| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Declares a Simulator for MIPS instructions if we are not generating a native |
| // MIPS binary. This Simulator allows us to run and debug MIPS code generation |
| // on regular desktop machines. |
| // V8 calls into generated code via the GeneratedCode wrapper, |
| // which will start execution in the Simulator or forwards to the real entry |
| // on a MIPS HW platform. |
| |
| #ifndef V8_EXECUTION_MIPS64_SIMULATOR_MIPS64_H_ |
| #define V8_EXECUTION_MIPS64_SIMULATOR_MIPS64_H_ |
| |
| // globals.h defines USE_SIMULATOR. |
| #include "src/common/globals.h" |
| |
| template <typename T> |
| int Compare(const T& a, const T& b) { |
| if (a == b) |
| return 0; |
| else if (a < b) |
| return -1; |
| else |
| return 1; |
| } |
| |
| // Returns the negative absolute value of its argument. |
| template <typename T, |
| typename = typename std::enable_if<std::is_signed<T>::value>::type> |
| T Nabs(T a) { |
| return a < 0 ? a : -a; |
| } |
| |
| #if defined(USE_SIMULATOR) |
| // Running with a simulator. |
| |
| #include "src/base/hashmap.h" |
| #include "src/codegen/assembler.h" |
| #include "src/codegen/mips64/constants-mips64.h" |
| #include "src/execution/simulator-base.h" |
| #include "src/utils/allocation.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ----------------------------------------------------------------------------- |
| // Utility functions |
| |
| class CachePage { |
| public: |
| static const int LINE_VALID = 0; |
| static const int LINE_INVALID = 1; |
| |
| static const int kPageShift = 12; |
| static const int kPageSize = 1 << kPageShift; |
| static const int kPageMask = kPageSize - 1; |
| static const int kLineShift = 2; // The cache line is only 4 bytes right now. |
| static const int kLineLength = 1 << kLineShift; |
| static const int kLineMask = kLineLength - 1; |
| |
| CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } |
| |
| char* ValidityByte(int offset) { |
| return &validity_map_[offset >> kLineShift]; |
| } |
| |
| char* CachedData(int offset) { return &data_[offset]; } |
| |
| private: |
| char data_[kPageSize]; // The cached data. |
| static const int kValidityMapSize = kPageSize >> kLineShift; |
| char validity_map_[kValidityMapSize]; // One byte per line. |
| }; |
| |
| class SimInstructionBase : public InstructionBase { |
| public: |
| Type InstructionType() const { return type_; } |
| inline Instruction* instr() const { return instr_; } |
| inline int32_t operand() const { return operand_; } |
| |
| protected: |
| SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {} |
| explicit SimInstructionBase(Instruction* instr) {} |
| |
| int32_t operand_; |
| Instruction* instr_; |
| Type type_; |
| |
| private: |
| DISALLOW_ASSIGN(SimInstructionBase); |
| }; |
| |
| class SimInstruction : public InstructionGetters<SimInstructionBase> { |
| public: |
| SimInstruction() {} |
| |
| explicit SimInstruction(Instruction* instr) { *this = instr; } |
| |
| SimInstruction& operator=(Instruction* instr) { |
| operand_ = *reinterpret_cast<const int32_t*>(instr); |
| instr_ = instr; |
| type_ = InstructionBase::InstructionType(); |
| DCHECK(reinterpret_cast<void*>(&operand_) == this); |
| return *this; |
| } |
| }; |
| |
| class Simulator : public SimulatorBase { |
| public: |
| friend class MipsDebugger; |
| |
| // Registers are declared in order. See SMRL chapter 2. |
| enum Register { |
| no_reg = -1, |
| zero_reg = 0, |
| at, |
| v0, |
| v1, |
| a0, |
| a1, |
| a2, |
| a3, |
| a4, |
| a5, |
| a6, |
| a7, |
| t0, |
| t1, |
| t2, |
| t3, |
| s0, |
| s1, |
| s2, |
| s3, |
| s4, |
| s5, |
| s6, |
| s7, |
| t8, |
| t9, |
| k0, |
| k1, |
| gp, |
| sp, |
| s8, |
| ra, |
| // LO, HI, and pc. |
| LO, |
| HI, |
| pc, // pc must be the last register. |
