| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "ui/gfx/skbitmap_operations.h" |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <string.h> |
| #include <algorithm> |
| |
| #include "base/check_op.h" |
| #include "third_party/skia/include/core/SkBitmap.h" |
| #include "third_party/skia/include/core/SkCanvas.h" |
| #include "third_party/skia/include/core/SkColorFilter.h" |
| #include "third_party/skia/include/core/SkColorPriv.h" |
| #include "third_party/skia/include/core/SkUnPreMultiply.h" |
| #include "third_party/skia/include/effects/SkImageFilters.h" |
| #include "ui/gfx/geometry/insets.h" |
| #include "ui/gfx/geometry/point.h" |
| #include "ui/gfx/geometry/size.h" |
| |
| static bool IsUninitializedBitmap(const SkBitmap& bitmap) { |
| return bitmap.isNull() && bitmap.colorType() == kUnknown_SkColorType && |
| bitmap.alphaType() == kUnknown_SkAlphaType; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) { |
| if (IsUninitializedBitmap(image)) |
| return image; |
| CHECK_EQ(image.colorType(), kN32_SkColorType); |
| |
| SkBitmap inverted; |
| inverted.allocN32Pixels(image.width(), image.height()); |
| |
| for (int y = 0; y < image.height(); ++y) { |
| uint32_t* image_row = image.getAddr32(0, y); |
| uint32_t* dst_row = inverted.getAddr32(0, y); |
| |
| for (int x = 0; x < image.width(); ++x) { |
| uint32_t image_pixel = image_row[x]; |
| dst_row[x] = (image_pixel & 0xFF000000) | |
| (0x00FFFFFF - (image_pixel & 0x00FFFFFF)); |
| } |
| } |
| |
| return inverted; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first, |
| const SkBitmap& second, |
| double alpha) { |
| DCHECK((alpha >= 0) && (alpha <= 1)); |
| CHECK_EQ(first.width(), second.width()); |
| CHECK_EQ(first.height(), second.height()); |
| CHECK_EQ(first.colorType(), kN32_SkColorType); |
| CHECK_EQ(second.colorType(), kN32_SkColorType); |
| |
| // Optimize for case where we won't need to blend anything. |
| static const double alpha_min = 1.0 / 255; |
| static const double alpha_max = 254.0 / 255; |
| if (alpha < alpha_min) |
| return first; |
| else if (alpha > alpha_max) |
| return second; |
| |
| SkBitmap blended; |
| blended.allocN32Pixels(first.width(), first.height()); |
| |
| double first_alpha = 1 - alpha; |
| |
| for (int y = 0; y < first.height(); ++y) { |
| uint32_t* first_row = first.getAddr32(0, y); |
| uint32_t* second_row = second.getAddr32(0, y); |
| uint32_t* dst_row = blended.getAddr32(0, y); |
| |
| for (int x = 0; x < first.width(); ++x) { |
| uint32_t first_pixel = first_row[x]; |
| uint32_t second_pixel = second_row[x]; |
| |
| int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) + |
| (SkColorGetA(second_pixel) * alpha)); |
| int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) + |
| (SkColorGetR(second_pixel) * alpha)); |
| int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) + |
| (SkColorGetG(second_pixel) * alpha)); |
| int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) + |
| (SkColorGetB(second_pixel) * alpha)); |
| |
| dst_row[x] = SkColorSetARGB(a, r, g, b); |
| } |
| } |
| |
| return blended; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb, |
| const SkBitmap& alpha) { |
| CHECK_EQ(rgb.width(), alpha.width()); |
| CHECK_EQ(rgb.height(), alpha.height()); |
| CHECK_EQ(rgb.colorType(), kN32_SkColorType); |
| CHECK_EQ(alpha.colorType(), kN32_SkColorType); |
| |
| SkBitmap masked; |
| masked.allocN32Pixels(rgb.width(), rgb.height()); |
| |
| for (int y = 0; y < masked.height(); ++y) { |
| uint32_t* rgb_row = rgb.getAddr32(0, y); |
| uint32_t* alpha_row = alpha.getAddr32(0, y); |
| uint32_t* dst_row = masked.getAddr32(0, y); |
| |
| for (int x = 0; x < masked.width(); ++x) { |
| unsigned alpha32 = SkGetPackedA32(alpha_row[x]); |
| unsigned scale = SkAlpha255To256(alpha32); |
| dst_row[x] = SkAlphaMulQ(rgb_row[x], scale); |
| } |
| } |
| |
