimeTicks::FromInternalValue(3500); |
| EXPECT_EQ(4000, |
| timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); |
| |
| // Timestamp in next interval. |
| timestamp = base::TimeTicks::FromInternalValue(4500); |
| EXPECT_EQ(5000, |
| timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); |
| |
| // Timestamp multiple intervals before. |
| timestamp = base::TimeTicks::FromInternalValue(2500); |
| EXPECT_EQ(3000, |
| timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); |
| |
| // Timestamp multiple intervals after. |
| timestamp = base::TimeTicks::FromInternalValue(6500); |
| EXPECT_EQ(7000, |
| timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); |
| |
| // Timestamp on previous interval. |
| timestamp = base::TimeTicks::FromInternalValue(3000); |
| EXPECT_EQ(3000, |
| timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); |
| |
| // Timestamp on next interval. |
| timestamp = base::TimeTicks::FromInternalValue(5000); |
| EXPECT_EQ(5000, |
| timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); |
| |
| // Timestamp equal to phase. |
| timestamp = base::TimeTicks::FromInternalValue(4000); |
| EXPECT_EQ(4000, |
| timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); |
| } |
| |
| TEST(TimeTicks, SnappedToNextTickOverflow) { |
| // int(big_timestamp / interval) < 0, so this causes a crash if the number of |
| // intervals elapsed is attempted to be stored in an int. |
| base::TimeTicks phase = base::TimeTicks::FromInternalValue(0); |
| base::TimeDelta interval = base::TimeDelta::FromMicroseconds(4000); |
| base::TimeTicks big_timestamp = |
| base::TimeTicks::FromInternalValue(8635916564000); |
| |
| EXPECT_EQ(8635916564000, |
| big_timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); |
| EXPECT_EQ(8635916564000, |
| big_timestamp.SnappedToNextTick(big_timestamp, interval) |
| .ToInternalValue()); |
| } |
| |
| #if defined(OS_ANDROID) |
| TEST(TimeTicks, Android_FromUptimeMillis_ClocksMatch) { |
| JNIEnv* const env = android::AttachCurrentThread(); |
| android::ScopedJavaLocalRef<jclass> clazz( |
| android::GetClass(env, "android/os/SystemClock")); |
| ASSERT_TRUE(clazz.obj()); |
| const jmethodID method_id = |
| android::MethodID::Get<android::MethodID::TYPE_STATIC>( |
| env, clazz.obj(), "uptimeMillis", "()J"); |
| ASSERT_FALSE(!method_id); |
| // Subtract 1ms from the expected lower bound to allow millisecon-level |
| // truncation performed in uptimeMillis(). |
| const TimeTicks lower_bound_ticks = |
| TimeTicks::Now() - TimeDelta::FromMilliseconds(1); |
| const TimeTicks converted_ticks = TimeTicks::FromUptimeMillis( |
| env->CallStaticLongMethod(clazz.obj(), method_id)); |
| const TimeTicks upper_bound_ticks = TimeTicks::Now(); |
| EXPECT_LE(lower_bound_ticks, converted_ticks); |
| EXPECT_GE(upper_bound_ticks, converted_ticks); |
| } |
| #endif // OS_ANDROID |
| |
| TEST(TimeDelta, FromAndIn) { |
| // static_assert also checks that the contained expression is a constant |
| // expression, meaning all its components are suitable for initializing global |
| // variables. |
| static_assert(TimeDelta::FromDays(2) == TimeDelta::FromHours(48), ""); |
