blob: 5a772ed54097378c0faabb86e80ded1e22622096 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ZONE_ZONE_ALLOCATOR_H_
#define V8_ZONE_ZONE_ALLOCATOR_H_
#include <limits>
#include "src/zone/zone.h"
namespace v8 {
namespace internal {
template <typename T>
class ZoneAllocator {
public:
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
template <class O>
struct rebind {
using other = ZoneAllocator<O>;
};
#ifdef V8_OS_WIN
// The exported class ParallelMove derives from ZoneVector, which derives
// from std::vector. On Windows, the semantics of dllexport mean that
// a class's superclasses that are not explicitly exported themselves get
// implicitly exported together with the subclass, and exporting a class
// exports all its functions -- including the std::vector() constructors
// that don't take an explicit allocator argument, which in turn reference
// the vector allocator's default constructor. So this constructor needs
// to exist for linking purposes, even if it's never called.
// Other fixes would be to disallow subclasses of ZoneVector (etc) to be
// exported, or using composition instead of inheritance for either
// ZoneVector and friends or for ParallelMove.
ZoneAllocator() : ZoneAllocator(nullptr) { UNREACHABLE(); }
#endif
explicit ZoneAllocator(Zone* zone) : zone_(zone) {
// If we are going to allocate compressed pointers in the zone it must
// support compression.
DCHECK_IMPLIES(is_compressed_pointer<T>::value,
zone_->supports_compression());
}
template <typename U>
ZoneAllocator(const ZoneAllocator<U>& other) V8_NOEXCEPT
: ZoneAllocator<T>(other.zone_) {
// If we are going to allocate compressed pointers in the zone it must
// support compression.
DCHECK_IMPLIES(is_compressed_pointer<T>::value,
zone_->supports_compression());
}
template <typename U>
friend class ZoneAllocator;
T* allocate(size_t length) { return zone_->NewArray<T>(length); }
void deallocate(T* p, size_t length) { zone_->DeleteArray<T>(p, length); }
size_t max_size() const {
return std::numeric_limits<int>::max() / sizeof(T);
}
template <typename U, typename... Args>
void construct(U* p, Args&&... args) {
void* v_p = const_cast<void*>(static_cast<const void*>(p));
new (v_p) U(std::forward<Args>(args)...);
}
template <typename U>
void destroy(U* p) {
p->~U();
}
bool operator==(ZoneAllocator const& other) const {
return zone_ == other.zone_;
}
bool operator!=(ZoneAllocator const& other) const {
return zone_ != other.zone_;
}
Zone* zone() { return zone_; }
private:
Zone* zone_;
};
// A recycling zone allocator maintains a free list of deallocated chunks
// to reuse on subsiquent allocations. The free list management is purposely
// very simple and works best for data-structures which regularly allocate and
// free blocks of similar sized memory (such as std::deque).
template <typename T>
class RecyclingZoneAllocator : public ZoneAllocator<T> {
public:
template <class O>
struct rebind {
using other = RecyclingZoneAllocator<O>;
};
explicit RecyclingZoneAllocator(Zone* zone)
: ZoneAllocator<T>(zone), free_list_(nullptr) {}
template <typename U>
RecyclingZoneAllocator(const RecyclingZoneAllocator<U>& other) V8_NOEXCEPT
: ZoneAllocator<T>(other),
free_list_(nullptr) {}
template <typename U>
friend class RecyclingZoneAllocator;
T* allocate(size_t n) {
// Only check top block in free list, since this will be equal to or larger
// than the other blocks in the free list.
if (free_list_ && free_list_->size >= n) {
T* return_val = reinterpret_cast<T*>(free_list_);
free_list_ = free_list_->next;
return return_val;
}
return ZoneAllocator<T>::allocate(n);
}
void deallocate(T* p, size_t n) {
if ((sizeof(T) * n < sizeof(FreeBlock))) return;
// Only add block to free_list if it is equal or larger than previous block
// so that allocation stays O(1) only having to look at the top block.
if (!free_list_ || free_list_->size <= n) {
// Store the free-list within the block being deallocated.
DCHECK((sizeof(T) * n >= sizeof(FreeBlock)));
FreeBlock* new_free_block = reinterpret_cast<FreeBlock*>(p);
new_free_block->size = n;
new_free_block->next = free_list_;
free_list_ = new_free_block;
}
}
private:
struct FreeBlock {
FreeBlock* next;
size_t size;
};
FreeBlock* free_list_;
};
using ZoneBoolAllocator = ZoneAllocator<bool>;
using ZoneIntAllocator = ZoneAllocator<int>;
} // namespace internal
} // namespace v8
#endif // V8_ZONE_ZONE_ALLOCATOR_H_