| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "ui/gfx/skbitmap_operations.h" |
| |
| #include <stdint.h> |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "third_party/skia/include/core/SkBitmap.h" |
| #include "third_party/skia/include/core/SkCanvas.h" |
| #include "third_party/skia/include/core/SkColorPriv.h" |
| #include "third_party/skia/include/core/SkRect.h" |
| #include "third_party/skia/include/core/SkRegion.h" |
| #include "third_party/skia/include/core/SkUnPreMultiply.h" |
| |
| namespace { |
| |
| // Returns true if each channel of the given two colors are "close." This is |
| // used for comparing colors where rounding errors may cause off-by-one. |
| inline bool ColorsClose(uint32_t a, uint32_t b) { |
| return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) <= 2 && |
| abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) <= 2 && |
| abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) <= 2 && |
| abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) <= 2; |
| } |
| |
| inline bool MultipliedColorsClose(uint32_t a, uint32_t b) { |
| return ColorsClose(SkUnPreMultiply::PMColorToColor(a), |
| SkUnPreMultiply::PMColorToColor(b)); |
| } |
| |
| bool BitmapsClose(const SkBitmap& a, const SkBitmap& b) { |
| for (int y = 0; y < a.height(); y++) { |
| for (int x = 0; x < a.width(); x++) { |
| SkColor a_pixel = *a.getAddr32(x, y); |
| SkColor b_pixel = *b.getAddr32(x, y); |
| if (!ColorsClose(a_pixel, b_pixel)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void FillDataToBitmap(int w, int h, SkBitmap* bmp) { |
| bmp->allocN32Pixels(w, h); |
| |
| unsigned char* src_data = |
| reinterpret_cast<unsigned char*>(bmp->getAddr32(0, 0)); |
| for (int i = 0; i < w * h; i++) { |
| const int alpha = i % 256; |
| src_data[i * 4 + 0] = static_cast<unsigned char>(alpha); |
| src_data[i * 4 + 1] = static_cast<unsigned char>((i + 16) % (alpha + 1)); |
| src_data[i * 4 + 2] = static_cast<unsigned char>((i + 32) % (alpha + 1)); |
| src_data[i * 4 + 3] = static_cast<unsigned char>((i + 64) % (alpha + 1)); |
| } |
| } |
| |
| // The reference (i.e., old) implementation of |CreateHSLShiftedBitmap()|. |
| SkBitmap ReferenceCreateHSLShiftedBitmap( |
| const SkBitmap& bitmap, |
| color_utils::HSL hsl_shift) { |
| SkBitmap shifted; |
| shifted.allocN32Pixels(bitmap.width(), bitmap.height()); |
| shifted.eraseARGB(0, 0, 0, 0); |
| |
| // Loop through the pixels of the original bitmap. |
| for (int y = 0; y < bitmap.height(); ++y) { |
| SkPMColor* pixels = bitmap.getAddr32(0, y); |
| SkPMColor* tinted_pixels = shifted.getAddr32(0, y); |
| |
| for (int x = 0; x < bitmap.width(); ++x) { |
| tinted_pixels[x] = SkPreMultiplyColor(color_utils::HSLShift( |
| SkUnPreMultiply::PMColorToColor(pixels[x]), hsl_shift)); |
| } |
| } |
| |
| return shifted; |
| } |
| |
| } // namespace |
| |
| // Invert bitmap and verify the each pixel is inverted and the alpha value is |
| // not changed. |
| TEST(SkBitmapOperationsTest, CreateInvertedBitmap) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src; |
| src.allocN32Pixels(src_w, src_h); |
| |
| for (int y = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| int i = y * src_w + x; |