| kNumSimuRegisters, |
| // aliases |
| fp = s8 |
| }; |
| |
| // Coprocessor registers. |
| // Generated code will always use doubles. So we will only use even registers. |
| enum FPURegister { |
| f0, |
| f1, |
| f2, |
| f3, |
| f4, |
| f5, |
| f6, |
| f7, |
| f8, |
| f9, |
| f10, |
| f11, |
| f12, |
| f13, |
| f14, |
| f15, // f12 and f14 are arguments FPURegisters. |
| f16, |
| f17, |
| f18, |
| f19, |
| f20, |
| f21, |
| f22, |
| f23, |
| f24, |
| f25, |
| f26, |
| f27, |
| f28, |
| f29, |
| f30, |
| f31, |
| kNumFPURegisters |
| }; |
| |
| // MSA registers |
| enum MSARegister { |
| w0, |
| w1, |
| w2, |
| w3, |
| w4, |
| w5, |
| w6, |
| w7, |
| w8, |
| w9, |
| w10, |
| w11, |
| w12, |
| w13, |
| w14, |
| w15, |
| w16, |
| w17, |
| w18, |
| w19, |
| w20, |
| w21, |
| w22, |
| w23, |
| w24, |
| w25, |
| w26, |
| w27, |
| w28, |
| w29, |
| w30, |
| w31, |
| kNumMSARegisters |
| }; |
| |
| explicit Simulator(Isolate* isolate); |
| ~Simulator(); |
| |
| // The currently executing Simulator instance. Potentially there can be one |
| // for each native thread. |
| V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate); |
| |
| // Accessors for register state. Reading the pc value adheres to the MIPS |
| // architecture specification and is off by a 8 from the currently executing |
| // instruction. |
| void set_register(int reg, int64_t value); |
| void set_register_word(int reg, int32_t value); |
| void set_dw_register(int dreg, const int* dbl); |
| int64_t get_register(int reg) const; |
| double get_double_from_register_pair(int reg); |
| // Same for FPURegisters. |
| void set_fpu_register(int fpureg, int64_t value); |
| void set_fpu_register_word(int fpureg, int32_t value); |
| void set_fpu_register_hi_word(int fpureg, int32_t value); |
| void set_fpu_register_float(int fpureg, float value); |
| void set_fpu_register_double(int fpureg, double value); |
| void set_fpu_register_invalid_result64(float original, float rounded); |
| void set_fpu_register_invalid_result(float original, float rounded); |
| void set_fpu_register_word_invalid_result(float original, float rounded); |
| void set_fpu_register_invalid_result64(double original, double rounded); |
| void set_fpu_register_invalid_result(double original, double rounded); |
| void set_fpu_register_word_invalid_result(double original, double rounded); |
| int64_t get_fpu_register(int fpureg) const; |
| int32_t get_fpu_register_word(int fpureg) const; |
| int32_t get_fpu_register_signed_word(int fpureg) const; |
| int32_t get_fpu_register_hi_word(int fpureg) const; |
| float get_fpu_register_float(int fpureg) const; |
| double get_fpu_register_double(int fpureg) const; |
| template <typename T> |
| void get_msa_register(int wreg, T* value); |
| template <typename T> |
| void set_msa_register(int wreg, const T* value); |
| void set_fcsr_bit(uint32_t cc, bool value); |
| bool test_fcsr_bit(uint32_t cc); |
| bool set_fcsr_round_error(double original, double rounded); |
| bool set_fcsr_round64_error(double original, double rounded); |
| bool set_fcsr_round_error(float original, float rounded); |
| bool set_fcsr_round64_error(float original, float rounded); |
| void round_according_to_fcsr(double toRound, double* rounded, |
| int32_t* rounded_int, double fs); |
| void round64_according_to_fcsr(double toRound, double* rounded, |
| int64_t* rounded_int, double fs); |
| void round_according_to_fcsr(float toRound, float* rounded, |
| int32_t* rounded_int, float fs); |
| void round64_according_to_fcsr(float toRound, float* rounded, |
| int64_t* rounded_int, float fs); |
| template <typename T_fp, typename T_int> |
| void round_according_to_msacsr(T_fp toRound, T_fp* rounded, |
| T_int* rounded_int); |
| void set_fcsr_rounding_mode(FPURoundingMode mode); |
