| //===-- CFG.cpp - BasicBlock analysis --------------------------------------==// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This family of functions performs analyses on basic blocks, and instructions | 
 | // contained within basic blocks. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/CFG.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/IR/Dominators.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | /// FindFunctionBackedges - Analyze the specified function to find all of the | 
 | /// loop backedges in the function and return them.  This is a relatively cheap | 
 | /// (compared to computing dominators and loop info) analysis. | 
 | /// | 
 | /// The output is added to Result, as pairs of <from,to> edge info. | 
 | void llvm::FindFunctionBackedges(const Function &F, | 
 |      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { | 
 |   const BasicBlock *BB = &F.getEntryBlock(); | 
 |   if (succ_empty(BB)) | 
 |     return; | 
 |  | 
 |   SmallPtrSet<const BasicBlock*, 8> Visited; | 
 |   SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; | 
 |   SmallPtrSet<const BasicBlock*, 8> InStack; | 
 |  | 
 |   Visited.insert(BB); | 
 |   VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); | 
 |   InStack.insert(BB); | 
 |   do { | 
 |     std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); | 
 |     const BasicBlock *ParentBB = Top.first; | 
 |     succ_const_iterator &I = Top.second; | 
 |  | 
 |     bool FoundNew = false; | 
 |     while (I != succ_end(ParentBB)) { | 
 |       BB = *I++; | 
 |       if (Visited.insert(BB).second) { | 
 |         FoundNew = true; | 
 |         break; | 
 |       } | 
 |       // Successor is in VisitStack, it's a back edge. | 
 |       if (InStack.count(BB)) | 
 |         Result.push_back(std::make_pair(ParentBB, BB)); | 
 |     } | 
 |  | 
 |     if (FoundNew) { | 
 |       // Go down one level if there is a unvisited successor. | 
 |       InStack.insert(BB); | 
 |       VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); | 
 |     } else { | 
 |       // Go up one level. | 
 |       InStack.erase(VisitStack.pop_back_val().first); | 
 |     } | 
 |   } while (!VisitStack.empty()); | 
 | } | 
 |  | 
 | /// GetSuccessorNumber - Search for the specified successor of basic block BB | 
 | /// and return its position in the terminator instruction's list of | 
 | /// successors.  It is an error to call this with a block that is not a | 
 | /// successor. | 
 | unsigned llvm::GetSuccessorNumber(const BasicBlock *BB, | 
 |     const BasicBlock *Succ) { | 
 |   const TerminatorInst *Term = BB->getTerminator(); | 
 | #ifndef NDEBUG | 
 |   unsigned e = Term->getNumSuccessors(); | 
 | #endif | 
 |   for (unsigned i = 0; ; ++i) { | 
 |     assert(i != e && "Didn't find edge?"); | 
 |     if (Term->getSuccessor(i) == Succ) | 
 |       return i; | 
 |   } | 
 | } | 
 |  | 
 | /// isCriticalEdge - Return true if the specified edge is a critical edge. | 
 | /// Critical edges are edges from a block with multiple successors to a block | 
 | /// with multiple predecessors. | 
 | bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum, | 
 |                           bool AllowIdenticalEdges) { | 
 |   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); | 
 |   if (TI->getNumSuccessors() == 1) return false; | 
 |  | 
 |   const BasicBlock *Dest = TI->getSuccessor(SuccNum); | 
 |   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest); | 
 |  | 
 |   // If there is more than one predecessor, this is a critical edge... | 
 |   assert(I != E && "No preds, but we have an edge to the block?"); | 
 |   const BasicBlock *FirstPred = *I; | 
 |   ++I;        // Skip one edge due to the incoming arc from TI. | 
 |   if (!AllowIdenticalEdges) | 
 |     return I != E; | 
 |  | 
 |   // If AllowIdenticalEdges is true, then we allow this edge to be considered | 
 |   // non-critical iff all preds come from TI's block. | 
 |   for (; I != E; ++I) | 
 |     if (*I != FirstPred) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | // LoopInfo contains a mapping from basic block to the innermost loop. Find | 
 | // the outermost loop in the loop nest that contains BB. | 
 | static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) { | 
 |   const Loop *L = LI->getLoopFor(BB); | 
 |   if (L) { | 
 |     while (const Loop *Parent = L->getParentLoop()) | 
 |       L = Parent; | 
 |   } | 
 |   return L; | 
 | } | 
 |  | 
 | // True if there is a loop which contains both BB1 and BB2. | 
 | static bool loopContainsBoth(const LoopInfo *LI, | 
 |                              const BasicBlock *BB1, const BasicBlock *BB2) { | 
 |   const Loop *L1 = getOutermostLoop(LI, BB1); | 