| *src.getAddr32(x, y) = |
| SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0); |
| } |
| } |
| |
| SkBitmap inverted = SkBitmapOperations::CreateInvertedBitmap(src); |
| |
| for (int y = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| int i = y * src_w + x; |
| EXPECT_EQ(static_cast<unsigned int>((255 - i) % 255), |
| SkColorGetA(*inverted.getAddr32(x, y))); |
| EXPECT_EQ(static_cast<unsigned int>(255 - (i % 255)), |
| SkColorGetR(*inverted.getAddr32(x, y))); |
| EXPECT_EQ(static_cast<unsigned int>(255 - (i * 4 % 255)), |
| SkColorGetG(*inverted.getAddr32(x, y))); |
| EXPECT_EQ(static_cast<unsigned int>(255), |
| SkColorGetB(*inverted.getAddr32(x, y))); |
| } |
| } |
| } |
| |
| // Blend two bitmaps together at 50% alpha and verify that the result |
| // is the middle-blend of the two. |
| TEST(SkBitmapOperationsTest, CreateBlendedBitmap) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src_a; |
| src_a.allocN32Pixels(src_w, src_h); |
| |
| SkBitmap src_b; |
| src_b.allocN32Pixels(src_w, src_h); |
| |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| *src_a.getAddr32(x, y) = SkColorSetARGB(255, 0, i * 2 % 255, i % 255); |
| *src_b.getAddr32(x, y) = |
| SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0); |
| i++; |
| } |
| } |
| |
| // Shift to red. |
| SkBitmap blended = SkBitmapOperations::CreateBlendedBitmap( |
| src_a, src_b, 0.5); |
| |
| for (int y = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| int i = y * src_w + x; |
| EXPECT_EQ(static_cast<unsigned int>((255 + ((255 - i) % 255)) / 2), |
| SkColorGetA(*blended.getAddr32(x, y))); |
| EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2), |
| SkColorGetR(*blended.getAddr32(x, y))); |
| EXPECT_EQ((static_cast<unsigned int>((i * 2) % 255 + (i * 4) % 255) / 2), |
| SkColorGetG(*blended.getAddr32(x, y))); |
| EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2), |
| SkColorGetB(*blended.getAddr32(x, y))); |
| } |
| } |
| } |
| |
| // Test our masking functions. |
| TEST(SkBitmapOperationsTest, CreateMaskedBitmap) { |
| const int src_w = 16, src_h = 16; |
| |
| SkBitmap src; |
| FillDataToBitmap(src_w, src_h, &src); |
| |
| SkBitmap alpha; |
| alpha.allocN32Pixels(src_w, src_h); |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| *alpha.getAddr32(x, y) = SkPackARGB32(i % 256, 0, 0, 0); |
| i++; |
| } |
| } |
| |
| SkBitmap masked = SkBitmapOperations::CreateMaskedBitmap(src, alpha); |
| |
| for (int y = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| int alpha_pixel = *alpha.getAddr32(x, y); |
| int src_pixel = *src.getAddr32(x, y); |
| int masked_pixel = *masked.getAddr32(x, y); |
| |
| int scale = SkAlpha255To256(SkGetPackedA32(alpha_pixel)); |
| |
| int src_a = (src_pixel >> SK_A32_SHIFT) & 0xFF; |
| int src_r = (src_pixel >> SK_R32_SHIFT) & 0xFF; |
| int src_g = (src_pixel >> SK_G32_SHIFT) & 0xFF; |
| int src_b = (src_pixel >> SK_B32_SHIFT) & 0xFF; |
| |
| int masked_a = (masked_pixel >> SK_A32_SHIFT) & 0xFF; |
| int masked_r = (masked_pixel >> SK_R32_SHIFT) & 0xFF; |
| int masked_g = (masked_pixel >> SK_G32_SHIFT) & 0xFF; |
| int masked_b = (masked_pixel >> SK_B32_SHIFT) & 0xFF; |