| void set_msacsr_rounding_mode(FPURoundingMode mode); |
| unsigned int get_fcsr_rounding_mode(); |
| unsigned int get_msacsr_rounding_mode(); |
| // Special case of set_register and get_register to access the raw PC value. |
| void set_pc(int64_t value); |
| int64_t get_pc() const; |
| |
| Address get_sp() const { return static_cast<Address>(get_register(sp)); } |
| |
| // Accessor to the internal simulator stack area. |
| uintptr_t StackLimit(uintptr_t c_limit) const; |
| |
| // Executes MIPS instructions until the PC reaches end_sim_pc. |
| void Execute(); |
| |
| template <typename Return, typename... Args> |
| Return Call(Address entry, Args... args) { |
| return VariadicCall<Return>(this, &Simulator::CallImpl, entry, args...); |
| } |
| |
| // Alternative: call a 2-argument double function. |
| double CallFP(Address entry, double d0, double d1); |
| |
| // Push an address onto the JS stack. |
| uintptr_t PushAddress(uintptr_t address); |
| |
| // Pop an address from the JS stack. |
| uintptr_t PopAddress(); |
| |
| // Debugger input. |
| void set_last_debugger_input(char* input); |
| char* last_debugger_input() { return last_debugger_input_; } |
| |
| // Redirection support. |
| static void SetRedirectInstruction(Instruction* instruction); |
| |
| // ICache checking. |
| static bool ICacheMatch(void* one, void* two); |
| static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start, |
| size_t size); |
| |
| // Returns true if pc register contains one of the 'special_values' defined |
| // below (bad_ra, end_sim_pc). |
| bool has_bad_pc() const; |
| |
| private: |
| enum special_values { |
| // Known bad pc value to ensure that the simulator does not execute |
| // without being properly setup. |
| bad_ra = -1, |
| // A pc value used to signal the simulator to stop execution. Generally |
| // the ra is set to this value on transition from native C code to |
| // simulated execution, so that the simulator can "return" to the native |
| // C code. |
| end_sim_pc = -2, |
| // Unpredictable value. |
| Unpredictable = 0xbadbeaf |
| }; |
| |
| V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count, |
| const intptr_t* arguments); |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Format(Instruction* instr, const char* format); |
| |
| // Helpers for data value tracing. |
| enum TraceType { |
| BYTE, |
| HALF, |
| WORD, |
| DWORD, |
| FLOAT, |
| DOUBLE, |
| FLOAT_DOUBLE, |
| WORD_DWORD |
| }; |
| |
| // MSA Data Format |
| enum MSADataFormat { MSA_VECT = 0, MSA_BYTE, MSA_HALF, MSA_WORD, MSA_DWORD }; |
| union msa_reg_t { |
| int8_t b[kMSALanesByte]; |
| uint8_t ub[kMSALanesByte]; |
| int16_t h[kMSALanesHalf]; |
| uint16_t uh[kMSALanesHalf]; |
| int32_t w[kMSALanesWord]; |
| uint32_t uw[kMSALanesWord]; |
| int64_t d[kMSALanesDword]; |
| uint64_t ud[kMSALanesDword]; |
| }; |
| |
| // Read and write memory. |
| inline uint32_t ReadBU(int64_t addr); |
| inline int32_t ReadB(int64_t addr); |
| inline void WriteB(int64_t addr, uint8_t value); |
| inline void WriteB(int64_t addr, int8_t value); |
| |
| inline uint16_t ReadHU(int64_t addr, Instruction* instr); |
| inline int16_t ReadH(int64_t addr, Instruction* instr); |
| // Note: Overloaded on the sign of the value. |
| inline void WriteH(int64_t addr, uint16_t value, Instruction* instr); |
| inline void WriteH(int64_t addr, int16_t value, Instruction* instr); |
| |
| inline uint32_t ReadWU(int64_t addr, Instruction* instr); |
| inline int32_t ReadW(int64_t addr, Instruction* instr, TraceType t = WORD); |
| inline void WriteW(int64_t addr, int32_t value, Instruction* instr); |
| void WriteConditionalW(int64_t addr, int32_t value, Instruction* instr, |
| int32_t rt_reg); |
| inline int64_t Read2W(int64_t addr, Instruction* instr); |
