blob: a3803e157d0b28396a3da5e55a0b3fc2695fbde9 [file] [log] [blame]
# Copyright 2013 The Chromium Authors
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
# TODO(brettw) Use "gcc_toolchain.gni" like the Linux toolchains. This requires
# some enhancements since the commands on Mac are slightly different than on
# Linux.
import("//build/config/apple/symbols.gni")
import("//build/config/clang/clang.gni")
import("//build/config/compiler/compiler.gni")
import("//build/config/coverage/coverage.gni")
import("//build/config/rust.gni")
import("//build/toolchain/cc_wrapper.gni")
import("//build/toolchain/goma.gni")
import("//build/toolchain/rbe.gni")
import("//build/toolchain/toolchain.gni")
import("//build_overrides/build.gni")
# TODO(crbug.com/1370527): This import is required to detect whether the
# build is for the catalyst environment in order to disable the hermetic
# swift compiler (as it does not include support for catalyst). Remove it
# once the support is available.
if (is_ios) {
import("//build/config/ios/config.gni")
}
assert((target_os == "ios" && host_os == "mac") || host_os != "win")
declare_args() {
# This controls whether whole module optimization is enabled when building
# Swift modules. If enabled, the compiler will compile the module as one
# unit, generating just one single object file. Otherwise, it will generate
# one object file per .swift file. If unspecified, will default to "true"
# for official builds, and "false" for all other builds.
swift_whole_module_optimization = -1
# If unspecified, will use the toolchain downloaded via deps.
swift_toolchain_path = -1
}
# TODO(crbug.com/1370527): Remove this and replace with `build_with_chromium`
# once the support for catalyst is available in the hermetic swift compiler.
_can_use_hermetic_swift =
build_with_chromium && is_ios && target_environment != "catalyst"
if (swift_toolchain_path == -1) {
if (_can_use_hermetic_swift) {
# Version of the hermetic compiler. Needs to be updated when a new version of
# the compiler is rolled to ensure that all outputs are regenerated. It must
# be kept in sync with the `version` of `third_party/swift-toolchain` in
# //DEPS.
swiftc_version = "swift-5.7-release"
# Use the hermetic swift toolchain.
swift_toolchain_path = "//third_party/swift-toolchain/"
} else {
swift_toolchain_path = ""
}
}
if (swift_whole_module_optimization == -1) {
swift_whole_module_optimization = is_official_build
}
# When implementing tools using Python scripts, a TOOL_VERSION=N env
# variable is placed in front of the command. The N should be incremented
# whenever the script is changed, so that the build system rebuilds all
# edges that utilize the script. Ideally this should be changed to use
# proper input-dirty checking, but that could be expensive. Instead, use a
# script to get the tool scripts' modification time to use as the version.
# This won't cause a re-generation of GN files when the tool script changes
# but it will cause edges to be marked as dirty if the ninja files are
# regenerated. See https://crbug.com/619083 for details. A proper fix
# would be to have inputs to tools (https://crbug.com/621119).
tool_versions =
exec_script("get_tool_mtime.py",
rebase_path([
"//build/toolchain/apple/filter_libtool.py",
"//build/toolchain/apple/linker_driver.py",
"//build/toolchain/ios/compile_xcassets.py",
"//build/toolchain/ios/swiftc.py",
],
root_build_dir),
"trim scope")
# Shared toolchain definition. Invocations should set current_os to set the
# build args in this definition. This is titled "single_apple_toolchain"
# because it makes exactly one toolchain. Callers will normally want to
# invoke instead "apple_toolchain" which may make an additional toolchain
# without sanitizers.
template("single_apple_toolchain") {
toolchain(target_name) {
# When invoking this toolchain not as the default one, these args will be
# passed to the build. They are ignored when this is the default toolchain.
assert(defined(invoker.toolchain_args),
"Toolchains must declare toolchain_args")
toolchain_args = {
# Populate toolchain args from the invoker.
forward_variables_from(invoker.toolchain_args, "*")
