blob: f60707dbb8a5a00ca08090c0508215529c3c816b [file] [log] [blame]
// Copyright 2021 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/cast/sender/av1_encoder.h"
#include "base/logging.h"
#include "media/base/video_frame.h"
#include "media/cast/constants.h"
#include "third_party/libaom/source/libaom/aom/aomcx.h"
namespace media {
namespace cast {
namespace {
// After a pause in the video stream, what is the maximum duration amount to
// pass to the encoder for the next frame (in terms of 1/max_fps sized periods)?
// This essentially controls the encoded size of the first frame that follows a
// pause in the video stream.
const int kRestartFramePeriods = 3;
// The following constants are used to automactically tune the encoder
// parameters: |cpu_used| and |min_quantizer|.
// The |half-life| of the encoding speed accumulator.
// The smaller, the shorter of the time averaging window.
const int kEncodingSpeedAccHalfLife = 120000; // 0.12 second.
// The target encoder utilization signal. This is a trade-off between quality
// and less CPU usage. The range of this value is [0, 1]. Higher the value,
// better the quality and higher the CPU usage.
//
// For machines with more than two encoding threads.
const double kHiTargetEncoderUtilization = 0.7;
// For machines with two encoding threads.
const double kMidTargetEncoderUtilization = 0.6;
// For machines with single encoding thread.
const double kLoTargetEncoderUtilization = 0.5;
// This is the equivalent change on encoding speed for the change on each
// quantizer step.
const double kEquivalentEncodingSpeedStepPerQpStep = 1 / 20.0;
// Highest/lowest allowed encoding speed set to the encoder. The valid range
// is [0, 9].
const int kHighestEncodingSpeed = 9;
const int kLowestEncodingSpeed = 0;
bool HasSufficientFeedback(
const FeedbackSignalAccumulator<base::TimeDelta>& accumulator) {
const base::TimeDelta amount_of_history =
accumulator.update_time() - accumulator.reset_time();
return amount_of_history.InMicroseconds() >= 250000; // 0.25 second.
}
} // namespace
Av1Encoder::Av1Encoder(const FrameSenderConfig& video_config)
: cast_config_(video_config),
target_encoder_utilization_(
video_config.video_codec_params.number_of_encode_threads > 2
? kHiTargetEncoderUtilization
: (video_config.video_codec_params.number_of_encode_threads > 1
? kMidTargetEncoderUtilization
: kLoTargetEncoderUtilization)),
key_frame_requested_(true),
bitrate_kbit_(cast_config_.start_bitrate / 1000),
next_frame_id_(FrameId::first()),
encoding_speed_acc_(base::Microseconds(kEncodingSpeedAccHalfLife)),
encoding_speed_(kHighestEncodingSpeed) {
config_.g_timebase.den = 0; // Not initialized.
DCHECK_LE(cast_config_.video_codec_params.min_qp,
cast_config_.video_codec_params.max_cpu_saver_qp);
DCHECK_LE(cast_config_.video_codec_params.max_cpu_saver_qp,
cast_config_.video_codec_params.max_qp);
DETACH_FROM_THREAD(thread_checker_);
}
Av1Encoder::~Av1Encoder() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_initialized())
aom_codec_destroy(&encoder_);
}
void Av1Encoder::Initialize() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!is_initialized());
// The encoder will be created/configured when the first frame encode is
// requested.
}
void Av1Encoder::ConfigureForNewFrameSize(const gfx::Size& frame_size) {
if (is_initialized()) {
// Workaround for VP8 bug: If the new size is strictly less-than-or-equal to
// the old size, in terms of area, the existing encoder instance can
// continue. Otherwise, completely tear-down and re-create a new encoder to
// avoid a shutdown crash.
// NOTE: Determine if this workaround is needed for AV1
if (frame_size.GetArea() <= gfx::Size(config_.g_w, config_.g_h).GetArea()) {
DVLOG(1) << "Continuing to use existing encoder at smaller frame size: "
<< gfx::Size(config_.g_w, config_.g_h).ToString() << " --> "
<< frame_size.ToString();
config_.g_w = frame_size.width();
config_.g_h = frame_size.height();
config_.rc_min_quantizer = cast_config_.video_codec_params.min_qp;
if (aom_codec_enc_config_set(&encoder_, &config_) == AOM_CODEC_OK)
return;
DVLOG(1) << "libaom rejected the attempt to use a smaller frame size in "
"the current instance.";
}
DVLOG(1) << "Destroying/Re-Creating encoder for larger frame size: "
<< gfx::Size(config_.g_w, config_.g_h).ToString() << " --> "
<< frame_size.ToString();
aom_codec_destroy(&encoder_);
} else {
DVLOG(1) << "Creating encoder for the first frame; size: "
<< frame_size.ToString();
}
// Populate encoder configuration with default values.