| inline void Write2W(int64_t addr, int64_t value, Instruction* instr); |
| inline void WriteConditional2W(int64_t addr, int64_t value, |
| Instruction* instr, int32_t rt_reg); |
| |
| inline double ReadD(int64_t addr, Instruction* instr); |
| inline void WriteD(int64_t addr, double value, Instruction* instr); |
| |
| template <typename T> |
| T ReadMem(int64_t addr, Instruction* instr); |
| template <typename T> |
| void WriteMem(int64_t addr, T value, Instruction* instr); |
| |
| // Helper for debugging memory access. |
| inline void DieOrDebug(); |
| |
| void TraceRegWr(int64_t value, TraceType t = DWORD); |
| template <typename T> |
| void TraceMSARegWr(T* value, TraceType t); |
| template <typename T> |
| void TraceMSARegWr(T* value); |
| void TraceMemWr(int64_t addr, int64_t value, TraceType t); |
| void TraceMemRd(int64_t addr, int64_t value, TraceType t = DWORD); |
| template <typename T> |
| void TraceMemRd(int64_t addr, T value); |
| template <typename T> |
| void TraceMemWr(int64_t addr, T value); |
| |
| // Operations depending on endianness. |
| // Get Double Higher / Lower word. |
| inline int32_t GetDoubleHIW(double* addr); |
| inline int32_t GetDoubleLOW(double* addr); |
| // Set Double Higher / Lower word. |
| inline int32_t SetDoubleHIW(double* addr); |
| inline int32_t SetDoubleLOW(double* addr); |
| |
| SimInstruction instr_; |
| |
| // functions called from DecodeTypeRegister. |
| void DecodeTypeRegisterCOP1(); |
| |
| void DecodeTypeRegisterCOP1X(); |
| |
| void DecodeTypeRegisterSPECIAL(); |
| |
| void DecodeTypeRegisterSPECIAL2(); |
| |
| void DecodeTypeRegisterSPECIAL3(); |
| |
| void DecodeTypeRegisterSRsType(); |
| |
| void DecodeTypeRegisterDRsType(); |
| |
| void DecodeTypeRegisterWRsType(); |
| |
| void DecodeTypeRegisterLRsType(); |
| |
| int DecodeMsaDataFormat(); |
| void DecodeTypeMsaI8(); |
| void DecodeTypeMsaI5(); |
| void DecodeTypeMsaI10(); |
| void DecodeTypeMsaELM(); |
| void DecodeTypeMsaBIT(); |
| void DecodeTypeMsaMI10(); |
| void DecodeTypeMsa3R(); |
| void DecodeTypeMsa3RF(); |
| void DecodeTypeMsaVec(); |
| void DecodeTypeMsa2R(); |
| void DecodeTypeMsa2RF(); |
| template <typename T> |
| T MsaI5InstrHelper(uint32_t opcode, T ws, int32_t i5); |
| template <typename T> |
| T MsaBitInstrHelper(uint32_t opcode, T wd, T ws, int32_t m); |
| template <typename T> |
| T Msa3RInstrHelper(uint32_t opcode, T wd, T ws, T wt); |
| |
| // Executing is handled based on the instruction type. |
| void DecodeTypeRegister(); |
| |
| inline int32_t rs_reg() const { return instr_.RsValue(); } |
| inline int64_t rs() const { return get_register(rs_reg()); } |
| inline uint64_t rs_u() const { |
| return static_cast<uint64_t>(get_register(rs_reg())); |
| } |
| inline int32_t rt_reg() const { return instr_.RtValue(); } |
| inline int64_t rt() const { return get_register(rt_reg()); } |
| inline uint64_t rt_u() const { |
| return static_cast<uint64_t>(get_register(rt_reg())); |
| } |
| inline int32_t rd_reg() const { return instr_.RdValue(); } |
| inline int32_t fr_reg() const { return instr_.FrValue(); } |
| inline int32_t fs_reg() const { return instr_.FsValue(); } |
| inline int32_t ft_reg() const { return instr_.FtValue(); } |
| inline int32_t fd_reg() const { return instr_.FdValue(); } |
| inline int32_t sa() const { return instr_.SaValue(); } |
| inline int32_t lsa_sa() const { return instr_.LsaSaValue(); } |
| inline int32_t ws_reg() const { return instr_.WsValue(); } |
| inline int32_t wt_reg() const { return instr_.WtValue(); } |
| inline int32_t wd_reg() const { return instr_.WdValue(); } |
| |
| inline void SetResult(const int32_t rd_reg, const int64_t alu_out) { |
| set_register(rd_reg, alu_out); |
| TraceRegWr(alu_out); |
| } |
| |
| inline void SetFPUWordResult(int32_t fd_reg, int32_t alu_out) { |