# The host toolchain value computed by the default toolchain's setup
# needs to be passed through unchanged to all secondary toolchains to
# ensure that it's always the same, regardless of the values that may be
# set on those toolchains.
host_toolchain = host_toolchain
# Similarly for the host toolchain which can be used to make .dylibs
# that will successfully load into prebuilt tools.
host_toolchain_no_sanitizers = host_toolchain_no_sanitizers
}
# When the invoker has explicitly overridden use_goma or cc_wrapper in the
# toolchain args, use those values, otherwise default to the global one.
# This works because the only reasonable override that toolchains might
# supply for these values are to force-disable them.
if (defined(toolchain_args.use_remoteexec)) {
toolchain_uses_remoteexec = toolchain_args.use_remoteexec
} else {
toolchain_uses_remoteexec = use_remoteexec
}
if (defined(toolchain_args.use_goma)) {
toolchain_uses_goma = toolchain_args.use_goma
} else {
toolchain_uses_goma = use_goma
}
if (defined(toolchain_args.cc_wrapper)) {
toolchain_cc_wrapper = toolchain_args.cc_wrapper
} else {
toolchain_cc_wrapper = cc_wrapper
}
assert(!(toolchain_uses_remoteexec && toolchain_uses_goma),
"Goma and re-client can't be used together.")
assert(!(toolchain_cc_wrapper != "" && toolchain_uses_remoteexec),
"re-client and cc_wrapper can't be used together.")
assert(!(toolchain_cc_wrapper != "" && toolchain_uses_goma),
"Goma and cc_wrapper can't be used together.")
if (defined(toolchain_args.use_lld)) {
toolchain_uses_lld = toolchain_args.use_lld
} else {
toolchain_uses_lld = use_lld
}
# The value of all global variables (such as `is_component_build`) is the
# one from the default toolchain when evaluating a secondary toolchain
# (see https://crbug.com/gn/286). This mean that the value may change when
# evaluating target/configs in the new toolchain if the variable default
# value depends on variable set in `toolchain_args`.
#
# For this reason, "ios" needs to override `is_component_build` as its
# default value depends on `current_os`. Use the overridden value if it
# is set in `toolchain_args`.
if (defined(toolchain_args.is_component_build)) {
toolchain_is_component_build = toolchain_args.is_component_build
} else {
toolchain_is_component_build = is_component_build
}
if (defined(toolchain_args.use_xcode_clang)) {
toolchain_uses_xcode_clang = toolchain_args.use_xcode_clang
} else {
toolchain_uses_xcode_clang = use_xcode_clang
}
# Supports building with the version of clang shipped with Xcode when
# targeting iOS by not respecting clang_base_path.
if (toolchain_uses_xcode_clang) {
prefix = invoker.bin_path
} else {
prefix = rebase_path("$clang_base_path/bin/", root_build_dir)
}
_cc = "${prefix}clang"
_cxx = "${prefix}clang++"
swiftmodule_switch = "-Wl,-add_ast_path,"
# Compute the compiler prefix.
if (toolchain_uses_remoteexec) {
if (defined(toolchain_args.rbe_cc_cfg_file)) {
toolchain_rbe_cc_cfg_file = toolchain_args.rbe_cc_cfg_file
} else {
toolchain_rbe_cc_cfg_file = rbe_cc_cfg_file
}
# C/C++ (clang) rewrapper prefix to use when use_remoteexec is true.
compiler_prefix = "${rbe_bin_dir}/rewrapper -cfg=${toolchain_rbe_cc_cfg_file} -exec_root=${rbe_exec_root} "
} else if (toolchain_uses_goma) {
assert(toolchain_cc_wrapper == "",
"Goma and cc_wrapper can't be used together.")