 |   const Loop *L2 = getOutermostLoop(LI, BB2); | 
 |   return L1 != nullptr && L1 == L2; | 
 | } | 
 |  | 
 | bool llvm::isPotentiallyReachableFromMany( | 
 |     SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB, | 
 |     const DominatorTree *DT, const LoopInfo *LI) { | 
 |   // When the stop block is unreachable, it's dominated from everywhere, | 
 |   // regardless of whether there's a path between the two blocks. | 
 |   if (DT && !DT->isReachableFromEntry(StopBB)) | 
 |     DT = nullptr; | 
 |  | 
 |   // Limit the number of blocks we visit. The goal is to avoid run-away compile | 
 |   // times on large CFGs without hampering sensible code. Arbitrarily chosen. | 
 |   unsigned Limit = 32; | 
 |   SmallPtrSet<const BasicBlock*, 32> Visited; | 
 |   do { | 
 |     BasicBlock *BB = Worklist.pop_back_val(); | 
 |     if (!Visited.insert(BB).second) | 
 |       continue; | 
 |     if (BB == StopBB) | 
 |       return true; | 
 |     if (DT && DT->dominates(BB, StopBB)) | 
 |       return true; | 
 |     if (LI && loopContainsBoth(LI, BB, StopBB)) | 
 |       return true; | 
 |  | 
 |     if (!--Limit) { | 
 |       // We haven't been able to prove it one way or the other. Conservatively | 
 |       // answer true -- that there is potentially a path. | 
 |       return true; | 
 |     } | 
 |  | 
 |     if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) { | 
 |       // All blocks in a single loop are reachable from all other blocks. From | 
 |       // any of these blocks, we can skip directly to the exits of the loop, | 
 |       // ignoring any other blocks inside the loop body. | 
 |       Outer->getExitBlocks(Worklist); | 
 |     } else { | 
 |       Worklist.append(succ_begin(BB), succ_end(BB)); | 
 |     } | 
 |   } while (!Worklist.empty()); | 
 |  | 
 |   // We have exhausted all possible paths and are certain that 'To' can not be | 
 |   // reached from 'From'. | 
 |   return false; | 
 | } | 
 |  | 
 | bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B, | 
 |                                   const DominatorTree *DT, const LoopInfo *LI) { | 
 |   assert(A->getParent() == B->getParent() && | 
 |          "This analysis is function-local!"); | 
 |  | 
 |   SmallVector<BasicBlock*, 32> Worklist; | 
 |   Worklist.push_back(const_cast<BasicBlock*>(A)); | 
 |  | 
 |   return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B), | 
 |                                         DT, LI); | 
 | } | 
 |  | 
 | bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B, | 
 |                                   const DominatorTree *DT, const LoopInfo *LI) { | 
 |   assert(A->getParent()->getParent() == B->getParent()->getParent() && | 
 |          "This analysis is function-local!"); | 
 |  | 
 |   SmallVector<BasicBlock*, 32> Worklist; | 
 |  | 
 |   if (A->getParent() == B->getParent()) { | 
 |     // The same block case is special because it's the only time we're looking | 
 |     // within a single block to see which instruction comes first. Once we | 
 |     // start looking at multiple blocks, the first instruction of the block is | 
 |     // reachable, so we only need to determine reachability between whole | 
 |     // blocks. | 
 |     BasicBlock *BB = const_cast<BasicBlock *>(A->getParent()); | 
 |  | 
 |     // If the block is in a loop then we can reach any instruction in the block | 
 |     // from any other instruction in the block by going around a backedge. | 
 |     if (LI && LI->getLoopFor(BB) != nullptr) | 
 |       return true; | 
 |  | 
 |     // Linear scan, start at 'A', see whether we hit 'B' or the end first. | 
 |     for (BasicBlock::const_iterator I = A->getIterator(), E = BB->end(); I != E; | 
 |          ++I) { | 
 |       if (&*I == B) | 
 |         return true; | 
 |     } | 
 |  | 
 |     // Can't be in a loop if it's the entry block -- the entry block may not | 
 |     // have predecessors. | 
 |     if (BB == &BB->getParent()->getEntryBlock()) | 
 |       return false; | 
 |  | 
 |     // Otherwise, continue doing the normal per-BB CFG walk. | 
 |     Worklist.append(succ_begin(BB), succ_end(BB)); | 
 |  | 
 |     if (Worklist.empty()) { | 
 |       // We've proven that there's no path! | 
 |       return false; | 
 |     } | 
 |   } else { | 
 |     Worklist.push_back(const_cast<BasicBlock*>(A->getParent())); | 
 |   } | 
 |  | 
 |   if (A->getParent() == &A->getParent()->getParent()->getEntryBlock()) | 
 |     return true; | 
 |   if (B->getParent() == &A->getParent()->getParent()->getEntryBlock()) | 
 |     return false; | 
 |  | 
 |   return isPotentiallyReachableFromMany( | 
 |       Worklist, const_cast<BasicBlock *>(B->getParent()), DT, LI); | 
 | } |