blob: 97840aae8b177b04ecb97a665fa3cbb41eedbd6c [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/cast/sender/frame_sender.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "base/bind.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/trace_event/trace_event.h"
#include "media/cast/constants.h"
#include "media/cast/sender/sender_encoded_frame.h"
namespace media {
namespace cast {
namespace {
constexpr int kNumAggressiveReportsSentAtStart = 100;
constexpr base::TimeDelta kMinSchedulingDelay = base::Milliseconds(1);
constexpr base::TimeDelta kReceiverProcessTime = base::Milliseconds(250);
// The additional number of frames that can be in-flight when input exceeds the
// maximum frame rate.
constexpr int kMaxFrameBurst = 5;
} // namespace
// Convenience macro used in logging statements throughout this file.
#define SENDER_SSRC (is_audio_ ? "AUDIO[" : "VIDEO[") << ssrc_ << "] "
FrameSender::RtcpClient::RtcpClient(base::WeakPtr<FrameSender> frame_sender)
: frame_sender_(frame_sender) {}
FrameSender::RtcpClient::~RtcpClient() = default;
void FrameSender::RtcpClient::OnReceivedCastMessage(
const RtcpCastMessage& cast_message) {
if (frame_sender_)
frame_sender_->OnReceivedCastFeedback(cast_message);
}
void FrameSender::RtcpClient::OnReceivedRtt(base::TimeDelta round_trip_time) {
if (frame_sender_)
frame_sender_->OnMeasuredRoundTripTime(round_trip_time);
}
void FrameSender::RtcpClient::OnReceivedPli() {
if (frame_sender_)
frame_sender_->OnReceivedPli();
}
FrameSender::FrameSender(scoped_refptr<CastEnvironment> cast_environment,
CastTransport* const transport_sender,
const FrameSenderConfig& config,
CongestionControl* congestion_control)
: cast_environment_(cast_environment),
transport_sender_(transport_sender),
ssrc_(config.sender_ssrc),
min_playout_delay_(config.min_playout_delay.is_zero()
? config.max_playout_delay
: config.min_playout_delay),
max_playout_delay_(config.max_playout_delay),
animated_playout_delay_(config.animated_playout_delay.is_zero()
? config.max_playout_delay
: config.animated_playout_delay),
send_target_playout_delay_(false),
max_frame_rate_(config.max_frame_rate),
num_aggressive_rtcp_reports_sent_(0),
duplicate_ack_counter_(0),
congestion_control_(congestion_control),
picture_lost_at_receiver_(false),
rtp_timebase_(config.rtp_timebase),
is_audio_(config.rtp_payload_type <= RtpPayloadType::AUDIO_LAST),
max_ack_delay_(config.max_playout_delay) {
DCHECK(transport_sender_);
DCHECK_GT(rtp_timebase_, 0);
DCHECK(congestion_control_);
// We assume animated content to begin with since that is the common use
// case today.
VLOG(1) << SENDER_SSRC << "min latency "
<< min_playout_delay_.InMilliseconds() << "max latency "
<< max_playout_delay_.InMilliseconds() << "animated latency "
<< animated_playout_delay_.InMilliseconds();
SetTargetPlayoutDelay(animated_playout_delay_);
CastTransportRtpConfig transport_config;
transport_config.ssrc = config.sender_ssrc;
transport_config.feedback_ssrc = config.receiver_ssrc;
transport_config.rtp_payload_type = config.rtp_payload_type;
transport_config.aes_key = config.aes_key;
transport_config.aes_iv_mask = config.aes_iv_mask;
transport_sender->InitializeStream(
transport_config,
std::make_unique<FrameSender::RtcpClient>(weak_factory_.GetWeakPtr()));
}
FrameSender::~FrameSender() = default;
void FrameSender::ScheduleNextRtcpReport() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
cast_environment_->PostDelayedTask(
CastEnvironment::MAIN, FROM_HERE,
base::BindOnce(&FrameSender::SendRtcpReport, weak_factory_.GetWeakPtr(),
true),
base::Milliseconds(kRtcpReportIntervalMs));
}
void FrameSender::SendRtcpReport(bool schedule_future_reports) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
// Sanity-check: We should have sent at least the first frame by this point.