compiler_prefix = "$goma_dir/gomacc "
if (use_goma_rust) {
rust_compiler_prefix = compiler_prefix
}
} else if (toolchain_cc_wrapper != "") {
compiler_prefix = toolchain_cc_wrapper + " "
} else {
compiler_prefix = ""
}
cc = compiler_prefix + _cc
cxx = compiler_prefix + _cxx
ld = _cxx
# Set the explicit search path for clang++ so it uses the right linker
# binary.
if (!toolchain_uses_lld) {
ld += " -B " + invoker.bin_path
}
if (defined(toolchain_args.coverage_instrumentation_input_file)) {
toolchain_coverage_instrumentation_input_file =
toolchain_args.coverage_instrumentation_input_file
} else {
toolchain_coverage_instrumentation_input_file =
coverage_instrumentation_input_file
}
_use_clang_coverage_wrapper =
toolchain_coverage_instrumentation_input_file != ""
if (_use_clang_coverage_wrapper) {
_coverage_wrapper =
rebase_path("//build/toolchain/clang_code_coverage_wrapper.py",
root_build_dir) + " --files-to-instrument=" +
rebase_path(toolchain_coverage_instrumentation_input_file,
root_build_dir) + " --target-os=" + target_os
cc = "$python_path $_coverage_wrapper ${cc}"
cxx = "$python_path $_coverage_wrapper ${cxx}"
}
linker_driver =
"TOOL_VERSION=${tool_versions.linker_driver} " +
rebase_path("//build/toolchain/apple/linker_driver.py", root_build_dir)
# Specify an explicit path for the strip binary.
_strippath = invoker.bin_path + "strip"
_installnametoolpath = invoker.bin_path + "install_name_tool"
linker_driver += " -Wcrl,strippath,${_strippath} -Wcrl,installnametoolpath,${_installnametoolpath}"
_enable_dsyms = enable_dsyms
_save_unstripped_output = save_unstripped_output
# Make these apply to all tools below.
lib_switch = "-l"
lib_dir_switch = "-L"
# Object files go in this directory. Use label_name instead of
# target_output_name since labels will generally have no spaces and will be
# unique in the directory.
object_subdir = "{{target_out_dir}}/{{label_name}}"
# If dSYMs are enabled, this flag will be added to the link tools.
if (_enable_dsyms) {
dsym_switch = " -Wcrl,dsym,{{root_out_dir}} "
dsym_switch += "-Wcrl,dsymutilpath," +
rebase_path("//tools/clang/dsymutil/bin/dsymutil",
root_build_dir) + " "
dsym_output_dir =
"{{root_out_dir}}/{{target_output_name}}{{output_extension}}.dSYM"
dsym_output = [
"$dsym_output_dir/Contents/Info.plist",
"$dsym_output_dir/Contents/Resources/DWARF/" +
"{{target_output_name}}{{output_extension}}",
]
} else {
dsym_switch = ""
}
if (_save_unstripped_output) {
_unstripped_output = "{{root_out_dir}}/{{target_output_name}}{{output_extension}}.unstripped"
}
if (toolchain_has_rust) {
if (!defined(rust_compiler_prefix)) {
rust_compiler_prefix = ""
}
rustc_bin = rebase_path("${rust_sysroot}/bin/rustc", root_build_dir)
rustc = "$rust_compiler_prefix${rustc_bin}"
rust_sysroot_relative_to_out = rebase_path(rust_sysroot, root_out_dir)
rustc_wrapper = rebase_path("//build/rust/rustc_wrapper.py")
tool("rust_staticlib") {
libname = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
rspfile = "$libname.rsp"
depfile = "$libname.d"
default_output_extension = ".a"
output_prefix = "lib"
default_output_dir = "{{root_out_dir}}"
description = "RUST(STATICLIB) {{output}}"
outputs = [ libname ]
# TODO(danakj): When `!toolchain_uses_lld` do we need to specify a path
# to libtool like the "alink" rule?
rspfile_content = "{{rustdeps}} {{externs}}"
command = "\"$python_path\" \"$rustc_wrapper\" --rustc=$rustc --depfile=$depfile --rsp=$rspfile -- -Clinker=\"$_cxx\" $rustc_common_args --emit=dep-info=$depfile,link -o $libname LDFLAGS RUSTENV {{rustenv}}"
rust_sysroot = rust_sysroot_relative_to_out
}
tool("rust_rlib") {
# We must always prefix with `lib` even if the library already starts
# with that prefix or else our stdlib is unable to find libc.rlib (or
# actually liblibc.rlib).
rlibname =
"{{output_dir}}/lib{{target_output_name}}{{output_extension}}"
depfile = "$rlibname.d"
# Do not use rsp files in this (common) case because they occupy the
# ninja main thread, and {{rlibs}} have shorter command lines than
# fully linked targets.
default_output_extension = ".rlib"