| static_assert(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180), ""); |
| static_assert(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120), ""); |
| static_assert(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000), |
| ""); |
| static_assert( |
| TimeDelta::FromMilliseconds(2) == TimeDelta::FromMicroseconds(2000), ""); |
| static_assert( |
| TimeDelta::FromSecondsD(2.3) == TimeDelta::FromMilliseconds(2300), ""); |
| static_assert( |
| TimeDelta::FromMillisecondsD(2.5) == TimeDelta::FromMicroseconds(2500), |
| ""); |
| EXPECT_EQ(TimeDelta::FromDays(13).InDays(), 13); |
| EXPECT_EQ(TimeDelta::FromHours(13).InHours(), 13); |
| EXPECT_EQ(TimeDelta::FromMinutes(13).InMinutes(), 13); |
| EXPECT_EQ(TimeDelta::FromSeconds(13).InSeconds(), 13); |
| EXPECT_EQ(TimeDelta::FromSeconds(13).InSecondsF(), 13.0); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(13).InMilliseconds(), 13); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(13).InMillisecondsF(), 13.0); |
| EXPECT_EQ(TimeDelta::FromSecondsD(13.1).InSeconds(), 13); |
| EXPECT_EQ(TimeDelta::FromSecondsD(13.1).InSecondsF(), 13.1); |
| EXPECT_EQ(TimeDelta::FromMillisecondsD(13.3).InMilliseconds(), 13); |
| EXPECT_EQ(TimeDelta::FromMillisecondsD(13.3).InMillisecondsF(), 13.3); |
| EXPECT_EQ(TimeDelta::FromMicroseconds(13).InMicroseconds(), 13); |
| EXPECT_EQ(TimeDelta::FromMicrosecondsD(13.3).InMicroseconds(), 13); |
| EXPECT_EQ(TimeDelta::FromMillisecondsD(3.45678).InMillisecondsF(), 3.456); |
| EXPECT_EQ(TimeDelta::FromNanoseconds(12345).InNanoseconds(), 12000); |
| EXPECT_EQ(TimeDelta::FromNanosecondsD(12345.678).InNanoseconds(), 12000); |
| } |
| |
| TEST(TimeDelta, InRoundsTowardsZero) { |
| EXPECT_EQ(TimeDelta::FromHours(23).InDays(), 0); |
| EXPECT_EQ(TimeDelta::FromHours(-23).InDays(), 0); |
| EXPECT_EQ(TimeDelta::FromMinutes(59).InHours(), 0); |
| EXPECT_EQ(TimeDelta::FromMinutes(-59).InHours(), 0); |
| EXPECT_EQ(TimeDelta::FromSeconds(59).InMinutes(), 0); |
| EXPECT_EQ(TimeDelta::FromSeconds(-59).InMinutes(), 0); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(999).InSeconds(), 0); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(-999).InSeconds(), 0); |
| EXPECT_EQ(TimeDelta::FromMicroseconds(999).InMilliseconds(), 0); |
| EXPECT_EQ(TimeDelta::FromMicroseconds(-999).InMilliseconds(), 0); |
| } |
| |
| TEST(TimeDelta, InDaysFloored) { |
| EXPECT_EQ(TimeDelta::FromHours(-25).InDaysFloored(), -2); |
| EXPECT_EQ(TimeDelta::FromHours(-24).InDaysFloored(), -1); |
| EXPECT_EQ(TimeDelta::FromHours(-23).InDaysFloored(), -1); |
| |
| EXPECT_EQ(TimeDelta::FromHours(-1).InDaysFloored(), -1); |
| EXPECT_EQ(TimeDelta::FromHours(0).InDaysFloored(), 0); |
| EXPECT_EQ(TimeDelta::FromHours(1).InDaysFloored(), 0); |
| |
| EXPECT_EQ(TimeDelta::FromHours(23).InDaysFloored(), 0); |
| EXPECT_EQ(TimeDelta::FromHours(24).InDaysFloored(), 1); |
| EXPECT_EQ(TimeDelta::FromHours(25).InDaysFloored(), 1); |
| } |
| |
| TEST(TimeDelta, InMillisecondsRoundedUp) { |
| EXPECT_EQ(TimeDelta::FromMicroseconds(-1001).InMillisecondsRoundedUp(), -1); |
| EXPECT_EQ(TimeDelta::FromMicroseconds(-1000).InMillisecondsRoundedUp(), -1); |
| EXPECT_EQ(TimeDelta::FromMicroseconds(-999).InMillisecondsRoundedUp(), 0); |