| return masked; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color, |
| const SkBitmap& image, |
| const SkBitmap& mask) { |
| CHECK_EQ(image.colorType(), kN32_SkColorType); |
| CHECK_EQ(mask.colorType(), kN32_SkColorType); |
| |
| SkBitmap background; |
| background.allocN32Pixels(mask.width(), mask.height()); |
| |
| double bg_a = SkColorGetA(color); |
| double bg_r = SkColorGetR(color) * (bg_a / 255.0); |
| double bg_g = SkColorGetG(color) * (bg_a / 255.0); |
| double bg_b = SkColorGetB(color) * (bg_a / 255.0); |
| |
| for (int y = 0; y < mask.height(); ++y) { |
| uint32_t* dst_row = background.getAddr32(0, y); |
| uint32_t* image_row = image.getAddr32(0, y % image.height()); |
| uint32_t* mask_row = mask.getAddr32(0, y); |
| |
| for (int x = 0; x < mask.width(); ++x) { |
| uint32_t image_pixel = image_row[x % image.width()]; |
| |
| double img_a = SkColorGetA(image_pixel); |
| double img_r = SkColorGetR(image_pixel); |
| double img_g = SkColorGetG(image_pixel); |
| double img_b = SkColorGetB(image_pixel); |
| |
| double img_alpha = img_a / 255.0; |
| double img_inv = 1 - img_alpha; |
| |
| double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0; |
| |
| dst_row[x] = SkColorSetARGB( |
| // This is pretty weird; why not the usual SrcOver alpha? |
| static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a), |
| static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a), |
| static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a), |
| static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a)); |
| } |
| } |
| |
| return background; |
| } |
| |
| namespace { |
| namespace HSLShift { |
| |
| // TODO(viettrungluu): Some things have yet to be optimized at all. |
| |
| // Notes on and conventions used in the following code |
| // |
| // Conventions: |
| // - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below) |
| // - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below) |
| // - variables derived from S, L shift parameters: |sdec| and |sinc| for S |
| // increase and decrease factors, |ldec| and |linc| for L (see also below) |
| // |
| // To try to optimize HSL shifts, we do several things: |
| // - Avoid unpremultiplying (then processing) then premultiplying. This means |
| // that R, G, B values (and also L, but not H and S) should be treated as |
| // having a range of 0..A (where A is alpha). |
| // - Do things in integer/fixed-point. This avoids costly conversions between |
| // floating-point and integer, though I should study the tradeoff more |
| // carefully (presumably, at some point of processing complexity, converting |
| // and processing using simpler floating-point code will begin to win in |
| // performance). Also to be studied is the speed/type of floating point |
| // conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>. |
| // |
| // Conventions for fixed-point arithmetic |
| // - Each function has a constant denominator (called |den|, which should be a |
| // power of 2), appropriate for the computations done in that function. |
| // - A value |x| is then typically represented by a numerator, named |x_num|, |
| // so that its actual value is |x_num / den| (casting to floating-point |
| // before division). |
| // - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x * |
| // den| (casting appropriately). |
| // - When necessary, a value |x| may also be represented as a numerator over |
| // the denominator squared (set |den2 = den * den|). In such a case, the |
| // corresponding variable is called |x_num2| (so that its actual value is |
| // |x_num^2 / den2|. |
| // - The representation of the product of |x| and |y| is be called |x_y_num| if |
| // |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In |
| // the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|. |
| |
| // Routine used to process a line; typically specialized for specific kinds of |