# This is prefixed unconditionally in `rlibname`.
# output_prefix = "lib"
default_output_dir = "{{root_out_dir}}"
description = "RUST {{output}}"
outputs = [ rlibname ]
command = "\"$python_path\" \"$rustc_wrapper\" --rustc=$rustc --depfile=$depfile -- -Clinker=\"$_cxx\" $rustc_common_args {{rustdeps}} {{externs}} --emit=dep-info=$depfile,link -o $rlibname LDFLAGS RUSTENV {{rustenv}}"
rust_sysroot = rust_sysroot_relative_to_out
}
tool("rust_bin") {
exename = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
rspfile = "$exename.rsp"
depfile = "$exename.d"
pool = "//build/toolchain:link_pool($default_toolchain)"
# TODO(danakj): solink can generate TOC files for re-exporting library
# symbols, and we should do the same here.
default_output_dir = "{{root_out_dir}}"
description = "RUST(BIN) {{output}}"
outputs = [ exename ]
# TODO(danakj): Support dsym_switch like C++ targets.
# link_command += dsym_switch
# if (_enable_dsyms) {
# outputs += dsym_output
# }
# if (_save_unstripped_output) {
# outputs += [ _unstripped_output ]
# }
rspfile_content = "{{rustdeps}} {{externs}}"
command = "\"$python_path\" \"$rustc_wrapper\" --rustc=$rustc --depfile=$depfile --rsp=$rspfile -- -Clinker=\"${_cxx}\" $rustc_common_args --emit=dep-info=$depfile,link -o $exename LDFLAGS {{ldflags}} RUSTENV {{rustenv}}"
rust_sysroot = rust_sysroot_relative_to_out
}
tool("rust_cdylib") {
dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
rspfile = "$dllname.rsp"
depfile = "$dllname.d"
pool = "//build/toolchain:link_pool($default_toolchain)"
# TODO(danakj): solink can generate TOC files for re-exporting library
# symbols, and we should do the same here.
default_output_extension = ".dylib"
output_prefix = "lib"
default_output_dir = "{{root_out_dir}}"
description = "RUST(CDYLIB) {{output}}"
outputs = [ dllname ]
# TODO(danakj): Support dsym_switch like C++ targets.
# link_command += dsym_switch
# if (_enable_dsyms) {
# outputs += dsym_output
# }
# if (_save_unstripped_output) {
# outputs += [ _unstripped_output ]
# }
rspfile_content = "{{rustdeps}} {{externs}}"
command = "\"$python_path\" \"$rustc_wrapper\" --rustc=$rustc --depfile=$depfile --rsp=$rspfile -- -Clinker=\"${_cxx}\" $rustc_common_args --emit=dep-info=$depfile,link -o $dllname LDFLAGS {{ldflags}} RUSTENV {{rustenv}}"
rust_sysroot = rust_sysroot_relative_to_out
}
tool("rust_macro") {
dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
rspfile = "$dllname.rsp"
depfile = "$dllname.d"
pool = "//build/toolchain:link_pool($default_toolchain)"
# TODO(danakj): solink can generate TOC files for re-exporting library
# symbols, and we should do the same here.
default_output_extension = ".dylib"
output_prefix = "lib"
default_output_dir = "{{root_out_dir}}"
description = "RUST(MACRO) {{output}}"
outputs = [ dllname ]