| set_fpu_register_word(fd_reg, alu_out); |
| TraceRegWr(get_fpu_register(fd_reg), WORD); |
| } |
| |
| inline void SetFPUWordResult2(int32_t fd_reg, int32_t alu_out) { |
| set_fpu_register_word(fd_reg, alu_out); |
| TraceRegWr(get_fpu_register(fd_reg)); |
| } |
| |
| inline void SetFPUResult(int32_t fd_reg, int64_t alu_out) { |
| set_fpu_register(fd_reg, alu_out); |
| TraceRegWr(get_fpu_register(fd_reg)); |
| } |
| |
| inline void SetFPUResult2(int32_t fd_reg, int64_t alu_out) { |
| set_fpu_register(fd_reg, alu_out); |
| TraceRegWr(get_fpu_register(fd_reg), DOUBLE); |
| } |
| |
| inline void SetFPUFloatResult(int32_t fd_reg, float alu_out) { |
| set_fpu_register_float(fd_reg, alu_out); |
| TraceRegWr(get_fpu_register(fd_reg), FLOAT); |
| } |
| |
| inline void SetFPUDoubleResult(int32_t fd_reg, double alu_out) { |
| set_fpu_register_double(fd_reg, alu_out); |
| TraceRegWr(get_fpu_register(fd_reg), DOUBLE); |
| } |
| |
| void DecodeTypeImmediate(); |
| void DecodeTypeJump(); |
| |
| // Used for breakpoints and traps. |
| void SoftwareInterrupt(); |
| |
| // Compact branch guard. |
| void CheckForbiddenSlot(int64_t current_pc) { |
| Instruction* instr_after_compact_branch = |
| reinterpret_cast<Instruction*>(current_pc + kInstrSize); |
| if (instr_after_compact_branch->IsForbiddenAfterBranch()) { |
| FATAL( |
| "Error: Unexpected instruction 0x%08x immediately after a " |
| "compact branch instruction.", |
| *reinterpret_cast<uint32_t*>(instr_after_compact_branch)); |
| } |
| } |
| |
| // Stop helper functions. |
| bool IsWatchpoint(uint64_t code); |
| void PrintWatchpoint(uint64_t code); |
| void HandleStop(uint64_t code, Instruction* instr); |
| bool IsStopInstruction(Instruction* instr); |
| bool IsEnabledStop(uint64_t code); |
| void EnableStop(uint64_t code); |
| void DisableStop(uint64_t code); |
| void IncreaseStopCounter(uint64_t code); |
| void PrintStopInfo(uint64_t code); |
| |
| // Executes one instruction. |
| void InstructionDecode(Instruction* instr); |
| // Execute one instruction placed in a branch delay slot. |
| void BranchDelayInstructionDecode(Instruction* instr) { |
| if (instr->InstructionBits() == nopInstr) { |
| // Short-cut generic nop instructions. They are always valid and they |
| // never change the simulator state. |
| return; |
| } |
| |
| if (instr->IsForbiddenAfterBranch()) { |
| FATAL("Eror:Unexpected %i opcode in a branch delay slot.", |
| instr->OpcodeValue()); |
| } |
| InstructionDecode(instr); |
| SNPrintF(trace_buf_, " "); |
| } |
| |
| // ICache. |
| static void CheckICache(base::CustomMatcherHashMap* i_cache, |
| Instruction* instr); |
| static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, |
| size_t size); |
| static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache, |
| void* page); |
| |
| enum Exception { |
| none, |
| kIntegerOverflow, |
| kIntegerUnderflow, |
| kDivideByZero, |
| kNumExceptions |
| }; |
| |
| // Exceptions. |
| void SignalException(Exception e); |
| |
| // Handle arguments and return value for runtime FP functions. |
| void GetFpArgs(double* x, double* y, int32_t* z); |
| void SetFpResult(const double& result); |
| |
| void CallInternal(Address entry); |
| |
| // Architecture state. |
| // Registers. |
| int64_t registers_[kNumSimuRegisters]; |
| // Coprocessor Registers. |
| // Note: FPUregisters_[] array is increased to 64 * 8B = 32 * 16B in |
| // order to support MSA registers |
| int64_t FPUregisters_[kNumFPURegisters * 2]; |
| // FPU control register. |
| uint32_t FCSR_; |
| // MSA control register. |
| uint32_t MSACSR_; |
| |
| // Simulator support. |
| // Allocate 1MB for stack. |
| size_t stack_size_; |
| char* stack_; |
| bool pc_modified_; |
| int64_t icount_; |
| int break_count_; |
| EmbeddedVector<char, 128> trace_buf_; |
| |
