blob: d85b3632cd59a72d24c6793da0c5e56ff3f39e21 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
#include "vp9/encoder/vp9_extend.h"
#include "vpx_dsp/vpx_dsp_common.h"
#define SMALL_FRAME_WIDTH 32
#define SMALL_FRAME_HEIGHT 16
static void swap_ptr(void *a, void *b) {
void **a_p = (void **)a;
void **b_p = (void **)b;
void *c = *a_p;
*a_p = *b_p;
*b_p = c;
}
void vp9_init_layer_context(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
int mi_rows = cpi->common.mi_rows;
int mi_cols = cpi->common.mi_cols;
int sl, tl, i;
int alt_ref_idx = svc->number_spatial_layers;
svc->spatial_layer_id = 0;
svc->temporal_layer_id = 0;
svc->force_zero_mode_spatial_ref = 0;
svc->use_base_mv = 0;
svc->use_partition_reuse = 0;
svc->use_gf_temporal_ref = 1;
svc->use_gf_temporal_ref_current_layer = 0;
svc->scaled_temp_is_alloc = 0;
svc->scaled_one_half = 0;
svc->current_superframe = 0;
svc->non_reference_frame = 0;
svc->skip_enhancement_layer = 0;
svc->disable_inter_layer_pred = INTER_LAYER_PRED_ON;
svc->framedrop_mode = CONSTRAINED_LAYER_DROP;
svc->set_intra_only_frame = 0;
svc->previous_frame_is_intra_only = 0;
svc->superframe_has_layer_sync = 0;
svc->use_set_ref_frame_config = 0;
svc->num_encoded_top_layer = 0;
svc->simulcast_mode = 0;
svc->single_layer_svc = 0;
svc->resize_set = 0;
for (i = 0; i < REF_FRAMES; ++i) {
svc->fb_idx_spatial_layer_id[i] = 0xff;
svc->fb_idx_temporal_layer_id[i] = 0xff;
svc->fb_idx_base[i] = 0;
}
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
svc->last_layer_dropped[sl] = 0;
svc->drop_spatial_layer[sl] = 0;
svc->ext_frame_flags[sl] = 0;
svc->lst_fb_idx[sl] = 0;
svc->gld_fb_idx[sl] = 1;
svc->alt_fb_idx[sl] = 2;
svc->downsample_filter_type[sl] = BILINEAR;
svc->downsample_filter_phase[sl] = 8; // Set to 8 for averaging filter.
svc->framedrop_thresh[sl] = oxcf->drop_frames_water_mark;
svc->fb_idx_upd_tl0[sl] = -1;
svc->drop_count[sl] = 0;
svc->spatial_layer_sync[sl] = 0;
svc->force_drop_constrained_from_above[sl] = 0;
}
svc->max_consec_drop = INT_MAX;
svc->buffer_gf_temporal_ref[1].idx = 7;
svc->buffer_gf_temporal_ref[0].idx = 6;
svc->buffer_gf_temporal_ref[1].is_used = 0;
svc->buffer_gf_temporal_ref[0].is_used = 0;
if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2) {
if (vpx_realloc_frame_buffer(&cpi->svc.empty_frame.img, SMALL_FRAME_WIDTH,
SMALL_FRAME_HEIGHT, cpi->common.subsampling_x,
cpi->common.subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cpi->common.use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS,
cpi->common.byte_alignment, NULL, NULL, NULL))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate empty frame for multiple frame "
"contexts");
memset(cpi->svc.empty_frame.img.buffer_alloc, 0x80,
cpi->svc.empty_frame.img.buffer_alloc_sz);
}
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
int i;
lc->current_video_frame_in_layer = 0;
lc->layer_size = 0;
lc->frames_from_key_frame = 0;
lc->last_frame_type = FRAME_TYPES;
lrc->ni_av_qi = oxcf->worst_allowed_q;
lrc->total_actual_bits = 0;
lrc->total_target_vs_actual = 0;
lrc->ni_tot_qi = 0;
lrc->tot_q = 0.0;
lrc->avg_q = 0.0;
lrc->ni_frames = 0;
lrc->decimation_count = 0;
lrc->decimation_factor = 0;
lrc->worst_quality = oxcf->worst_allowed_q;
lrc->best_quality = oxcf->best_allowed_q;
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
lrc->rate_correction_factors[i] = 1.0;
}
if (cpi->oxcf.rc_mode == VPX_CBR) {
lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
lrc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
} else {
lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
lrc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
lrc->last_q[INTER_FRAME] = oxcf->best_allowed_q;
lrc->avg_frame_qindex[KEY_FRAME] =
(oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
lrc->avg_frame_qindex[INTER_FRAME] =
(oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
if (oxcf->ss_enable_auto_arf[sl])
lc->alt_ref_idx = alt_ref_idx++;
else
lc->alt_ref_idx = INVALID_IDX;
lc->gold_ref_idx = INVALID_IDX;
}
lrc->buffer_level =
oxcf->starting_buffer_level_ms * lc->target_bandwidth / 1000;
lrc->bits_off_target = lrc->buffer_level;
// Initialize the cyclic refresh parameters. If spatial layers are used
// (i.e., ss_number_layers > 1), these need to be updated per spatial
// layer.
// Cyclic refresh is only applied on base temporal layer.
if (oxcf->ss_number_layers > 1 && tl == 0) {
size_t last_coded_q_map_size;
size_t consec_zero_mv_size;
VP9_COMMON *const cm = &cpi->common;
lc->sb_index = 0;
lc->actual_num_seg1_blocks = 0;
lc->actual_num_seg2_blocks = 0;
lc->counter_encode_maxq_scene_change = 0;
CHECK_MEM_ERROR(cm, lc->map,
vpx_malloc(mi_rows * mi_cols * sizeof(*lc->map)));
memset(lc->map, 0, mi_rows * mi_cols);
last_coded_q_map_size =
mi_rows * mi_cols * sizeof(*lc->last_coded_q_map);
CHECK_MEM_ERROR(cm, lc->last_coded_q_map,
vpx_malloc(last_coded_q_map_size));
assert(MAXQ <= 255);
memset(lc->last_coded_q_map, MAXQ, last_coded_q_map_size);
consec_zero_mv_size = mi_rows * mi_cols * sizeof(*lc->consec_zero_mv);
CHECK_MEM_ERROR(cm, lc->consec_zero_mv,
vpx_malloc(consec_zero_mv_size));
memset(lc->consec_zero_mv, 0, consec_zero_mv_size);
}
}
}
// Still have extra buffer for base layer golden frame
if (!(svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) &&
alt_ref_idx < REF_FRAMES)
svc->layer_context[0].gold_ref_idx = alt_ref_idx;
}
// Update the layer context from a change_config() call.