# TODO(danakj): Support dsym_switch like C++ targets.
# link_command += dsym_switch
# if (_enable_dsyms) {
# outputs += dsym_output
# }
# if (_save_unstripped_output) {
# outputs += [ _unstripped_output ]
# }
rspfile_content = "{{rustdeps}} {{externs}}"
command = "\"$python_path\" \"$rustc_wrapper\" --rustc=$rustc --depfile=$depfile --rsp=$rspfile -- -Clinker=\"${_cxx}\" $rustc_common_args --emit=dep-info=$depfile,link -o $dllname LDFLAGS {{ldflags}} RUSTENV {{rustenv}}"
rust_sysroot = rust_sysroot_relative_to_out
}
}
tool("cc") {
depfile = "{{output}}.d"
precompiled_header_type = "gcc"
command = "$cc -MMD -MF $depfile {{defines}} {{include_dirs}} {{cflags}} {{cflags_c}} -c {{source}} -o {{output}}"
depsformat = "gcc"
description = "CC {{output}}"
outputs = [ "$object_subdir/{{source_name_part}}.o" ]
}
tool("cxx") {
depfile = "{{output}}.d"
precompiled_header_type = "gcc"
command = "$cxx -MMD -MF $depfile {{defines}} {{include_dirs}} {{cflags}} {{cflags_cc}} -c {{source}} -o {{output}}"
depsformat = "gcc"
description = "CXX {{output}}"
outputs = [ "$object_subdir/{{source_name_part}}.o" ]
}
tool("asm") {
# For GCC we can just use the C compiler to compile assembly.
depfile = "{{output}}.d"
command = "$cc -MMD -MF $depfile {{defines}} {{include_dirs}} {{asmflags}} -c {{source}} -o {{output}}"
depsformat = "gcc"
description = "ASM {{output}}"
outputs = [ "$object_subdir/{{source_name_part}}.o" ]
}
tool("objc") {
depfile = "{{output}}.d"
precompiled_header_type = "gcc"
command = "$cc -MMD -MF $depfile {{defines}} {{include_dirs}} {{framework_dirs}} {{cflags}} {{cflags_objc}} -c {{source}} -o {{output}}"
depsformat = "gcc"
description = "OBJC {{output}}"
outputs = [ "$object_subdir/{{source_name_part}}.o" ]
}
tool("objcxx") {
depfile = "{{output}}.d"
precompiled_header_type = "gcc"
command = "$cxx -MMD -MF $depfile {{defines}} {{include_dirs}} {{framework_dirs}} {{cflags}} {{cflags_objcc}} -c {{source}} -o {{output}}"
depsformat = "gcc"
description = "OBJCXX {{output}}"
outputs = [ "$object_subdir/{{source_name_part}}.o" ]
}
tool("alink") {
rspfile = "{{output}}.rsp"
rspfile_content = "{{inputs}}"
if (!toolchain_uses_lld) {
script = rebase_path("//build/toolchain/apple/filter_libtool.py",
root_build_dir)
# Specify explicit path for libtool.
libtool = invoker.bin_path + "libtool"
command = "rm -f {{output}} && TOOL_VERSION=${tool_versions.filter_libtool} $python_path $script $libtool -static -D {{arflags}} -o {{output}} @$rspfile"
description = "LIBTOOL-STATIC {{output}}"
} else {
ar = "${prefix}llvm-ar"
command = "\"$ar\" {{arflags}} -r -c -s -D {{output}} @$rspfile"
# Remove the output file first so that ar doesn't try to modify the
# existing file.
command = "rm -f {{output}} && $command"
description = "AR {{output}}"
}
outputs = [ "{{output_dir}}/{{target_output_name}}{{output_extension}}" ]
default_output_dir = "{{target_out_dir}}"
default_output_extension = ".a"
output_prefix = "lib"
}
tool("solink") {
# E.g. "./libfoo.dylib":
dylib = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
rspfile = dylib + ".rsp"
pool = "//build/toolchain:link_pool($default_toolchain)"