| // Debugger input. |
| char* last_debugger_input_; |
| |
| v8::internal::Isolate* isolate_; |
| |
| // Registered breakpoints. |
| Instruction* break_pc_; |
| Instr break_instr_; |
| |
| // Stop is disabled if bit 31 is set. |
| static const uint32_t kStopDisabledBit = 1 << 31; |
| |
| // A stop is enabled, meaning the simulator will stop when meeting the |
| // instruction, if bit 31 of watched_stops_[code].count is unset. |
| // The value watched_stops_[code].count & ~(1 << 31) indicates how many times |
| // the breakpoint was hit or gone through. |
| struct StopCountAndDesc { |
| uint32_t count; |
| char* desc; |
| }; |
| StopCountAndDesc watched_stops_[kMaxStopCode + 1]; |
| |
| // Synchronization primitives. |
| enum class MonitorAccess { |
| Open, |
| RMW, |
| }; |
| |
| enum class TransactionSize { |
| None = 0, |
| Word = 4, |
| DoubleWord = 8, |
| }; |
| |
| // The least-significant bits of the address are ignored. The number of bits |
| // is implementation-defined, between 3 and minimum page size. |
| static const uintptr_t kExclusiveTaggedAddrMask = ~((1 << 3) - 1); |
| |
| class LocalMonitor { |
| public: |
| LocalMonitor(); |
| |
| // These functions manage the state machine for the local monitor, but do |
| // not actually perform loads and stores. NotifyStoreConditional only |
| // returns true if the store conditional is allowed; the global monitor will |
| // still have to be checked to see whether the memory should be updated. |
| void NotifyLoad(); |
| void NotifyLoadLinked(uintptr_t addr, TransactionSize size); |
| void NotifyStore(); |
| bool NotifyStoreConditional(uintptr_t addr, TransactionSize size); |
| |
| private: |
| void Clear(); |
| |
| MonitorAccess access_state_; |
| uintptr_t tagged_addr_; |
| TransactionSize size_; |
| }; |
| |
| class GlobalMonitor { |
| public: |
| class LinkedAddress { |
| public: |
| LinkedAddress(); |
| |
| private: |
| friend class GlobalMonitor; |
| // These functions manage the state machine for the global monitor, but do |
| // not actually perform loads and stores. |
| void Clear_Locked(); |
| void NotifyLoadLinked_Locked(uintptr_t addr); |
| void NotifyStore_Locked(); |
| bool NotifyStoreConditional_Locked(uintptr_t addr, |
| bool is_requesting_thread); |
| |
| MonitorAccess access_state_; |
| uintptr_t tagged_addr_; |
| LinkedAddress* next_; |
| LinkedAddress* prev_; |
| // A scd can fail due to background cache evictions. Rather than |
| // simulating this, we'll just occasionally introduce cases where an |
| // store conditional fails. This will happen once after every |
| // kMaxFailureCounter exclusive stores. |
| static const int kMaxFailureCounter = 5; |
| int failure_counter_; |
| }; |
| |
| // Exposed so it can be accessed by Simulator::{Read,Write}Ex*. |
| base::Mutex mutex; |
| |
| void NotifyLoadLinked_Locked(uintptr_t addr, LinkedAddress* linked_address); |
| void NotifyStore_Locked(LinkedAddress* linked_address); |
| bool NotifyStoreConditional_Locked(uintptr_t addr, |
| LinkedAddress* linked_address); |
| |
| // Called when the simulator is destroyed. |
| void RemoveLinkedAddress(LinkedAddress* linked_address); |
| |
| static GlobalMonitor* Get(); |
| |
| private: |
| // Private constructor. Call {GlobalMonitor::Get()} to get the singleton. |
| GlobalMonitor() = default; |
| friend class base::LeakyObject<GlobalMonitor>; |
| |
| bool IsProcessorInLinkedList_Locked(LinkedAddress* linked_address) const; |
| void PrependProcessor_Locked(LinkedAddress* linked_address); |
| |
| LinkedAddress* head_ = nullptr; |
| }; |
| |
| LocalMonitor local_monitor_; |
| GlobalMonitor::LinkedAddress global_monitor_thread_; |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // defined(USE_SIMULATOR) |
| #endif // V8_EXECUTION_MIPS64_SIMULATOR_MIPS64_H_ |