blob: 7a2bb8616d0b77b695beebad3a70d2b774542e7c [file] [log] [blame]
// Copyright 2014 The Cobalt Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef STARBOARD_COMMON_REUSE_ALLOCATOR_BASE_H_
#define STARBOARD_COMMON_REUSE_ALLOCATOR_BASE_H_
#include <algorithm>
#include <map>
#include <set>
#include <vector>
#include "starboard/common/allocator.h"
#include "starboard/configuration.h"
#include "starboard/types.h"
namespace starboard {
namespace common {
// The base class of allocators designed to accommodate cases where the memory
// allocated may not be efficient or safe to access via the CPU. It solves
// this problem by maintaining all allocation meta data is outside of the
// allocated memory. It is passed a fallback allocator that it can request
// additional memory from as needed.
class ReuseAllocatorBase : public Allocator {
public:
void* Allocate(std::size_t size) override;
void* Allocate(std::size_t size, std::size_t alignment) override;
// Marks the memory block as being free and it will then become recyclable
void Free(void* memory) override;
std::size_t GetCapacity() const override { return capacity_; }
std::size_t GetAllocated() const override { return total_allocated_; }
bool CapacityExceeded() const {
return max_capacity_ && (capacity_ > max_capacity_);
}
void PrintAllocations() const override;
bool TryFree(void* memory);
std::size_t max_capacity() const { return max_capacity_; }
void IncreaseMaxCapacityIfNecessary(std::size_t max_capacity) {
max_capacity_ = std::max(max_capacity, max_capacity_);
}
protected:
class MemoryBlock {
public:
MemoryBlock() : address_(0), size_(0) {}
MemoryBlock(void* address, std::size_t size)
: address_(address), size_(size) {}
void* address() const { return address_; }
std::size_t size() const { return size_; }
void set_address(void* address) { address_ = address; }
void set_size(std::size_t size) { size_ = size; }
bool operator<(const MemoryBlock& other) const {
return address_ < other.address_;
}
// If the current block and |other| can be combined into a continuous memory
// block, store the conmbined block in the current block and return true.
// Otherwise return false.
bool Merge(const MemoryBlock& other);
// Return true if the current block can be used to fulfill an allocation
// with the given size and alignment.
bool CanFulfill(std::size_t request_size, std::size_t alignment) const;
// Allocate a block from this block with the given size and alignment.
// Store the allocated block in |allocated|. If the rest space is large
// enough to form a block, it will be stored into |free|. Otherwise the
// whole block is stored into |allocated|.
// Note that the call of this function has to ensure that CanFulfill() is
// already called on this block and returns true.
void Allocate(std::size_t request_size,
std::size_t alignment,
bool allocate_from_front,
MemoryBlock* allocated,
MemoryBlock* free) const;
private:
void* address_;
std::size_t size_;
std::size_t requested_size_;
};
// Freelist sorted by address.
typedef std::set<MemoryBlock> FreeBlockSet;
ReuseAllocatorBase(Allocator* fallback_allocator,
std::size_t initial_capacity,
std::size_t allocation_increment,
std::size_t max_capacity = 0);
~ReuseAllocatorBase() override;
// The inherited class should implement this function to inform the base
// class which free block to take. It returns |end| if no suitable free
// block is found. When |allocate_from_front| is set to true, the allocation
// will take place in the front of a free block if the free block is big
// enough to fulfill this allocation and produce another free block.
// Otherwise the allocation will take place from the back.
virtual FreeBlockSet::iterator FindFreeBlock(std::size_t size,
std::size_t alignment,
FreeBlockSet::iterator begin,
FreeBlockSet::iterator end,
bool* allocate_from_front) = 0;
private:
// Map from pointers we returned to the user, back to memory blocks.
typedef std::map<void*, MemoryBlock> AllocatedBlockMap;
FreeBlockSet::iterator ExpandToFit(std::size_t size, std::size_t alignment);
void AddAllocatedBlock(void* address, const MemoryBlock& block);
FreeBlockSet::iterator AddFreeBlock(MemoryBlock block_to_add);
void RemoveFreeBlock(FreeBlockSet::iterator it);
AllocatedBlockMap allocated_blocks_;
FreeBlockSet free_blocks_;
// We will allocate from the given allocator whenever we can't find pre-used
// memory to allocate.
Allocator* fallback_allocator_;
std::size_t allocation_increment_;
// If non-zero, this is an upper bound on how large we will let the capacity
// expand.
std::size_t max_capacity_;
// A list of allocations made from the fallback allocator. We keep track of
// this so that we can free them all upon our destruction.
std::vector<void*> fallback_allocations_;
// How much we have allocated from the fallback allocator.
std::size_t capacity_;
// How much has been allocated from us.
std::size_t total_allocated_;
};
} // namespace common
} // namespace starboard
#endif // STARBOARD_COMMON_REUSE_ALLOCATOR_BASE_H_