# These variables are not built into GN but are helpers that implement
# (1) linking to produce a .dylib, (2) extracting the symbols from that
# file to a temporary file, (3) if the temporary file has differences from
# the existing .TOC file, overwrite it, otherwise, don't change it.
#
# As a special case, if the library reexports symbols from other dynamic
# libraries, we always update the .TOC and skip the temporary file and
# diffing steps, since that library always needs to be re-linked.
tocname = dylib + ".TOC"
temporary_tocname = dylib + ".tmp"
# Use explicit paths to binaries. The binaries present on the default
# search path in /usr/bin are thin wrappers around xcrun, which requires a
# full CommandLineTools or Xcode install, and still may not choose the
# appropriate binary if there are multiple installs.
if (host_os == "mac") {
nm = invoker.bin_path + "nm"
otool = invoker.bin_path + "otool"
} else {
nm = "${prefix}llvm-nm"
otool = "${prefix}llvm-otool"
}
does_reexport_command = "[ ! -e \"$dylib\" -o ! -e \"$tocname\" ] || $otool -l \"$dylib\" | grep -q LC_REEXPORT_DYLIB"
link_command = "$linker_driver $ld -shared "
if (toolchain_is_component_build) {
link_command += " -Wl,-install_name,@rpath/\"{{target_output_name}}{{output_extension}}\" "
}
link_command += dsym_switch
link_command += "{{ldflags}} -o \"$dylib\" \"@$rspfile\""
replace_command = "if ! cmp -s \"$temporary_tocname\" \"$tocname\"; then mv \"$temporary_tocname\" \"$tocname\""
extract_toc_command = "{ $otool -l \"$dylib\" | grep LC_ID_DYLIB -A 5; $nm -gPp \"$dylib\" | cut -f1-2 -d' ' | grep -v U\$\$; true; }"
command = "if $does_reexport_command ; then $link_command && $extract_toc_command > \"$tocname\"; else $link_command && $extract_toc_command > \"$temporary_tocname\" && $replace_command ; fi; fi"
rspfile_content = "{{inputs}} {{frameworks}} {{swiftmodules}} {{solibs}} {{libs}} {{rlibs}}"
description = "SOLINK {{output}}"
# Use this for {{output_extension}} expansions unless a target manually
# overrides it (in which case {{output_extension}} will be what the target
# specifies).
default_output_dir = "{{root_out_dir}}"
default_output_extension = ".dylib"
output_prefix = "lib"
# Since the above commands only updates the .TOC file when it changes, ask
# Ninja to check if the timestamp actually changed to know if downstream
# dependencies should be recompiled.
restat = true
# Tell GN about the output files. It will link to the dylib but use the
# tocname for dependency management.
outputs = [
dylib,
tocname,
]
link_output = dylib
depend_output = tocname
if (_enable_dsyms) {
outputs += dsym_output
}
if (_save_unstripped_output) {
outputs += [ _unstripped_output ]
}
}
tool("solink_module") {
# E.g. "./libfoo.so":
sofile = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
rspfile = sofile + ".rsp"
pool = "//build/toolchain:link_pool($default_toolchain)"
link_command =
"$linker_driver $ld -bundle {{ldflags}} -o \"$sofile\" \"@$rspfile\""
link_command += dsym_switch
command = link_command
rspfile_content = "{{inputs}} {{frameworks}} {{swiftmodules}} {{solibs}} {{libs}} {{rlibs}}"
description = "SOLINK_MODULE {{output}}"
# Use this for {{output_extension}} expansions unless a target manually
# overrides it (in which case {{output_extension}} will be what the target
# specifies).
default_output_dir = "{{root_out_dir}}"
default_output_extension = ".so"
outputs = [ sofile ]
if (_enable_dsyms) {
outputs += dsym_output
}
if (_save_unstripped_output) {
outputs += [ _unstripped_output ]
}
}
tool("link") {
outfile = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
rspfile = "$outfile.rsp"
pool = "//build/toolchain:link_pool($default_toolchain)"
command = "$linker_driver $ld $dsym_switch {{ldflags}} -o \"$outfile\" \"@$rspfile\""
description = "LINK $outfile"
rspfile_content = "{{inputs}} {{frameworks}} {{swiftmodules}} {{solibs}} {{libs}} {{rlibs}}"
outputs = [ outfile ]
if (_enable_dsyms) {
outputs += dsym_output
}
if (_save_unstripped_output) {
outputs += [ _unstripped_output ]
}
default_output_dir = "{{root_out_dir}}"