DCHECK(!last_send_time_.is_null());
// Create lip-sync info for the sender report. The last sent frame's
// reference time and RTP timestamp are used to estimate an RTP timestamp in
// terms of "now." Note that |now| is never likely to be precise to an exact
// frame boundary; and so the computation here will result in a
// |now_as_rtp_timestamp| value that is rarely equal to any one emitted by the
// encoder.
const base::TimeTicks now = cast_environment_->Clock()->NowTicks();
const base::TimeDelta time_delta =
now - GetRecordedReferenceTime(last_sent_frame_id_);
const RtpTimeDelta rtp_delta =
RtpTimeDelta::FromTimeDelta(time_delta, rtp_timebase_);
const RtpTimeTicks now_as_rtp_timestamp =
GetRecordedRtpTimestamp(last_sent_frame_id_) + rtp_delta;
transport_sender_->SendSenderReport(ssrc_, now, now_as_rtp_timestamp);
if (schedule_future_reports)
ScheduleNextRtcpReport();
}
void FrameSender::OnMeasuredRoundTripTime(base::TimeDelta round_trip_time) {
DCHECK_GT(round_trip_time, base::TimeDelta());
current_round_trip_time_ = round_trip_time;
max_ack_delay_ = 2 * std::max(current_round_trip_time_, base::TimeDelta()) +
kReceiverProcessTime;
max_ack_delay_ = std::min(max_ack_delay_, target_playout_delay_);
}
void FrameSender::SetTargetPlayoutDelay(
base::TimeDelta new_target_playout_delay) {
if (send_target_playout_delay_ &&
target_playout_delay_ == new_target_playout_delay) {
return;
}
new_target_playout_delay = std::max(new_target_playout_delay,
min_playout_delay_);
new_target_playout_delay = std::min(new_target_playout_delay,
max_playout_delay_);
VLOG(2) << SENDER_SSRC << "Target playout delay changing from "
<< target_playout_delay_.InMilliseconds() << " ms to "
<< new_target_playout_delay.InMilliseconds() << " ms.";
target_playout_delay_ = new_target_playout_delay;
max_ack_delay_ = std::min(max_ack_delay_, target_playout_delay_);
send_target_playout_delay_ = true;
congestion_control_->UpdateTargetPlayoutDelay(target_playout_delay_);
}
void FrameSender::ResendCheck() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
DCHECK(!last_send_time_.is_null());
const base::TimeDelta time_since_last_send =
cast_environment_->Clock()->NowTicks() - last_send_time_;
if (time_since_last_send > max_ack_delay_) {
if (latest_acked_frame_id_ == last_sent_frame_id_) {
// Last frame acked, no point in doing anything
} else {
VLOG(1) << SENDER_SSRC << "ACK timeout; last acked frame: "
<< latest_acked_frame_id_;
ResendForKickstart();
}
}
ScheduleNextResendCheck();
}
void FrameSender::ScheduleNextResendCheck() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
DCHECK(!last_send_time_.is_null());
base::TimeDelta time_to_next =
last_send_time_ - cast_environment_->Clock()->NowTicks() + max_ack_delay_;
time_to_next = std::max(time_to_next, kMinSchedulingDelay);
cast_environment_->PostDelayedTask(
CastEnvironment::MAIN, FROM_HERE,
base::BindOnce(&FrameSender::ResendCheck, weak_factory_.GetWeakPtr()),
time_to_next);
}
void FrameSender::ResendForKickstart() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
DCHECK(!last_send_time_.is_null());
VLOG(1) << SENDER_SSRC << "Resending last packet of frame "
<< last_sent_frame_id_ << " to kick-start.";
last_send_time_ = cast_environment_->Clock()->NowTicks();
transport_sender_->ResendFrameForKickstart(ssrc_, last_sent_frame_id_);
}
void FrameSender::RecordLatestFrameTimestamps(FrameId frame_id,
base::TimeTicks reference_time,
RtpTimeTicks rtp_timestamp) {
DCHECK(!reference_time.is_null());
frame_reference_times_[frame_id.lower_8_bits()] = reference_time;
frame_rtp_timestamps_[frame_id.lower_8_bits()] = rtp_timestamp;
}
base::TimeTicks FrameSender::GetRecordedReferenceTime(FrameId frame_id) const {
return frame_reference_times_[frame_id.lower_8_bits()];
}
RtpTimeTicks FrameSender::GetRecordedRtpTimestamp(FrameId frame_id) const {
return frame_rtp_timestamps_[frame_id.lower_8_bits()];
}
int FrameSender::GetUnacknowledgedFrameCount() const {
if (last_send_time_.is_null())
return 0;
const int count = last_sent_frame_id_ - latest_acked_frame_id_;
DCHECK_GE(count, 0);
return count;
}
base::TimeDelta FrameSender::GetAllowedInFlightMediaDuration() const {
// The total amount allowed in-flight media should equal the amount that fits
// within the entire playout delay window, plus the amount of time it takes to
// receive an ACK from the receiver.