| |
| EXPECT_EQ(TimeDelta::FromMicroseconds(-1).InMillisecondsRoundedUp(), 0); |
| EXPECT_EQ(TimeDelta::FromMicroseconds(0).InMillisecondsRoundedUp(), 0); |
| EXPECT_EQ(TimeDelta::FromMicroseconds(1).InMillisecondsRoundedUp(), 1); |
| |
| EXPECT_EQ(TimeDelta::FromMicroseconds(999).InMillisecondsRoundedUp(), 1); |
| EXPECT_EQ(TimeDelta::FromMicroseconds(1000).InMillisecondsRoundedUp(), 1); |
| EXPECT_EQ(TimeDelta::FromMicroseconds(1001).InMillisecondsRoundedUp(), 2); |
| } |
| |
| #if defined(OS_POSIX) || defined(OS_FUCHSIA) |
| TEST(TimeDelta, TimeSpecConversion) { |
| TimeDelta delta = TimeDelta::FromSeconds(0); |
| struct timespec result = delta.ToTimeSpec(); |
| EXPECT_EQ(result.tv_sec, 0); |
| EXPECT_EQ(result.tv_nsec, 0); |
| EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result)); |
| |
| delta = TimeDelta::FromSeconds(1); |
| result = delta.ToTimeSpec(); |
| EXPECT_EQ(result.tv_sec, 1); |
| EXPECT_EQ(result.tv_nsec, 0); |
| EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result)); |
| |
| delta = TimeDelta::FromMicroseconds(1); |
| result = delta.ToTimeSpec(); |
| EXPECT_EQ(result.tv_sec, 0); |
| EXPECT_EQ(result.tv_nsec, 1000); |
| EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result)); |
| |
| delta = TimeDelta::FromMicroseconds(Time::kMicrosecondsPerSecond + 1); |
| result = delta.ToTimeSpec(); |
| EXPECT_EQ(result.tv_sec, 1); |
| EXPECT_EQ(result.tv_nsec, 1000); |
| EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result)); |
| } |
| #endif // defined(OS_POSIX) || defined(OS_FUCHSIA) |
| |
| // Our internal time format is serialized in things like databases, so it's |
| // important that it's consistent across all our platforms. We use the 1601 |
| // Windows epoch as the internal format across all platforms. |
| TEST(TimeDelta, WindowsEpoch) { |
| Time::Exploded exploded; |
| exploded.year = 1970; |
| exploded.month = 1; |
| exploded.day_of_week = 0; // Should be unusued. |
| exploded.day_of_month = 1; |
| exploded.hour = 0; |
| exploded.minute = 0; |
| exploded.second = 0; |
| exploded.millisecond = 0; |
| Time t; |
| EXPECT_TRUE(Time::FromUTCExploded(exploded, &t)); |
| // Unix 1970 epoch. |
| EXPECT_EQ(INT64_C(11644473600000000), t.ToInternalValue()); |
| |
| // We can't test 1601 epoch, since the system time functions on Linux |
| // only compute years starting from 1900. |
| } |
| |
| // We could define this separately for Time, TimeTicks and TimeDelta but the |
| // definitions would be identical anyway. |
| template <class Any> |
| std::string AnyToString(Any any) { |
| std::ostringstream oss; |
| oss << any; |
| return oss.str(); |
| } |
| |
| TEST(TimeDelta, Magnitude) { |
| constexpr int64_t zero = 0; |
| static_assert(TimeDelta::FromMicroseconds(zero) == |
| TimeDelta::FromMicroseconds(zero).magnitude(), |
| ""); |
| |
| constexpr int64_t one = 1; |
| constexpr int64_t negative_one = -1; |
| static_assert(TimeDelta::FromMicroseconds(one) == |
| TimeDelta::FromMicroseconds(one).magnitude(), |
| ""); |
| static_assert(TimeDelta::FromMicroseconds(one) == |
| TimeDelta::FromMicroseconds(negative_one).magnitude(), |
| ""); |
| |
| constexpr int64_t max_int64_minus_one = |