| |
| EXPECT_EQ((src_a * scale) >> 8, masked_a); |
| EXPECT_EQ((src_r * scale) >> 8, masked_r); |
| EXPECT_EQ((src_g * scale) >> 8, masked_g); |
| EXPECT_EQ((src_b * scale) >> 8, masked_b); |
| } |
| } |
| } |
| |
| // Make sure that when shifting a bitmap without any shift parameters, |
| // the end result is close enough to the original (rounding errors |
| // notwithstanding). |
| TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapToSame) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src; |
| src.allocN32Pixels(src_w, src_h); |
| |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| *src.getAddr32(x, y) = SkPreMultiplyColor(SkColorSetARGB((i + 128) % 255, |
| (i + 128) % 255, (i + 64) % 255, (i + 0) % 255)); |
| i++; |
| } |
| } |
| |
| color_utils::HSL hsl = { -1, -1, -1 }; |
| SkBitmap shifted = ReferenceCreateHSLShiftedBitmap(src, hsl); |
| |
| for (int y = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| SkColor src_pixel = *src.getAddr32(x, y); |
| SkColor shifted_pixel = *shifted.getAddr32(x, y); |
| EXPECT_TRUE(MultipliedColorsClose(src_pixel, shifted_pixel)) << |
| "source: (a,r,g,b) = (" << SkColorGetA(src_pixel) << "," << |
| SkColorGetR(src_pixel) << "," << |
| SkColorGetG(src_pixel) << "," << |
| SkColorGetB(src_pixel) << "); " << |
| "shifted: (a,r,g,b) = (" << SkColorGetA(shifted_pixel) << "," << |
| SkColorGetR(shifted_pixel) << "," << |
| SkColorGetG(shifted_pixel) << "," << |
| SkColorGetB(shifted_pixel) << ")"; |
| } |
| } |
| } |
| |
| // Shift a blue bitmap to red. |
| TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapHueOnly) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src; |
| src.allocN32Pixels(src_w, src_h); |
| |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| *src.getAddr32(x, y) = SkColorSetARGB(255, 0, 0, i % 255); |
| i++; |
| } |
| } |
| |
| // Shift to red. |
| color_utils::HSL hsl = { 0, -1, -1 }; |
| |
| SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl); |
| |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| EXPECT_TRUE(ColorsClose(shifted.getColor(x, y), |
| SkColorSetARGB(255, i % 255, 0, 0))); |
| i++; |
| } |
| } |
| } |
| |
| // Validate HSL shift. |
| TEST(SkBitmapOperationsTest, ValidateHSLShift) { |
| // Note: 255/51 = 5 (exactly) => 6 including 0! |
| const int inc = 51; |
| const int dim = 255 / inc + 1; |
| SkBitmap src; |
| src.allocN32Pixels(dim*dim, dim*dim); |
| |
| for (int a = 0, y = 0; a <= 255; a += inc) { |
| for (int r = 0; r <= 255; r += inc, y++) { |
| for (int g = 0, x = 0; g <= 255; g += inc) { |
| for (int b = 0; b <= 255; b+= inc, x++) { |
| *src.getAddr32(x, y) = |
| SkPreMultiplyColor(SkColorSetARGB(a, r, g, b)); |
| } |
| } |
| } |
| } |
| |
| // Shhhh. The spec says I should set things to -1 for "no change", but |
| // actually -0.1 will do. Don't tell anyone I did this. |
| for (double h = -0.1; h <= 1.0001; h += 0.1) { |
| for (double s = -0.1; s <= 1.0001; s += 0.1) { |
| for (double l = -0.1; l <= 1.0001; l += 0.1) { |
| color_utils::HSL hsl = { h, s, l }; |
| SkBitmap ref_shifted = ReferenceCreateHSLShiftedBitmap(src, hsl); |
| SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl); |