}
# These two are really entirely generic, but have to be repeated in
# each toolchain because GN doesn't allow a template to be used here.
# See //build/toolchain/toolchain.gni for details.
tool("stamp") {
command = stamp_command
description = stamp_description
}
tool("copy") {
command = copy_command
description = copy_description
}
tool("copy_bundle_data") {
# copy_command use hardlink if possible but this does not work with
# directories. Also when running EG2 tests from Xcode, Xcode tries to
# copy some files into the application bundle which fails if source
# and destination are hardlinked together.
#
# Instead use clonefile to copy the files which is as efficient as
# hardlink but ensure the file have distinct metadata (thus avoid the
# error with ditto, see https://crbug.com/1042182).
if (host_os == "mac") {
command = "rm -rf {{output}} && /bin/cp -Rc {{source}} {{output}}"
} else {
command = "rm -rf {{output}} && /bin/cp -Rld {{source}} {{output}}"
}
description = "COPY_BUNDLE_DATA {{source}} {{output}}"
pool = "//build/toolchain/apple:bundle_pool($default_toolchain)"
}
# Swift is only used on iOS, not macOS. We want to minimize the number
# of Xcode-based tools used by the macOS toolchain, so we intentionally
# disallow future uses of Swift on macOS. https://crbug.com/965663.
if (toolchain_args.current_os == "ios") {
tool("swift") {
_tool = rebase_path("//build/toolchain/ios/swiftc.py", root_build_dir)
depfile = "{{target_out_dir}}/{{module_name}}.d"
depsformat = "gcc"
outputs = [
# The module needs to be the first output listed. The blank line after
# the module is required to prevent `gn format` from changing the file
# order.
"{{target_gen_dir}}/{{module_name}}.swiftmodule",
"{{target_gen_dir}}/{{target_output_name}}.h",
"{{target_gen_dir}}/{{module_name}}.swiftdoc",
"{{target_gen_dir}}/{{module_name}}.swiftsourceinfo",
]
# Additional flags passed to the wrapper script but that are only
# set conditionally.
_extra_flags = ""
if (swift_whole_module_optimization) {
_extra_flags += " -whole-module-optimization"
_objects_dir = "{{target_out_dir}}"
outputs += [ "$_objects_dir/{{module_name}}.o" ]
} else {
_objects_dir = "{{target_out_dir}}/{{label_name}}"
partial_outputs = [ "$_objects_dir/{{source_name_part}}.o" ]
}
_env_vars = "TOOL_VERSION=${tool_versions.swiftc}"
if (invoker.sdk_developer_dir != "") {
_env_vars += " DEVELOPER_DIR=${toolchain_args.sdk_developer_dir}"
}
# Starting with version 5.6, the Swift compiler will always
# generates precompiled headers. In anterior version, it was
# used when bridging headers and whole module optimisation
# where enabled, and it could be disabled with the parameter
# `-disable-bridging-pch`.
#
# The precompiled headers are binary files (i.e. they are not
# regular Objective-C header files and cannot be loaded as such).
#
# There is an hidden requirements that the compiler needs to
# be told where to save those .pch files (via the parameter
# `-pch-output-dir $dir`). If this parameter is not passed, the
# compiler will silently write them at an incorrect location,
# leading later pass to try to load those .pch files as either
# regular header files (.h) or object files (.o) and causing
# to compilation failures.
#
# List the directory where the precompiled header is generated
# as an output, but do not list the .pch file itself. This is
# because the names includes two hashes (one corresponding to
# the compiler revision, and the other probably derived from
# the module itself) that are difficult to generate.
#
# Still we want to avoid creating a directory that has the same
# name as a file generated by another rule, so explicitly list
# the directory in `outputs` so that gn can warn it is conflicts
# with another output file.
_pch_output_dir = "{{target_out_dir}}/{{module_name}}:pch/"
outputs += [ _pch_output_dir ]
# Include the version of the compiler on the command-line. This causes
# `ninja` to consider all the compilation output to be dirty when the
# version changes.
if (defined(swiftc_version)) {
_extra_flags += " -swiftc-version $swiftc_version"