void vp9_update_layer_context_change_config(VP9_COMP *const cpi,
const int target_bandwidth) {
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
const RATE_CONTROL *const rc = &cpi->rc;
int sl, tl, layer = 0, spatial_layer_target;
float bitrate_alloc = 1.0;
int num_spatial_layers_nonzero_rate = 0;
cpi->svc.temporal_layering_mode = oxcf->temporal_layering_mode;
if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
svc->layer_context[layer].target_bandwidth =
oxcf->layer_target_bitrate[layer];
}
layer = LAYER_IDS_TO_IDX(
sl,
((oxcf->ts_number_layers - 1) < 0 ? 0 : (oxcf->ts_number_layers - 1)),
oxcf->ts_number_layers);
spatial_layer_target = svc->layer_context[layer].target_bandwidth =
oxcf->layer_target_bitrate[layer];
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
LAYER_CONTEXT *const lc =
&svc->layer_context[sl * oxcf->ts_number_layers + tl];
RATE_CONTROL *const lrc = &lc->rc;
lc->spatial_layer_target_bandwidth = spatial_layer_target;
bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth;
lrc->starting_buffer_level =
(int64_t)(rc->starting_buffer_level * bitrate_alloc);
lrc->optimal_buffer_level =
(int64_t)(rc->optimal_buffer_level * bitrate_alloc);
lrc->maximum_buffer_size =
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
lrc->bits_off_target =
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
lrc->worst_quality = rc->worst_quality;
lrc->best_quality = rc->best_quality;
}
}
} else {
int layer_end;
if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
layer_end = svc->number_temporal_layers;
} else {
layer_end = svc->number_spatial_layers;
}
for (layer = 0; layer < layer_end; ++layer) {
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth;
// Update buffer-related quantities.
lrc->starting_buffer_level =
(int64_t)(rc->starting_buffer_level * bitrate_alloc);
lrc->optimal_buffer_level =
(int64_t)(rc->optimal_buffer_level * bitrate_alloc);
lrc->maximum_buffer_size =
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
lrc->bits_off_target =
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
// Update framerate-related quantities.
if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[layer];
} else {
lc->framerate = cpi->framerate;
}
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
// Update qp-related quantities.
lrc->worst_quality = rc->worst_quality;
lrc->best_quality = rc->best_quality;
}
}
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
// Check bitrate of spatia layer.
layer = LAYER_IDS_TO_IDX(sl, oxcf->ts_number_layers - 1,
oxcf->ts_number_layers);
if (oxcf->layer_target_bitrate[layer] > 0)
num_spatial_layers_nonzero_rate += 1;
}
if (num_spatial_layers_nonzero_rate == 1)
svc->single_layer_svc = 1;
else
svc->single_layer_svc = 0;
}
static LAYER_CONTEXT *get_layer_context(VP9_COMP *const cpi) {
if (is_one_pass_cbr_svc(cpi))
return &cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id];
else
return (cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR)
? &cpi->svc.layer_context[cpi->svc.temporal_layer_id]
: &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
}
void vp9_update_temporal_layer_framerate(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
RATE_CONTROL *const lrc = &lc->rc;
// Index into spatial+temporal arrays.
const int st_idx = svc->spatial_layer_id * svc->number_temporal_layers +
svc->temporal_layer_id;
const int tl = svc->temporal_layer_id;
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth;
// Update the average layer frame size (non-cumulative per-frame-bw).
if (tl == 0) {
lc->avg_frame_size = lrc->avg_frame_bandwidth;
} else {
const double prev_layer_framerate =
cpi->framerate / oxcf->ts_rate_decimator[tl - 1];
const int prev_layer_target_bandwidth =
oxcf->layer_target_bitrate[st_idx - 1];
lc->avg_frame_size =
(int)((lc->target_bandwidth - prev_layer_target_bandwidth) /
(lc->framerate - prev_layer_framerate));
}
}
void vp9_update_spatial_layer_framerate(VP9_COMP *const cpi, double framerate) {
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
RATE_CONTROL *const lrc = &lc->rc;
lc->framerate = framerate;
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->min_frame_bandwidth =
(int)(lrc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth *
oxcf->two_pass_vbrmax_section) /
100);
vp9_rc_set_gf_interval_range(cpi, lrc);
}
void vp9_restore_layer_context(VP9_COMP *const cpi) {
LAYER_CONTEXT *const lc = get_layer_context(cpi);
const int old_frame_since_key = cpi->rc.frames_since_key;
const int old_frame_to_key = cpi->rc.frames_to_key;
const int old_ext_use_post_encode_drop = cpi->rc.ext_use_post_encode_drop;
cpi->rc = lc->rc;
cpi->twopass = lc->twopass;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
cpi->alt_ref_source = lc->alt_ref_source;
// Check if it is one_pass_cbr_svc mode and lc->speed > 0 (real-time mode
// does not use speed = 0).
if (is_one_pass_cbr_svc(cpi) && lc->speed > 0) {
cpi->oxcf.speed = lc->speed;
}
// Reset the frames_since_key and frames_to_key counters to their values
// before the layer restore. Keep these defined for the stream (not layer).