| // HSL shifts (to optimize). |
| typedef void (*LineProcessor)(const color_utils::HSL&, |
| const SkPMColor*, |
| SkPMColor*, |
| int width); |
| |
| enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps }; |
| enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps }; |
| enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps }; |
| |
| // Epsilon used to judge when shift values are close enough to various critical |
| // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should |
| // be small enough, but let's play it safe> |
| const double epsilon = 0.0005; |
| |
| // Line processor: default/universal (i.e., old-school). |
| void LineProcDefault(const color_utils::HSL& hsl_shift, |
| const SkPMColor* in, |
| SkPMColor* out, |
| int width) { |
| for (int x = 0; x < width; x++) { |
| out[x] = SkPreMultiplyColor(color_utils::HSLShift( |
| SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift)); |
| } |
| } |
| |
| // Line processor: no-op (i.e., copy). |
| void LineProcCopy(const color_utils::HSL& hsl_shift, |
| const SkPMColor* in, |
| SkPMColor* out, |
| int width) { |
| DCHECK(hsl_shift.h < 0); |
| DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); |
| DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); |
| memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0])); |
| } |
| |
| // Line processor: H no-op, S no-op, L decrease. |
| void LineProcHnopSnopLdec(const color_utils::HSL& hsl_shift, |
| const SkPMColor* in, |
| SkPMColor* out, |
| int width) { |
| const uint32_t den = 65536; |
| |
| DCHECK(hsl_shift.h < 0); |
| DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); |
| DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0); |
| |
| uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den); |
| for (int x = 0; x < width; x++) { |
| uint32_t a = SkGetPackedA32(in[x]); |
| uint32_t r = SkGetPackedR32(in[x]); |
| uint32_t g = SkGetPackedG32(in[x]); |
| uint32_t b = SkGetPackedB32(in[x]); |
| r = r * ldec_num / den; |
| g = g * ldec_num / den; |
| b = b * ldec_num / den; |
| out[x] = SkPackARGB32(a, r, g, b); |
| } |
| } |
| |
| // Line processor: H no-op, S no-op, L increase. |
| void LineProcHnopSnopLinc(const color_utils::HSL& hsl_shift, |
| const SkPMColor* in, |
| SkPMColor* out, |
| int width) { |
| const uint32_t den = 65536; |
| |
| DCHECK(hsl_shift.h < 0); |
| DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); |
| DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); |
| |
| uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den); |
| for (int x = 0; x < width; x++) { |
| uint32_t a = SkGetPackedA32(in[x]); |
| uint32_t r = SkGetPackedR32(in[x]); |
| uint32_t g = SkGetPackedG32(in[x]); |
| uint32_t b = SkGetPackedB32(in[x]); |
| r += (a - r) * linc_num / den; |
| g += (a - g) * linc_num / den; |
| b += (a - b) * linc_num / den; |
| out[x] = SkPackARGB32(a, r, g, b); |
| } |
| } |
| |
| // Saturation changes modifications in RGB |
| // |
| // (Note that as a further complication, the values we deal in are |
| // premultiplied, so R/G/B values must be in the range 0..A. For mathematical |
| // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of |
| // generality, assume that R/G/B values are in the range 0..1.) |
| // |
| // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L = |
| // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant. |
| // |
| // For H to remain constant, first, the (numerical) order of R/G/B (from |
| // smallest to largest) must remain the same. Second, all the ratios |
| // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of |
| // course, if Max = Min, then S = 0 and no saturation change is well-defined, |
| // since H is not well-defined). |
| // |
| // Let C_max be a colour with value Max, C_min be one with value Min, and C_med |
