blob: b54a83701c0928f1bc7493c6228667723f8c3204 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/secure_hash.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <string>
#include "crypto/sha2.h"
#include "testing/gtest/include/gtest/gtest.h"
TEST(SecureHashTest, TestUpdate) {
// Example B.3 from FIPS 180-2: long message.
std::string input3(500000, 'a'); // 'a' repeated half a million times
const int kExpectedHashOfInput3[] = {
0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7,
0xe2, 0x84, 0xd7, 0x3e, 0x67, 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97,
0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0};
uint8_t output3[crypto::kSHA256Length];
std::unique_ptr<crypto::SecureHash> ctx(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
ctx->Update(input3.data(), input3.size());
ctx->Update(input3.data(), input3.size());
ctx->Finish(output3, sizeof(output3));
for (size_t i = 0; i < crypto::kSHA256Length; i++)
EXPECT_EQ(kExpectedHashOfInput3[i], static_cast<int>(output3[i]));
}
TEST(SecureHashTest, TestClone) {
std::string input1(10001, 'a'); // 'a' repeated 10001 times
std::string input2(10001, 'd'); // 'd' repeated 10001 times
const uint8_t kExpectedHashOfInput1[crypto::kSHA256Length] = {
0x0c, 0xab, 0x99, 0xa0, 0x58, 0x60, 0x0f, 0xfa, 0xad, 0x12, 0x92,
0xd0, 0xc5, 0x3c, 0x05, 0x48, 0xeb, 0xaf, 0x88, 0xdd, 0x1d, 0x01,
0x03, 0x03, 0x45, 0x70, 0x5f, 0x01, 0x8a, 0x81, 0x39, 0x09};
const uint8_t kExpectedHashOfInput1And2[crypto::kSHA256Length] = {
0x4c, 0x8e, 0x26, 0x5a, 0xc3, 0x85, 0x1f, 0x1f, 0xa5, 0x04, 0x1c,
0xc7, 0x88, 0x53, 0x1c, 0xc7, 0x80, 0x47, 0x15, 0xfb, 0x47, 0xff,
0x72, 0xb1, 0x28, 0x37, 0xb0, 0x4d, 0x6e, 0x22, 0x2e, 0x4d};
uint8_t output1[crypto::kSHA256Length];
uint8_t output2[crypto::kSHA256Length];
uint8_t output3[crypto::kSHA256Length];
std::unique_ptr<crypto::SecureHash> ctx1(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
ctx1->Update(input1.data(), input1.size());
std::unique_ptr<crypto::SecureHash> ctx2(ctx1->Clone());
std::unique_ptr<crypto::SecureHash> ctx3(ctx2->Clone());
// At this point, ctx1, ctx2, and ctx3 are all equivalent and represent the
// state after hashing input1.
// Updating ctx1 and ctx2 with input2 should produce equivalent results.
ctx1->Update(input2.data(), input2.size());
ctx1->Finish(output1, sizeof(output1));
ctx2->Update(input2.data(), input2.size());
ctx2->Finish(output2, sizeof(output2));
EXPECT_EQ(0, memcmp(output1, output2, crypto::kSHA256Length));
EXPECT_EQ(0,
memcmp(output1, kExpectedHashOfInput1And2, crypto::kSHA256Length));
// Finish() ctx3, which should produce the hash of input1.
ctx3->Finish(&output3, sizeof(output3));
EXPECT_EQ(0, memcmp(output3, kExpectedHashOfInput1, crypto::kSHA256Length));
}
TEST(SecureHashTest, TestLength) {
std::unique_ptr<crypto::SecureHash> ctx(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
EXPECT_EQ(crypto::kSHA256Length, ctx->GetHashLength());
}
TEST(SecureHashTest, Equality) {
std::string input1(10001, 'a'); // 'a' repeated 10001 times
std::string input2(10001, 'd'); // 'd' repeated 10001 times
uint8_t output1[crypto::kSHA256Length];
uint8_t output2[crypto::kSHA256Length];
// Call Update() twice on input1 and input2.
std::unique_ptr<crypto::SecureHash> ctx1(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
ctx1->Update(input1.data(), input1.size());
ctx1->Update(input2.data(), input2.size());
ctx1->Finish(output1, sizeof(output1));
// Call Update() once one input1 + input2 (concatenation).
std::unique_ptr<crypto::SecureHash> ctx2(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
std::string input3 = input1 + input2;
ctx2->Update(input3.data(), input3.size());
ctx2->Finish(output2, sizeof(output2));
// The hash should be the same.
EXPECT_EQ(0, memcmp(output1, output2, crypto::kSHA256Length));
}