| std::numeric_limits<int64_t>::max() - 1; |
| constexpr int64_t min_int64_plus_two = |
| std::numeric_limits<int64_t>::min() + 2; |
| static_assert( |
| TimeDelta::FromMicroseconds(max_int64_minus_one) == |
| TimeDelta::FromMicroseconds(max_int64_minus_one).magnitude(), |
| ""); |
| static_assert(TimeDelta::FromMicroseconds(max_int64_minus_one) == |
| TimeDelta::FromMicroseconds(min_int64_plus_two).magnitude(), |
| ""); |
| } |
| |
| TEST(TimeDelta, ZeroMinMax) { |
| constexpr TimeDelta kZero; |
| static_assert(kZero.is_zero(), ""); |
| |
| constexpr TimeDelta kMax = TimeDelta::Max(); |
| static_assert(kMax.is_max(), ""); |
| static_assert(kMax == TimeDelta::Max(), ""); |
| static_assert(kMax > TimeDelta::FromDays(100 * 365), ""); |
| static_assert(kMax > kZero, ""); |
| |
| constexpr TimeDelta kMin = TimeDelta::Min(); |
| static_assert(kMin.is_min(), ""); |
| static_assert(kMin == TimeDelta::Min(), ""); |
| static_assert(kMin < TimeDelta::FromDays(-100 * 365), ""); |
| static_assert(kMin < kZero, ""); |
| } |
| |
| TEST(TimeDelta, MaxConversions) { |
| // static_assert also confirms constexpr works as intended. |
| constexpr TimeDelta kMax = TimeDelta::Max(); |
| static_assert(kMax.ToInternalValue() == std::numeric_limits<int64_t>::max(), |
| ""); |
| EXPECT_EQ(kMax.InDays(), std::numeric_limits<int>::max()); |
| EXPECT_EQ(kMax.InHours(), std::numeric_limits<int>::max()); |
| EXPECT_EQ(kMax.InMinutes(), std::numeric_limits<int>::max()); |
| EXPECT_EQ(kMax.InSecondsF(), std::numeric_limits<double>::infinity()); |
| EXPECT_EQ(kMax.InSeconds(), std::numeric_limits<int64_t>::max()); |
| EXPECT_EQ(kMax.InMillisecondsF(), std::numeric_limits<double>::infinity()); |
| EXPECT_EQ(kMax.InMilliseconds(), std::numeric_limits<int64_t>::max()); |
| EXPECT_EQ(kMax.InMillisecondsRoundedUp(), std::numeric_limits<int64_t>::max()); |
| |
| static_assert(TimeDelta::FromDays(std::numeric_limits<int>::max()).is_max(), |
| ""); |
| |
| static_assert(TimeDelta::FromHours(std::numeric_limits<int>::max()).is_max(), |
| ""); |
| |
| static_assert( |
| TimeDelta::FromMinutes(std::numeric_limits<int>::max()).is_max(), ""); |
| |
| constexpr int64_t max_int = std::numeric_limits<int64_t>::max(); |
| constexpr int64_t min_int = std::numeric_limits<int64_t>::min(); |
| |
| static_assert( |
| TimeDelta::FromSeconds(max_int / Time::kMicrosecondsPerSecond + 1) |
| .is_max(), |
| ""); |
| |
| static_assert( |
| TimeDelta::FromMilliseconds(max_int / Time::kMillisecondsPerSecond + 1) |
| .is_max(), |
| ""); |
| |
| static_assert(TimeDelta::FromMicroseconds(max_int).is_max(), ""); |
| |
| static_assert( |
| TimeDelta::FromSeconds(min_int / Time::kMicrosecondsPerSecond - 1) |
| .is_min(), |
| ""); |
| |
| static_assert( |
| TimeDelta::FromMilliseconds(min_int / Time::kMillisecondsPerSecond - 1) |
| .is_min(), |
| ""); |
| |
| static_assert(TimeDelta::FromMicroseconds(min_int).is_min(), ""); |
| |
| static_assert( |
| TimeDelta::FromMicroseconds(std::numeric_limits<int64_t>::min()).is_min(), |
| ""); |
| |
| // Floating point arithmetic resulting in infinity isn't constexpr in C++14. |
| EXPECT_TRUE(TimeDelta::FromSecondsD(std::numeric_limits<double>::infinity()) |