// TODO(miu): Research is needed, but there is likely a better formula.
return target_playout_delay_ + (current_round_trip_time_ / 2);
}
void FrameSender::SendEncodedFrame(
int requested_bitrate_before_encode,
std::unique_ptr<SenderEncodedFrame> encoded_frame) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
VLOG(2) << SENDER_SSRC << "About to send another frame: last_sent="
<< last_sent_frame_id_ << ", latest_acked=" << latest_acked_frame_id_;
const FrameId frame_id = encoded_frame->frame_id;
const bool is_first_frame_to_be_sent = last_send_time_.is_null();
if (picture_lost_at_receiver_ &&
(encoded_frame->dependency == EncodedFrame::KEY)) {
picture_lost_at_receiver_ = false;
DCHECK(frame_id > latest_acked_frame_id_);
// Cancel sending remaining frames.
std::vector<FrameId> cancel_sending_frames;
for (FrameId id = latest_acked_frame_id_ + 1; id < frame_id; ++id) {
cancel_sending_frames.push_back(id);
}
transport_sender_->CancelSendingFrames(ssrc_, cancel_sending_frames);
OnCancelSendingFrames();
}
last_send_time_ = cast_environment_->Clock()->NowTicks();
last_sent_frame_id_ = frame_id;
// If this is the first frame about to be sent, fake the value of
// |latest_acked_frame_id_| to indicate the receiver starts out all caught up.
// Also, schedule the periodic frame re-send checks.
if (is_first_frame_to_be_sent) {
latest_acked_frame_id_ = frame_id - 1;
ScheduleNextResendCheck();
}
VLOG_IF(1, !is_audio_ && encoded_frame->dependency == EncodedFrame::KEY)
<< SENDER_SSRC << "Sending encoded key frame, id=" << frame_id;
std::unique_ptr<FrameEvent> encode_event(new FrameEvent());
encode_event->timestamp = encoded_frame->encode_completion_time;
encode_event->type = FRAME_ENCODED;
encode_event->media_type = is_audio_ ? AUDIO_EVENT : VIDEO_EVENT;
encode_event->rtp_timestamp = encoded_frame->rtp_timestamp;
encode_event->frame_id = frame_id;
encode_event->size = base::checked_cast<uint32_t>(encoded_frame->data.size());
encode_event->key_frame = encoded_frame->dependency == EncodedFrame::KEY;
encode_event->target_bitrate = requested_bitrate_before_encode;
encode_event->encoder_cpu_utilization = encoded_frame->encoder_utilization;
encode_event->idealized_bitrate_utilization =
encoded_frame->lossy_utilization;
cast_environment_->logger()->DispatchFrameEvent(std::move(encode_event));
RecordLatestFrameTimestamps(frame_id,
encoded_frame->reference_time,
encoded_frame->rtp_timestamp);
if (!is_audio_) {
// Used by chrome/browser/media/cast_mirroring_performance_browsertest.cc
TRACE_EVENT_INSTANT1(
"cast_perf_test", "VideoFrameEncoded",
TRACE_EVENT_SCOPE_THREAD,
"rtp_timestamp", encoded_frame->rtp_timestamp.lower_32_bits());
}
// At the start of the session, it's important to send reports before each
// frame so that the receiver can properly compute playout times. The reason
// more than one report is sent is because transmission is not guaranteed,
// only best effort, so send enough that one should almost certainly get
// through.
if (num_aggressive_rtcp_reports_sent_ < kNumAggressiveReportsSentAtStart) {
// SendRtcpReport() will schedule future reports to be made if this is the
// last "aggressive report."