if (cpi->svc.number_temporal_layers > 1 ||
cpi->svc.number_spatial_layers > 1) {
cpi->rc.frames_since_key = old_frame_since_key;
cpi->rc.frames_to_key = old_frame_to_key;
}
cpi->rc.ext_use_post_encode_drop = old_ext_use_post_encode_drop;
// For spatial-svc, allow cyclic-refresh to be applied on the spatial layers,
// for the base temporal layer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cpi->svc.number_spatial_layers > 1 && cpi->svc.temporal_layer_id == 0) {
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
swap_ptr(&cr->map, &lc->map);
swap_ptr(&cr->last_coded_q_map, &lc->last_coded_q_map);
swap_ptr(&cpi->consec_zero_mv, &lc->consec_zero_mv);
cr->sb_index = lc->sb_index;
cr->actual_num_seg1_blocks = lc->actual_num_seg1_blocks;
cr->actual_num_seg2_blocks = lc->actual_num_seg2_blocks;
cr->counter_encode_maxq_scene_change = lc->counter_encode_maxq_scene_change;
}
}
void vp9_save_layer_context(VP9_COMP *const cpi) {
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
lc->rc = cpi->rc;
lc->twopass = cpi->twopass;
lc->target_bandwidth = (int)oxcf->target_bandwidth;
lc->alt_ref_source = cpi->alt_ref_source;
// For spatial-svc, allow cyclic-refresh to be applied on the spatial layers,
// for the base temporal layer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cpi->svc.number_spatial_layers > 1 && cpi->svc.temporal_layer_id == 0) {
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
signed char *temp = lc->map;
uint8_t *temp2 = lc->last_coded_q_map;
uint8_t *temp3 = lc->consec_zero_mv;
lc->map = cr->map;
cr->map = temp;
lc->last_coded_q_map = cr->last_coded_q_map;
cr->last_coded_q_map = temp2;
lc->consec_zero_mv = cpi->consec_zero_mv;
cpi->consec_zero_mv = temp3;
lc->sb_index = cr->sb_index;
lc->actual_num_seg1_blocks = cr->actual_num_seg1_blocks;
lc->actual_num_seg2_blocks = cr->actual_num_seg2_blocks;
lc->counter_encode_maxq_scene_change = cr->counter_encode_maxq_scene_change;
}
}
#if !CONFIG_REALTIME_ONLY
void vp9_init_second_pass_spatial_svc(VP9_COMP *cpi) {
SVC *const svc = &cpi->svc;
int i;
for (i = 0; i < svc->number_spatial_layers; ++i) {
TWO_PASS *const twopass = &svc->layer_context[i].twopass;
svc->spatial_layer_id = i;
vp9_init_second_pass(cpi);
twopass->total_stats.spatial_layer_id = i;
twopass->total_left_stats.spatial_layer_id = i;
}
svc->spatial_layer_id = 0;
}
#endif // !CONFIG_REALTIME_ONLY
void vp9_inc_frame_in_layer(VP9_COMP *const cpi) {
LAYER_CONTEXT *const lc =
&cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers];
++lc->current_video_frame_in_layer;
++lc->frames_from_key_frame;
if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)
++cpi->svc.current_superframe;
}
void get_layer_resolution(const int width_org, const int height_org,
const int num, const int den, int *width_out,
int *height_out) {
int w, h;
if (width_out == NULL || height_out == NULL || den == 0) return;
w = width_org * num / den;
h = height_org * num / den;
// make height and width even to make chrome player happy
w += w % 2;
h += h % 2;
*width_out = w;
*height_out = h;
}
static void reset_fb_idx_unused(VP9_COMP *const cpi) {
// If a reference frame is not referenced or refreshed, then set the
// fb_idx for that reference to the first one used/referenced.
// This is to avoid setting fb_idx for a reference to a slot that is not
// used/needed (i.e., since that reference is not referenced or refreshed).
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
MV_REFERENCE_FRAME ref_frame;
MV_REFERENCE_FRAME first_ref = 0;
int first_fb_idx = 0;
int fb_idx[3] = { cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx };
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
first_ref = ref_frame;
first_fb_idx = fb_idx[ref_frame - 1];
break;
}
}
if (first_ref > 0) {
if (first_ref != LAST_FRAME &&
!(cpi->ref_frame_flags & flag_list[LAST_FRAME]) &&
!cpi->ext_refresh_last_frame)
cpi->lst_fb_idx = first_fb_idx;
else if (first_ref != GOLDEN_FRAME &&
!(cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) &&
!cpi->ext_refresh_golden_frame)
cpi->gld_fb_idx = first_fb_idx;
else if (first_ref != ALTREF_FRAME &&
!(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]) &&
!cpi->ext_refresh_alt_ref_frame)
cpi->alt_fb_idx = first_fb_idx;
}
}
// Never refresh any reference frame buffers on top temporal layers in
// simulcast mode, which has interlayer prediction disabled.
static void non_reference_frame_simulcast(VP9_COMP *const cpi) {
if (cpi->svc.temporal_layer_id == cpi->svc.number_temporal_layers - 1 &&
cpi->svc.temporal_layer_id > 0) {
cpi->ext_refresh_last_frame = 0;
cpi->ext_refresh_golden_frame = 0;
cpi->ext_refresh_alt_ref_frame = 0;
}
}
// The function sets proper ref_frame_flags, buffer indices, and buffer update
// variables for temporal layering mode 3 - that does 0-2-1-2 temporal layering
// scheme.
static void set_flags_and_fb_idx_for_temporal_mode3(VP9_COMP *const cpi) {
int frame_num_within_temporal_struct = 0;
int spatial_id, temporal_id;
spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
frame_num_within_temporal_struct =
cpi->svc
.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers]
.current_video_frame_in_layer %
4;
temporal_id = cpi->svc.temporal_layer_id =
(frame_num_within_temporal_struct & 1)
? 2
: (frame_num_within_temporal_struct >> 1);
cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame =
cpi->ext_refresh_alt_ref_frame = 0;
if (!temporal_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (cpi->svc.layer_context[temporal_id].is_key_frame) {
// base layer is a key frame.
cpi->ref_frame_flags = VP9_LAST_FLAG;
cpi->ext_refresh_last_frame = 0;
cpi->ext_refresh_golden_frame = 1;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else if (temporal_id == 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else {
if (frame_num_within_temporal_struct == 1) {
// the first tl2 picture
if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer
cpi->ext_refresh_frame_flags_pending = 1;
if (!spatial_id)
cpi->ref_frame_flags = VP9_LAST_FLAG;
else
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
} else if (!spatial_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (spatial_id < cpi->svc.number_spatial_layers - 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else {
// The second tl2 picture
if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer
cpi->ext_refresh_frame_flags_pending = 1;
if (!spatial_id)
cpi->ref_frame_flags = VP9_LAST_FLAG;
else
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
} else if (!spatial_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG;
cpi->ext_refresh_alt_ref_frame = 1;
} else { // top layer
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
cpi->ext_refresh_alt_ref_frame = 1;
}
}
}
if (temporal_id == 0) {
cpi->lst_fb_idx = spatial_id;
if (spatial_id) {
if (cpi->svc.layer_context[temporal_id].is_key_frame) {
cpi->lst_fb_idx = spatial_id - 1;
cpi->gld_fb_idx = spatial_id;
} else {
cpi->gld_fb_idx = spatial_id - 1;
}
} else {
cpi->gld_fb_idx = 0;
}
cpi->alt_fb_idx = 0;
} else if (temporal_id == 1) {
cpi->lst_fb_idx = spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
} else if (frame_num_within_temporal_struct == 1) {
cpi->lst_fb_idx = spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
} else {
cpi->lst_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
}
if (cpi->svc.simulcast_mode) non_reference_frame_simulcast(cpi);
reset_fb_idx_unused(cpi);
}
// The function sets proper ref_frame_flags, buffer indices, and buffer update
// variables for temporal layering mode 2 - that does 0-1-0-1 temporal layering
// scheme.