| .is_max()); |
| |
| // Note that max_int/min_int will be rounded when converted to doubles - they |
| // can't be exactly represented. |
| constexpr double max_d = static_cast<double>(max_int); |
| constexpr double min_d = static_cast<double>(min_int); |
| |
| static_assert( |
| TimeDelta::FromSecondsD(max_d / Time::kMicrosecondsPerSecond + 1) |
| .is_max(), |
| ""); |
| |
| // Floating point arithmetic resulting in infinity isn't constexpr in C++14. |
| EXPECT_TRUE( |
| TimeDelta::FromMillisecondsD(std::numeric_limits<double>::infinity()) |
| .is_max()); |
| |
| static_assert( |
| TimeDelta::FromMillisecondsD(max_d / Time::kMillisecondsPerSecond * 2) |
| .is_max(), |
| ""); |
| |
| static_assert( |
| TimeDelta::FromSecondsD(min_d / Time::kMicrosecondsPerSecond - 1) |
| .is_min(), |
| ""); |
| |
| static_assert( |
| TimeDelta::FromMillisecondsD(min_d / Time::kMillisecondsPerSecond * 2) |
| .is_min(), |
| ""); |
| } |
| |
| TEST(TimeDelta, NumericOperators) { |
| constexpr double d = 0.5; |
| EXPECT_EQ(TimeDelta::FromMilliseconds(500), |
| (TimeDelta::FromMilliseconds(1000) * d)); |
| static_assert(TimeDelta::FromMilliseconds(2000) == |
| (TimeDelta::FromMilliseconds(1000) / d), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(500), |
| (TimeDelta::FromMilliseconds(1000) *= d)); |
| static_assert(TimeDelta::FromMilliseconds(2000) == |
| (TimeDelta::FromMilliseconds(1000) /= d), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(500), |
| (d * TimeDelta::FromMilliseconds(1000))); |
| |
| constexpr float f = 0.5; |
| EXPECT_EQ(TimeDelta::FromMilliseconds(500), |
| (TimeDelta::FromMilliseconds(1000) * f)); |
| static_assert(TimeDelta::FromMilliseconds(2000) == |
| (TimeDelta::FromMilliseconds(1000) / f), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(500), |
| (TimeDelta::FromMilliseconds(1000) *= f)); |
| static_assert(TimeDelta::FromMilliseconds(2000) == |
| (TimeDelta::FromMilliseconds(1000) /= f), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(500), |
| (f * TimeDelta::FromMilliseconds(1000))); |
| |
| constexpr int i = 2; |
| EXPECT_EQ(TimeDelta::FromMilliseconds(2000), |
| (TimeDelta::FromMilliseconds(1000) * i)); |
| static_assert(TimeDelta::FromMilliseconds(500) == |
| (TimeDelta::FromMilliseconds(1000) / i), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(2000), |
| (TimeDelta::FromMilliseconds(1000) *= i)); |
| static_assert(TimeDelta::FromMilliseconds(500) == |
| (TimeDelta::FromMilliseconds(1000) /= i), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(2000), |
| (i * TimeDelta::FromMilliseconds(1000))); |
| |
| constexpr int64_t i64 = 2; |
| EXPECT_EQ(TimeDelta::FromMilliseconds(2000), |
| (TimeDelta::FromMilliseconds(1000) * i64)); |
| static_assert(TimeDelta::FromMilliseconds(500) == |
| (TimeDelta::FromMilliseconds(1000) / i64), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(2000), |
| (TimeDelta::FromMilliseconds(1000) *= i64)); |
| static_assert(TimeDelta::FromMilliseconds(500) == |
| (TimeDelta::FromMilliseconds(1000) /= i64), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(2000), |
| (i64 * TimeDelta::FromMilliseconds(1000))); |
| |