++num_aggressive_rtcp_reports_sent_;
const bool is_last_aggressive_report =
(num_aggressive_rtcp_reports_sent_ == kNumAggressiveReportsSentAtStart);
VLOG_IF(1, is_last_aggressive_report)
<< SENDER_SSRC << "Sending last aggressive report.";
SendRtcpReport(is_last_aggressive_report);
}
congestion_control_->SendFrameToTransport(
frame_id, encoded_frame->data.size() * 8, last_send_time_);
if (send_target_playout_delay_) {
encoded_frame->new_playout_delay_ms =
target_playout_delay_.InMilliseconds();
}
const char* name = is_audio_ ? "Audio Transport" : "Video Transport";
TRACE_EVENT_NESTABLE_ASYNC_BEGIN1(
"cast.stream", name, TRACE_ID_WITH_SCOPE(name, frame_id.lower_32_bits()),
"rtp_timestamp", encoded_frame->rtp_timestamp.lower_32_bits());
transport_sender_->InsertFrame(ssrc_, *encoded_frame);
}
void FrameSender::OnCancelSendingFrames() {}
void FrameSender::OnReceivedCastFeedback(const RtcpCastMessage& cast_feedback) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
const bool have_valid_rtt = current_round_trip_time_ > base::TimeDelta();
if (have_valid_rtt) {
congestion_control_->UpdateRtt(current_round_trip_time_);
// Having the RTT value implies the receiver sent back a receiver report
// based on it having received a report from here. Therefore, ensure this
// sender stops aggressively sending reports.
if (num_aggressive_rtcp_reports_sent_ < kNumAggressiveReportsSentAtStart) {
VLOG(1) << SENDER_SSRC
<< "No longer a need to send reports aggressively (sent "
<< num_aggressive_rtcp_reports_sent_ << ").";
num_aggressive_rtcp_reports_sent_ = kNumAggressiveReportsSentAtStart;
ScheduleNextRtcpReport();
}
}
if (last_send_time_.is_null())
return; // Cannot get an ACK without having first sent a frame.
if (cast_feedback.missing_frames_and_packets.empty() &&
cast_feedback.received_later_frames.empty()) {
if (latest_acked_frame_id_ == cast_feedback.ack_frame_id) {
VLOG(1) << SENDER_SSRC << "Received duplicate ACK for frame "
<< latest_acked_frame_id_;
TRACE_EVENT_INSTANT2(
"cast.stream", "Duplicate ACK", TRACE_EVENT_SCOPE_THREAD,
"ack_frame_id", cast_feedback.ack_frame_id.lower_32_bits(),
"last_sent_frame_id", last_sent_frame_id_.lower_32_bits());
}
// We only count duplicate ACKs when we have sent newer frames.
if (latest_acked_frame_id_ == cast_feedback.ack_frame_id &&
latest_acked_frame_id_ != last_sent_frame_id_) {
duplicate_ack_counter_++;
} else {
duplicate_ack_counter_ = 0;
}
// TODO(miu): The values "2" and "3" should be derived from configuration.
if (duplicate_ack_counter_ >= 2 && duplicate_ack_counter_ % 3 == 2) {
ResendForKickstart();
}
} else {
// Only count duplicated ACKs if there is no NACK request in between.