static void set_flags_and_fb_idx_for_temporal_mode2(VP9_COMP *const cpi) {
int spatial_id, temporal_id;
spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
temporal_id = cpi->svc.temporal_layer_id =
cpi->svc
.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers]
.current_video_frame_in_layer &
1;
cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame =
cpi->ext_refresh_alt_ref_frame = 0;
if (!temporal_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (cpi->svc.layer_context[temporal_id].is_key_frame) {
// base layer is a key frame.
cpi->ref_frame_flags = VP9_LAST_FLAG;
cpi->ext_refresh_last_frame = 0;
cpi->ext_refresh_golden_frame = 1;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else if (temporal_id == 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else {
if (spatial_id == cpi->svc.number_spatial_layers - 1)
cpi->ext_refresh_alt_ref_frame = 0;
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
}
if (temporal_id == 0) {
cpi->lst_fb_idx = spatial_id;
if (spatial_id) {
if (cpi->svc.layer_context[temporal_id].is_key_frame) {
cpi->lst_fb_idx = spatial_id - 1;
cpi->gld_fb_idx = spatial_id;
} else {
cpi->gld_fb_idx = spatial_id - 1;
}
} else {
cpi->gld_fb_idx = 0;
}
cpi->alt_fb_idx = 0;
} else if (temporal_id == 1) {
cpi->lst_fb_idx = spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
}
if (cpi->svc.simulcast_mode) non_reference_frame_simulcast(cpi);
reset_fb_idx_unused(cpi);
}
// The function sets proper ref_frame_flags, buffer indices, and buffer update
// variables for temporal layering mode 0 - that has no temporal layering.
static void set_flags_and_fb_idx_for_temporal_mode_noLayering(
VP9_COMP *const cpi) {
int spatial_id;
spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame =
cpi->ext_refresh_alt_ref_frame = 0;
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (cpi->svc.layer_context[0].is_key_frame) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
cpi->ext_refresh_last_frame = 0;
cpi->ext_refresh_golden_frame = 1;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
cpi->lst_fb_idx = spatial_id;
if (spatial_id) {
if (cpi->svc.layer_context[0].is_key_frame) {
cpi->lst_fb_idx = spatial_id - 1;
cpi->gld_fb_idx = spatial_id;
} else {
cpi->gld_fb_idx = spatial_id - 1;
}
} else {
cpi->gld_fb_idx = 0;
}
if (cpi->svc.simulcast_mode) non_reference_frame_simulcast(cpi);
reset_fb_idx_unused(cpi);
}
static void set_flags_and_fb_idx_bypass_via_set_ref_frame_config(
VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
int sl = svc->spatial_layer_id = svc->spatial_layer_to_encode;
cpi->svc.temporal_layer_id = cpi->svc.temporal_layer_id_per_spatial[sl];
cpi->ext_refresh_frame_flags_pending = 1;
cpi->lst_fb_idx = svc->lst_fb_idx[sl];
cpi->gld_fb_idx = svc->gld_fb_idx[sl];
cpi->alt_fb_idx = svc->alt_fb_idx[sl];
cpi->ext_refresh_last_frame = 0;
cpi->ext_refresh_golden_frame = 0;
cpi->ext_refresh_alt_ref_frame = 0;
cpi->ref_frame_flags = 0;
if (svc->reference_last[sl]) cpi->ref_frame_flags |= VP9_LAST_FLAG;
if (svc->reference_golden[sl]) cpi->ref_frame_flags |= VP9_GOLD_FLAG;
if (svc->reference_altref[sl]) cpi->ref_frame_flags |= VP9_ALT_FLAG;
}
void vp9_copy_flags_ref_update_idx(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int sl = svc->spatial_layer_id;
svc->lst_fb_idx[sl] = cpi->lst_fb_idx;
svc->gld_fb_idx[sl] = cpi->gld_fb_idx;
svc->alt_fb_idx[sl] = cpi->alt_fb_idx;
// For the fixed SVC mode: pass the refresh_lst/gld/alt_frame flags to the
// update_buffer_slot, this is needed for the GET_SVC_REF_FRAME_CONFIG api.
if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
int ref;
for (ref = 0; ref < REF_FRAMES; ++ref) {
svc->update_buffer_slot[sl] &= ~(1 << ref);
if ((ref == svc->lst_fb_idx[sl] && cpi->refresh_last_frame) ||
(ref == svc->gld_fb_idx[sl] && cpi->refresh_golden_frame) ||
(ref == svc->alt_fb_idx[sl] && cpi->refresh_alt_ref_frame))
svc->update_buffer_slot[sl] |= (1 << ref);
}
}
// TODO(jianj): Remove these 3, deprecated.