CHECK_EQ(aom_codec_enc_config_default(aom_codec_av1_cx(), &config_,
AOM_USAGE_REALTIME),
AOM_CODEC_OK);
config_.g_threads = cast_config_.video_codec_params.number_of_encode_threads;
config_.g_w = frame_size.width();
config_.g_h = frame_size.height();
// Set the timebase to match that of base::TimeDelta.
config_.g_timebase.num = 1;
config_.g_timebase.den = base::Time::kMicrosecondsPerSecond;
// |g_pass| and |g_lag_in_frames| must be "one pass" and zero, respectively,
// in order for AV1 to support changing frame sizes during encoding:
config_.g_pass = AOM_RC_ONE_PASS;
config_.g_lag_in_frames = 0; // Immediate data output for each frame.
// Rate control settings.
config_.rc_dropframe_thresh = 0; // The encoder may not drop any frames.
config_.rc_resize_mode = 0; // TODO(miu): Why not? Investigate this.
config_.rc_end_usage = AOM_CBR;
config_.rc_target_bitrate = bitrate_kbit_;
config_.rc_min_quantizer = cast_config_.video_codec_params.min_qp;
config_.rc_max_quantizer = cast_config_.video_codec_params.max_qp;
// TODO(miu): Revisit these now that the encoder is being successfully
// micro-managed.
config_.rc_undershoot_pct = 100;
config_.rc_overshoot_pct = 15;
// TODO(miu): Document why these rc_buf_*_sz values were chosen and/or
// research for better values. Should they be computed from the target
// playout delay?
config_.rc_buf_initial_sz = 500;
config_.rc_buf_optimal_sz = 600;
config_.rc_buf_sz = 1000;
config_.kf_mode = AOM_KF_DISABLED;
aom_codec_flags_t flags = 0;
CHECK_EQ(aom_codec_enc_init(&encoder_, aom_codec_av1_cx(), &config_, flags),
AOM_CODEC_OK);
// This cpu_used setting is a trade-off between cpu usage and encoded video
// quality. The default is zero, with increasingly less CPU to be used as the
// value is more positive. Starting with the highest encoding speed
// to avoid large cpu usage from the beginning. Unlike VP8/9, negative speed
// is not supported for AV1 encoding.
encoding_speed_ = kHighestEncodingSpeed;
CHECK_EQ(aom_codec_control(&encoder_, AOME_SET_CPUUSED, encoding_speed_),
AOM_CODEC_OK);
}
void Av1Encoder::Encode(scoped_refptr<media::VideoFrame> video_frame,
base::TimeTicks reference_time,
SenderEncodedFrame* encoded_frame) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(encoded_frame);
// Note: This is used to compute the |encoder_utilization| and so it uses the
// real-world clock instead of the CastEnvironment clock, the latter of which
// might be simulated.
const base::TimeTicks start_time = base::TimeTicks::Now();
// Initialize on-demand. Later, if the video frame size has changed, update
// the encoder configuration.
const gfx::Size frame_size = video_frame->visible_rect().size();
if (!is_initialized() || gfx::Size(config_.g_w, config_.g_h) != frame_size)
ConfigureForNewFrameSize(frame_size);
// Wrapper for aom_codec_encode() to access the YUV data in the |video_frame|.