// This is to avoid aggresive resend.
duplicate_ack_counter_ = 0;
}
base::TimeTicks now = cast_environment_->Clock()->NowTicks();
congestion_control_->AckFrame(cast_feedback.ack_frame_id, now);
if (!cast_feedback.received_later_frames.empty()) {
// Ack the received frames.
congestion_control_->AckLaterFrames(cast_feedback.received_later_frames,
now);
}
std::unique_ptr<FrameEvent> ack_event(new FrameEvent());
ack_event->timestamp = now;
ack_event->type = FRAME_ACK_RECEIVED;
ack_event->media_type = is_audio_ ? AUDIO_EVENT : VIDEO_EVENT;
ack_event->rtp_timestamp =
GetRecordedRtpTimestamp(cast_feedback.ack_frame_id);
ack_event->frame_id = cast_feedback.ack_frame_id;
cast_environment_->logger()->DispatchFrameEvent(std::move(ack_event));
const bool is_acked_out_of_order =
cast_feedback.ack_frame_id < latest_acked_frame_id_;
VLOG(2) << SENDER_SSRC
<< "Received ACK" << (is_acked_out_of_order ? " out-of-order" : "")
<< " for frame " << cast_feedback.ack_frame_id;
if (is_acked_out_of_order) {
TRACE_EVENT_INSTANT2(
"cast.stream", "ACK out of order", TRACE_EVENT_SCOPE_THREAD,
"ack_frame_id", cast_feedback.ack_frame_id.lower_32_bits(),
"latest_acked_frame_id", latest_acked_frame_id_.lower_32_bits());
} else if (latest_acked_frame_id_ < cast_feedback.ack_frame_id) {
// Cancel resends of acked frames.
std::vector<FrameId> frames_to_cancel;
frames_to_cancel.reserve(cast_feedback.ack_frame_id -
latest_acked_frame_id_);
do {
++latest_acked_frame_id_;
frames_to_cancel.push_back(latest_acked_frame_id_);
// This is a good place to match the trace for frame ids
// since this ensures we not only track frame ids that are
// implicitly ACKed, but also handles duplicate ACKs
const char* name = is_audio_ ? "Audio Transport" : "Video Transport";
TRACE_EVENT_NESTABLE_ASYNC_END1(
"cast.stream", name,
TRACE_ID_WITH_SCOPE(name, latest_acked_frame_id_.lower_32_bits()),
"RTT_usecs", current_round_trip_time_.InMicroseconds());
} while (latest_acked_frame_id_ < cast_feedback.ack_frame_id);
transport_sender_->CancelSendingFrames(ssrc_, frames_to_cancel);
OnCancelSendingFrames();
}
}
void FrameSender::OnReceivedPli() {
picture_lost_at_receiver_ = true;
}
bool FrameSender::ShouldDropNextFrame(base::TimeDelta frame_duration) const {
// Check that accepting the next frame won't cause more frames to become
// in-flight than the system's design limit.
const int count_frames_in_flight =
GetUnacknowledgedFrameCount() + GetNumberOfFramesInEncoder();
if (count_frames_in_flight >= kMaxUnackedFrames) {
VLOG(1) << SENDER_SSRC << "Dropping: Too many frames would be in-flight.";
return true;
}
// Check that accepting the next frame won't exceed the configured maximum
// frame rate, allowing for short-term bursts.
base::TimeDelta duration_in_flight = GetInFlightMediaDuration();
const double max_frames_in_flight =
max_frame_rate_ * duration_in_flight.InSecondsF();
if (count_frames_in_flight >= max_frames_in_flight + kMaxFrameBurst) {
VLOG(1) << SENDER_SSRC << "Dropping: Burst threshold would be exceeded.";
return true;
}
// Check that accepting the next frame won't exceed the allowed in-flight
// media duration.
const base::TimeDelta duration_would_be_in_flight =
duration_in_flight + frame_duration;
const base::TimeDelta allowed_in_flight = GetAllowedInFlightMediaDuration();
if (VLOG_IS_ON(1)) {
const int64_t percent =
allowed_in_flight > base::TimeDelta()
? base::ClampRound<int64_t>(duration_would_be_in_flight /
allowed_in_flight * 100)
: std::numeric_limits<int64_t>::max();
VLOG_IF(1, percent > 50)
<< SENDER_SSRC
<< duration_in_flight.InMicroseconds() << " usec in-flight + "
<< frame_duration.InMicroseconds() << " usec for next frame --> "
<< percent << "% of allowed in-flight.";
}
if (duration_would_be_in_flight > allowed_in_flight) {
VLOG(1) << SENDER_SSRC << "Dropping: In-flight duration would be too high.";
return true;
}
// Next frame is accepted.
return false;
}
} // namespace cast
} // namespace media