| EXPECT_TRUE(BitmapsClose(ref_shifted, shifted)) |
| << "h = " << h << ", s = " << s << ", l = " << l; |
| } |
| } |
| } |
| } |
| |
| // Test our cropping. |
| TEST(SkBitmapOperationsTest, CreateCroppedBitmap) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src; |
| FillDataToBitmap(src_w, src_h, &src); |
| |
| SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap(src, 4, 4, |
| 8, 8); |
| ASSERT_EQ(8, cropped.width()); |
| ASSERT_EQ(8, cropped.height()); |
| |
| for (int y = 4; y < 12; y++) { |
| for (int x = 4; x < 12; x++) { |
| EXPECT_EQ(*src.getAddr32(x, y), |
| *cropped.getAddr32(x - 4, y - 4)); |
| } |
| } |
| } |
| |
| // Test whether our cropping correctly wraps across image boundaries. |
| TEST(SkBitmapOperationsTest, CreateCroppedBitmapWrapping) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src; |
| FillDataToBitmap(src_w, src_h, &src); |
| |
| SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap( |
| src, src_w / 2, src_h / 2, src_w, src_h); |
| ASSERT_EQ(src_w, cropped.width()); |
| ASSERT_EQ(src_h, cropped.height()); |
| |
| for (int y = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| EXPECT_EQ(*src.getAddr32(x, y), |
| *cropped.getAddr32((x + src_w / 2) % src_w, |
| (y + src_h / 2) % src_h)); |
| } |
| } |
| } |
| |
| TEST(SkBitmapOperationsTest, DownsampleByTwo) { |
| // Use an odd-sized bitmap to make sure the edge cases where there isn't a |
| // 2x2 block of pixels is handled correctly. |
| // Here's the ARGB example |
| // |
| // 50% transparent green opaque 50% blue white |
| // 80008000 FF000080 FFFFFFFF |
| // |
| // 50% transparent red opaque 50% gray black |
| // 80800000 80808080 FF000000 |
| // |
| // black white 50% gray |
| // FF000000 FFFFFFFF FF808080 |
| // |
| // The result of this computation should be: |
| // A0404040 FF808080 |
| // FF808080 FF808080 |
| SkBitmap input; |
| input.allocN32Pixels(3, 3); |
| |
| // The color order may be different, but we don't care (the channels are |
| // trated the same). |
| *input.getAddr32(0, 0) = 0x80008000; |
| *input.getAddr32(1, 0) = 0xFF000080; |
| *input.getAddr32(2, 0) = 0xFFFFFFFF; |
| *input.getAddr32(0, 1) = 0x80800000; |
| *input.getAddr32(1, 1) = 0x80808080; |
| *input.getAddr32(2, 1) = 0xFF000000; |
| *input.getAddr32(0, 2) = 0xFF000000; |
| *input.getAddr32(1, 2) = 0xFFFFFFFF; |
| *input.getAddr32(2, 2) = 0xFF808080; |
| |
| SkBitmap result = SkBitmapOperations::DownsampleByTwo(input); |
| EXPECT_EQ(2, result.width()); |
| EXPECT_EQ(2, result.height()); |
| |
| // Some of the values are off-by-one due to rounding. |
| EXPECT_EQ(0x9f404040, *result.getAddr32(0, 0)); |
| EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(1, 0)); |
| EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(0, 1)); |
| EXPECT_EQ(0xFF808080, *result.getAddr32(1, 1)); |
| } |
| |
| // Test edge cases for DownsampleByTwo. |
| TEST(SkBitmapOperationsTest, DownsampleByTwoSmall) { |
| SkPMColor reference = 0xFF4080FF; |
| |
| // Test a 1x1 bitmap. |
| SkBitmap one_by_one; |
| one_by_one.allocN32Pixels(1, 1); |
| *one_by_one.getAddr32(0, 0) = reference; |
| SkBitmap result = SkBitmapOperations::DownsampleByTwo(one_by_one); |