| EXPECT_EQ(TimeDelta::FromMilliseconds(500), |
| (TimeDelta::FromMilliseconds(1000) * 0.5)); |
| static_assert(TimeDelta::FromMilliseconds(2000) == |
| (TimeDelta::FromMilliseconds(1000) / 0.5), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(500), |
| (TimeDelta::FromMilliseconds(1000) *= 0.5)); |
| static_assert(TimeDelta::FromMilliseconds(2000) == |
| (TimeDelta::FromMilliseconds(1000) /= 0.5), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(500), |
| (0.5 * TimeDelta::FromMilliseconds(1000))); |
| |
| EXPECT_EQ(TimeDelta::FromMilliseconds(2000), |
| (TimeDelta::FromMilliseconds(1000) * 2)); |
| static_assert(TimeDelta::FromMilliseconds(500) == |
| (TimeDelta::FromMilliseconds(1000) / 2), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(2000), |
| (TimeDelta::FromMilliseconds(1000) *= 2)); |
| static_assert(TimeDelta::FromMilliseconds(500) == |
| (TimeDelta::FromMilliseconds(1000) /= 2), |
| ""); |
| EXPECT_EQ(TimeDelta::FromMilliseconds(2000), |
| (2 * TimeDelta::FromMilliseconds(1000))); |
| } |
| |
| // Basic test of operators between TimeDeltas (without overflow -- next test |
| // handles overflow). |
| TEST(TimeDelta, TimeDeltaOperators) { |
| constexpr TimeDelta kElevenSeconds = TimeDelta::FromSeconds(11); |
| constexpr TimeDelta kThreeSeconds = TimeDelta::FromSeconds(3); |
| |
| EXPECT_EQ(TimeDelta::FromSeconds(14), kElevenSeconds + kThreeSeconds); |
| EXPECT_EQ(TimeDelta::FromSeconds(14), kThreeSeconds + kElevenSeconds); |
| EXPECT_EQ(TimeDelta::FromSeconds(8), kElevenSeconds - kThreeSeconds); |
| EXPECT_EQ(TimeDelta::FromSeconds(-8), kThreeSeconds - kElevenSeconds); |
| static_assert(3 == kElevenSeconds / kThreeSeconds, ""); |
| static_assert(0 == kThreeSeconds / kElevenSeconds, ""); |
| static_assert(TimeDelta::FromSeconds(2) == kElevenSeconds % kThreeSeconds, |
| ""); |
| } |
| |
| TEST(TimeDelta, Overflows) { |
| // Some sanity checks. static_assert's used were possible to verify constexpr |
| // evaluation at the same time. |
| static_assert(TimeDelta::Max().is_max(), ""); |
| static_assert(-TimeDelta::Max() < TimeDelta(), ""); |
| static_assert(-TimeDelta::Max() > TimeDelta::Min(), ""); |
| static_assert(TimeDelta() > -TimeDelta::Max(), ""); |
| |
| TimeDelta large_delta = TimeDelta::Max() - TimeDelta::FromMilliseconds(1); |
| TimeDelta large_negative = -large_delta; |
| EXPECT_GT(TimeDelta(), large_negative); |
| EXPECT_FALSE(large_delta.is_max()); |
| EXPECT_FALSE((-large_negative).is_min()); |
| constexpr TimeDelta kOneSecond = TimeDelta::FromSeconds(1); |
| |
| // Test +, -, * and / operators. |
| EXPECT_TRUE((large_delta + kOneSecond).is_max()); |
| EXPECT_TRUE((large_negative + (-kOneSecond)).is_min()); |
| EXPECT_TRUE((large_negative - kOneSecond).is_min()); |
| EXPECT_TRUE((large_delta - (-kOneSecond)).is_max()); |
| EXPECT_TRUE((large_delta * 2).is_max()); |
| EXPECT_TRUE((large_delta * -2).is_min()); |
| EXPECT_TRUE((large_delta / 0.5).is_max()); |
| EXPECT_TRUE((large_delta / -0.5).is_min()); |
| |
| // Test that double conversions overflow to infinity. |
| EXPECT_EQ((large_delta + kOneSecond).InSecondsF(), |
| std::numeric_limits<double>::infinity()); |