// Only the VISIBLE rectangle within |video_frame| is exposed to the codec.
aom_img_fmt_t aom_format = AOM_IMG_FMT_I420;
aom_image_t aom_image;
aom_image_t* const result = aom_img_wrap(
&aom_image, aom_format, frame_size.width(), frame_size.height(), 1,
video_frame->data(VideoFrame::kYPlane));
DCHECK_EQ(result, &aom_image);
aom_image.planes[AOM_PLANE_Y] =
video_frame->visible_data(VideoFrame::kYPlane);
aom_image.planes[AOM_PLANE_U] =
video_frame->visible_data(VideoFrame::kUPlane);
aom_image.planes[AOM_PLANE_V] =
video_frame->visible_data(VideoFrame::kVPlane);
aom_image.stride[AOM_PLANE_Y] = video_frame->stride(VideoFrame::kYPlane);
aom_image.stride[AOM_PLANE_U] = video_frame->stride(VideoFrame::kUPlane);
aom_image.stride[AOM_PLANE_V] = video_frame->stride(VideoFrame::kVPlane);
// The frame duration given to the AV1 codec affects a number of important
// behaviors, including: per-frame bandwidth, CPU time spent encoding,
// temporal quality trade-offs, and key/golden/alt-ref frame generation
// intervals. Bound the prediction to account for the fact that the frame
// rate can be highly variable, including long pauses in the video stream.
const base::TimeDelta minimum_frame_duration =
base::Seconds(1.0 / cast_config_.max_frame_rate);
const base::TimeDelta maximum_frame_duration = base::Seconds(
static_cast<double>(kRestartFramePeriods) / cast_config_.max_frame_rate);
base::TimeDelta predicted_frame_duration =
video_frame->metadata().frame_duration.value_or(base::TimeDelta());
if (predicted_frame_duration <= base::TimeDelta()) {
// The source of the video frame did not provide the frame duration. Use
// the actual amount of time between the current and previous frame as a
// prediction for the next frame's duration.
predicted_frame_duration = video_frame->timestamp() - last_frame_timestamp_;
}
predicted_frame_duration =
std::max(minimum_frame_duration,
std::min(maximum_frame_duration, predicted_frame_duration));
last_frame_timestamp_ = video_frame->timestamp();
// Encode the frame. The presentation time stamp argument here is fixed to
// zero to force the encoder to base its single-frame bandwidth calculations
// entirely on |predicted_frame_duration| and the target bitrate setting being
// micro-managed via calls to UpdateRates().
CHECK_EQ(aom_codec_encode(&encoder_, &aom_image, 0,
predicted_frame_duration.InMicroseconds(),
key_frame_requested_ ? AOM_EFLAG_FORCE_KF : 0),
AOM_CODEC_OK)
<< "BUG: Invalid arguments passed to aom_codec_encode().";
// Pull data from the encoder, populating a new EncodedFrame.
encoded_frame->frame_id = next_frame_id_++;
const aom_codec_cx_pkt_t* pkt = nullptr;
aom_codec_iter_t iter = nullptr;
while ((pkt = aom_codec_get_cx_data(&encoder_, &iter)) != nullptr) {
if (pkt->kind != AOM_CODEC_CX_FRAME_PKT)
continue;
if (pkt->data.frame.flags & AOM_FRAME_IS_KEY) {
// TODO(hubbe): Replace "dependency" with a "bool is_key_frame".
encoded_frame->dependency = EncodedFrame::KEY;
encoded_frame->referenced_frame_id = encoded_frame->frame_id;
} else {
encoded_frame->dependency = EncodedFrame::DEPENDENT;
// Frame dependencies could theoretically be relaxed by looking for the
// AOM_FRAME_IS_DROPPABLE flag, but in recent testing (Oct 2014), this
// flag never seems to be set.
encoded_frame->referenced_frame_id = encoded_frame->frame_id - 1;
}
encoded_frame->rtp_timestamp =
RtpTimeTicks::FromTimeDelta(video_frame->timestamp(), kVideoFrequency);
encoded_frame->reference_time = reference_time;
encoded_frame->data.assign(
static_cast<const uint8_t*>(pkt->data.frame.buf),
static_cast<const uint8_t*>(pkt->data.frame.buf) + pkt->data.frame.sz);
break; // Done, since all data is provided in one CX_FRAME_PKT packet.