}
# Include the version of Xcode on the command-line (if specified via
# toolchain_args). This causes `ninja` to consider all the compilation
# outputs to be dirty when the version change.
#
# This is required because sometimes module dependency changes between
# different version of Xcode (e.g. when moving from Xcode 14 beta 6 to
# Xcode 14 RC). If the swiftmodule are not rebuilt when the version
# changes, they may encode dependency on now non-existing frameworks
# causing linker failures ultimately.
if (defined(toolchain_args.xcode_build)) {
_extra_flags += " -xcode-version ${toolchain_args.xcode_build}"
}
if (swift_toolchain_path != "") {
_extra_flags += " -swift-toolchain-path " +
rebase_path(swift_toolchain_path, root_build_dir)
}
# The Swift compiler assumes that the generated header will be used by
# Objective-C code compiled with module support enabled (-fmodules).
#
# The import looks like this in the generated header:
#
# #if __has_feature(modules)
# @import UIKit;
# #endif
#
# As Chromium code is compiled without support for modules (i.e. the
# code is compiled without `-fmodules`), the dependent modules are not
# imported from the generated header, which causes compilation failure
# if the client code does not first import the required modules (see
# https://crbug.com/1316061 for details).
#
# Secondly, clang ToT always returns `1` when `__has_features(modules)`
# is evaluated, even if building with `-fno-modules` when building with
# `-std=c++20` (see https://crbug.com/1284275 for details). This causes
# the `@import` lines to be reached and the build to fail (since the
# support for modules is not enabled).
#
# Instruct swiftc.py to rewrite the generated header to use the old
# import pre-processor instructions (#import <UIKit/UIKit.h>) to work
# around those two issues.
_extra_flags += " -fix-module-imports"
command =
"$_env_vars $python_path $_tool -module-name {{module_name}} " +
"-root-dir " + rebase_path("//", root_build_dir) + " " +
"-object-dir $_objects_dir -pch-output-dir $_pch_output_dir " +
"-module-path {{target_gen_dir}}/{{module_name}}.swiftmodule " +
"-header-path {{target_gen_dir}}/{{target_output_name}}.h " +
"-depfile {{target_out_dir}}/{{module_name}}.d " +
"-bridge-header {{bridge_header}} $_extra_flags " +
"{{swiftflags}} {{include_dirs}} {{module_dirs}} {{inputs}}"
}
}
# xcassets are only used on iOS, not macOS. We want to minimize the number
# of Xcode-based tools used by the macOS toolchain, so we intentionally
# disallow future uses of xcassets on macOS. https://crbug.com/965663.
if (toolchain_args.current_os == "ios") {
tool("compile_xcassets") {
_tool = rebase_path("//build/toolchain/ios/compile_xcassets.py",
root_build_dir)
_env_vars = "TOOL_VERSION=${tool_versions.compile_xcassets}"
if (invoker.sdk_developer_dir != "") {
_env_vars += " DEVELOPER_DIR=${toolchain_args.sdk_developer_dir}"
}
command =
"$_env_vars $python_path $_tool " +
"-p '${toolchain_args.current_os}' " +
"-e '${invoker.target_environment}' " +
"-t '${invoker.deployment_target}' " +
"-T '{{bundle_product_type}}' " +
"-P '{{bundle_partial_info_plist}}' " + "-o {{output}} {{inputs}}"
description = "COMPILE_XCASSETS {{output}}"
pool = "//build/toolchain/apple:bundle_pool($default_toolchain)"
}
}
tool("action") {
pool = "//build/toolchain:action_pool($default_toolchain)"
}
}
}
# Makes a single Apple toolchain, or possibly two if we need a
# sanitizer-free equivalent.
template("apple_toolchain") {
single_apple_toolchain(target_name) {
assert(defined(invoker.toolchain_args),
"Toolchains must declare toolchain_args")
forward_variables_from(invoker,
"*",
[
"visibility",
"test_only",
])
# No need to forward visibility and test_only as they apply to targets not
# toolchains, but presubmit checks require that we explicitly exclude them
}
if (using_sanitizer) {
# Make an additional toolchain with no sanitizers.
single_apple_toolchain("${target_name}_no_sanitizers") {
assert(defined(invoker.toolchain_args),
"Toolchains must declare toolchain_args")
forward_variables_from(invoker,
"*",
[
"toolchain_args",
"visibility",
"test_only",
])
toolchain_args = {
# Populate toolchain args from the invoker.
forward_variables_from(invoker.toolchain_args, "*")
toolchain_disables_sanitizers = true
}
}
}
}