| // the remaining colour. Increasing saturation (to the maximum) is accomplished |
| // by increasing the value of C_max while simultaneously decreasing C_min and |
| // changing C_med so that the ratios are maintained; for the latter, it suffices |
| // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to |
| // (Med-Min)/(Max-Min)). |
| |
| // Line processor: H no-op, S decrease, L no-op. |
| void LineProcHnopSdecLnop(const color_utils::HSL& hsl_shift, |
| const SkPMColor* in, |
| SkPMColor* out, |
| int width) { |
| DCHECK(hsl_shift.h < 0); |
| DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); |
| DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); |
| |
| const int32_t denom = 65536; |
| int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); |
| for (int x = 0; x < width; x++) { |
| int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); |
| int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); |
| int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); |
| int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); |
| |
| int32_t vmax, vmin; |
| if (r > g) { // This uses 3 compares rather than 4. |
| vmax = std::max(r, b); |
| vmin = std::min(g, b); |
| } else { |
| vmax = std::max(g, b); |
| vmin = std::min(r, b); |
| } |
| |
| // Use denom * L to avoid rounding. |
| int32_t denom_l = (vmax + vmin) * (denom / 2); |
| int32_t s_numer_l = (vmax + vmin) * s_numer / 2; |
| |
| r = (denom_l + r * s_numer - s_numer_l) / denom; |
| g = (denom_l + g * s_numer - s_numer_l) / denom; |
| b = (denom_l + b * s_numer - s_numer_l) / denom; |
| out[x] = SkPackARGB32(a, r, g, b); |
| } |
| } |
| |
| // Line processor: H no-op, S decrease, L decrease. |
| void LineProcHnopSdecLdec(const color_utils::HSL& hsl_shift, |
| const SkPMColor* in, |
| SkPMColor* out, |
| int width) { |
| DCHECK(hsl_shift.h < 0); |
| DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); |
| DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon); |
| |
| // Can't be too big since we need room for denom*denom and a bit for sign. |
| const int32_t denom = 1024; |
| int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom); |
| int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); |
| for (int x = 0; x < width; x++) { |
| int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); |
| int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); |
| int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); |
| int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); |
| |
| int32_t vmax, vmin; |
| if (r > g) { // This uses 3 compares rather than 4. |
| vmax = std::max(r, b); |
| vmin = std::min(g, b); |
| } else { |
| vmax = std::max(g, b); |
| vmin = std::min(r, b); |
| } |
| |
| // Use denom * L to avoid rounding. |
| int32_t denom_l = (vmax + vmin) * (denom / 2); |
| int32_t s_numer_l = (vmax + vmin) * s_numer / 2; |
| |
| r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom); |
| g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom); |
| b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom); |
| out[x] = SkPackARGB32(a, r, g, b); |
| } |
| } |
| |
| // Line processor: H no-op, S decrease, L increase. |
| void LineProcHnopSdecLinc(const color_utils::HSL& hsl_shift, |
| const SkPMColor* in, |
| SkPMColor* out, |
| int width) { |
| DCHECK(hsl_shift.h < 0); |
| DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); |
| DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); |
| |
| // Can't be too big since we need room for denom*denom and a bit for sign. |
| const int32_t denom = 1024; |
| int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom); |
| int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); |
| for (int x = 0; x < width; x++) { |
| int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); |
| int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); |