| EXPECT_EQ(1, result.width()); |
| EXPECT_EQ(1, result.height()); |
| EXPECT_EQ(reference, *result.getAddr32(0, 0)); |
| |
| // Test an n by 1 bitmap. |
| SkBitmap one_by_n; |
| one_by_n.allocN32Pixels(300, 1); |
| result = SkBitmapOperations::DownsampleByTwo(one_by_n); |
| EXPECT_EQ(300, result.width()); |
| EXPECT_EQ(1, result.height()); |
| |
| // Test a 1 by n bitmap. |
| SkBitmap n_by_one; |
| n_by_one.allocN32Pixels(1, 300); |
| result = SkBitmapOperations::DownsampleByTwo(n_by_one); |
| EXPECT_EQ(1, result.width()); |
| EXPECT_EQ(300, result.height()); |
| |
| // Test an empty bitmap |
| SkBitmap empty; |
| result = SkBitmapOperations::DownsampleByTwo(empty); |
| EXPECT_TRUE(result.isNull()); |
| EXPECT_EQ(0, result.width()); |
| EXPECT_EQ(0, result.height()); |
| } |
| |
| // Here we assume DownsampleByTwo works correctly (it's tested above) and |
| // just make sure that the wrapper function does the right thing. |
| TEST(SkBitmapOperationsTest, DownsampleByTwoUntilSize) { |
| // First make sure a "too small" bitmap doesn't get modified at all. |
| SkBitmap too_small; |
| too_small.allocN32Pixels(10, 10); |
| SkBitmap result = SkBitmapOperations::DownsampleByTwoUntilSize( |
| too_small, 16, 16); |
| EXPECT_EQ(10, result.width()); |
| EXPECT_EQ(10, result.height()); |
| |
| // Now make sure giving it a 0x0 target returns something reasonable. |
| result = SkBitmapOperations::DownsampleByTwoUntilSize(too_small, 0, 0); |
| EXPECT_EQ(1, result.width()); |
| EXPECT_EQ(1, result.height()); |
| |
| // Test multiple steps of downsampling. |
| SkBitmap large; |
| large.allocN32Pixels(100, 43); |
| result = SkBitmapOperations::DownsampleByTwoUntilSize(large, 6, 6); |
| |
| // The result should be divided in half 100x43 -> 50x22 -> 25x11 |
| EXPECT_EQ(25, result.width()); |
| EXPECT_EQ(11, result.height()); |
| } |
| |
| TEST(SkBitmapOperationsTest, UnPreMultiply) { |
| SkBitmap input; |
| input.allocN32Pixels(2, 2); |
| EXPECT_EQ(input.alphaType(), kPremul_SkAlphaType); |
| |
| // Set PMColors into the bitmap |
| *input.getAddr32(0, 0) = SkPackARGB32NoCheck(0x80, 0x00, 0x00, 0x00); |
| *input.getAddr32(1, 0) = SkPackARGB32NoCheck(0x80, 0x80, 0x80, 0x80); |
| *input.getAddr32(0, 1) = SkPackARGB32NoCheck(0xFF, 0x00, 0xCC, 0x88); |
| *input.getAddr32(1, 1) = SkPackARGB32NoCheck(0x00, 0x00, 0xCC, 0x88); |
| |
| SkBitmap result = SkBitmapOperations::UnPreMultiply(input); |
| EXPECT_EQ(result.alphaType(), kUnpremul_SkAlphaType); |
| EXPECT_EQ(2, result.width()); |
| EXPECT_EQ(2, result.height()); |
| EXPECT_NE(result.getPixels(), input.getPixels()); |
| |
| EXPECT_EQ(0x80000000, *result.getAddr32(0, 0)); |
| EXPECT_EQ(0x80FFFFFF, *result.getAddr32(1, 0)); |
| EXPECT_EQ(0xFF00CC88, *result.getAddr32(0, 1)); |
| EXPECT_EQ(0x00000000u, *result.getAddr32(1, 1)); // "Division by zero". |
| } |
| |
| TEST(SkBitmapOperationsTest, UnPreMultiplyOpaque) { |
| SkBitmap input; |
| input.allocN32Pixels(2, 2, true); |
| EXPECT_EQ(input.alphaType(), kOpaque_SkAlphaType); |
| |
| SkBitmap result = SkBitmapOperations::UnPreMultiply(input); |
| EXPECT_EQ(result.alphaType(), kOpaque_SkAlphaType); |