svc->update_last[sl] = (uint8_t)cpi->refresh_last_frame;
svc->update_golden[sl] = (uint8_t)cpi->refresh_golden_frame;
svc->update_altref[sl] = (uint8_t)cpi->refresh_alt_ref_frame;
svc->reference_last[sl] =
(uint8_t)(cpi->ref_frame_flags & flag_list[LAST_FRAME]);
svc->reference_golden[sl] =
(uint8_t)(cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]);
svc->reference_altref[sl] =
(uint8_t)(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]);
}
int vp9_one_pass_cbr_svc_start_layer(VP9_COMP *const cpi) {
int width = 0, height = 0;
SVC *const svc = &cpi->svc;
LAYER_CONTEXT *lc = NULL;
int scaling_factor_num = 1;
int scaling_factor_den = 1;
svc->skip_enhancement_layer = 0;
if (svc->disable_inter_layer_pred == INTER_LAYER_PRED_OFF &&
svc->number_spatial_layers > 1 && svc->number_spatial_layers <= 3 &&
svc->number_temporal_layers <= 3)
svc->simulcast_mode = 1;
else
svc->simulcast_mode = 0;
if (svc->number_spatial_layers > 1) {
svc->use_base_mv = 1;
svc->use_partition_reuse = 1;
}
svc->force_zero_mode_spatial_ref = 1;
svc->mi_stride[svc->spatial_layer_id] = cpi->common.mi_stride;
svc->mi_rows[svc->spatial_layer_id] = cpi->common.mi_rows;
svc->mi_cols[svc->spatial_layer_id] = cpi->common.mi_cols;
// For constrained_from_above drop mode: before encoding superframe (i.e.,
// at SL0 frame) check all spatial layers (starting from top) for possible
// drop, and if so, set a flag to force drop of that layer and all its lower
// layers.
if (svc->spatial_layer_to_encode == svc->first_spatial_layer_to_encode) {
int sl;
for (sl = 0; sl < svc->number_spatial_layers; sl++)
svc->force_drop_constrained_from_above[sl] = 0;
if (svc->framedrop_mode == CONSTRAINED_FROM_ABOVE_DROP) {
for (sl = svc->number_spatial_layers - 1;
sl >= svc->first_spatial_layer_to_encode; sl--) {
int layer = sl * svc->number_temporal_layers + svc->temporal_layer_id;
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
cpi->rc = lc->rc;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
if (vp9_test_drop(cpi)) {
int sl2;
// Set flag to force drop in encoding for this mode.
for (sl2 = sl; sl2 >= svc->first_spatial_layer_to_encode; sl2--)
svc->force_drop_constrained_from_above[sl2] = 1;
break;
}
}
}
}
if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) {
set_flags_and_fb_idx_for_temporal_mode3(cpi);
} else if (svc->temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi);
} else if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0101) {
set_flags_and_fb_idx_for_temporal_mode2(cpi);
} else if (svc->temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_BYPASS &&
svc->use_set_ref_frame_config) {
set_flags_and_fb_idx_bypass_via_set_ref_frame_config(cpi);
}
if (cpi->lst_fb_idx == svc->buffer_gf_temporal_ref[0].idx ||
cpi->gld_fb_idx == svc->buffer_gf_temporal_ref[0].idx ||
cpi->alt_fb_idx == svc->buffer_gf_temporal_ref[0].idx)
svc->buffer_gf_temporal_ref[0].is_used = 1;
if (cpi->lst_fb_idx == svc->buffer_gf_temporal_ref[1].idx ||
cpi->gld_fb_idx == svc->buffer_gf_temporal_ref[1].idx ||
cpi->alt_fb_idx == svc->buffer_gf_temporal_ref[1].idx)
svc->buffer_gf_temporal_ref[1].is_used = 1;
// For the fixed (non-flexible/bypass) SVC mode:
// If long term temporal reference is enabled at the sequence level
// (use_gf_temporal_ref == 1), and inter_layer is disabled (on inter-frames),
// we can use golden as a second temporal reference
// (since the spatial/inter-layer reference is disabled).
// We check that the fb_idx for this reference (buffer_gf_temporal_ref.idx) is
// unused (slot 7 and 6 should be available for 3-3 layer system).
// For now usage of this second temporal reference will only be used for
// highest and next to highest spatial layer (i.e., top and middle layer for
// 3 spatial layers).
svc->use_gf_temporal_ref_current_layer = 0;
if (svc->use_gf_temporal_ref && !svc->buffer_gf_temporal_ref[0].is_used &&
!svc->buffer_gf_temporal_ref[1].is_used &&
svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS &&
svc->disable_inter_layer_pred != INTER_LAYER_PRED_ON &&
svc->number_spatial_layers <= 3 && svc->number_temporal_layers <= 3 &&
svc->spatial_layer_id >= svc->number_spatial_layers - 2) {
// Enable the second (long-term) temporal reference at the frame-level.
svc->use_gf_temporal_ref_current_layer = 1;
}
// Check if current superframe has any layer sync, only check once on
// base layer.
if (svc->spatial_layer_id == 0) {
int sl = 0;
// Default is no sync.
svc->superframe_has_layer_sync = 0;
for (sl = 0; sl < svc->number_spatial_layers; ++sl) {
if (cpi->svc.spatial_layer_sync[sl]) svc->superframe_has_layer_sync = 1;
}
}
// Reset the drop flags for all spatial layers, on the
// first_spatial_layer_to_encode.
if (svc->spatial_layer_id == svc->first_spatial_layer_to_encode) {
vp9_zero(svc->drop_spatial_layer);
// TODO(jianj/marpan): Investigate why setting svc->lst/gld/alt_fb_idx
// causes an issue with frame dropping and temporal layers, when the frame
// flags are passed via the encode call (bypass mode). Issue is that we're
// resetting ext_refresh_frame_flags_pending to 0 on frame drops.
if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
memset(&svc->lst_fb_idx, -1, sizeof(svc->lst_fb_idx));
memset(&svc->gld_fb_idx, -1, sizeof(svc->lst_fb_idx));
memset(&svc->alt_fb_idx, -1, sizeof(svc->lst_fb_idx));
// These are set by API before the superframe is encoded and they are
// passed to encoder layer by layer. Don't reset them on layer 0 in bypass
// mode.
vp9_zero(svc->update_buffer_slot);
vp9_zero(svc->reference_last);
vp9_zero(svc->reference_golden);
vp9_zero(svc->reference_altref);
// TODO(jianj): Remove these 3, deprecated.
vp9_zero(svc->update_last);
vp9_zero(svc->update_golden);
vp9_zero(svc->update_altref);
}
}
lc = &svc->layer_context[svc->spatial_layer_id * svc->number_temporal_layers +
svc->temporal_layer_id];
// Setting the worst/best_quality via the encoder control: SET_SVC_PARAMETERS,
// only for non-BYPASS mode for now.