| EXPECT_EQ((large_delta + kOneSecond).InMillisecondsF(), |
| std::numeric_limits<double>::infinity()); |
| EXPECT_EQ((large_delta + kOneSecond).InMicrosecondsF(), |
| std::numeric_limits<double>::infinity()); |
| |
| // Test +=, -=, *= and /= operators. |
| TimeDelta delta = large_delta; |
| delta += kOneSecond; |
| EXPECT_TRUE(delta.is_max()); |
| delta = large_negative; |
| delta += -kOneSecond; |
| EXPECT_TRUE((delta).is_min()); |
| |
| delta = large_negative; |
| delta -= kOneSecond; |
| EXPECT_TRUE((delta).is_min()); |
| delta = large_delta; |
| delta -= -kOneSecond; |
| EXPECT_TRUE(delta.is_max()); |
| |
| delta = large_delta; |
| delta *= 2; |
| EXPECT_TRUE(delta.is_max()); |
| delta = large_negative; |
| delta *= 1.5; |
| EXPECT_TRUE((delta).is_min()); |
| |
| delta = large_delta; |
| delta /= 0.5; |
| EXPECT_TRUE(delta.is_max()); |
| delta = large_negative; |
| delta /= 0.5; |
| EXPECT_TRUE((delta).is_min()); |
| |
| // Test operations with Time and TimeTicks. |
| EXPECT_TRUE((large_delta + Time::Now()).is_max()); |
| EXPECT_TRUE((large_delta + TimeTicks::Now()).is_max()); |
| EXPECT_TRUE((Time::Now() + large_delta).is_max()); |
| EXPECT_TRUE((TimeTicks::Now() + large_delta).is_max()); |
| |
| Time time_now = Time::Now(); |
| EXPECT_EQ(kOneSecond, (time_now + kOneSecond) - time_now); |
| EXPECT_EQ(-kOneSecond, (time_now - kOneSecond) - time_now); |
| |
| TimeTicks ticks_now = TimeTicks::Now(); |
| EXPECT_EQ(-kOneSecond, (ticks_now - kOneSecond) - ticks_now); |
| EXPECT_EQ(kOneSecond, (ticks_now + kOneSecond) - ticks_now); |
| } |
| |
| constexpr TimeTicks TestTimeTicksConstexprCopyAssignment() { |
| TimeTicks a = TimeTicks::FromInternalValue(12345); |
| TimeTicks b; |
| b = a; |
| return b; |
| } |
| |
| TEST(TimeTicks, ConstexprAndTriviallyCopiable) { |
| // "Trivially copyable" is necessary for use in std::atomic<TimeTicks>. |
| #ifdef STARBOARD |
| static_assert(std::is_trivially_destructible<TimeTicks>(), ""); |
| #else |
| static_assert(std::is_trivially_copyable<TimeTicks>(), ""); |
| #endif |
| |
| // Copy ctor. |
| constexpr TimeTicks a = TimeTicks::FromInternalValue(12345); |
| constexpr TimeTicks b{a}; |
| static_assert(a.ToInternalValue() == b.ToInternalValue(), ""); |
| |
| // Copy assignment. |
| static_assert(a.ToInternalValue() == |
| TestTimeTicksConstexprCopyAssignment().ToInternalValue(), |
| ""); |
| } |
| |
| constexpr ThreadTicks TestThreadTicksConstexprCopyAssignment() { |
| ThreadTicks a = ThreadTicks::FromInternalValue(12345); |
| ThreadTicks b; |
| b = a; |
| return b; |
| } |
| |
| TEST(ThreadTicks, ConstexprAndTriviallyCopiable) { |
| // "Trivially copyable" is necessary for use in std::atomic<ThreadTicks>. |
| #ifdef STARBOARD |
| static_assert(std::is_trivially_destructible<ThreadTicks>(), ""); |
| #else |
| static_assert(std::is_trivially_copyable<ThreadTicks>(), ""); |
| #endif |
| |
| // Copy ctor. |
| constexpr ThreadTicks a = ThreadTicks::FromInternalValue(12345); |
| constexpr ThreadTicks b{a}; |
| static_assert(a.ToInternalValue() == b.ToInternalValue(), ""); |
| |
| // Copy assignment. |
| static_assert(a.ToInternalValue() == |
| TestThreadTicksConstexprCopyAssignment().ToInternalValue(), |
| ""); |