| int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); |
| int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); |
| |
| int32_t vmax, vmin; |
| if (r > g) { // This uses 3 compares rather than 4. |
| vmax = std::max(r, b); |
| vmin = std::min(g, b); |
| } else { |
| vmax = std::max(g, b); |
| vmin = std::min(r, b); |
| } |
| |
| // Use denom * L to avoid rounding. |
| int32_t denom_l = (vmax + vmin) * (denom / 2); |
| int32_t s_numer_l = (vmax + vmin) * s_numer / 2; |
| |
| r = denom_l + r * s_numer - s_numer_l; |
| g = denom_l + g * s_numer - s_numer_l; |
| b = denom_l + b * s_numer - s_numer_l; |
| |
| r = (r * denom + (a * denom - r) * l_numer) / (denom * denom); |
| g = (g * denom + (a * denom - g) * l_numer) / (denom * denom); |
| b = (b * denom + (a * denom - b) * l_numer) / (denom * denom); |
| out[x] = SkPackARGB32(a, r, g, b); |
| } |
| } |
| |
| const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = { |
| { // H: kOpHNone |
| { // S: kOpSNone |
| LineProcCopy, // L: kOpLNone |
| LineProcHnopSnopLdec, // L: kOpLDec |
| LineProcHnopSnopLinc // L: kOpLInc |
| }, |
| { // S: kOpSDec |
| LineProcHnopSdecLnop, // L: kOpLNone |
| LineProcHnopSdecLdec, // L: kOpLDec |
| LineProcHnopSdecLinc // L: kOpLInc |
| }, |
| { // S: kOpSInc |
| LineProcDefault, // L: kOpLNone |
| LineProcDefault, // L: kOpLDec |
| LineProcDefault // L: kOpLInc |
| } |
| }, |
| { // H: kOpHShift |
| { // S: kOpSNone |
| LineProcDefault, // L: kOpLNone |
| LineProcDefault, // L: kOpLDec |
| LineProcDefault // L: kOpLInc |
| }, |
| { // S: kOpSDec |
| LineProcDefault, // L: kOpLNone |
| LineProcDefault, // L: kOpLDec |
| LineProcDefault // L: kOpLInc |
| }, |
| { // S: kOpSInc |
| LineProcDefault, // L: kOpLNone |
| LineProcDefault, // L: kOpLDec |
| LineProcDefault // L: kOpLInc |
| } |
| } |
| }; |
| |
| } // namespace HSLShift |
| } // namespace |
| |
| // static |
| SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap( |
| const SkBitmap& bitmap, |
| const color_utils::HSL& hsl_shift) { |
| if (IsUninitializedBitmap(bitmap)) |
| return bitmap; |
| CHECK_EQ(bitmap.colorType(), kN32_SkColorType); |
| |
| // Default to NOPs. |
| HSLShift::OperationOnH H_op = HSLShift::kOpHNone; |
| HSLShift::OperationOnS S_op = HSLShift::kOpSNone; |
| HSLShift::OperationOnL L_op = HSLShift::kOpLNone; |
| |
| if (hsl_shift.h >= 0 && hsl_shift.h <= 1) |
| H_op = HSLShift::kOpHShift; |
| |
| // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate. |
| if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon)) |
| S_op = HSLShift::kOpSDec; |
| else if (hsl_shift.s >= (0.5 + HSLShift::epsilon)) |
| S_op = HSLShift::kOpSInc; |
| |
| // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white. |
| if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon)) |
| L_op = HSLShift::kOpLDec; |
| else if (hsl_shift.l >= (0.5 + HSLShift::epsilon)) |
| L_op = HSLShift::kOpLInc; |
| |
| HSLShift::LineProcessor line_proc = |
| HSLShift::kLineProcessors[H_op][S_op][L_op]; |
| |
| DCHECK(bitmap.empty() == false); |
| DCHECK(bitmap.colorType() == kN32_SkColorType); |
| |
| SkBitmap shifted; |
| shifted.allocN32Pixels(bitmap.width(), bitmap.height()); |
| |
| // Loop through the pixels of the original bitmap. |
| for (int y = 0; y < bitmap.height(); ++y) { |
| SkPMColor* pixels = bitmap.getAddr32(0, y); |
| SkPMColor* tinted_pixels = shifted.getAddr32(0, y); |
| |
| (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width()); |
| } |
| |
| return shifted; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source, |
| int src_x, int src_y, |
| int dst_w, int dst_h) { |
| CHECK_EQ(source.colorType(), kN32_SkColorType); |
| |
| SkBitmap cropped; |
| cropped.allocN32Pixels(dst_w, dst_h); |
| |
| // Loop through the pixels of the original bitmap. |
| for (int y = 0; y < dst_h; ++y) { |
| int y_pix = (src_y + y) % source.height(); |