if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS ||
svc->use_set_ref_frame_config) {
RATE_CONTROL *const lrc = &lc->rc;
lrc->worst_quality = vp9_quantizer_to_qindex(lc->max_q);
lrc->best_quality = vp9_quantizer_to_qindex(lc->min_q);
}
if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC && svc->single_layer_svc == 1 &&
svc->spatial_layer_id == svc->first_spatial_layer_to_encode &&
cpi->resize_state != ORIG) {
scaling_factor_num = lc->scaling_factor_num_resize;
scaling_factor_den = lc->scaling_factor_den_resize;
} else {
scaling_factor_num = lc->scaling_factor_num;
scaling_factor_den = lc->scaling_factor_den;
}
get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height, scaling_factor_num,
scaling_factor_den, &width, &height);
// Use Eightap_smooth for low resolutions.
if (width * height <= 320 * 240)
svc->downsample_filter_type[svc->spatial_layer_id] = EIGHTTAP_SMOOTH;
// For scale factors > 0.75, set the phase to 0 (aligns decimated pixel
// to source pixel).
if (scaling_factor_num > (3 * scaling_factor_den) >> 2)
svc->downsample_filter_phase[svc->spatial_layer_id] = 0;
// The usage of use_base_mv or partition_reuse assumes down-scale of 2x2.
// For now, turn off use of base motion vectors and partition reuse if the
// spatial scale factors for any layers are not 2,
// keep the case of 3 spatial layers with scale factor of 4x4 for base layer.
// TODO(marpan): Fix this to allow for use_base_mv for scale factors != 2.
if (svc->number_spatial_layers > 1) {
int sl;
for (sl = 0; sl < svc->number_spatial_layers - 1; ++sl) {
lc = &svc->layer_context[sl * svc->number_temporal_layers +
svc->temporal_layer_id];
if ((lc->scaling_factor_num != lc->scaling_factor_den >> 1) &&
!(lc->scaling_factor_num == lc->scaling_factor_den >> 2 && sl == 0 &&
svc->number_spatial_layers == 3)) {
svc->use_base_mv = 0;
svc->use_partition_reuse = 0;
break;
}
}
// For non-zero spatial layers: if the previous spatial layer was dropped
// disable the base_mv and partition_reuse features.
if (svc->spatial_layer_id > 0 &&
svc->drop_spatial_layer[svc->spatial_layer_id - 1]) {
svc->use_base_mv = 0;
svc->use_partition_reuse = 0;
}
}
svc->non_reference_frame = 0;
if (cpi->common.frame_type != KEY_FRAME && !cpi->ext_refresh_last_frame &&
!cpi->ext_refresh_golden_frame && !cpi->ext_refresh_alt_ref_frame)
svc->non_reference_frame = 1;
// For non-flexible mode, where update_buffer_slot is used, need to check if
// all buffer slots are not refreshed.
if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
if (svc->update_buffer_slot[svc->spatial_layer_id] != 0)
svc->non_reference_frame = 0;
}
if (svc->spatial_layer_id == 0) {
svc->high_source_sad_superframe = 0;
svc->high_num_blocks_with_motion = 0;
}
if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS &&
svc->last_layer_dropped[svc->spatial_layer_id] &&
svc->fb_idx_upd_tl0[svc->spatial_layer_id] != -1 &&
!svc->layer_context[svc->temporal_layer_id].is_key_frame) {
// For fixed/non-flexible mode, if the previous frame (same spatial layer
// from previous superframe) was dropped, make sure the lst_fb_idx
// for this frame corresponds to the buffer index updated on (last) encoded
// TL0 frame (with same spatial layer).
cpi->lst_fb_idx = svc->fb_idx_upd_tl0[svc->spatial_layer_id];
}
if (vp9_set_size_literal(cpi, width, height) != 0)
return VPX_CODEC_INVALID_PARAM;
return 0;
}
struct lookahead_entry *vp9_svc_lookahead_pop(VP9_COMP *const cpi,
struct lookahead_ctx *ctx,
int drain) {
struct lookahead_entry *buf = NULL;
if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) {
buf = vp9_lookahead_peek(ctx, 0);
if (buf != NULL) {
// Only remove the buffer when pop the highest layer.
if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
vp9_lookahead_pop(ctx, drain);
}
}
}
return buf;
}
void vp9_free_svc_cyclic_refresh(VP9_COMP *const cpi) {
int sl, tl;
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
if (lc->map) vpx_free(lc->map);
if (lc->last_coded_q_map) vpx_free(lc->last_coded_q_map);
if (lc->consec_zero_mv) vpx_free(lc->consec_zero_mv);
}
}
}
// Reset on key frame: reset counters, references and buffer updates.
void vp9_svc_reset_temporal_layers(VP9_COMP *const cpi, int is_key) {
int sl, tl;
SVC *const svc = &cpi->svc;
LAYER_CONTEXT *lc = NULL;
for (sl = 0; sl < svc->number_spatial_layers; ++sl) {
for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
lc = &cpi->svc.layer_context[sl * svc->number_temporal_layers + tl];
lc->current_video_frame_in_layer = 0;
if (is_key) lc->frames_from_key_frame = 0;
}
}
if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) {
set_flags_and_fb_idx_for_temporal_mode3(cpi);
} else if (svc->temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi);
} else if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0101) {
set_flags_and_fb_idx_for_temporal_mode2(cpi);
}
vp9_update_temporal_layer_framerate(cpi);
vp9_restore_layer_context(cpi);
}
void vp9_svc_check_reset_layer_rc_flag(VP9_COMP *const cpi) {
SVC *svc = &cpi->svc;
int sl, tl;
for (sl = 0; sl < svc->number_spatial_layers; ++sl) {
// Check for reset based on avg_frame_bandwidth for spatial layer sl.
int layer = LAYER_IDS_TO_IDX(sl, svc->number_temporal_layers - 1,
svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
if (lrc->avg_frame_bandwidth > (3 * lrc->last_avg_frame_bandwidth >> 1) ||
lrc->avg_frame_bandwidth < (lrc->last_avg_frame_bandwidth >> 1)) {
// Reset for all temporal layers with spatial layer sl.
for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
lrc->rc_1_frame = 0;
lrc->rc_2_frame = 0;
lrc->bits_off_target = lrc->optimal_buffer_level;
lrc->buffer_level = lrc->optimal_buffer_level;
}
}
}
}
void vp9_svc_constrain_inter_layer_pred(VP9_COMP *const cpi) {
VP9_COMMON *const cm = &cpi->common;
SVC *const svc = &cpi->svc;
const int sl = svc->spatial_layer_id;
// Check for disabling inter-layer (spatial) prediction, if
// svc.disable_inter_layer_pred is set. If the previous spatial layer was
// dropped then disable the prediction from this (scaled) reference.