| } |
| |
| constexpr TimeDelta TestTimeDeltaConstexprCopyAssignment() { |
| TimeDelta a = TimeDelta::FromSeconds(1); |
| TimeDelta b; |
| b = a; |
| return b; |
| } |
| |
| TEST(TimeDelta, ConstexprAndTriviallyCopiable) { |
| // "Trivially copyable" is necessary for use in std::atomic<TimeDelta>. |
| #ifdef STARBOARD |
| static_assert(std::is_trivially_destructible<TimeDelta>(), ""); |
| #else |
| static_assert(std::is_trivially_copyable<TimeDelta>(), ""); |
| #endif |
| |
| // Copy ctor. |
| constexpr TimeDelta a = TimeDelta::FromSeconds(1); |
| constexpr TimeDelta b{a}; |
| static_assert(a == b, ""); |
| |
| // Copy assignment. |
| static_assert(a == TestTimeDeltaConstexprCopyAssignment(), ""); |
| } |
| |
| TEST(TimeDeltaLogging, DCheckEqCompiles) { |
| DCHECK_EQ(TimeDelta(), TimeDelta()); |
| } |
| |
| TEST(TimeDeltaLogging, EmptyIsZero) { |
| constexpr TimeDelta kZero; |
| EXPECT_EQ("0 s", AnyToString(kZero)); |
| } |
| |
| TEST(TimeDeltaLogging, FiveHundredMs) { |
| constexpr TimeDelta kFiveHundredMs = TimeDelta::FromMilliseconds(500); |
| EXPECT_EQ("0.5 s", AnyToString(kFiveHundredMs)); |
| } |
| |
| TEST(TimeDeltaLogging, MinusTenSeconds) { |
| constexpr TimeDelta kMinusTenSeconds = TimeDelta::FromSeconds(-10); |
| EXPECT_EQ("-10 s", AnyToString(kMinusTenSeconds)); |
| } |
| |
| TEST(TimeDeltaLogging, DoesNotMessUpFormattingFlags) { |
| std::ostringstream oss; |
| std::ios_base::fmtflags flags_before = oss.flags(); |
| oss << TimeDelta(); |
| EXPECT_EQ(flags_before, oss.flags()); |
| } |
| |
| TEST(TimeDeltaLogging, DoesNotMakeStreamBad) { |
| std::ostringstream oss; |
| oss << TimeDelta(); |
| EXPECT_TRUE(oss.good()); |
| } |
| |
| TEST(TimeLogging, DCheckEqCompiles) { |
| DCHECK_EQ(Time(), Time()); |
| } |
| |
| TEST(TimeLogging, ChromeBirthdate) { |
| Time birthdate; |
| ASSERT_TRUE(Time::FromString("Tue, 02 Sep 2008 09:42:18 GMT", &birthdate)); |
| EXPECT_EQ("2008-09-02 09:42:18.000 UTC", AnyToString(birthdate)); |
| } |
| |
| TEST(TimeLogging, DoesNotMessUpFormattingFlags) { |
| std::ostringstream oss; |
| std::ios_base::fmtflags flags_before = oss.flags(); |
| oss << Time(); |
| EXPECT_EQ(flags_before, oss.flags()); |
| } |
| |
| TEST(TimeLogging, DoesNotMakeStreamBad) { |
| std::ostringstream oss; |
| oss << Time(); |
| EXPECT_TRUE(oss.good()); |
| } |
| |
| TEST(TimeTicksLogging, DCheckEqCompiles) { |
| DCHECK_EQ(TimeTicks(), TimeTicks()); |
| } |
| |
| TEST(TimeTicksLogging, ZeroTime) { |
| TimeTicks zero; |
| EXPECT_EQ("0 bogo-microseconds", AnyToString(zero)); |
| } |
| |
| TEST(TimeTicksLogging, FortyYearsLater) { |
| TimeTicks forty_years_later = |
| TimeTicks() + TimeDelta::FromDays(365.25 * 40); |
| EXPECT_EQ("1262304000000000 bogo-microseconds", |
| AnyToString(forty_years_later)); |
| } |
| |
| TEST(TimeTicksLogging, DoesNotMessUpFormattingFlags) { |
| std::ostringstream oss; |
| std::ios_base::fmtflags flags_before = oss.flags(); |
| oss << TimeTicks(); |
| EXPECT_EQ(flags_before, oss.flags()); |
| } |
| |
| TEST(TimeTicksLogging, DoesNotMakeStreamBad) { |
| std::ostringstream oss; |
| oss << TimeTicks(); |
| EXPECT_TRUE(oss.good()); |
| } |
| |
| } // namespace |
| |
| } // namespace base |