| while (y_pix < 0) |
| y_pix += source.height(); |
| |
| uint32_t* source_row = source.getAddr32(0, y_pix); |
| uint32_t* dst_row = cropped.getAddr32(0, y); |
| |
| for (int x = 0; x < dst_w; ++x) { |
| int x_pix = (src_x + x) % source.width(); |
| while (x_pix < 0) |
| x_pix += source.width(); |
| |
| dst_row[x] = source_row[x_pix]; |
| } |
| } |
| |
| return cropped; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap, |
| int min_w, int min_h) { |
| if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) || |
| (min_w < 0) || (min_h < 0)) |
| return bitmap; |
| |
| // Since bitmaps are refcounted, this copy will be fast. |
| SkBitmap current = bitmap; |
| while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) && |
| (current.width() > 1) && (current.height() > 1)) |
| current = DownsampleByTwo(current); |
| return current; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) { |
| if (IsUninitializedBitmap(bitmap)) |
| return bitmap; |
| CHECK_EQ(bitmap.colorType(), kN32_SkColorType); |
| |
| // Handle the nop case. |
| if ((bitmap.width() <= 1) || (bitmap.height() <= 1)) |
| return bitmap; |
| |
| SkBitmap result; |
| result.allocN32Pixels((bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2); |
| |
| const int resultLastX = result.width() - 1; |
| const int srcLastX = bitmap.width() - 1; |
| |
| for (int dest_y = 0; dest_y < result.height(); ++dest_y) { |
| const int src_y = dest_y << 1; |
| const SkPMColor* SK_RESTRICT cur_src0 = bitmap.getAddr32(0, src_y); |
| const SkPMColor* SK_RESTRICT cur_src1 = cur_src0; |
| if (src_y + 1 < bitmap.height()) |
| cur_src1 = bitmap.getAddr32(0, src_y + 1); |
| |
| SkPMColor* SK_RESTRICT cur_dst = result.getAddr32(0, dest_y); |
| |
| for (int dest_x = 0; dest_x <= resultLastX; ++dest_x) { |
| // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very |
| // clever in that it does two channels at once: alpha and green ("ag") |
| // and red and blue ("rb"). Each channel gets averaged across 4 pixels |
| // to get the result. |
| int bump_x = (dest_x << 1) < srcLastX; |
| SkPMColor tmp, ag, rb; |
| |
| // Top left pixel of the 2x2 block. |
| tmp = cur_src0[0]; |
| ag = (tmp >> 8) & 0xFF00FF; |
| rb = tmp & 0xFF00FF; |
| |
| // Top right pixel of the 2x2 block. |
| tmp = cur_src0[bump_x]; |
| ag += (tmp >> 8) & 0xFF00FF; |
| rb += tmp & 0xFF00FF; |
| |
| // Bottom left pixel of the 2x2 block. |
| tmp = cur_src1[0]; |
| ag += (tmp >> 8) & 0xFF00FF; |
| rb += tmp & 0xFF00FF; |
| |
| // Bottom right pixel of the 2x2 block. |
| tmp = cur_src1[bump_x]; |
| ag += (tmp >> 8) & 0xFF00FF; |
| rb += tmp & 0xFF00FF; |
| |
| // Put the channels back together, dividing each by 4 to get the average. |
| // |ag| has the alpha and green channels shifted right by 8 bits from |
| // there they should end up, so shifting left by 6 gives them in the |
| // correct position divided by 4. |
| *cur_dst++ = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00); |
| |
| cur_src0 += 2; |
| cur_src1 += 2; |
| } |
| } |
| |
| return result; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) { |
| if (IsUninitializedBitmap(bitmap)) |
| return bitmap; |
| CHECK_EQ(bitmap.colorType(), kN32_SkColorType); |
| |
| if (bitmap.alphaType() != kPremul_SkAlphaType) |
| return bitmap; |
| |
| const SkImageInfo& opaque_info = |
| bitmap.info().makeAlphaType(kUnpremul_SkAlphaType); |
| SkBitmap opaque_bitmap; |
| opaque_bitmap.allocPixels(opaque_info); |
| |
| for (int y = 0; y < opaque_bitmap.height(); y++) { |
| for (int x = 0; x < opaque_bitmap.width(); x++) { |
| uint32_t src_pixel = *bitmap.getAddr32(x, y); |
| uint32_t* dst_pixel = opaque_bitmap.getAddr32(x, y); |
| SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel); |
| *dst_pixel = unmultiplied; |
| } |
| } |
| |
| return opaque_bitmap; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::CreateTransposedBitmap(const SkBitmap& image) { |