}
DCHECK(!encoded_frame->data.empty())
<< "BUG: Encoder must provide data since lagged encoding is disabled.";
// Compute encoder utilization as the real-world time elapsed divided by the
// frame duration.
const base::TimeDelta processing_time = base::TimeTicks::Now() - start_time;
encoded_frame->encoder_utilization =
processing_time / predicted_frame_duration;
// Compute lossy utilization. The AV1 encoder took an estimated guess at what
// quantizer value would produce an encoded frame size as close to the target
// as possible. Now that the frame has been encoded and the number of bytes
// is known, the perfect quantizer value (i.e., the one that should have been
// used) can be determined. This perfect quantizer is then normalized and
// used as the lossy utilization.
const double actual_bitrate =
encoded_frame->data.size() * 8.0 / predicted_frame_duration.InSecondsF();
const double target_bitrate = 1000.0 * config_.rc_target_bitrate;
DCHECK_GT(target_bitrate, 0.0);
const double bitrate_utilization = actual_bitrate / target_bitrate;
int quantizer = -1;
CHECK_EQ(aom_codec_control(&encoder_, AOME_GET_LAST_QUANTIZER_64, &quantizer),
AOM_CODEC_OK);
const double perfect_quantizer = bitrate_utilization * std::max(0, quantizer);
// Side note: If it was possible for the encoder to encode within the target
// number of bytes, the |perfect_quantizer| will be in the range [0.0,63.0].
// If it was never possible, the value will be greater than 63.0.
encoded_frame->lossy_utilization = perfect_quantizer / 63.0;
DVLOG(2) << "AV1 encoded frame_id " << encoded_frame->frame_id
<< ", sized: " << encoded_frame->data.size()
<< ", encoder_utilization: " << encoded_frame->encoder_utilization
<< ", lossy_utilization: " << encoded_frame->lossy_utilization
<< " (quantizer chosen by the encoder was " << quantizer << ')';
if (encoded_frame->dependency == EncodedFrame::KEY) {
key_frame_requested_ = false;
encoding_speed_acc_.Reset(kHighestEncodingSpeed, video_frame->timestamp());
} else {
// Equivalent encoding speed considering both cpu_used setting and
// quantizer.
double actual_encoding_speed =
encoding_speed_ +
kEquivalentEncodingSpeedStepPerQpStep *
std::max(0, quantizer - cast_config_.video_codec_params.min_qp);
double adjusted_encoding_speed = actual_encoding_speed *
encoded_frame->encoder_utilization /
target_encoder_utilization_;
encoding_speed_acc_.Update(adjusted_encoding_speed,
video_frame->timestamp());
}
if (HasSufficientFeedback(encoding_speed_acc_)) {
// Predict |encoding_speed_| and |min_quantizer| for next frame.
// When CPU is constrained, increase encoding speed and increase
// |min_quantizer| if needed.
double next_encoding_speed = encoding_speed_acc_.current();
int next_min_qp;
if (next_encoding_speed > kHighestEncodingSpeed) {
double remainder = next_encoding_speed - kHighestEncodingSpeed;
next_encoding_speed = kHighestEncodingSpeed;
next_min_qp =
static_cast<int>(remainder / kEquivalentEncodingSpeedStepPerQpStep +
cast_config_.video_codec_params.min_qp + 0.5);
next_min_qp = std::min(next_min_qp,
cast_config_.video_codec_params.max_cpu_saver_qp);
} else {
next_encoding_speed =
std::max<double>(kLowestEncodingSpeed, next_encoding_speed) + 0.5;
next_min_qp = cast_config_.video_codec_params.min_qp;
}
if (encoding_speed_ != static_cast<int>(next_encoding_speed)) {
encoding_speed_ = static_cast<int>(next_encoding_speed);
CHECK_EQ(aom_codec_control(&encoder_, AOME_SET_CPUUSED, encoding_speed_),
AOM_CODEC_OK);
}
if (config_.rc_min_quantizer != static_cast<unsigned int>(next_min_qp)) {
config_.rc_min_quantizer = static_cast<unsigned int>(next_min_qp);
CHECK_EQ(aom_codec_enc_config_set(&encoder_, &config_), AOM_CODEC_OK);
}
}
}
void Av1Encoder::UpdateRates(uint32_t new_bitrate) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!is_initialized())
return;
uint32_t new_bitrate_kbit = new_bitrate / 1000;
if (config_.rc_target_bitrate == new_bitrate_kbit)
return;
config_.rc_target_bitrate = bitrate_kbit_ = new_bitrate_kbit;
// Update encoder context.
if (aom_codec_enc_config_set(&encoder_, &config_)) {
NOTREACHED() << "Invalid return value";
}
VLOG(1) << "AV1 new rc_target_bitrate: " << new_bitrate_kbit << " kbps";
}
void Av1Encoder::GenerateKeyFrame() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
key_frame_requested_ = true;
}
} // namespace cast
} // namespace media