| EXPECT_EQ(result.getPixels(), input.getPixels()); |
| } |
| |
| TEST(SkBitmapOperationsTest, UnPreMultiplyAlreadyUnPreMultiplied) { |
| SkBitmap input; |
| input.allocN32Pixels(2, 2); |
| input.setAlphaType(kUnpremul_SkAlphaType); |
| EXPECT_EQ(input.alphaType(), kUnpremul_SkAlphaType); |
| |
| SkBitmap result = SkBitmapOperations::UnPreMultiply(input); |
| EXPECT_EQ(result.alphaType(), kUnpremul_SkAlphaType); |
| EXPECT_EQ(result.getPixels(), input.getPixels()); |
| } |
| |
| TEST(SkBitmapOperationsTest, CreateTransposedBitmap) { |
| SkBitmap input; |
| input.allocN32Pixels(2, 3); |
| |
| for (int x = 0; x < input.width(); ++x) { |
| for (int y = 0; y < input.height(); ++y) { |
| *input.getAddr32(x, y) = x * input.width() + y; |
| } |
| } |
| |
| SkBitmap result = SkBitmapOperations::CreateTransposedBitmap(input); |
| EXPECT_EQ(3, result.width()); |
| EXPECT_EQ(2, result.height()); |
| |
| for (int x = 0; x < input.width(); ++x) { |
| for (int y = 0; y < input.height(); ++y) { |
| EXPECT_EQ(*input.getAddr32(x, y), *result.getAddr32(y, x)); |
| } |
| } |
| } |
| |
| void DrawRectWithColor(SkCanvas* canvas, |
| int left, |
| int top, |
| int right, |
| int bottom, |
| SkColor color) { |
| SkPaint paint; |
| paint.setColor(color); |
| paint.setBlendMode(SkBlendMode::kSrc); |
| canvas->drawRect( |
| SkRect::MakeLTRB(SkIntToScalar(left), SkIntToScalar(top), |
| SkIntToScalar(right), SkIntToScalar(bottom)), |
| paint); |
| } |
| |
| // Check that Rotate provides the desired results |
| TEST(SkBitmapOperationsTest, RotateImage) { |
| const int src_w = 6, src_h = 4; |
| SkBitmap src; |
| // Create a simple 4 color bitmap: |
| // RRRBBB |
| // RRRBBB |
| // GGGYYY |
| // GGGYYY |
| src.allocN32Pixels(src_w, src_h); |
| |
| SkCanvas canvas(src, SkSurfaceProps{}); |
| src.eraseARGB(0, 0, 0, 0); |
| |
| // This region is a semi-transparent red to test non-opaque pixels. |
| DrawRectWithColor(&canvas, 0, 0, src_w / 2, src_h / 2, 0x1FFF0000); |
| DrawRectWithColor(&canvas, src_w / 2, 0, src_w, src_h / 2, SK_ColorBLUE); |
| DrawRectWithColor(&canvas, 0, src_h / 2, src_w / 2, src_h, SK_ColorGREEN); |
| DrawRectWithColor(&canvas, src_w / 2, src_h / 2, src_w, src_h, |
| SK_ColorYELLOW); |
| |
| SkBitmap rotate90, rotate180, rotate270; |
| rotate90 = SkBitmapOperations::Rotate(src, |
| SkBitmapOperations::ROTATION_90_CW); |
| rotate180 = SkBitmapOperations::Rotate(src, |
| SkBitmapOperations::ROTATION_180_CW); |
| rotate270 = SkBitmapOperations::Rotate(src, |
| SkBitmapOperations::ROTATION_270_CW); |
| |
| ASSERT_EQ(rotate90.width(), src.height()); |
| ASSERT_EQ(rotate90.height(), src.width()); |
| ASSERT_EQ(rotate180.width(), src.width()); |
| ASSERT_EQ(rotate180.height(), src.height()); |
| ASSERT_EQ(rotate270.width(), src.height()); |
| ASSERT_EQ(rotate270.height(), src.width()); |
| |
| for (int x=0; x < src_w; ++x) { |
| for (int y=0; y < src_h; ++y) { |
| ASSERT_EQ(*src.getAddr32(x,y), *rotate90.getAddr32(src_h - (y+1),x)); |
| ASSERT_EQ(*src.getAddr32(x,y), *rotate270.getAddr32(y, src_w - (x+1))); |
| ASSERT_EQ(*src.getAddr32(x,y), |
| *rotate180.getAddr32(src_w - (x+1), src_h - (y+1))); |
| } |
| } |
| } |