// For INTER_LAYER_PRED_OFF_NONKEY: inter-layer prediction is disabled
// on key frames or if any spatial layer is a sync layer.
if ((svc->disable_inter_layer_pred == INTER_LAYER_PRED_OFF_NONKEY &&
!svc->layer_context[svc->temporal_layer_id].is_key_frame &&
!svc->superframe_has_layer_sync) ||
svc->disable_inter_layer_pred == INTER_LAYER_PRED_OFF ||
svc->drop_spatial_layer[sl - 1]) {
MV_REFERENCE_FRAME ref_frame;
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
if (yv12 != NULL && (cpi->ref_frame_flags & flag_list[ref_frame])) {
const struct scale_factors *const scale_fac =
&cm->frame_refs[ref_frame - 1].sf;
if (vp9_is_scaled(scale_fac)) {
cpi->ref_frame_flags &= (~flag_list[ref_frame]);
// Point golden/altref frame buffer index to last.
if (!svc->simulcast_mode) {
if (ref_frame == GOLDEN_FRAME)
cpi->gld_fb_idx = cpi->lst_fb_idx;
else if (ref_frame == ALTREF_FRAME)
cpi->alt_fb_idx = cpi->lst_fb_idx;
}
}
}
}
}
// For fixed/non-flexible SVC: check for disabling inter-layer prediction.
// If the reference for inter-layer prediction (the reference that is scaled)
// is not the previous spatial layer from the same superframe, then we disable
// inter-layer prediction. Only need to check when inter_layer prediction is
// not set to OFF mode.
if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS &&
svc->disable_inter_layer_pred != INTER_LAYER_PRED_OFF) {
// We only use LAST and GOLDEN for prediction in real-time mode, so we
// check both here.
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ref_frame++) {
struct scale_factors *scale_fac = &cm->frame_refs[ref_frame - 1].sf;
if (vp9_is_scaled(scale_fac)) {
// If this reference was updated on the previous spatial layer of the
// current superframe, then we keep this reference (don't disable).
// Otherwise we disable the inter-layer prediction.
// This condition is verified by checking if the current frame buffer
// index is equal to any of the slots for the previous spatial layer,
// and if so, check if that slot was updated/refreshed. If that is the
// case, then this reference is valid for inter-layer prediction under
// the mode INTER_LAYER_PRED_ON_CONSTRAINED.
int fb_idx =
ref_frame == LAST_FRAME ? cpi->lst_fb_idx : cpi->gld_fb_idx;
int ref_flag = ref_frame == LAST_FRAME ? VP9_LAST_FLAG : VP9_GOLD_FLAG;
int disable = 1;
if (fb_idx < 0) continue;
if ((fb_idx == svc->lst_fb_idx[sl - 1] &&
(svc->update_buffer_slot[sl - 1] & (1 << fb_idx))) ||
(fb_idx == svc->gld_fb_idx[sl - 1] &&
(svc->update_buffer_slot[sl - 1] & (1 << fb_idx))) ||
(fb_idx == svc->alt_fb_idx[sl - 1] &&
(svc->update_buffer_slot[sl - 1] & (1 << fb_idx))))
disable = 0;
if (disable) cpi->ref_frame_flags &= (~ref_flag);
}
}
}
}
void vp9_svc_assert_constraints_pattern(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
// For fixed/non-flexible mode, the following constraint are expected,
// when inter-layer prediciton is on (default).
if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS &&
svc->disable_inter_layer_pred == INTER_LAYER_PRED_ON &&
svc->framedrop_mode != LAYER_DROP) {
if (!svc->layer_context[svc->temporal_layer_id].is_key_frame) {
// On non-key frames: LAST is always temporal reference, GOLDEN is
// spatial reference.
if (svc->temporal_layer_id == 0)
// Base temporal only predicts from base temporal.
assert(svc->fb_idx_temporal_layer_id[cpi->lst_fb_idx] == 0);
else
// Non-base temporal only predicts from lower temporal layer.
assert(svc->fb_idx_temporal_layer_id[cpi->lst_fb_idx] <
svc->temporal_layer_id);
if (svc->spatial_layer_id > 0 && cpi->ref_frame_flags & VP9_GOLD_FLAG &&
svc->spatial_layer_id > svc->first_spatial_layer_to_encode) {
// Non-base spatial only predicts from lower spatial layer with same
// temporal_id.
assert(svc->fb_idx_spatial_layer_id[cpi->gld_fb_idx] ==
svc->spatial_layer_id - 1);
assert(svc->fb_idx_temporal_layer_id[cpi->gld_fb_idx] ==
svc->temporal_layer_id);
}
} else if (svc->spatial_layer_id > 0 &&
svc->spatial_layer_id > svc->first_spatial_layer_to_encode) {
// Only 1 reference for frame whose base is key; reference may be LAST
// or GOLDEN, so we check both.
if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
assert(svc->fb_idx_spatial_layer_id[cpi->lst_fb_idx] ==
svc->spatial_layer_id - 1);
assert(svc->fb_idx_temporal_layer_id[cpi->lst_fb_idx] ==
svc->temporal_layer_id);
} else if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
assert(svc->fb_idx_spatial_layer_id[cpi->gld_fb_idx] ==
svc->spatial_layer_id - 1);
assert(svc->fb_idx_temporal_layer_id[cpi->gld_fb_idx] ==
svc->temporal_layer_id);
}
}
} else if (svc->use_gf_temporal_ref_current_layer &&
!svc->layer_context[svc->temporal_layer_id].is_key_frame) {
// For the usage of golden as second long term reference: the
// temporal_layer_id of that reference must be base temporal layer 0, and
// spatial_layer_id of that reference must be same as current
// spatial_layer_id. If not, disable feature.