| if (IsUninitializedBitmap(image)) |
| return image; |
| CHECK_EQ(image.colorType(), kN32_SkColorType); |
| |
| SkBitmap transposed; |
| transposed.allocN32Pixels(image.height(), image.width()); |
| |
| for (int y = 0; y < image.height(); ++y) { |
| uint32_t* image_row = image.getAddr32(0, y); |
| for (int x = 0; x < image.width(); ++x) { |
| uint32_t* dst = transposed.getAddr32(y, x); |
| *dst = image_row[x]; |
| } |
| } |
| |
| return transposed; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::CreateColorMask(const SkBitmap& bitmap, |
| SkColor c) { |
| CHECK_EQ(bitmap.colorType(), kN32_SkColorType); |
| |
| SkBitmap color_mask; |
| color_mask.allocN32Pixels(bitmap.width(), bitmap.height()); |
| color_mask.eraseARGB(0, 0, 0, 0); |
| |
| SkCanvas canvas(color_mask, SkSurfaceProps{}); |
| |
| SkPaint paint; |
| paint.setColorFilter(SkColorFilters::Blend(c, SkBlendMode::kSrcIn)); |
| canvas.drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); |
| return color_mask; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::CreateDropShadow( |
| const SkBitmap& bitmap, |
| const gfx::ShadowValues& shadows) { |
| CHECK_EQ(bitmap.colorType(), kN32_SkColorType); |
| |
| // Shadow margin insets are negative values because they grow outside. |
| // Negate them here as grow direction is not important and only pixel value |
| // is of interest here. |
| gfx::Insets shadow_margin = -gfx::ShadowValue::GetMargin(shadows); |
| |
| SkBitmap image_with_shadow; |
| image_with_shadow.allocN32Pixels(bitmap.width() + shadow_margin.width(), |
| bitmap.height() + shadow_margin.height()); |
| image_with_shadow.eraseARGB(0, 0, 0, 0); |
| |
| SkCanvas canvas(image_with_shadow, SkSurfaceProps{}); |
| canvas.translate(SkIntToScalar(shadow_margin.left()), |
| SkIntToScalar(shadow_margin.top())); |
| |
| SkPaint paint; |
| for (size_t i = 0; i < shadows.size(); ++i) { |
| const gfx::ShadowValue& shadow = shadows[i]; |
| SkBitmap shadow_image = SkBitmapOperations::CreateColorMask(bitmap, |
| shadow.color()); |
| |
| // The blur is halved to produce a shadow that correctly fits within the |
| // |shadow_margin|. |
| SkScalar sigma = SkDoubleToScalar(shadow.blur() / 2); |
| paint.setImageFilter(SkImageFilters::Blur(sigma, sigma, nullptr)); |
| |
| canvas.saveLayer(0, &paint); |
| canvas.drawImage(shadow_image.asImage(), SkIntToScalar(shadow.x()), |
| SkIntToScalar(shadow.y())); |
| canvas.restore(); |
| } |
| |
| canvas.drawImage(bitmap.asImage(), 0, 0); |
| return image_with_shadow; |
| } |
| |
| // static |
| SkBitmap SkBitmapOperations::Rotate(const SkBitmap& source, |
| RotationAmount rotation) { |
| if (IsUninitializedBitmap(source)) |
| return source; |
| CHECK_EQ(source.colorType(), kN32_SkColorType); |
| // SkCanvas::drawBitmap() fails silently with unpremultiplied SkBitmap. |
| DCHECK_NE(source.info().alphaType(), kUnpremul_SkAlphaType); |
| |
| SkBitmap result; |
| SkScalar angle = SkFloatToScalar(0.0f); |
| |
| switch (rotation) { |
| case ROTATION_90_CW: |
| angle = SkFloatToScalar(90.0f); |
| result.allocN32Pixels(source.height(), source.width()); |
| break; |
| case ROTATION_180_CW: |
| angle = SkFloatToScalar(180.0f); |
| result.allocN32Pixels(source.width(), source.height()); |
| break; |
| case ROTATION_270_CW: |
| angle = SkFloatToScalar(270.0f); |
| result.allocN32Pixels(source.height(), source.width()); |
| break; |
| } |
| |
| SkCanvas canvas(result, SkSurfaceProps{}); |
| canvas.clear(SkColorSetARGB(0, 0, 0, 0)); |
| |
| canvas.translate(SkFloatToScalar(result.width() * 0.5f), |
| SkFloatToScalar(result.height() * 0.5f)); |
| canvas.rotate(angle); |
| canvas.translate(-SkFloatToScalar(source.width() * 0.5f), |
| -SkFloatToScalar(source.height() * 0.5f)); |
| canvas.drawImage(source.asImage(), 0, 0); |
| canvas.flush(); |
| |
| return result; |
| } |