// TODO(marpan): Investigate when this can happen, and maybe put this check
// and reset in a different place.
if (svc->fb_idx_spatial_layer_id[cpi->gld_fb_idx] !=
svc->spatial_layer_id ||
svc->fb_idx_temporal_layer_id[cpi->gld_fb_idx] != 0)
svc->use_gf_temporal_ref_current_layer = 0;
}
}
#if CONFIG_VP9_TEMPORAL_DENOISING
int vp9_denoise_svc_non_key(VP9_COMP *const cpi) {
int layer =
LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id,
cpi->svc.number_temporal_layers);
LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
return denoise_svc(cpi) && !lc->is_key_frame;
}
#endif
void vp9_svc_check_spatial_layer_sync(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
// Only for superframes whose base is not key, as those are
// already sync frames.
if (!svc->layer_context[svc->temporal_layer_id].is_key_frame) {
if (svc->spatial_layer_id == 0) {
// On base spatial layer: if the current superframe has a layer sync then
// reset the pattern counters and reset to base temporal layer.
if (svc->superframe_has_layer_sync)
vp9_svc_reset_temporal_layers(cpi, cpi->common.frame_type == KEY_FRAME);
}
// If the layer sync is set for this current spatial layer then
// disable the temporal reference.
if (svc->spatial_layer_id > 0 &&
svc->spatial_layer_sync[svc->spatial_layer_id]) {
cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
if (svc->use_gf_temporal_ref_current_layer) {
int index = svc->spatial_layer_id;
// If golden is used as second reference: need to remove it from
// prediction, reset refresh period to 0, and update the reference.
svc->use_gf_temporal_ref_current_layer = 0;
cpi->rc.baseline_gf_interval = 0;
cpi->rc.frames_till_gf_update_due = 0;
// On layer sync frame we must update the buffer index used for long
// term reference. Use the alt_ref since it is not used or updated on
// sync frames.
if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
assert(index >= 0);
cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
cpi->ext_refresh_alt_ref_frame = 1;
}
}
}
}
void vp9_svc_update_ref_frame_buffer_idx(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
// Update the usage of frame buffer index for base spatial layers.
if (svc->spatial_layer_id == 0) {
if ((cpi->ref_frame_flags & VP9_LAST_FLAG) || cpi->refresh_last_frame)
svc->fb_idx_base[cpi->lst_fb_idx] = 1;
if ((cpi->ref_frame_flags & VP9_GOLD_FLAG) || cpi->refresh_golden_frame)
svc->fb_idx_base[cpi->gld_fb_idx] = 1;
if ((cpi->ref_frame_flags & VP9_ALT_FLAG) || cpi->refresh_alt_ref_frame)
svc->fb_idx_base[cpi->alt_fb_idx] = 1;
}
}
static void vp9_svc_update_ref_frame_bypass_mode(VP9_COMP *const cpi) {
// For non-flexible/bypass SVC mode: check for refreshing other buffer
// slots.
SVC *const svc = &cpi->svc;
VP9_COMMON *const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
int i;
for (i = 0; i < REF_FRAMES; i++) {
if ((cm->frame_type == KEY_FRAME && !svc->simulcast_mode) ||
svc->update_buffer_slot[svc->spatial_layer_id] & (1 << i)) {
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[i], cm->new_fb_idx);
svc->fb_idx_spatial_layer_id[i] = svc->spatial_layer_id;
svc->fb_idx_temporal_layer_id[i] = svc->temporal_layer_id;
}
}
}
void vp9_svc_update_ref_frame(VP9_COMP *const cpi) {
VP9_COMMON *const cm = &cpi->common;
SVC *const svc = &cpi->svc;
BufferPool *const pool = cm->buffer_pool;
if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS &&
svc->use_set_ref_frame_config) {
vp9_svc_update_ref_frame_bypass_mode(cpi);
} else if (cm->frame_type == KEY_FRAME && !svc->simulcast_mode) {
// Keep track of frame index for each reference frame.
int i;
// On key frame update all reference frame slots.
for (i = 0; i < REF_FRAMES; i++) {
svc->fb_idx_spatial_layer_id[i] = svc->spatial_layer_id;
svc->fb_idx_temporal_layer_id[i] = svc->temporal_layer_id;
// LAST/GOLDEN/ALTREF is already updated above.
if (i != cpi->lst_fb_idx && i != cpi->gld_fb_idx && i != cpi->alt_fb_idx)
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[i], cm->new_fb_idx);
}
} else {
if (cpi->refresh_last_frame) {
svc->fb_idx_spatial_layer_id[cpi->lst_fb_idx] = svc->spatial_layer_id;
svc->fb_idx_temporal_layer_id[cpi->lst_fb_idx] = svc->temporal_layer_id;
}
if (cpi->refresh_golden_frame) {
svc->fb_idx_spatial_layer_id[cpi->gld_fb_idx] = svc->spatial_layer_id;
svc->fb_idx_temporal_layer_id[cpi->gld_fb_idx] = svc->temporal_layer_id;
}
if (cpi->refresh_alt_ref_frame) {
svc->fb_idx_spatial_layer_id[cpi->alt_fb_idx] = svc->spatial_layer_id;
svc->fb_idx_temporal_layer_id[cpi->alt_fb_idx] = svc->temporal_layer_id;
}
}
// Copy flags from encoder to SVC struct.
vp9_copy_flags_ref_update_idx(cpi);
vp9_svc_update_ref_frame_buffer_idx(cpi);
}
void vp9_svc_adjust_frame_rate(VP9_COMP *const cpi) {
int64_t this_duration =
cpi->svc.timebase_fac * cpi->svc.duration[cpi->svc.spatial_layer_id];
vp9_new_framerate(cpi, 10000000.0 / this_duration);
}
void vp9_svc_adjust_avg_frame_qindex(VP9_COMP *const cpi) {
VP9_COMMON *const cm = &cpi->common;
SVC *const svc = &cpi->svc;
RATE_CONTROL *const rc = &cpi->rc;
// On key frames in CBR mode: reset the avg_frame_index for base layer
// (to level closer to worst_quality) if the overshoot is significant.
// Reset it for all temporal layers on base spatial layer.
if (cm->frame_type == KEY_FRAME && cpi->oxcf.rc_mode == VPX_CBR &&
!svc->simulcast_mode &&
rc->projected_frame_size > 3 * rc->avg_frame_bandwidth) {
int tl;
rc->avg_frame_qindex[INTER_FRAME] =
VPXMAX(rc->avg_frame_qindex[INTER_FRAME],
(cm->base_qindex + rc->worst_quality) >> 1);
for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
const int layer = LAYER_IDS_TO_IDX(0, tl, svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
lrc->avg_frame_qindex[INTER_FRAME] = rc->avg_frame_qindex[INTER_FRAME];
}
}
}